Learning and Subjective Expectation Formation: A Recurrent Neural Network Approach

Chenyu (Sev) Hou

Vancouver School of Economics University of British Columbia

November 6, 2020

Chenyu (Sev) Hou

Introduction

- 1. Context
- 2. Questions
- 3. Roadmap

Empirical Framework

1. Agent's Problem 2.GLF 3.Flexibility 4.Methodolog

Application

1.Data 2.Non-linearity 3. Attention Shift

Appendix

Ask vourself a question:

How do you think the unemployment rate is going to change in the coming quarter?

- Personal Experience (Top 3 information source for 36.5% households);
- Media and News (Top 3 information source for 49.2% households);

Expectation Formation in Macroeconomic Context

• Social Connections (Top 3 information source for 52.3% households);

Agents use various sources of information to form expectation.

Chenyu (Sev) Hou

Introduction

- 1. Context
- 2. Questions
- 3. Roadmap

Empirical Framework

1. Agent's Problem 2.GLF 3.Flexibility 4.Methodolog

Application

1.Data 2.Non-linearity 3. Attention Shift

Appendix

Ask yourself a question:

How do you think the unemployment rate is going to change in the coming quarter?

- Personal Experience (Top 3 information source for 36.5% households);
- Media and News (Top 3 information source for 49.2% households);

Expectation Formation in Macroeconomic Context

• Social Connections (Top 3 information source for 52.3% households);

Agents use various sources of information to form expectation.

with RNN Chenyu (Sev) Hou

Expectation Formation

Introduction

1. Context

2. Questions

3. Roadmap

Empirical Framework

 Agent's Problem
 GLF
 Flexibility
 Methodology

Application

1.Data 2.Non-linearity 3. Attention Shift

Appendix

But how?

Questions

- What's the functional form of agent's expectation formation model?
- How do signals on past and future states about macroeconomy affect household's expectation?

Chenyu (Sev) Hou

Introduction

- 1. Context
- 2. Questions 3. Roadmap

Empirical

- Framework 1. Agent's
- Problem 2.GLF 3.Flexibility 4.Methodolog

Application

1.Data 2.Non-linearit 3. Attention Shift

Appendix

What's New in This Paper?

- 1. New Method:
 - Generic Learning Framework: nests most of macroeconomic expectation formation models.
 - Flexible non-parametric method: Recurrent Neural Network (RNN).
 - DML approach for inference.

New Empirical Findings:

- Non-linear and asymmetric expectation formation;
- Attention-shift along Business Cycle;
- Cause of Attention-shift: signals on unemployment and GDP growth.
- 3. (Not so new) Model for Explanation:
 - Rational Inattention with Endogenous Value of Information

Chenyu (Sev) Hou

Introduction

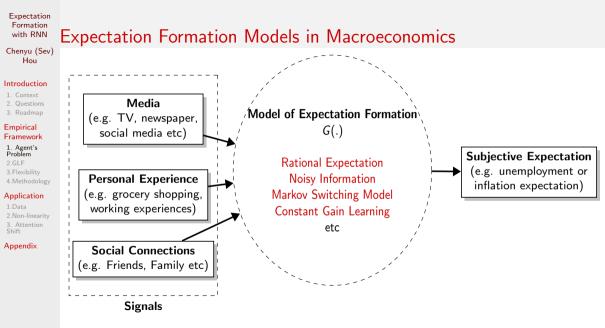
- 1. Context
- 2. Questions 3. Roadmap

Empirical Framework

 Agent's Problem
 GLF
 Flexibility
 Methodolog

Application

1.Data 2.Non-linearit 3. Attention Shift


Appendix

What's New in This Paper?

- 1. New Method:
 - Generic Learning Framework: nests most of macroeconomic expectation formation models.
 - Flexible non-parametric method: Recurrent Neural Network (RNN).
 - DML approach for inference.

