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Abstract

We examine the inflationary costs of extreme weather in developing countries

by constructing a monthly data set of hurricane and flood destruction indices

and linking these with price data for 15 Caribbean islands. Our econometric

model shows that the inflationary impact of extreme weather events can be

large. To illustrate potential welfare losses due to these price effects we com-

bine our estimates with price elasticities obtained from a demand system and

with event probabilities for Jamaica. Our results show that while expected

monthly losses are small, rare events can cause large falls in monthly welfare

due to inflationary pressure.
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1 Introduction1

Extreme weather is estimated to have caused nearly US$3 trillion worth of damages2

globally over the last 35 years, and the rate of growth of such losses is predicted to3

increase in the future due to climate change (see World Bank 2013). Not surprisingly,4

there is hence a rising interest in understanding the economic implications of these5

potentially large negative shocks. The majority of the relevant academic literature6

tends to focus on the consequences of extreme events for economic growth, see7

Cavallo & Noy (2011) and Klomp & Valckx (2014) for recent reviews. However, a8

driving factor behind the extent and duration of any longer term outcome, such as9

growth, is the nature of the adjustment process in the immediate aftermath of the10

event. More specifically, the physical losses and subsequent economic disruptions are11

likely to create at least temporary shortages of many goods and services. Amongst12

other things, these shortages can in turn translate into higher prices. Importantly, if13

the price hikes are sufficiently large and last long enough, they could further increase14

the hardship of those already directly affected, as well as result in larger costs for15

other consumers. Such inflationary costs could then further exacerbate any long-16

term consequences, particularly affecting the poor. As a matter of fact, Easterly &17

Fischer (2001) find that for a sample of 38 developing countries inflation is one of18

their primary concerns.19

From a policy maker’s perspective, being able to predict price changes and their20

impact due to extreme weather events can arguably aid in optimizing relief efforts,21

as well as in choosing the appropriate policies to limit any longer term effects.22

This may particularly be relevant for developing countries where inflation is already23

much higher than for the developed world. However, as to date there is essentially24

no quantitative assessment of the inflationary costs of natural disasters.1 The only25

1As a matter of fact, as noted by Cavallo & Noy (2011) in their literature review on the
economics of natural disasters, the monetary aspects of disaster dynamics has been generally
neglected. Other notable exceptions include Keen & Pakko (2011) who evaluate the optimal
response of monetary policy in a dynamic stochastic equilibrium model and Ramcharan (2007)
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exception is the study by Cavallo & Cavallo (2014), which examines the impacts of1

the 2010 Chile and the 2011 Japan earthquakes on product availability and prices.2

More specifically, using daily nationwide price and product listings collected from the3

websites of a large international supermarket retailer in each country and comparing4

these before and after the events, the authors find that there were sharp falls in the5

availability of goods immediately ex-post, amounting to 32 per cent in Chile and6

17 per cent in Japan. However, surprisingly they find that these shortages did not7

translate into higher prices.8

The finding of price stickiness after a natural disaster seems to run counter-intuitive9

to the common perception that extreme events go hand in hand with price increases,10

at least in many developing countries.2 In this paper we thus take a different ap-11

proach to Cavallo & Cavallo (2014) to investigate potential inflationary costs of12

natural disasters. More precisely, we construct time series of potential destructive-13

ness for two types of extreme weather phenomena - hurricanes and floods - for a large14

number of Caribbean islands over time. Compared to focusing on a single event,15

like an earthquake, this gives a larger amount of variation and ensures that we are16

not just capturing the effect of other confounding events. In line with Felbermayr17

& Gröschl (2014), when building our destruction indices we consider not only the18

physical features of the events, but also take account of their localized nature and19

the local heterogeneity in exposure to them, which is shown by Strobl (2012) to be20

important. We then combine these indices with country specific monthly time series21

on prices to construct a large panel of cross-country, cross-time variation in prices22

and extreme weather events. This allows us to econometrically examine whether23

who empirically examines the role of exchange rate policy in the degree of damages due to natural
disasters.

2Internet searches on terms like ’inflation’ and ’storms’ and/or ’floods’ quickly re-
veal the extent of this view across countries typically subject to extreme weather
events; see, for instance, concerns by the Central Bank of the Philippines over Ty-
phoon Lando (http://www.philstar.com:8080/business/2015/10/22/1513320/bsp-weighs-typhoon-
impact-inflation) and concerns in the Cayman Islands before the 2014 hurricane season
(http://www.ieyenews.com/wordpress/caribbean-risk-outlook-hurricane-season-has-arrived/)
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such shocks can drive inflation. Using Jamaica as a case study, we then calculate1

the potential loss in consumer welfare resulting from the inflationary costs of ex-2

treme weather. To do so we estimate price elasticities from an Almost Ideal Demand3

System (AIDS) using household budget survey data and model the probabilities of4

extreme weather events using univariate and bivariate Peak Over Threshold (POT)5

models. Employing the results in combination with our estimated inflation response6

coefficients enables us to measure potential welfare losses due to extreme weather7

in terms of compensating variation.8

Arguably, the Caribbean offers an ideal context within which to study the impact9

of natural disasters in general, and their potential inflationary costs in particular.10

Firstly, the region is known to be subject to a large number and wide variety of po-11

tentially disastrous natural events, including tropical storms, earthquakes, volcano12

outbreaks, landslides, floods, and droughts. 3 Secondly, as a set of mostly small13

island developing states these countries/territories are particularly vulnerable to14

such large natural shocks due to their small physical size, geographic isolation, lim-15

ited natural resources, high population densities, low economic diversification, and16

poorly developed infrastructure (see Meheux, Dominey & Lloyd 2007). Moreover,17

since they rely on imports for a large part of their consumption goods, or at least18

cannot easily and quickly substitute internationally produced goods for domestic19

ones, they are potentially very sensitive to shortages after a natural disaster. With20

regard to the two types of natural disasters examined here, one should note that21

hurricanes and floods are the most common natural shocks in the Caribbean and22

have been driving most of the observed damages, affecting some part of the region23

consistently almost every year. Moreover, these events have often had disastrous24

impacts on affected islands. For example, in 2004 Hurricane Ivan is estimated to25

have resulted in losses of over 300 per cent of Grenada’s annual GDP, while the re-26

3The Caribbean is subject to a large number and types of disasters, including hurricanes,
earthquakes, volcano outbreaks, floods and droughts. For example, the Eastern Caribbean is
considered the most disaster prone region globally, see International Monetary Fund (2013)
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cent heavy rains due to a tropical trough system in St. Vincent and the Grenadines1

during Christmas 2013 are believed to have caused damages constituting nearly 152

per cent of its economic output. Worryingly, some studies estimate that rising risks3

from hurricanes and other extreme weather events will cost Caribbean nations up4

to 9% of annual GDP in damages and losses by 2030 (see Caribbean Catastrophe5

Risk Insurance Facility [CCRIF] 2010).6

In contrast to Cavallo & Cavallo (2014), the results from our analysis show that7

there can indeed be large price increases due to natural disasters. This effect is8

reflected in both aggregate inflation, as well as for subcategories of goods. More pre-9

cisely, while we find that expected monthly welfare effects due to extreme weather10

are minimal, low probability but very damaging extreme weather can result in infla-11

tionary costs that are multiples of estimated monthly household welfare. However,12

depending on what one considers a damaging hurricane, poorer households can be13

either relatively better or worse off than richer households due to their different14

patterns of consumption.15

The remainder of the paper is organized as follows. In the next section we de-16

scribe our data and provide some summary statistics. We discuss our econometric17

model and results in Section 3. Subsequently, in Section 4, we use our econometric18

estimates to derive inflationary cost estimates for Jamaica. Concluding remarks are19

provided in the final section.20

2 Data and Summary Statistics21

2.1 Hurricane Destruction Index22

Tropical cyclones are storms that form in the North Atlantic and the North East23

