
Predicting Inflation with Neural Networks
Livia Paranhos

Department of Economics, University of Warwick

Highlights

•This paper applies neural networks to predict
US CPI inflation, and in particular a
recurrent neural network
•Neural nets present better performance than
usual benchmarks, especially at the one and
two-year forecast
•Recurrent neural nets are at least as good

as the traditional feed forward neural net at
medium-long horizons
•Macroeconomic information is
important during periods of high uncertainty
•The paper also addresses the impact of the

stochastic initialization of parameters on
forecasting performance

Econometric framework

Consider two sets of predictive variables:
xt = (x1t, ..., xNt)′: pool of economic predictors
yt = (y1t, ..., yMt)′: CPI and its components
Let zL

t be the set collecting the current and lagged
values of zt = xt, yt or (xt, yt)′

I suppose that inflation, yt ∈ R, evolves nonlinearly
wrt zL

t through a function G

yt+h = G(zL
t ; Θh) + εt+h

Fitting the unknown function G : zL
t → yt+h to the

data corresponds to estimating Θh given a network
architecture, AG, by minimizing

L = 1
T

T∑
t=1

yt+h −G(zL
t ; Θh)
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-AG: neural net model & tunning parameters
-Universal approximation theorem (Cybenko,
1989): simple neural net model can approximate
any continuous function up to an arbitrary degree
of accuracy

The Feed Forward Network The Long-short Term Memory
(LSTM) model

Optimal tunning parameters

lags nodes layers factors # par.
FF-cpi 24 128 4 n/a 80K
FF-pool 48 128 3 n/a 760K
LSTM-pool 48 128 4 2 50K
LSTM-all 48 128 4 2 50K
FF-LSTM 24,48 128 4 2 80K

Out-of-sample performance

Horizon (months)

Model Data 1 3 6 12 24
UCSV CPI 1.13 1.05 1.03 1.02 1.00
FADL Pool 1.05 1.09 1.08 1.01 1.00
FF-cpi CPI 1.07 1.01 1.01 0.98 0.91
FF-pool Pool 1.09 0.92 0.90 0.94 0.99
LSTM-pool Pool 1.00 0.93 1.03 0.93 0.92
LSTM-all All 0.98 0.94 1.04 0.92 0.91
FF-LSTM All 1.06 0.99 0.99 0.97 0.89

RMSE Loss ratios wrt AR(1)

RMSE over time

(a) Horizon 6

(b) Horizon 12

(c) Horizon 24

LSTM hidden states

Initialization of parameters

•Random initialization (Glorot and Bengio, 2010,
He et al., 2015)
•Non-convexity increases the sensitivity of the
algorithm to initial values
•Empirical solution. Repeat estimation large
number of times (here 1400) and average the
predictions
•Counterfactual analysis. Compare errors of initial
value with better performance and empirical
solution adopted

Horizons (months)

Model 1 3 6 12 24

FF-cpi 0.96 0.97 0.95 0.98 0.97
FF-pool 0.96 0.96 0.95 0.93 0.89
LSTM-pool 0.97 0.93 0.89 0.96 0.93
LSTM-all 0.91 0.99 0.86 0.99 0.96
FF-LSTM 0.96 0.97 0.97 0.96 0.94
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