2. New Empirical Findings:

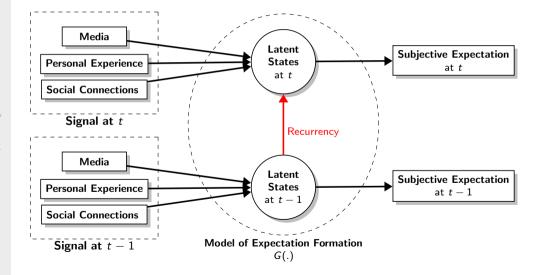
- Non-linear and asymmetric expectation formation;
- Attention-shift along Business Cycle;
- Cause of Attention-shift: signals on unemployment and GDP growth.
- 3. (Not so new) Model for Explanation:
 - Rational Inattention with Endogenous Value of Information

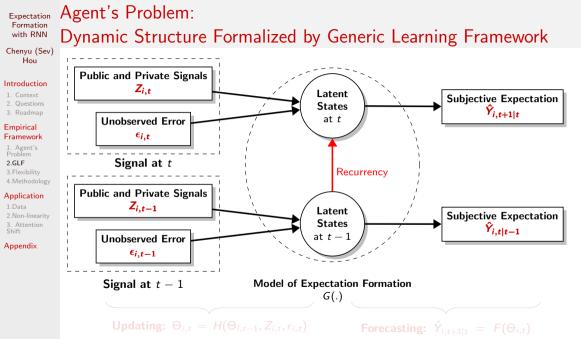
Expectation Formation Models in Macroeconomics: Dynamic Structure

Chenyu (Sev) Hou

Introduction

- 1. Context
- 2. Questions
- 3. Roadmap


Empirical Framework


 Agent's Problem
 GLF
 Flexibility
 Methodology

Application

1.Data 2.Non-linearit 3. Attention Shift

Appendix

Agent's Problem: Expectation Formation Dynamic Structure Formalized by Generic Learning Framework with RNN Chenyu (Sev) Hou Public and Private Signals Introduction $Z_{i,t}$ Latent Subjective Expectation States $\hat{Y}_{i,t+1|t}$ 3. Roadmap $\Theta_{i,t}$ Unobserved Error Empirical $\epsilon_{i,t}$ Framework 1. Agent's 2.GLE Signal at t Recurrency Public and Private Signals Application $Z_{i,t-1}$ Latent Subjective Expectation States 3. Attention $\hat{Y}_{i,t|t-1}$ $\Theta_{i,t-1}$ Unobserved Error Appendix $\epsilon_{i,t-1}$ Signal at t - 1Model of Expectation Formation G(.) **Updating:** $\Theta_{i,t} = H(\Theta_{i,t-1}, Z_{i,t}, \epsilon_{i,t})$ Forecasting: $\hat{Y}_{i,t+1|t} = F(\Theta_{i,t})$

Expectation Flexibility:

with RNN Generic Learning Framework nests many Learning Models

Introduction

Hou

- 1. Context
- 2. Questions
- 3. Roadmap

Empirical Framework

1. Agent's Problem 2.GLF

3.Flexibility

4.Methodology

Application

1.Data 2.Non-linearity 3. Attention Shift

Appendix

$$\begin{split} \hat{Y}_{i,t+1|t} &:= G(Z_{i,t},\epsilon_{i,t}...) \\ &= F(\Theta_{i,t}) \\ &= F(H(\Theta_{i,t-1},Z_{i,t},\epsilon_{i,t})) \end{split} \tag{1}$$

Model	Θ	F(.) and $H(.)$	
Noisy Information Model	"now-cast"	linear functions implied	
(Linear Kalman Filter)		by linear State Space Model	
Constant Gain Learning	learned weighting matrix	non-linear functions	
Constant Gain Learning	and learned parameters	implied by recursive least squares	
Markov Switching Model	posterior beliefs	non-linear functions	
Markov Switching Moder	about Markovian State	implied by Bayesian Rule	

Chenyu (Sev) Hou

Introduction

- 1. Context
- 2. Questions
- 3. Roadmap

Empirical Framework

 Agent's Problem
 GLF
 Flexibility
 4.Methodology

Application

1.Data 2.Non-linearity 3. Attention Shift

Appendix

Econometrician's Information and Goal

Information set:

- Observe: set of signals, $Z_{i,t}$
- Do not observe: Θ_{i,t}, ε_{i,t}, dimensionality of Θ_{i,t}, functional form of F(.) and H(.).