Pacific region and are referred to as hurricanes if they are of sufficient strength,24

generally above 119 km/hr. Hurricane destruction can take the form of damages25
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due to strong winds, heavy rainfall, and storm surge. The latter two aspects tend1

to be heavily correlated with the wind of the hurricane, and thus wind is often used2

as a proxy for all types of damaages (see Emanuel 2005). To capture the potential3

destruction due to hurricanes we use an index in the spirit of Strobl (2012), which4

measures wind speed experienced at a very localized level and then uses exposure5

weights to arrive at an island specific proxy.4 More precisely, for a set of hurricanes6

k = 1, . . . , K, and a set of locations i = 1, . . . , I, in island j = 1, . . . , J , we define7

hurricane destruction during month t as:8

Hj,t =
I∑
i=1

wi,t−1

K∑
k=1

(
Wmax
j,i,k,t

)3
1{Wmax

j,i,k,t≥W ∗}, (1)

where 1(.) is an indicator function, for location i in island j, at time t, Wmax
j,i,k,t is the9

maximum measured wind speed during a storm k, W ∗ is a threshold above which10

wind is damaging, and the wi,t−1 are exposure weights in the previous month t− 111

at location i, which aggregate to 1 at the level of island j. As can be seen from12

Equation (1), our hurricane destruction index Hj,t requires local wind speed and13

exposure weights as inputs. Also we allow local destruction to vary with wind speed14

in a cubic manner, since, as noted by Emanuel (2011), kinetic energy from a storm15

dissipates roughly to the cubic power with respect to wind speed and this energy16

release scales with the wind pressure acting on a structure.5 As a starting point, we17

set W ∗, the threshold above which winds are considered to be of hurricane strength,18

equal to 119 km/hr.19

2.1.1 Local Wind Speed20

What level of wind a location will experience during a passing hurricane depends21

crucially on that location’s position relative to the storm and the storm’s movement22

4Strobl (2012) shows that not weighting for local exposure can substantially underestimate the
impact of hurricanes on economic growth.

5See Kantha (2008) and American Society of Civil Engineers (2006).
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and features, and thus requires explicit wind field modeling. In order to calculate1

the wind speed experienced due to a hurricane, we use Boose, Serrano & Foster’s2

(2004) version of the well-known Holland (1980) wind field model, described in detail3

in Appendix A. This model requires as inputs hurricane track data and allows one4

to estimate the wind speed experienced at any locality at any point in time during5

the life span of a tropical storm. Our source for hurricane data is the HURDAT6

Best Track Data, which provides six hourly data on all tropical cyclones in the7

North Atlantic Basin, including the position of the eye and the maximum wind8

speed of the storm. We linearly interpolate these to 3 hourly positions in order to9

be in congruence with our rainfall data, described below. We also restrict the set of10

storms to those that came within 500 km of our Caribbean islands and that achieved11

hurricane strength (at least 119 km/hr) at some stage.6 Figure 1 depicts the tracks12

of all remaining tropical storms for the period 2000 to 2012, where the red portion13

of the tracks refers to the segment of the storm that reached hurricane strength. A14

total of 86 hurricane strength storms traversed the 500km radius of the Caribbean15

during our sample period of 2000 to 2012.16

2.1.2 Exposure Weights17

To account for local exposure ideally we would like to have time-varying information18

on the degree of dispersion of economic activity within islands at the most spatially19

disaggregated level possible, given that wind speeds due to tropical storms can differ20

substantially across space. To this end we employ nightlight imagery provided by the21

Defense Meteorological Satellite Program (DMSP) satellites. Nightlights have now22

found widespread use in proxying local economic activity where no other measures23

are available, see for instance Harari & La Ferrara (2013), Hodler & Raschky (2014)24

and Michalopoulos & Papaioannou (2014). In terms of coverage each DMSP satellite25

provides global coverage twice per day, at the same local time each day, with a spatial26

6Tropical cyclones generally do not exceed a diameter of 1000km.
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Figure 1: Tropical Cyclones in the Caribbean Region 2000-2012

Notes: Orange, red and black, portions of the tracks indicates tropical storm, hurricane

Saffir-Simpson Scale 1 (119-153 km/hr), and at least hurricane Saffir-Simpson Scale 3 (178

km/hr+) strength storms, respectively.
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resolution of about 1km near the Equator. The publicly availabe data consist of1

yearly averages (generated from daily data), where light intensity is normalized to2

a scale ranging from 0 (no light) to 63 (maximum light).7 We use the stable, cloud-3

free series, see Elvidge, Baugh, Kroehl, Davis & Davis (1997)). In order to obtain4

monthly time-varying values for our weights wi,t−1, we linearly interpolate between5

yearly values.6

2.1.3 Flood Events7

A flood is a temporary water overflow of a normally dry area due to a rise of a8

body of water, unusual buildup or runoff of surface waters, or abnormal erosion or9

undermining of shoreline (see e.g. Samaroo 2010). There are several different types,10

including flash floods, coastal floods, urban floods, fluvial floods, and pluvial floods,11

where the main driving factor behind all of these is generally excessive rainfall. Un-12

fortunately there is no complete flood event database providing location and flooding13

intensity for the Caribbean. An alternative way to identify flood occurrences is to14

use data on precipitation and simulate water runoff using a hydrological model, but15

the data required to run such a model is not readily available on a Caribbean wide16

basis. However, as shown by Montesarchio, Lombardo & Napolitano (2009), in re-17

gions where river basin size is less than 400 km2, which is essentially the case for18

all of the Caribbean, it is possible to perform flood detection based solely on pre-19

cipitation data. In following this approach we identify flood events as those above20

a given threshold level of rainfall. We can then proxy country level flood-induced21

potential destruction as:22

7For the years when satellites were replaced, observations were available from both the new
and old satellite. In this paper we use the imagery from the most recent satellite, but as part of
our sensitivity analysis we also re-estimated our results using an average of the two satellites and
the older satellite only. The results of these latter two options were qualitatively identical, and
quantitatively extremely close.
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Fj,t =
I∑
i=1

wi,j,t−1

t∑
d=1

ri,j,d1{∑d
d−3 ri,j,d≥r∗}, (2)

where Fj,t is the exposure-weighted average excess rainfall of country j in month t,1

ri,j,d is daily rainfall at location i and on day d, and wi,j,t−1 are exposure weights2

for location i as defined in Equation (1). We assume r∗ to be 112 mm over a three3

day window, as suggested by an intensity-duration flood model and actual flood4

event data for Trinidad, details of which are given in Appendix B. One may want5

to also note that, unlike for wind speed of tropical storms, we are assuming that6

potential damages are linearly related to the extent of precipitation during a flood.7

This is generally in congruence with estimated flood fragility curves, for instance8

those used by Federal Emergency Management Authority (FEMA) for damage esti-9

mation within their HAZUS flood software for the US (see e.g. Federal Emergency10

Management Agency 2006, Scawthorn, Flores, Blais, Seligson, Tate, Chang, Mifflin,11

Thomas, Murphy, Jones & Lawrence 2006).12

Apart from exposure weights, our only required input in (4) is precipitation r.13

