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Introduction The Framework Empirical results Conclusions

Motivation

- Simple univariate models do well
(RW, AR, UCSV of Stock and Watson, 2007)

- Possible role for nonlinearities, especially when uncertainty is
high

- Difficult to determine what variables are important (Giannone
et al., 2018)

- Machine learning models can address these issues
I Big-data environment & highly nonlinear
I Linear shrinkage methods (LASSO, adaLASSO, RR)

Inoue and Kilian (2008), Medeiros and Mendes (2016)
I Nonlinear methods (random forests, SVM, neural networks)

Nakamura (2005), Sermpinis et al. (2014), Chakraborty and Joseph
(2017), Medeiros et al. (2019)
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This paper

1. Applies a recurrent neural network to forecast inflation
I Algorithm designed to model time series data

2. Relevance of macroeconomic data in the prediction (compared to
CPI-only information)

I Real, nominal & financial data (excluding CPI) versus CPI data
3. (By-product)

I Common components
I Sensitivity analysis of initial values
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Introduction The Framework Empirical results Conclusions

Main findings

1. Accuracy. Neural nets present better performance than usual
benchmarks, especially at the one and two-year horizon forecasts

2. Recurrent neural net. At least as good as the traditional
feed-forward neural network at medium-long horizons

3. Other predictors vs CPI. Macroeconomic information is
important during periods of high uncertainty (Stock and Watson
(2009), Medeiros et al. (2019))

4. No sparcity. All groups of predictors seem to be important to
predict inflation (Giannone et al., 2018)
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Econometric framework

Consider two sets of predictive variables for t = 1, ..., T
xt = (x1t, ..., xNt)′: pool of economic predictors
yt = (y1t, ..., yMt)′: CPI and its components

- the set yt is not contained in xt

Let zt be the set collecting the predictors at time t

- zt = xt,yt or (xt,yt)′

And let zL
t be the set collecting the current and lagged values of zt

- zL
t = (zt, zt−1, ..., zt−(L−1))′
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Econometric framework (cont’d)
I suppose that inflation, yt ∈ R, evolves nonlinearly wrt zL

t through a
function G, such that

yt+h = G(zL
t ; Θh) + εt+h

G is a neural network

Fitting the unknown function G : zL
t → yt+h to the data corresponds to

estimating Θh given a network architecture, AG, by minimizing

L = 1
T

T∑
t=1

(
yt+h −G(zL

t ; Θh)
)2

- AG: neural net model & tunning parameters (hyperparameters)
- Universal approximation theorem (Cybenko, 1989): simple neural net model
can approximate any continuous function up to an arbitrary degree of
accuracy

Livia Paranhos Predicting Inflation with Neural Nets 5



Introduction The Framework Empirical results Conclusions

Econometric framework (cont’d)
I suppose that inflation, yt ∈ R, evolves nonlinearly wrt zL

t through a
function G, such that

yt+h = G(zL
t ; Θh) + εt+h

G is a neural network

Fitting the unknown function G : zL
t → yt+h to the data corresponds to

estimating Θh given a network architecture, AG, by minimizing

L = 1
T

T∑
t=1

(
yt+h −G(zL

t ; Θh)
)2

- AG: neural net model & tunning parameters (hyperparameters)
- Universal approximation theorem (Cybenko, 1989): simple neural net model
can approximate any continuous function up to an arbitrary degree of
accuracy

Livia Paranhos Predicting Inflation with Neural Nets 5



Introduction The Framework Empirical results Conclusions

Econometric framework (cont’d)
I suppose that inflation, yt ∈ R, evolves nonlinearly wrt zL

t through a
function G, such that

yt+h = G(zL
t ; Θh) + εt+h

G is a neural network

Fitting the unknown function G : zL
t → yt+h to the data corresponds to

estimating Θh given a network architecture, AG, by minimizing

L = 1
T

T∑
t=1

(
yt+h −G(zL

t ; Θh)
)2

- AG: neural net model & tunning parameters (hyperparameters)

- Universal approximation theorem (Cybenko, 1989): simple neural net model
can approximate any continuous function up to an arbitrary degree of
accuracy

Livia Paranhos Predicting Inflation with Neural Nets 5



Introduction The Framework Empirical results Conclusions

Econometric framework (cont’d)
I suppose that inflation, yt ∈ R, evolves nonlinearly wrt zL

t through a
function G, such that

yt+h = G(zL
t ; Θh) + εt+h

G is a neural network

Fitting the unknown function G : zL
t → yt+h to the data corresponds to

estimating Θh given a network architecture, AG, by minimizing

L = 1
T

T∑
t=1

(
yt+h −G(zL

t ; Θh)
)2

- AG: neural net model & tunning parameters (hyperparameters)
- Universal approximation theorem (Cybenko, 1989): simple neural net model
can approximate any continuous function up to an arbitrary degree of
accuracy

Livia Paranhos Predicting Inflation with Neural Nets 5



Introduction The Framework Empirical results Conclusions

The Models

1. Feed forward (FF) model [multilayer perceptron]
(FF-pool) zt = xt
(FF-cpi) zt = yt

2. Long-short term memory (LSTM) model [recurrent neural net]
(LSTM-pool) zt = xt
(LSTM-all) zt = (xt,yt)′

3. FF-LSTM model
zt = (xt,yt)′
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The feed forward model

FF equations
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The LSTM model

LSTM equations

LSTM graph
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The FF-LSTM model