Goal: Given the information set, approximate Average Structural Function:

$$\mathbb{E}[\hat{Y}_{i,t+1|t}|\{Z_{i,\tau}\}_{\tau=0}^{t}] \equiv \mathbb{E}[G(\{Z_{i,\tau},\epsilon_{i,\tau}\}_{\tau=0}^{t})|\{Z_{i,\tau}\}_{\tau=0}^{t}]$$
(2)
= $g(\{Z_{i,\tau}\}_{\tau=0}^{t})$

Chenyu (Sev) Hou

Introduction

- 1. Context
- 2. Questions
- 3. Roadmap

Empirical Framework

 Agent's Problem
 GLF
 Flexibility
 Methodology

Application

1.Data 2.Non-linearit 3. Attention Shift

Appendix

Approximating g(.) with Recurrent Neural Network

Theoretically:

• Exist sufficient statistics $\theta_{i,t}$ for $\Theta_{i,t}$ such that:

$$g(\{Z_{i,\tau}\}_{\tau=0}^{t}) = f(\theta_{i,t})$$

$$\theta_{i,t} = h(\theta_{i,t-1}, Z_{i,t})$$
(3)

• Recurrent Neural Networks are Universal Approximators for Dynamic System (3) (*Shaffer and Zimmermman 2006*);

$$\hat{g}_{rmn} := rgmin_{g_w \in \mathcal{G}_{fch}^{RNN}} \sum_{i,t} rac{1}{2} (\hat{Y}_{i,t+1|t} - g_w(\{Z_{i, au}\}_{ au=0}^t))^2$$

Simple RNN

Empirically, RNN recovers correct: (KF example)

- Functional form of g(.);
- Dynamic structure with latent states θ .

Chenyu (Sev) Hou

Average Marginal Effect and Inference: Double Machine Learning Method

Average Marginal Effect/Derivative:

Introduction

- 1. Context
- 2. Questions
- 3. Roadmap

Empirical Framework

1. Agent's Problem 2.GLF 3.Flexibility 4.Methodology

Application

1.Data 2.Non-linearit 3. Attention Shift

Appendix

$$\beta^j = \mathbb{E}[rac{\partial g}{\partial z_{i,t}^j}]$$

- Plug-in estimator is biased, inference not available (Chernozhukov et al. 2018);
 - Bias induced by over-fitting and regularization;
 - Slow convergence speed (slower than \sqrt{n});
- (Near Neyman) Orthogonalized moment condition;

 $\mathbb{E}[\psi(W,eta,\eta)]=\mathbb{E}[\psi^a(W,\eta)eta+\psi^b(W,\eta)]$

$$= \mathbb{E}[\beta^j - \frac{\partial g}{\partial z_{i,t}^j} + \frac{\partial ln(P(\{Z_{i,\tau}\}_{\tau=0}^t))}{\partial z_{i,t}^j}(Y_{i,t+1|t} - g(\{Z_{i,\tau}\}_{\tau=0}^t))] = 0$$

- Less sensitivity to quality of functional estimator;
- Involve extra nuisance parameter to be estimated (density function);
- Speed requirement satisfied (Farrell et. al. 2020)

Chenyu (Sev) Hou

Average Marginal Effect and Inference: Double Machine Learning Method

Average Marginal Effect/Derivative:

Introduction

- 1. Context
- 2. Questions
- 3. Roadmap

Empirical Framework

1. Agent's Problem 2.GLF 3.Flexibility 4.Methodology

Application

1.Data 2.Non-linearit 3. Attention Shift

Appendix

$$\beta^j = \mathbb{E}[rac{\partial g}{\partial z_{i,t}^j}]$$

- Plug-in estimator is biased, inference not available (Chernozhukov et al. 2018);
 - Bias induced by over-fitting and regularization;
 - Slow convergence speed (slower than \sqrt{n});
- (Near Neyman) Orthogonalized moment condition;

$$\begin{split} \mathbb{E}[\psi(W,\beta,\eta)] &= \mathbb{E}[\psi^{\mathfrak{s}}(W,\eta)\beta + \psi^{\mathfrak{b}}(W,\eta)] \\ &= \mathbb{E}[\beta^{j} - \frac{\partial g}{\partial z_{i,t}^{j}} + \frac{\partial ln(P(\{Z_{i,\tau}\}_{\tau=0}^{t}))}{\partial z_{i,t}^{j}}(Y_{i,t+1|t} - g(\{Z_{i,\tau}\}_{\tau=0}^{t}))] = 0 \end{split}$$