Since consistent series of rainfall estimates from weather stations are available nei-14

ther on a temporal nor on a spatial scale for the Caribbean, we instead use the15

satellite derived TRMM-adjusted merged-infrared precipitation (3B42 V7) product,16

which have a 3 hourly temporal resolution and a 0.25-degree by 0.25-degree spatial17

resolution and is available from 1998. Since the TRMM grid cells are of greater size18

than the location points that we use for our hurricane index and exposure weights,19

points located within the same TRMM pixels will necessarily have the same local20

precipitation values.21

Finally, it should be noted that a problem in trying to consider hurricane and22

flood events simultaneously is that many of the excess rainfall events occur during23

tropical storms. As a matter of fact, as noted for example by Jiang, Halverson &24

Zipser (2008), the amount of rain and the maximum wind speed during a storm25
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tend to be positively correlated. Moreover, in practice many tropical storms are1

not powerful enough, or do not come close enough to a locality to cause wind2

damage, but may still produce enough excess rainfall to cause flooding.8 We thus3

in calculating our flood damage index F exclude flood events for a cell within an4

island during a storm if the corresponding estimated wind speed was above the5

chosen wind threshold value W ∗. In this context, our hurricane destruction index6

H will capture both wind and accompanying rainfall damage for a locality, as long7

as winds experienced are of at least hurricane strength. In contrast the flood damage8

index F is constructed to identify both non-tropical storm-related events, as well9

as flood damage due to tropical storms that did not translate into local hurricane10

strength winds.911

2.2 Inflation Data12

Our source of inflation data are monthly series of the consumer price index (CPI)13

for a group of 15 island economies in the Caribbean, where our choice of island14

economies was determined by data availability: Antigua and Barbuda, Bahamas,15

Barbados, Dominica, Dominican Republic, Guadeloupe, Grenada, Haiti, Jamaica,16

St. Kitts & Nevis, St. Lucia, Montserrat, Martinique, Trinidad & Tobago, and St.17

Vincent & the Grenadines. The data are extracted from the island’s central bank18

data sources and covers the period January 2001 to December 2012, but because of19

missing monthly data for the Bahamas for the years 2001-02, is a marginally un-20

balanced panel. We use data on total CPI, where inflation is simply the difference21

in logged monthly prices over time. The richness of our data sources also allows us22

to homogeneously group goods into three broad sub-categories:10 (i) Food, which23

8For example, although Tropical Storm Nicole never reached Hurricane strength, it caused a
considerable amount of damage due to heavy rainfall, believed to be around US $239.6 million, in
Jamaica; see Planning Institute of Jamaica (2010).

9This reduced the correlation between the two potential damage indices from 0.2095 to 0.0128
10This choice of categories was restricted by cross-country differences in disaggregation of the

CPI.
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includes food goods and non-alcoholic beverages, (ii) Housing and Utilities, which1

includes all goods related to housing construction and repair, furnishings, house-2

hold equipment, routine household maintenance, and expenditure on water, gas,3

electricity and other types of fuels, and an (iii) Other category, which consists of4

all other goods not included in Food and Housing and Utilities, such as alcoholic5

beverages and tobacco, clothing and footwear, expenditure on health, transport,6

communication, recreation and culture, education, restaurants and accommodation7

and miscellaneous goods and services.8

2.3 Summary Statistics9

Table 1 displays summary statistics for all variables used in the analysis. Accord-10

ingly, average monthly aggregate inflation is about 0.4 per cent, translating into11

about 4.8 per cent annually, although with considerable monthly variation. Also,12

the rate of food inflation is higher than that of housing and utilities, but less vari-13

able. If one examines our benchmark extreme weather proxies (W ∗ = 119km/hr14

and r∗ = 112mm) one discovers that the variation is large relative to the mean over15

our sample period. In part this is due to the large number of non-damaging months16

for each. More precisely, for our total observations of 2,340 island-months, there are17

only 142 non-zero occurrences of damaging hurricanes, with a corresponding figure18

of 673 for flooding.19

3 Econometric Results20

3.1 Econometric Specification21

Our first task is to estimate the impact of extreme weather events on inflation:22

INFLj,t =
S∑
s=0

θHs Hj,t−s +
S∑
s=0

θFs Fj,t−s + µj + λt + νj,t, (3)
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Table 1: Summary Statistics of Panel Data Set

Variable Mean Max Min St. Dev.

Hurricane and flooding

Hurricane (W ∗ = 119) 2602102 1.19e+09 0 3.47e+07
Flooding (r∗ = 112) 18.05 416.72 0 49.30
Hurricane (W ∗ = 178) 1609246 1.15e+09 0 3.05e+07
Flooding (r∗ = 200) 15.19 389.67 0 43.48

Inflation

All 0.37 12.23 -10.64 0.91
Food 0.50 16.79 -13.02 1.36
Housing & Utilities 0.35 46.47 -47.35 2.20
Other 0.41 -11.38 11.63 0.98

This table shows descriptive statistics for the data used to estimate Equation (3). The

first panel shows the destruction indices of hurricane, with a threshold of W ∗ = 119

and W ∗ = 178, and flooding, with a threshold of r∗ = 112 and r∗ = 200. The second

panel shows overall inflation, as well as inflation for food, housing and utilities, and the

remaining consumption goods.

where, for country j at time t, INFLj,t is the inflation rate, defined as the difference1

in logged CPI, Hj,t is our hurricane destruction index, Fj,t is our flood index, µj is a2

country specific indicator variable, λt consists of a set of year and month indicator3

variables, and νj,t is an error term. In order to take account of the country-specific4

time invariant factors, µj, we employ a fixed effects estimator. We allow for cross-5

sectional and serial correlation of up to four lags by using Driscoll & Kraay (1998)6

adjusted standard errors.7

3.2 Estimation Results8

We initially regress the overall inflation rate on the contemporaneous values of our9

hurricane and flood indices, as shown in Column (1) of Table 2. As can be seen,10

both have a positive and significant effect on monthly inflation. To see whether11

there is persistence in these effects we include lags of up to two months after the12
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event in Columns (2) and (3), respectively, but find no evidence of such.111

We next investigate whether extreme weather increases prices for our three CPI2

sub-categories. In this regard, Columns (4) through (6) show that there is also only3

a contemporaneous increase in food prices due to hurricane shocks, although the4

quantitative impact is substantially larger, about double that of overall prices. For5

floods we similarly find an effect about twice that for aggregate inflation, but also6

now find a smaller, about half of the contemporaneous, lagged effect on food infla-7

tion. In contrast, neither weather phenomena appears to play any role in increasing8

prices of housing and utilities, as shown in Columns (7) through (9). The estimated9

coefficients on all other goods, shown in the last three columns of the table, sug-10

gest that for these there is a contemporaneous effect lying somewhere between the11

impact on overall prices and that for food.12

Thus far we have assumed that hurricane wind damage occurs if localized winds are13

above 119 km/hr, i.e., of at least Saffir-Simpson (SS) Intensity 1 (119-153 km/hr).14

In this regard the National Oceanic and Atmospheric Administration (NOAA) notes15

that when winds are of SS Category 1, typically “..well-constructed frame homes16

could have damage to roof, shingles, vinyl siding and gutterslarge branches of trees17

will snap and shallowly rooted trees may be toppled, extensive damage to power lines18

and poles likely will result in power outages that could last a few to several days.”.19

