Highlights

- This paper applies neural networks to predict US CPI inflation, and in particular a recurrent neural network
- Neural nets present better performance than usual benchmarks, especially at the **one and** two-year forecast
- Recurrent neural nets are **at least as good as** the traditional feed forward neural net at medium-long horizons
- Macroeconomic information is important during periods of high uncertainty
- The paper also addresses the impact of the stochastic initialization of parameters on forecasting performance

Econometric framework

Consider two sets of predictive variables: $\mathbf{x_t} = (x_{1t}, ..., x_{Nt})'$: pool of economic predictors $\mathbf{y_t} = (y_{1t}, ..., y_{Mt})'$: CPI and its components Let $\mathbf{z}_{\mathbf{t}}^{\mathbf{L}}$ be the set collecting the current and lagged values of $\mathbf{z}_t = \mathbf{x}_t, \mathbf{y}_t$ or $(\mathbf{x}_t, \mathbf{y}_t)'$

I suppose that inflation, $y_t \in \mathbb{R}$, evolves nonlinearly wrt $\mathbf{z}_{\mathbf{t}}^{\mathbf{L}}$ through a function G

$$y_{t+h} = G(\mathbf{z}_{\mathbf{t}}^{\mathbf{L}}; \Theta_h) + \varepsilon_{t+h}$$

Fitting the unknown function $G: \mathbf{z}_{\mathbf{t}}^{\mathbf{L}} \to y_{t+h}$ to the data corresponds to estimating Θ_h given a network architecture, \mathcal{A}_G , by minimizing

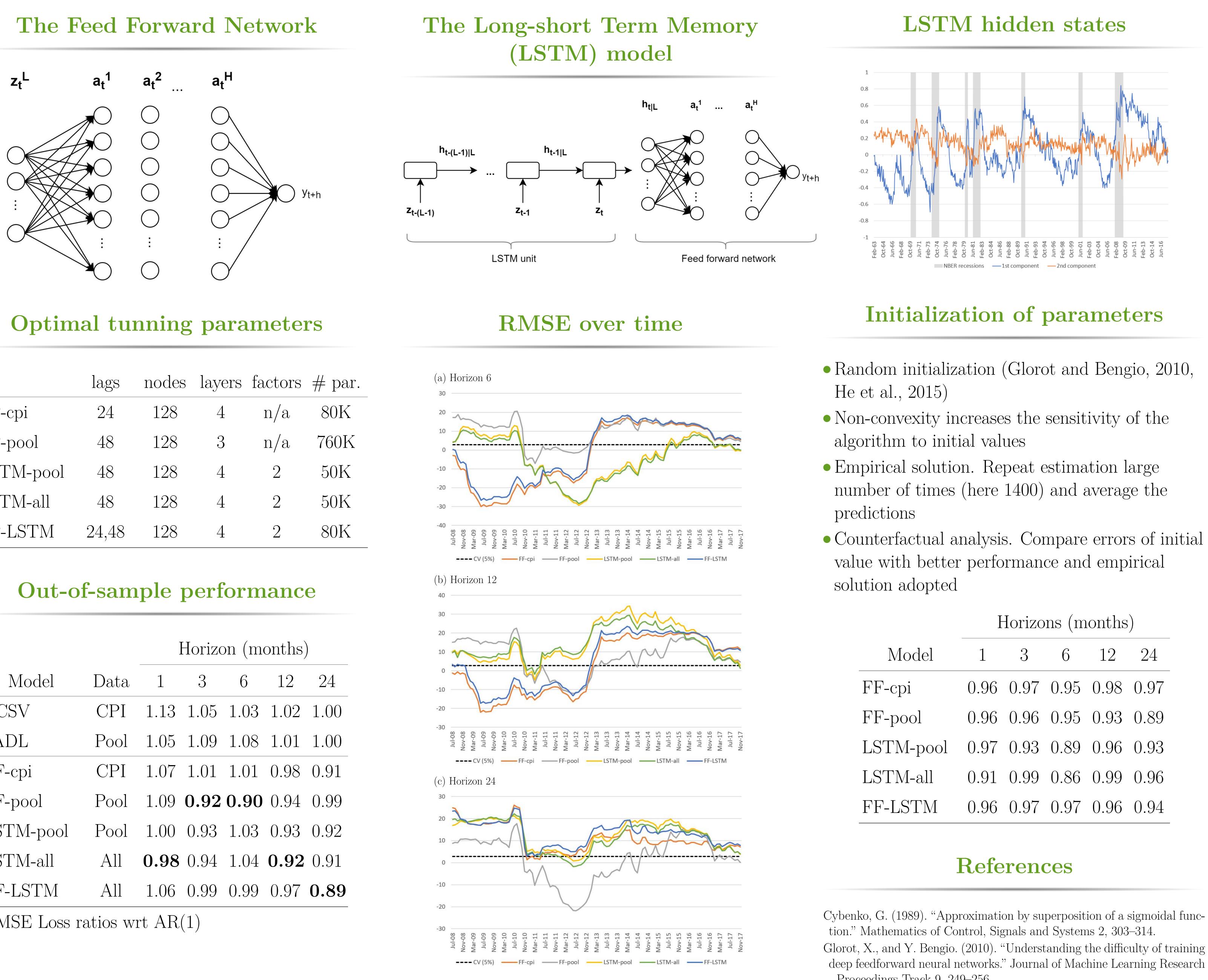
$$\mathcal{L} = \frac{1}{T} \sum_{t=1}^{T} \left(y_{t+h} - G(\mathbf{z_t^L}; \Theta_h) \right)^2$$

- - \mathcal{A}_G : neural net model & tunning parameters
- Universal approximation theorem (Cybenko, 1989): simple neural net model can approximate any continuous function up to an arbitrary degree of accuracy

Predicting Inflation with Neural Networks

Livia Paranhos

Department of Economics, University of Warwick



	lags	nodes	layers	factors	# par.
FF-cpi	24	128	4	n/a	80K
FF-pool	48	128	3	n/a	760K
LSTM-pool	48	128	4	2	50K
LSTM-all	48	128	4	2	50K
FF-LSTM	24,48	128	4	2	80K

		Horizon (months)					
Model	Data	1	3	6	12	24	
UCSV	CPI	1.13	1.05	1.03	1.02	1.00	
FADL	Pool	1.05	1.09	1.08	1.01	1.00	
FF-cpi	CPI	1.07	1.01	1.01	0.98	0.91	
FF-pool	Pool	1.09	0.92	0.90	0.94	0.99	
LSTM-pool	Pool	1.00	0.93	1.03	0.93	0.92	
LSTM-all	All	0.98	0.94	1.04	0.92	0.91	
FF-LSTM	All	1.06	0.99	0.99	0.97	0.89	
	. •		(1)				

RMSE Loss ratios wrt AR(1)

Model	1	3	6	12	24
FF-cpi	0.96	0.97	0.95	0.98	0.97
FF-pool	0.96	0.96	0.95	0.93	0.89
LSTM-pool	0.97	0.93	0.89	0.96	0.93
LSTM-all	0.91	0.99	0.86	0.99	0.96
FF-LSTM	0.96	0.97	0.97	0.96	0.94

⁻ Proceedings Track 9, 249–256.

He, K., X. Zhang, Ren S., and J. Sun. (2015). "Delving deep into rectifiers: surpassing human-level performance on imagenet classification." In "Proceedings of the IEEE international conference on computer vision.", 1026 - 1034.