- Less sensitivity to quality of functional estimator;
- Involve extra nuisance parameter to be estimated (density function);
- Speed requirement satisfied (Farrell et. al. 2020)

Chenyu (Sev) Hou

Introduction

- 1. Context
- 2. Questions
- 3. Roadmap

Empirical Framework

 Agent's Problem
 GLF
 Flexibility
 Methodology

Application

1.Data 2.Non-linearity 3. Attention Shift

Appendix

Application

Expectation Formation with RNN Chenvy (Sev)

Data Description

Hou

- 1. Context
- Questions
 Roadmap

Empirical Framework

 Agent's Problem
 GLF
 Flexibility
 Methodology

Application

1.Data 2.Non-lineari 3. Attention

3. Attention Shift

Appendix

- 27 signals:
 - Current signals: realized change of unemployment rate, real GDP growth, inflation etc.
 - Future signals: SPF about change of unemployment rate etc.
 - Local/individual signals;
 - News exposure;
- Expectations: on unemployment, inflation, interest rate and economic condition, from MSC.
- Synthetic panel quarterly 1988q1 to 2019q1.

Chenyu (Sev) Hou

Introduction

- 1. Context
- 2. Questions
- 3. Roadmap

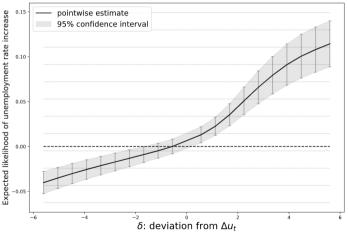
Empirical Framework

 Agent's Problem
 GLF
 Flexibility
 Methodology

Application

1.Data 2.Non-linearity 3. Attention Shift

Appendix


$\mathbb{E}[\hat{g}_u(\theta_{i,t-1}, Z_{i,t}^{-u}, \Delta u_t + \delta)) \\ - \hat{g}_u(\theta_{i,t-1}, Z_{i,t}^{-u}, \Delta u_t)]$

Estimated ASF:

- Non-linearity: Slope changes continuously.
- Asymmetry: (Magnitudes of) response to positive and negative signals differ significantly.

Average change of $E_t \Delta u_{t+1}$ when Δu_t change by δ

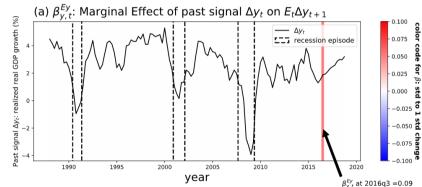
Expectation Formation Model is Non-linear and Asymmetric

Expectation Formation with RNN Marginal Effect

Marginal Effect at Each Quarter

Chenyu (Sev) Hou

Introduction


- 1. Context
- 2. Questions
- 3. Roadmap

Empirical Framework

- Agent's Problem
 GLF
 Flexibility
 Methodology
- Application
- 1.Data 2.Non-linearity 3. Attention Shift

Appendix

 Each color bar represents magnitude of marginal effect at a time point;

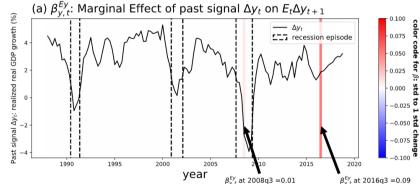
Expectation Formation with RNN Marginal Effect at Each Quarter

Chenyu (Sev) Hou

Introduction

- 1. Context
- 2. Questions
- 3. Roadmap

Empirical Framework


 Agent's Problem
 GLF
 Flexibility
 Methodolog

Application

- 1.Data 2.Non-linearit 3. Attention
- 3. Attentio Shift

Appendix

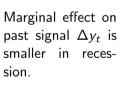
 Color code is slope normalized by standard deviation;