If, in contrast, one considers Category 3 (178-208km/hr) winds then “...well-built20

framed homes may incur major damage or removal of roof decking and gable ends,21

many trees will be snapped or uprooted, electricity and water will be unavailable22

for several days to weeks after the storm passes”.12 To investigate whether setting23

the threshold at Category 3 winds changes our findings, we redefine the hurricane24

destruction index H in Equation (1) using W ∗ = 178 and adjust the flood damage25

index F accordingly, the results of which are given in Table 3. Compared with26

11Further lags were also insignificant.
12http://www.nhc.noaa.gov/aboutsshws.php.
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Table 2, there is now a lagged effect of hurricane damage for overall and for food1

prices. Perhaps more importantly, we now find both significant contemporaneous2

and lagged effects of hurricane strikes on the price of housing and utilities.3

We also experimented with the use of an alternative threshold for identifying flood4

events in (4). More specifically, parameter estimates of an intensity-duration model5

of excess rainfall induced landslides worldwide by Hong, Adler, Negri & Huffman6

(2007) suggested to set r∗ at 200mm. Using this threshold we replicated Table 2 and7

Table 3, with the corresponding series of flood damage F . Our results, not reported8

here, showed, however, that while our findings on H still held, floods no longer had9

any discernable impact on inflation. This suggests that setting the threshold too10

high may result in excluding too many flood events, and thus introduce too much11

measurement error into our flood damage proxy.12

One can use the estimated coefficients in Table 2 to assess the economic significance13

of extreme weather on inflation over our sample period and, as an example, we do14

so for aggregate prices. In this regard it is helpful to recall that monthly mean15

aggregate inflation rate in our sample was 0.37. Our estimated coefficient suggests16

that overall average monthly rate rose by 0.003 percentage points due to damaging17

hurricanes if we use the 119 threshold. In those months with non-zero damage the18

average impact is about 0.05, while the implied maximum observed price hike is19

1.4 percentage points. In contrast to hurricanes, average monthly expected flood-20

induced inflation is considerably larger, standing at about 0.024 percentage points.21

Similarly when flooding occurs in a month, the average effect (0.083) is also higher22

than for hurricanes. However, when one considers the most extreme event month23

observed over our time period, the implied price hike due to floods is less than half24

(0.604 percentage points).25

Using the estimates under the higher H threshold from Table 3 suggests similarly26

sized inflationary costs for floods in absolute value compared to the lower cut-off27
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value.13 Differences arise, however, with regard to the implied effects due to hurri-1

cane damages. More specifically, using the contemporaneous and lagged coefficients2

on H suggests an average monthly inflation effect of about 0.004 percentage points.3

When a hurricane induces damage the immediate impact is about 0.080 percentage4

point a rise in inflation with a further 0.063 point rise a month later. The largest5

observed value of H over our sample period impact is about 1.5 immediately and6

1.2 points a month later.7

4 Potential welfare losses: the case of Jamaica8

Given the short-term nature of extreme weather induced inflation suggested by our9

econometric results, the obvious question is whether these inflationary effects will re-10

ally matter from a welfare point of view. Moreover, as noted in the introduction, one11

concern about the impact of natural disasters on prices is that it may be the poorest12

of the population who are most affected. We use data on Jamaican household survey13

data to further investigate these issues. While our choice is driven by data avail-14

ability, Jamaica is arguably particularly suited for this task. Geographically it is15

the third largest island in the Caribbean and lies well within the hurricane belt and16

thus is subject to frequent hurricane strikes. For example, over our sample period,17

Hurricanes Iris (2001), Lili (2002), Ivan (2004), Emily (2005), Charley (2005), Dean18

(2007), Gustav (2008), and Sandy (2012) have all caused at least some damage on19

the island. At the same time Jamaica is also vulnerable to frequent flooding induced20

by tropical storms, fronts, and troughs. As a matter of fact, major damaging floods21

are known to have occurred in the years 2004, 2007, 2008, 2009, 2010 and 2012 (see22

Mandal, Wilson, Taylor, Nandi, Stephenson, Burgess, Campbell & Otuokon 2014).23

Jamaica is also one of the poorest countries in the Caribbean, with close to 20 per24

cent of the population living below the official poverty line.25

13These were for the average mean, non-zero mean, and maximum observed effects 0.023, 0.075
and 0.514 percentage points, respectively.
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4.1 Framework for welfare analysis1

In order to assess the potential welfare effect of extreme weather-induced price2

increases, we explore the change in households’ consumer surplus due to the sub-3

sequent reallocation of expenditures. One should note in this regard that we are4

abstracting from any impacts of extreme weather on the absolute level of income due5

to, for example, loss of employment. Moreover, we do not take account of any poten-6

tial changes in the demand curve of goods due to extreme weather-induced factors7

other than relative price changes; as, for instance, the need to spend more on hous-8

ing because of damages incurred. We are thus focusing simply on the price effect of9

these events. Accordingly, we consider the minimum expenditure function C(u, p)10

needed to obtain utility u for a given household, at price vector p = (p1, . . . , pn)11

with pi the price of good i. The compensating variation due to an extreme weather12

event is defined as the change in expenditure ∆C, needed to maintain a constant13

utility u after a change in the price vector from p to p̃:14

∆C = C(u, p̃)− C(u, p). (6)

Using a second order Taylor expansion and reformulating Equation (6) in terms of15

proportional changes and household budget shares for a set of goods i = 1, . . . , n,16

Friedman & Levinsohn (2002) show that one can write:17

∆ ln(C) ≈
n∑
i=1

si∆ ln(pi) +
1

2

n∑
i=1

n∑
j=1

siεij∆ ln(pi)∆ ln(pj), (7)

where ∆ ln(C) is compensating variation in relative terms, si is the budget share18

of good i, and εij is the compensated (Hicksian) elasticity of the demand for good19

i with respect to a change in the price of good j, which we estimate from the20

household budget survey using the almost ideal demand system (AIDS) of Deaton21

& Muellbauer (1980), as laid out in Section 4.2. Equation (7) thus quantifies the22

19



impact on consumer welfare of changes in prices, while accounting for households’1

ability to substitute away from those goods whose prices have risen in relative terms.2

To evaluate the distribution of potential welfare losses implied by extreme weather3

events we use Equation (7) to calculate the loss in welfare for any household due4

to a change in the price of goods following a set of possible flood and hurricane5

events of different strengths, each associated with a quantile that indicates their6

likelihood of occurrence. More specifically, for any quantile α, we calculate the7

compensated variation ∆ ln(C)(α) of a household with budget shares si due to a8

hurricane H(α) = F−1H (α), or flood event F (α) = F−1F (α), where FH(.) and FF (.),9

are, respectively, the cumulative distribution function of hurricane and flooding,10

obtained from a peaks over threshold (POT) model explained in Section 4.3.11

We first single out the inflationary effect of hurricanes, ∆ln(pi)
(α) = ΘH

i H
(α),12

or flooding ∆ln(pi)
(α) = ΘF

i
(α), where ΘH

i and ΘF
i are the sum of the significant13

contemporaneous and lagged effects estimated in Equation (3) for good i. This14

allows us to associate a welfare loss to any quantile of the distribution of each of15

these types of events. In contrast, when we consider the joint effect of hurricanes16

and flooding, we look at the distribution of one type of event conditional on the17

incidence of the other type. Given the infinite combination of pairs of events, we18

for demonstrative purposes do so conditioning on a five year return level events19

(corresponding to a probability of 0.9833). For instance, in the case of hurricanes20

conditional on flooding, we use ∆ln(pi)
(α) = ΘH

i H
(α)
c + ΘF

i F
(α), where H

(α)
c =21

F−1H|F (α|F−1F (0.9833)). As households’ budget shares further depend on their level of22

consumption, we repeat the analysis for each household and use a Nadaraya-Watson23

kernel regression of compensating variation on per capita consumption to show how24

the welfare effect of extreme weather depends on household income.25
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Figure 2: Distribution of consumption per capita in Jamaica (2012)
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Notes: (1) Graph of the kernel density estimate using a Gaussian kernel and a plug-in

bandwidth; (2) Red line indicates poverty threshold at J$12,000.