FF-LSTM equations
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Data

- FRED-MD data base, downloaded in November, 2019 (128 series,
730 observations)

- Data set yt (M = 10)
I CPI: all items, apparel, transportation, medical care, commodities,

durables, services, all items less food, all items less shelter, all
items less medical care

- Data set xt (N = 118)
I Output&Income, Labour market, Housing, Consumption,

Money&Credit, Interest&ER, Prices, Stock market
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Optimal tuning parameters

Tuning parameters

lags nodes layers factors # par.
FF-cpi 24 128 4 n/a 80K
FF-pool 48 128 3 n/a 760K
LSTM-pool 48 128 4 2 50K
LSTM-all 48 128 4 2 50K
FF-LSTM 24, 48 128 4 2 80K

Variable selection
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Out-of-sample performance
Table: Loss ratios wrt the AR(1) model over 2006M08-2019M10

Horizon (months)

Model Data 1 3 6 12 24
RMSE
UCSV CPI 1.13 1.05 1.03 1.02 1.00
FADL Pool 1.05 1.09 1.08 1.01 1.00
FF-cpi CPI 1.07 1.01 1.01 0.98 0.91
FF-pool Pool 1.09 0.92 0.90 0.94 0.99
LSTM-pool Pool 1.00 0.93 1.03 0.93 0.92
LSTM-all All 0.98 0.94 1.04 0.92 0.91
FF-LSTM All 1.06 0.99 0.99 0.97 0.89

Initial values

Predictions

Livia Paranhos Predicting Inflation with Neural Nets 15
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RMSE over time

Fluctuation test (Giacomini and Rossi (2010))
I Test for equal forecast accuracy robust to instability

In this application
I Statistic above the critical value implies the candidate model is

superior to the benchmark for a specific time window
I Rolling window of m = 48 observations across the out-of-sample
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RMSE over time (cont’d)
(a) Horizon 3 (b) Horizon 6

(c) Horizon 12 (d) Horizon 24
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Common components (FF-LSTM, horizon 24)
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Conclusions

- Proposes to forecast inflation using recurrent neural networks
I Highly nonlinear
I Suitable for time series analysis

- Relevance of macroeconomic predictors
- (Recurrent) Neural networks are promising to forecast inflation
at medium-long horizons
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The feed forward model

G(zL
t ; Θh) = gF F

(
zL

t ; θh

)
and

gF F (zL
t ; θh) = WH+1aH

t + bH+1

ai
t = ReLu(Wiai−1

t + bi), i = 1, 2, ...,H
a0

t = zL
t

where
ai

t: n× 1 hidden layer vectors
θh = ({Wi}H

i=1, {bi}H
i=1)′: model parameters

ReLu : R→ R: rectified linear unit function f(z) = max{0, z}

AG = {G(zL
t ; Θh), L, n,H}

Go Back
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The LSTM model
G(zL

t ; Θh) = gF F

(
ht|L(zt;φh); θh

)

ft|L = sigmoid(W′
f zt + Uf ht−1|L + bf )

it|L = sigmoid(W′
izt + Uiht−1|L + bi)

ot|L = sigmoid(W′
ozt + Uoht−1|L + bo)

ct|L = ft|L � ct−1|L + it|L � tanh(W′
czt + Ucht−1|L + bc)

ht|L = ot|L � tanh(ct|L)
h0 = 0, c0 = 0

where
t|L ≡ t|t, t− 1, ..., t− (L− 1)

f , i,o, c,h ∈ Rs×1

Θh = (φh, θh)′, with
φh = (W(j),U(j),b(j))′, j = f, i, o, c

θh = ({Wi}H
i=1, {bi}H

i=1)′, given n and H

AG = {G(zL
t ; Θh), s, L, n,H}

Go Back
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The FF-LSTM model

G(zL
t ; Θh) = gF F

(
(ht|L(zt;φh), zL

t )′; θh

)
where
t|L ≡ t|t, t− 1, ..., t− (L− 1)
Θh = (φh, θh)′,
AG = {G(zL

t ; Θh), s, L, n,H}
gF F receives the input vector (ht|L(·), zL

t )′ ∈ R(s+ML)×1

Go Back
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Sensitivity to initial values (I)

- The predictions at each point in time are averages over 1400
predictions with distinct initial values

- Non-convexity increases the sensitivity of the algorithm to initial values

Counterfactual exercise

- Compute the performance of all 1400 prediction series over the
out-of-sample set

- Compare the series with minimum error out-of-sample with the average
prediction series
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Sensitivity to initial values (II)

Horizons (months)

Model 1 3 6 12 24

RMSE
FF-cpi 0.96 0.97 0.95 0.98 0.97
FF-pool 0.96 0.96 0.95 0.93 0.89
LSTM-pool 0.97 0.93 0.89 0.96 0.93
LSTM-all 0.91 0.99 0.86 0.99 0.96
FF-LSTM 0.96 0.97 0.97 0.96 0.94

Go Back
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Variable selection

Go Back
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A word on identification

- No guarantee of global optimum
I Neural networks focus on good prediction accuracy on unseen

data, ultimately an empirical question
I Multiple equilibria and/or flat regions: intrinsic symmetry, mutual

dependence of weights
- Non-convexity increases the sensitivity of the learning algorithm
to initial values

I Zero-mean uniform distribution
I Empirical solution: average out the predictions of large number of

repeats
- No identification explains the use of cross-validation as model
selection (no probabilistic assumptions)
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Predictions at the two-year ahead horizon

Go Back
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The LSTM
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