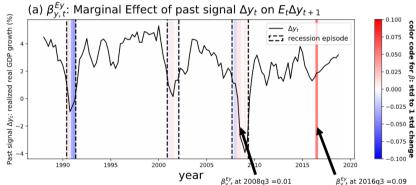
Expectation Formation with RNN Chenyu (Sey)

Attention-shift: Lower weight on past signal Δy_t in recession

Hou

- 1. Context
- 2. Questions
- 3. Roadmap


Empirical Framework


 Agent's Problem
 GLF
 Flexibility
 Methodology

Application

1.Data 2.Non-linearity 3. Attention Shift

Appendix

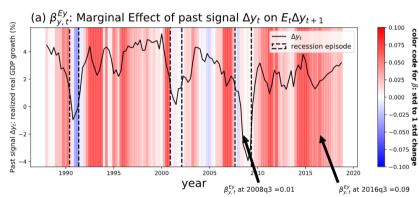
Attention-shift: Lower weight on past signal Δy_t in recession

Chenyu (Sev) Hou

Introduction

- 1. Context
- 2. Questions
- 3. Roadmap

Empirical Framework


 Agent's Problem
 GLF
 Flexibility
 Methodology

Application

1.Data 2.Non-linearit 3. Attention Shift

Appendix

Marginal effect on past signal Δy_t is much bigger in ordinary period.

Chenvu (Sev) Hou

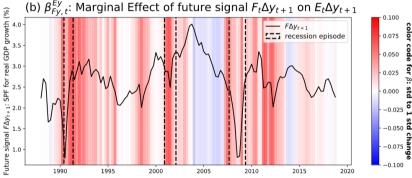
Attention-shift: Higher weight on future signal $F_t \Delta y_{t+1}$ in recession

Introduction

- 3. Roadmap

Empirical Framework

1. Agent's


Application

3. Attention

Shift

Appendix

Marginal effect signal future on $F_t \Delta y_{t+1}$ is bigger in recession.

DML estimates of AME on past v.s. future signal

Chenyu (Sev) Hou

to the state of th	Expectation:		$E_t \Delta y_{t+1}$			$E_t \Delta u_{t+1}$		
Introduction 1. Context 2. Questions 3. Roadmap		Signal	$eta_{ extsf{recession}} (extsf{std})$	$eta_{\textit{ordinary}}$ (std)	$\begin{array}{l} \beta_{\textit{rec}} = \beta_{\textit{ord}} \\ \text{(p-val)} \end{array}$	$eta_{\textit{recession}}$ (std)	$eta_{\textit{ordinary}}$ (std)	$\begin{array}{l} \beta_{\textit{rec}} = \beta_{\textit{ord}} \\ \text{(p-val)} \end{array}$
Empirical Framework 1. Agent's	Past Signal	Δy_t	<mark>0.004</mark> * (0.003)	0.017*** (0.001)	< 0.01	$egin{array}{c} -0.006^{***} \ (0.001) \end{array}$	- 0.01*** (0.001)	0.04
Problem 2.GLF 3.Flexibility 4.Methodology		Δu_t	-0.006 (0.006)	- 0.021*** (0.004)	0.04	0.005 (0.004)	0.012*** (0.002)	0.08
Application 1.Data 2.Non-linearity	Future Signal	$F_t \Delta y_{t+1}$	0.049*** (0.005)	0.016^{***} (0.003)	< 0.01	- 0.022*** (0.002)	-0.009^{***} (0.001)	< 0.01
3. Attention Shift Appendix		$F_t \Delta u_{t+1}$	- 0.037 *** (0.004)	0.009** (0.002)	< 0.01	0.029 *** (0.003)		< 0.01

• Results are using panel with 12000 observations. HAC standard errors are reported in brackets. *,**,*** stands for significant