4.2 Budget shares and price elasticities1

We obtain budget shares si for different groups of goods from the 2012 Jamaican2

Survey of Living Conditions (JSLC), which is a household budget survey cover-3

ing 6,450 representative households. The official poverty line in Jamaica is about4

J$143,000 per capita, or about J$12,000 per capita per month, and thus 1,382 out5

of the total 6,450 households in our data, or 21.4 per cent, would accordingly be6

defined as poor.14 We depict the kernel density distribution of per capita consump-7

tion per household15 calculated from the data along with the poverty line threshold8

in Figure 2. To calculate budget shares of the different goods, we categorize ex-9

penditures into food, housing and utilities, and the remaining consumer items to10

match our cross-country price data. Figure 3 shows the relationship between the11

budget shares of these three consumption goods and consumption per capita, using12

a Nadaraya-Watson non-parametric regression. As can be seen, the share spent on13

14In Jamaica the poverty line is based on consumption data since income data tends to be
unreliable. The last official estimate is J$124,408 in 2010 and we convert this into 2012 prices.

15As is standard, we weight children half of adults in the consumption per capita calculation.

21



food decreases with income, standing roughly at around 42 per cent at the poverty1

threshold. In contrast, expenditure on housing and utilities and on other goods rises2

with wealth and is about 12 and 41 per cent, respectively, near the poverty line.3

Figure 3: Budget Share of different goods, as a function of consumption per capita
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Notes: (1) Graph of the kernel regression estimate using a Gaussian kernel and a plug-in

bandwidth; (2) Red line indicates poverty threshold at J$12,000.

We take good specific prices, pit, from publications by the Central Bank of Jamaica4

and aggregated these using their given weights to match our three categories of5

consumption goods, in line with our analysis above. Since Jamaica calculates its CPI6

series separately for three regional groupings (the greater Kingston metropolitan,7

other urban, and rural areas), we match prices to each household using the urban-8

rural classification associated with each enumeration district that it resides in and9

to the month that it was surveyed. Hence prices potentially vary over time as well10

as space across households.11

To obtain the elasticities, εij, in Equation (7) we estimate an Almost Ideal De-12

mand System (AIDS) as developed by Deaton & Muellbauer (1980). More specifi-13

cally, we use a linear approximation seemingly unrelated regression (SUR) method14

and assume that our prices are Laspeyres price indexes. The implied compensated15

(Hicksian) elasticities from our AIDS estimation are provided in Table 4. As can be16
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seen, all own-price elasticities are statistically significant and of the expected neg-1

ative sign, where Jamaican households are most responsive to changes in housing2

and utilities. In terms of the cross-price elasticities the estimated coefficients suggest3

that all three groups of goods are substitutes, although some are more responsive4

to price changes in other good groups than others.5

Table 4: Price Elasticities

Food Housing & Utilies Other

Food -0.915∗∗ 0.503∗∗ 0.412
(0.182) (0.097) (0.206)

Housing & Utilities 0.971∗∗ -2.004∗∗ 1.033∗∗

(0.188) (0.198) (0.243)
Other 0.313 0.0406∗∗ -0.719∗∗

(0.157) (0.096) (0.212)

This table shows compensated (Hicksian) elasticities, obtained from the estimates of an
Almost Ideal Demand System:

si = (αi − βiα0) +
∑
j

γij ln(pj) + βi

ln(x)−
∑
k

αk ln(pk)−
1

2

∑
k

∑
j

γkj ln(pi) ln(pj)

 ,

(7)
where si and pi are, respectively, the budget share and the price of good i, and x is total
expenditure. The Marshallian elasticities obtain as follows:

ε
(M)
ij =

γij − βi
(
sj − βj

(
ln(x)−

∑
k αk ln(pk)− 1

2

∑
k

∑
j γkj ln(pi) ln(pj)

))
si

− δij ,

where δij = 1 when i = j, and 0 otherwise. Income elasticities are given by εi = βi
si

+ 1,
and compensated (Hicksian) elasticities are given by:

εij = ε
(M)
ij + siεi.

Standard errors are in parentheses. ∗∗, and ∗ indicate 1 and 5 per cent significance levels.

4.3 Distribution of Hurricanes and Flooding6

It is common practice to model the probabilities of rare occurrences, such as weather7

shocks, using extreme value theory, see for instance Jagger & Elsner (2006) for hur-8

ricane wind modeling. A standard approach in this regard is to use Peaks Over9
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Threshold (POT) models (see e.g. Smith 1987, Davison & Smith 1990). POT mod-1

els consist of fitting exceedances over a large threshold by a Generalized Pareto2

Distribution (GPD), whose shape parameter captures the fatness of the tails of the3

distribution, which indicates how likely it is to observe extreme weather events. We4

refer to Appendix C for more details on the POT models and their estimation.5

As a starting point we model hurricane and flood events independently as univari-6

ate POT models; see the estimates given in Table C.1 of Appendix C. Accordingly,7

for both thresholds, we find a positive, although not significant, shape parameters8

for hurricanes which suggests that they both have slowly decaying power tails, im-9

plying a non-negligible probability of extreme events. In contrast, shape parameters10

for flooding are very significantly negative, which implies that the distribution has11

a finite domain, with an upper bound, beyond which the probability drops to zero,12

and thus there is less reason for concern about very extreme events. We follow the13

literature and use return periods to state how extreme an event is and return plots14

to visualize the distribution of extreme events. So, for instance, a 10 year return15

period event happens on average every 10 years, and with monthly data, this cor-16

responds to the 1− 1
10×12 = 0.997 quantile (α) of the distribution. In line with our17

estimations, the return plots for the hurricane series are convex, while for flooding18

they are concave and seem to be bounded; see Figure C.2 in Appendix C.19

Of course damaging flood and hurricane events are not completely independent20

occurrences, given that similar climate factors are likely to be driving both. Firstly,21

even if they do not produce hurricane level winds, tropical storms are still driven22

by the same underlying temporal variation in climatic factors as hurricane strength23

ones in any month. Similarly, climate that induces non-tropical storm excessive24

rainfall may also play a role in tropical storm formation. The possible importance25

of joint occurrence is already suggested by our data, where 13 per cent of extreme26

weather damaging months are characterized by both hurricane and flood events. To27

investigate how joint dependence might influence potential consumer welfare losses,28
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we extend our probability modeling using bivariate POT models. While the GPD1

embodies all possible limit cases for univariate extremes, there is not a unique class2

of distributions for joint extremes.3

We consider six popular bivariate POT models, which combine univariate GPDs4

into proper bivariate distributions of extremes, characterized by one or several de-5

pendence parameters; namely, the logistic (Gumbel), the negative logistic (Galam-6

bos), and the mixed model, as well as their asymmetric counterparts. All bivariate7

POT models, regardless of the functional form, show very significant dependence8

parameters between hurricane and flooding, see Table C.1. This is also reflected in9

the Chi statistic, a measure of tail dependence, the dependence that exists between10

the extremes of hurricane and flooding.16 More specifically, for the 119 km/hr (17811

km/hr) series the tail dependence is around 0.5 (0.4) for all series, indicating that12

there is about a 50 percent (40 percent) chance of an extreme flood event condition-13

ally on an extreme hurricane event, or vice-versa using the 119 (178) km/hr series.14

An information criterion such as the Akaike (AIC) shows that all symmetric models15

are preferred over their asymmetric counterparts, while a comparison of likelihoods16

between the three symmetric models suggest that there is no significant difference17

between them, which is confirmed by a series of pairwise Vuong tests.17 As a conse-18

quence, we decide to proceed with the Gumbel model, which is the most commonly19

used.1820

16Mathematically, for extreme weather events F and H, χ = P (FF (F ) > α|FH(H) > α) =
P (FH(H) > α|FF (F ) > α), where FH(.) and FF (.), are, respectively, the cumulative distribution
function of hurricane and flooding.

17We use a Vuong test, since the models are not nested and a simple comparison of likelihoods
is not appropriate. The values of the standard normal test statistics are all less than 0.7, which is
well below the 95% value of 1.96.

18See e.g. Ledford & Tawn (1996), who develop estimation of the model, Longin & Solnik (2001),
who use the model to study extreme dependence between financial returns, and Bonazzi, Cusack,
Mitas & Jewson (2012), who use the model to analyze the spatial dependence in wind storms.
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4.4 Potential Welfare Losses1

We now have all parameters to calculate the welfare loss ∆ ln(C)(α) of any household2

in our Jamaican data set for any quantile α of the weather distribution. In order3

to demonstrate how these losses vary across income levels we used a Nadaraya-4

Watson non-parametric regression estimate of the effect of income on compensating5

variation, calculated as a percentage of initial household consumption, for each of6

a range of α’s. These kernel estimates are plotted jointly across the range of α’s,7

depicted in terms of return periods, for flood events using each the two hurricane8

thresholds for inclusion during tropical storms in Panels (a) and (b) of Figure 4. As9

expected, given our univariate POT estimates, for both series welfare losses rise up10

to a 5 year return period and then remain fairly stable for a given income group.11

However, clearly welfare losses are larger for poorer households across the full range12

of depicted events. For example, for a 10 year event using the W ∗ = 119 km/hr13

(W ∗ = 178 km/hr), households just below the poverty line will experience a welfare14

loss of 0.7 (0.6) per cent, while the corresponding households in the 95th percentile15

will be subject to losses of 0.6 (0.5) per cent.16

In contrast to floods, compensating variation for hurricanes rises substantially as17

one considers more extreme events, in a roughly linear fashion under the W ∗ = 11918

km/hr and in a slightly exponential manner under the W ∗ = 178 km/hr threshold -19

as shown in Panels (a) and (b) of Figure 4. This implies that for the lower threshold,20

a 20 year event produces 5 times greater losses than a 5 year event, while for the21

higher threshold, a 20 year event results in losses 7 times larger than for a 5 year22

event. One may also want to note the stark differences in losses under the two23

threshold definitions for equal probability events, ranging from multiples of 10 to 1424

across the range that we depict. This arises because, as shown by our econometric25

analysis, limiting damage to stronger winds suggested not only lagged effects but26

also an impact on prices of housing goods. Perhaps most importantly, in examining27
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Figure 4: Return plots for univariate POT models
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(a) Flood Events
(W ∗ = 119km/hr)
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(b) Flood Events
(W ∗ = 178km/hr)
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(c) Hurricane Events
(W ∗ = 119km/hr)
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(d) Hurricane Events
(W ∗ = 178km/hr)

This figure shows estimates of a series of kernel regressions of compensated variation on

consumption per capita, plotted over a grid of tail events with 1 to 20 year return periods

of hurricanes with a 119 km/hr threshold in Panel (a), hurricanes with a 178 km/hr

threshold in Panel (b), flooding with a 119 km/hr threshold in Panel (c), and flooding

with a 178 km/hr threshold in Panel (d). Kernel regressions use a Gaussian kernel and a

plug-in bandwidth. Compensating variation is measured in percentage changes.
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welfare losses across income levels, one finds that, for the 119 km/hr threshold,1

poorer households experience greater losses than richer ones, whereas one finds the2

reverse when assuming that damages occur at wind speeds greater than the Saffir-3

Simpson scale of 3. This is due to the fact that, on average, richer households4

spend a substantially larger fraction of their total income on housing and utilities,5

the price of which reacts only to more extreme storm months. Nevertheless, these6

differences are not particularly pronounced given the total level of losses, particularly7

for the most extreme event months. For example, a 20 year event month under the8

W ∗ = 178 km/hr definition, would suggest losses of about 128 per cent of initial9

expenditure for households at the 95th percentile of the income distribution, whereas10

the equivalent figure is about 125 per cent for households just below the poverty11

level.12

We next recompute compensating variation using the probabilities derived from13

the bivariate estimations to allow for dependence among hurricane and flood events.14

From the large number of possible combinations of conditioning events, we choose15

two as illustrative examples. Firstly, in terms of floods, we compute the welfare losses16

of 5 year flood events, conditional on 1 to 20 year hurricane events, since the severity17

of floods does not change much for events of lesser probability. Using a similar line18

of reasoning for hurricanes, we use the range between 1 and 20 year return period19

events conditioned on a 5 year flood event. Panels (a) and (b) of Figure 5 show the20

flood events for the two thresholds. Unsurprisingly, they have the same qualitative21

shape and features as their univariate counterparts. More specifically, welfare losses22

rise sharply as events become more extreme. Given that the inflationary pressures23

of hurricanes dominate those of floods, we again find that for the lower threshold,24

losses are relatively larger for poorer households and the contrary for the greater25

threshold. If we take for instance a 5 year flood event, conditioned on a 20 year26

hurricane event for W ∗ = 178 km/hr, then welfare losses for the richest households27

will be around 700 per cent and a little under 600 per cent for poorer households,28
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Figure 5: Return plots for bivariate POT models
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(a) Conditional Flood Events
(W ∗ = 119km/hr)
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(b) Conditional Flood Events
(W ∗ = 178km/hr)
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(c) Conditional Hurricane Events
(W ∗ = 119km/hr)
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(d) Conditional Hurricane Events
(W ∗ = 178km/hr)

This figure shows estimates of a series of kernel regressions of compensated variation on

consumption per capita. Results for 5 year return period flood events, interpolated over

a grid of conditional hurricane events occurring with a return period between 1 and 20

years, for hurricanes are shown with a 119 km/hr threshold in Panel (a) and hurricanes

with a 178 km/hr threshold in Panel (b). The regression shows results for 5 year return

period hurricane events, interpolated over a grid of conditional flood events occurring

with a return period between 1 and 20 years, are shown for flooding with a 119 km/hr

threshold in Panel (c) and flooding with a 178 km/hr threshold in Panel (d). Kernel

regressions use a Gaussian kernel and a plug-in bandwidth. Compensating variation is

measured in percentage changes.
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while corresponding figures for the lower threshold are about 30 and 33 per cent,1

respectively.2

Examining our conditional hurricane events in Figure 5, one finds that both thresh-3

olds produce fairly similar shapes over the return periods, rising relatively sharply4

but then flattening out as we consider the more extreme conditionals. Again, the5

welfare losses for similar return periods differ markedly across these. For example,6

while a 10 year conditional hurricane decreases welfare by about 12 per cent for7

the W ∗ = 119 km/hr, considering only winds above W ∗ = 178 km/hr suggests an8

average loss of about 150 per cent. The corresponding figures for 20 year conditional9

events are 16 and 235 per cent, respectively. As before, there are some marginal10

differences across income, depending on what level of wind speed is assumed to be11

damaging. For instance, a conditional 20 year hurricane event under the W ∗ = 11912

km/hr, would imply a welfare loss 2 percentage points greater for poorer households,13

while setting the threshold higher implies that richer households would expect a loss14