DML estimates of AME on past v.s. future signal

Chenyu (Sev) Hou

Expectation:	Signal	$\beta_{recession}$	$E_t \Delta y_{t+1}$ $\beta_{ordinary}$	$\beta_{rec} = \beta_{ord}$		$E_t \Delta u_{t+1}$	0 0
	Signal		$\beta_{ordinary}$	$\beta \dots = \beta \dots$	ß	0	0 0
		(std)	(std)	(p-val)	$eta_{ extsf{recession}} \ extsf{(std)}$	[∅] ordinary (std)	$eta_{\mathit{rec}} = eta_{\mathit{ord}}$ (p-val)
Past Signal	Δy_t	<mark>0.004</mark> * (0.003)	0.017***	< 0.01	-0.006^{***}	- 0.01***	0.04
i ust olgitui	Δu_t	(0.000) -0.006 (0.006)	- 0.021 *** (0.004)	0.04	0.005 (0.004)	0.012*** (0.002)	0.08
F	$F_t \Delta y_{t+1}$	0.049***	0.016***	< 0.01	-0.022***	-0.009***	< 0.01
Future Signal	$F_t \Delta u_{t+1}$	-0.037***	0.009**	< 0.01	0.029***	0.007***	< 0.01
-	Past Signal Future Signal	Past Signal Δu_t $F_t \Delta y_{t+1}$ Future Signal	Past Signal (0.003) Δu_t -0.006 (0.006) (0.004) $F_t \Delta y_{t+1}$ 0.049*** Future Signal (0.005)	Past Signal (0.003) (0.001) Δu_t -0.006 -0.021^{***} (0.003) (0.004) (0.004) Future Signal $F_t \Delta y_{t+1}$ 0.049^{***} 0.016^{***} $F_t \Delta u_{t+1}$ -0.037^{***} 0.009^{**}	Past Signal(0.003)(0.001) Δu_t -0.006 -0.021^{***} 0.04(0.006)(0.004)(0.004)0.04Future Signal $F_t \Delta y_{t+1}$ 0.049^{***} 0.016^{***} < 0.01	Past Signal (0.003) (0.001) (0.001) Δu_t -0.006 -0.021^{***} 0.04 0.005 (0.004) (0.004) (0.004) (0.004) (0.002) Future Signal $F_t \Delta y_{t+1}$ 0.049^{***} 0.016^{***} < 0.01 -0.022^{***} Future Signal $F_t \Delta u_{t+1}$ -0.037^{***} 0.009^{**} < 0.01 -0.022^{***}	Past Signal(0.003)(0.001)(0.001)(0.001) Δu_t -0.006 -0.021^{***} 0.04 0.005 0.012^{***} (0.006) (0.004) 0.04 0.005 (0.002) Future Signal $F_t \Delta y_{t+1}$ 0.049^{***} 0.016^{***} < 0.01 -0.022^{***} $F_t \Delta u_{t+1}$ -0.037^{***} 0.009^{**} < 0.01 0.029^{***} 0.007^{***}

1. 2. 3.

Int

Em Fra

1. Pr 2.0 3.1 4.1

Ap

2.1 3. Sh

Ар

Results are using panel with 12000 observations. HAC standard errors are reported in brackets. *,**,*** stands for significant at 10%, 5% and 1% level.

Conclusion

Chenyu (Sev) Hou

Introduction

- 1. Context
- 2. Questions
- 3. Roadmap

Empirical Framework

 Agent's Problem
 GLF
 Flexibility
 Methodolog

Application

1.Data 2.Non-linearity 3. Attention

Appendix

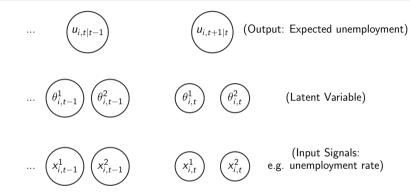
New Method:

- Generic Learning Framework.
- Non-parametric method for estimation: RNN.
- DML for inference.

2 New empirical findings on expectation formation:

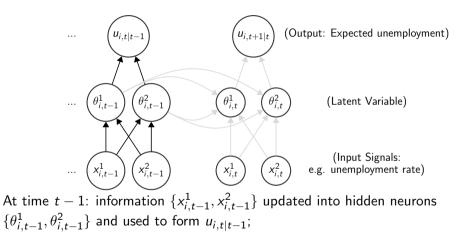
- Non-linearity and asymmetry. Expectation more sensitive to bad news.
- Attention-shift. Adaptive learner in ordinary period, forward looking in recession.