10 percentage points higher than poorer ones.15

5 Conclusion16

In this paper we investigate how extreme weather can drive short-term inflation.17

To this end we construct hurricane and flood destruction indices from weather and18

exposure data and combine these with monthly price data for 15 Caribbean islands.19

Our econometric results suggest that while the expected inflationary rise due to20

extreme weather is on average small every month, when this does occur the impact21

can be multifold of monthly average inflation. In this regard the monthly impact22

is larger on average and occurs more often for floods, but when a hurricane strikes23

the resultant rise is considerably larger. Using the case study of Jamaica we also24

investigate the welfare implications of the inflationary costs of such negative shocks.25

We find that losses in welfare can be large for the rarer events. Moreover, because26
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of different consumption patterns, depending on the strength of a damaging hurri-1

cane the welfare decline of poorer can be smaller or larger than those of wealthier2

households, although the differences are not substantial either way.3

More generally our analysis suggests that the potential short-term costs of infla-4

tionary pressure due to shortages of goods after an extreme weather event should5

not be ignored. In this regard, there are some governments in developing countries6

that already have been employing deflationary policies for many years. For exam-7

ple, the Philippines National Food Authority keeps stocks of rice and corn to buffer8

price hikes due to droughts, floods, and typhoons. Our results suggest that other9

countries with significant exposure to extreme weather may benefit from implement-10

ing similar policies. Specifically with regard to monetary policy, Ananda, Prasad &11

Zhang (2015) note that headline inflation targeting, taking acount of supply-driven12

shocks, is likely to be the optimal strategy to keep inflation low and stable in de-13

veloping countries. Our finding that food prices are the most severely affected by14

extreme weather provides further support for the use of headline inflation targeting15

for nations afflicted with such events.16
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Appendices1

A Wind field model2

In order to calculate local wind exposure during a storm we use the Boose et al.’s3

(2004) version of the well-known Holland (1980) wind field model. More specifically,4

Wi,k,t, the wind experienced at any point i, during hurricane k at time t is given by:5

Wi,k,t = GD

[
Vm,k,t − S (1− sin(Ti,k,t))

Vh,k,t
2

][(
Rm,k,t
Ri,k,t

)Bjt

exp

{
1−

[
Rm,k,t
Ri,k,t

]Bjt
}]1/2

, (A.1)

where, for hurricane k, at time t, Vm,k,t is the maximum sustained wind velocity6

anywhere in the hurricane, Ti,k,t is the clockwise angle between the forward path of7

the hurricane and a radial line from the hurricane center to the i-th pixel of interest,8

Vh,k,t is the forward velocity of the hurricane, Rm,k,t is the radius of maximum winds,9

and Ri,k,t is the radial distance from the center of the hurricane to the i-th point P .10

The relationship between these parameters and point P are depicted in Figure A.1.11

The remaining ingredients in Equation (A.1) consist of the gust factor G and the12

scaling parameters D for surface friction, S for the asymmetry due to the forward13

motion of the storm, and B, for the shape of the wind profile curve.14

In terms of implementing Equation (A.1) one should note that Vm,k,t is given by15

the storm track data described below, Vh,k,t can be directly calculated by following16

the storm’s movements between successive locations along its track, and Ri,k,t and17

Ti,k,t are calculated relative to the i-th point of interest P. All other parameters have18

to be estimated or values assumed. For instance, we have no information on the gust19

wind factor G, but a number of studies (see e.g. Paulsen & Schroeder 2005) have20

measured G to be around 1.5, and we also use this value. For S we follow Boose21

et al. (2004) and assume it to be 1. While we also do not know the surface friction22
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Figure A.1: Hurricane Wind Field Model

Notes: (1) Sample diagram of input parameters into typhoon wind field model; (2) P :

point of interest, R: distance from storm eye to point of interest, Rmax: radius of maximum

wind speed, T : angle of point relative to direction of storm; Vh: forward speed of storm.
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to directly determine D, Vickery, Masters, Powell & Wadhera (2009) note that in1

open water the reduction factor is about 0.7 and reduces by 14% on the coast and2

28% further 50 km inland. We thus adopt a reduction factor that decreases linearly3

within this range as we consider points i further inland from the coast. Finally, to4

determine B we employ Holland’s (1980) approximation method, whereas we use5

the parametric model estimated by Xiao, Xiao & Duan (2009) to estimate Rm,k,t.6

B Flood detection7

Since Caine (1980), there have been a large number of studies that use intensity-8

duration precipitation thresholds for flood induced landslides and debris flow (see9

e.g. Guzzetti, Peruccacci, Rossi & Stark 2008, Cannon, Boldt, Laber, Kean & Staley10

2011, Turkington, Ettema, van Weste & Breinl 2014). More recently, this approach11

has also been employed to identify floods more generally, see for example Hurford,12

Parker & Priest (2012), on the grounds that for other types of floods, such as urban,13

river, or flash floods, the concept of an intensity-duration threshold is similar: a14

surface has a maximum water storage capacity above which surface runoff will occur,15

see Gumbricht (1996). The intensity-duration approach entails taking information16

on the duration and intensity of rainfall for known landslide events and estimating17

a power law relationship between the two:18

Intensity = aDurationb, (B.1)

where a and b are parameters to be estimated and can be used to identify the thresh-19

old rainfall intensity that will induce landslides for a given rainfall duration. With20

regard to the Caribbean, Pathirana, Aliasgar, & Baban (2010) collected duration21

and intensity data for flood events in Trinidad over the period 2004-2008 and in22

estimating Equation (B.1) found a to be 4.064 and b -0.267. We use these estimates23

to infer flood events in the Caribbean more generally. To this end we set duration24
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equal to 3 days, so that the resultant implied intensity threshold is a cumulative1

3-day sum of rainfall of 112 mm. We choose to identify flood events over three2

day windows rather than some shorter or longer horizon since Wu, Adler, Tian,3

Huffman, Li & Wang (2014) note that the data of precipitation that we use, namely4

Tropical Rainfall Measuring Mission (TRMM) satellite derived rainfall, is much bet-5

ter suited to identifying flood occurrences for 3-day windows than incidences of a6

shorter nature.197

C Peaks over threshold models8

Peaks Over Threshold (POT) models (see e.g. Smith 1987, Davison & Smith 1990)9

rely on the Pickands Balkema de Haan theorem, which states that for a large class10

of distributions exceedances over a large threshold m are well approximated by a11

Generalized Pareto Distribution (GPD), which is characterized by a scale parameter12

σ and by a shape parameter ζ. We thus consider that the distribution of our natural13

disaster variable X = F,H, can be approximated as follows:14

P (X ≤ x) =


(1− Fn(m))

(
1−

(
1 + ζ x−m

σ

)−1/ζ
+

)
whenever x ≥ m

Fn(m) whenever x < m,

(C.1)

where z+ = max(0, z), and Fn(x) = 1
n

∑n
i=1 1{Xi≤x} is the empirical distribution,15

based on the sample (X1, . . . , Xn). The shape parameter captures the fatness of16

the tails of the distribution, which indicates how likely it is to observe extreme17

weather events. In particular a positive shape parameter implies a power law, which18

corresponds to the case where extreme events are prevalent. More specifically, a19

negative value of the shape parameter ζ implies that the distribution has an upper20