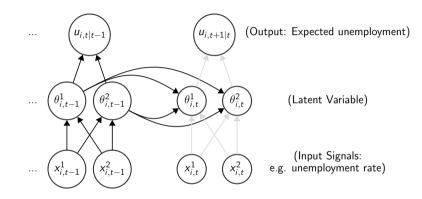
3 Model with Rational Inattention:

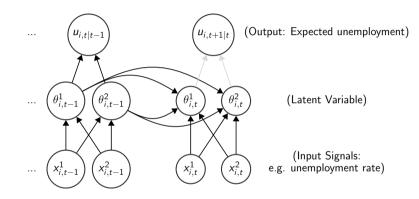

- Information becomes more valuable in bad states due to non-linearity in optimal choices.
- Agents seek for more information about future when economic status worsen.

Thank you!

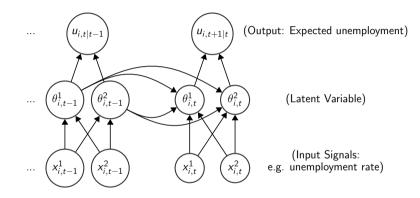
Appendix

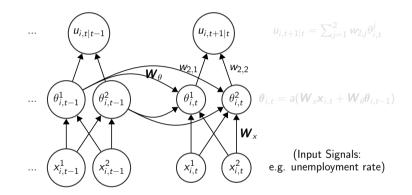

Table 1: Architecture RNN

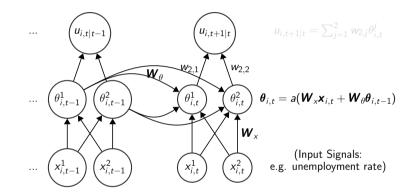

Tuned Hyper Parameter	Configuration
Num. of Recurrent Neurons	32
Feed-forward Neurons	20
Dropout on recurrent layer	0.5
Epochs	200
Learning Rate	$1e^{-6}$
Depth	2(4)
Un-tuned Hyper Parameter	Configuration
Type of Recurrent Layer	Long-Short Term Memory (LSTM)
Activation Function:	ReLu

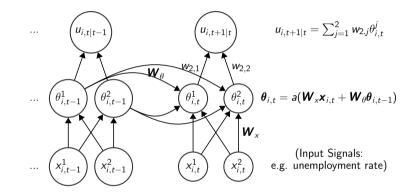

Consider we use this simple RNN to model expected unemployment:

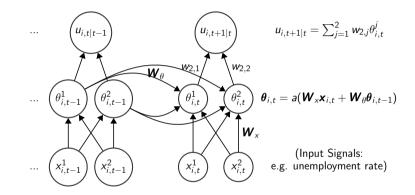
- Observable: two signals $x_{i,t}^1, x_{i,t}^2$, expected unemployment $u_{i,t+1|t}$;
- Unobserved: 2 recurrent hidden neurons: $\theta_{i,t}^1$ and $\theta_{i,t}^2$




Updating: (1) past values of $\{\theta_{i,t-1}^1, \theta_{i,t-1}^2\}$ are used to update $\{\theta_{i,t}^1, \theta_{i,t}^2\}$


Updating: (2) new signals arrive and are used to update $\{\theta_{i,t}^1, \theta_{i,t}^2\}$


Forecasting: updated $\{\theta_{i,t}^1, \theta_{i,t}^2\}$ are used to form $u_{i,t+1|t}$


Each branch that connects two neurons has a weight, which is parameter RNN learns;

at time t, RNN compute: (1) $\boldsymbol{\theta}_{i,t} = a(\boldsymbol{W}_{x}\boldsymbol{x}_{i,t} + \boldsymbol{W}_{\theta}\boldsymbol{\theta}_{i,t-1})$ (2) $u_{i,t+1|t} = \sum_{j=1}^{2} w_{2,j} l_{i,t}^{j}$

at time t, RNN compute: (1) $\boldsymbol{\theta}_{i,t} = a(\boldsymbol{W}_{x}\boldsymbol{x}_{i,t} + \boldsymbol{W}_{\theta}\boldsymbol{\theta}_{i,t-1})$ (2) $u_{i,t+1|t} = \sum_{j=1}^{2} w_{2,j}\theta_{i,t}^{j}$ back