19Similarly, Mathew, Babu, Kundu, Kumar & Pant (2014) find that 3-day cumulative rainfall
derived from TRMM data can be a significant predictor of landslides.
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bound of −1/ζ, while, when ζ = 0, the distribution has a thin tail with exponential1

decay (like e.g. the normal distribution), and when ζ > 0, the distribution has a fat2

tail, with power decay (like, e.g., the Student t distribution).3

We first need to determine the appropriate threshold for each one of our four4

extreme weather series for Jamaica, i.e., for the hurricane and flood events, defined5

alternatively according to the 119 km/hr or 178 km/hr hurricane threshold. To do6

so, we follow standard practice and examine mean residual plots, where the different7

thresholds are plotted against the empirical estimates of tail expectations, as shown8

in Figure C.1. The idea underlying the use of the MRL plot is to find the threshold9

beyond which the plot is linear. This is because the tail expectation of a GPD is10

linear in the threshold, i.e., E[Y − m1|Y > m1] = E[Y − m0|Y > m0] + m1
ζ

1−ζ11

where Y ∼ GDP (m0, σ0, ζ), and m1 > m0 are thresholds. Given that there are12

only relatively few hurricane events (13 and 28 out of a total of 180 months for the13

119 and 178 km/hr series, respectively), we include all extreme events by selecting14

a threshold of 1 for both hurricane series. This is roughly in agreement with the15

MRL plots in Figures C.1a and C.1b, which look reasonably linear from the very16

start. The flood series have more events (11 and 79, out of 180 months for the 11917

and 178 km/hr series, respectively), not all of which are extreme, and thus we select18

thresholds of 50 and 180, after which the plots become approximately linear, as can19

be seen in Figures C.1c and C.1d.20
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Figure C.1: Mean Residual Plots

(a) Hurricane (119 km/hr threshold) (b) Hurricane (178 km/hr threshold)

(c) Flooding (119 km/hr threshold) (d) Flooding (178 km/hr threshold)

This table shows Mean Residual (MRL) plots for hurricane with a 119 km/hr
threshold in Panel (a), hurricane with a 178 km/hr threshold in Panel (b),
flooding with a 119 km/hr threshold in Panel (c), and flooding with a 178 km/hr
threshold in Panel (d). The plots show tail expectation E[Y − m|X > m]
for different values of the threshold m. The idea underlying the use of the
MRL plot is to find the threshold after which the plot is linear, since a defin-
ing feature of the GPD is that its tail expectation is linear in the threshold:
E[Y −m1|Y > m1] = E[Y −m0|Y > m0] +m1

ζ
1−ζ where Y ∼ GDP (m0, σ0, ζ), and

m1 > m0 are thresholds.
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Figure C.2: Univariate Peaks Over Threshold models

(a) Hurricane (119 km/hr threshold) (b) Hurricane (178 km/hr threshold)

(c) Flooding (119 km/hr threshold) (d) Flooding (178 km/hr threshold)

This figure shows the fit of the GPD model for hurricane with a 119 km/hr threshold
in Panel (a), hurricane with a 178 km/hr threshold in Panel (b), flooding with
a 119 km/hr threshold in Panel (c), and flooding with a 178 km/hr threshold in
Panel (d). Dots indicate observed extreme events, while the line represents the
fitted POT model.
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Table C.1: Univariate and bivariate peaks over threshold (POT) models for hurri-
cane and flooding

Univariate POT Asymmetric Asymmetric Asymmetric
Independence Gumbel Gumbel Galambos Galambos Mixed mixed

(1) (2) (3) (4) (5) (6) (7)

Panel A: Speed greater than 119km/h

Hurricane

Scale 49.02 32.14 30.00 36.85 45.01 44.89 45.01
(26.8) (17.00) (16.59) (20.25) (27.40) (27.09) (25.13)

Shape 0.85 1.29 1.27 1.07 1.06 0.96
(0.52) (0.60) (0.58) (0.52) (0.48) (0.41)

Asymmetry 0.94∗∗ 0.96∗

(0.26) (0.30)
Logl -74.58
Flooding

Scale 303.87∗∗ 244.95∗ 246.40∗ 278.32∗ 237.31 237.34∗ 237.31∗

(9.00) (79.00) (80.55) (91.88) (105.85) (75.65) (80.10)
Shape -0.96∗∗ −0.67 −0.66 −0.80 −0.61 −0.65 −0.64

(0.02) (0.34) (0.36) (0.36) (0.56) (0.34) (0.37)
Asymmetry 0.87∗ 1.00∗∗

(0.28) (0.00)
Logl -86.39
Joint 0.01∗∗∗

asymmetry (0.00)
Dependence 0.55∗∗ 0.49∗ 1.14∗∗ 0.97∗ 1.00∗∗ 0.97∗∗

(0.10) (0.19) (0.34) (0.30) (0.00) (0.00)
AIC 493.88 497.73 493.66 499.16 494.63 496.73
Chi 0.54 0.54 0.54 0.48 0.50 0.50

Panel B: Speed greater than 178km/h

Hurricane

Scale 16.65 12.38 11.94 13.19 21.59 21.57 21.57
11.43) (8.55) (1182.54) (9.28) (2137.18) (2135.54) (2135.84)

Shape 1.45 1.77 1.40 1.87∗ 0.90 0.96 0.93
(0.75) (0.83) (138.67) (0.85) (88.64) (94.98) (92.23)

Asymmetry 0.87 0.71
(85.75) (70.30)

Logl -57.83
Flooding

Scale 173.45∗∗ 200.32 183.35 251.70∗ 178.41 178.44 178.42
(1.48) (101.93) (18151.94) (91.91) (17663.08) (17665.10) (17663.96)

Shape -0.98∗∗ −1.11 −1.04 −1.42 −1.01 −1.01 −1.01
(0.00) (0.70) (−103.00) (0.55) (−100.24) (−100.23) (−100.26)

Asymmetry 0.67 0.67
(66.46) (66.62)

Logl -51.83
Joint −0.09
asymmetry (−9.33)
Dependence 0.68∗∗ 0.54 0.78∗ 0.94 0.77 0.86

(0.11) (53.12) (0.26) (92.84) (76.71) (84.67)
AIC 370.31 374.07 369.43 375.89 371.65 373.53
Chi 0.40 0.41 0.41 0.33 0.39 0.36

This table displays results for univariate POT models in Column (1), and for bivariate POT models with a Gumbel model in Column

(2), an asymmetric Gumbel in Column (3), a Galambos model in Column (4), and asymmetric Galambos model in Column (5), a

mixed model in Column (6), and an asymmetric mixed model in Column (7). Panel A shows results with a 119km/hr threshold, results

with a 178km/hr threshold are in Panel B. All models are estimated with maximum likelihood. The scale and shape parameters are

marginal parameters of the POT model, and they correspond to parameters σ and ζ in Equation (C.1). Asymmetry, joint asymmetry

and dependence are parameters characterizing the dependence of the bivariate POT models. Dependence is the dependence parameter

of the bivariate POT model. AIC refers to the Akaike Information Criterion. Chi is the tail dependence of the bivariate POT models,

which represents the probability that one series is extreme, conditional on the fact that the other series is also extreme.
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