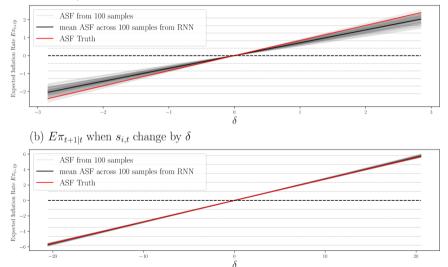
All weights $w_{2,j}$, W_x and W_θ are chosen by Gradient Descent; \Box_{ack}

Monte Carlo Example: Noisy Information Model with Linear Kalman Filter

The Gaussian Linear State Space Model agent believes in (Perceived Law of Motion);

$$\begin{bmatrix} \pi_t \\ \mathbf{L}_t \end{bmatrix} \equiv X_t = \mathbf{A} X_{t-1} + \epsilon_t$$

Observe noisy signal:


$$\begin{bmatrix} \pi_{i,t} \\ s_{i,t} \end{bmatrix} \equiv O_{i,t} = \boldsymbol{G} \boldsymbol{X}_t + \nu_{i,t}$$

Use Kalman Filter to form forecast:

$$\begin{bmatrix} \pi_{i,t+1|t} \\ L_{i,t+1|t} \end{bmatrix} \equiv X_{i,t+1|t} = \boldsymbol{A}(X_{i,t|t-1} + \boldsymbol{K}(O_{i,t} - \boldsymbol{G}X_{i,t|t-1}))$$

Monte Carlo Example: ASF from Noisy Information Model

(a) $E\pi_{t+1|t}$ when π_t change by δ

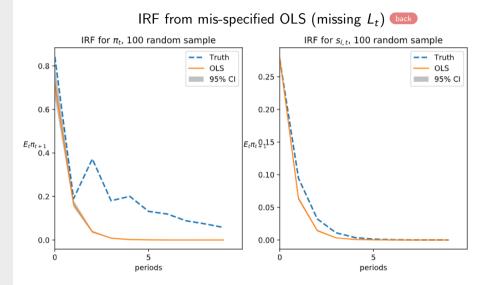
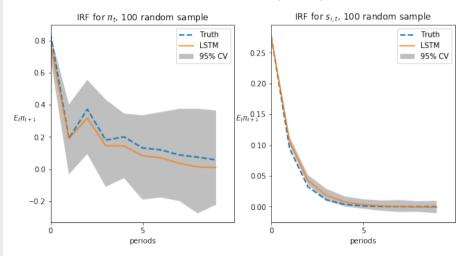

Monte Carlo Example: Marginal Effect

Table 2: Performance of RNN v.s. OLS

	MSE	π_t	s _{i,t}
(1) RNN	2.91	0.82	0.276
	(0.054)	(0.037)	(0.003)
(2) OLS mis-specified	3.296	0.720	0.279
	(0.023)	(0.033)	(0.001)
(3) OLS correct	2.835	0.841	0.277
	(0.014)	(0.005)	(0.001)
Truth		0.842	0.277


* The first column is mean squared error on the whole sample, the second column is estimated marginal effect on signal π_t and third column is estimated marginal effect on signal $s_{i,t}$. In brackets I report the standard deviation of the statistics using 100 simulated random samples.

Monte Carlo Example: Noisy Information Model with Linear Kalman Filter

Monte Carlo Example: Noisy Information Model with Linear Kalman Filter

IRF from RNN (LSTM) (LSTM)

Monte Carlo Example: AME from Noisy Information Model

RNN Architecture

Table 3: Architecture RNN

Tuned Hyper Parameter	Configuration
Num. of Recurrent Neurons	32
Feed-forward Neurons	20
Dropout on recurrent layer	0.5
Epochs	200
Learning Rate	$1e^{-6}$
Depth	2(4)
Un-tuned Hyper Parameter	Configuration
Type of Recurrent Layer	Long-Short Term Memory (LSTM)
Activation Function:	ReLu
Total parameters:	8,424

* Tuned hyper parameters are picked using 6-Fold cross-validation across individuals. This satisfies the requirement for fast enough convergence of estimated Average Structural Function so that functional estimators from this Neural Network can be used to obtain inference on DML estimators.