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Introduction

I Model:

Yit = g(X it ,Ai ,Bt ,U it), i = 1, . . . ,N, t = 1, . . . ,T ,

where Yit and X it are observed, while Ai , Bt , U it are unobserved,

and g(·) is unknown.

I Panel data allows us to control for unobserved confounding variables

Ai (constant over t) and Bt (constant across i). Those are allowed

to be correlated to the observed covariates X it (“fixed effect

approach”).

I Goal: estimate effect of X it on Yit , while controlling for Ai and Bt .
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Example: empirical illustration

Effect of election day registration (EDR) laws on vote turnout in the US

(dataset from Xu, 2017)

I N = 47 states, T = 24 presidential elections (1920-2012).

I Yit = voter turnout rate.

I Xit ∈ {0, 1}, indicator for EDR law that allows eligible voters to

register on election day.

I 4 waves of EDR adoption: ME, MN and WI in 1976; WY, ID and

NH in 1994; MT and IA in 2008; and CT in 2012

⇒ We want to estimate the average treatment effect on the treated,

while controlling for state specific heterogeneity Ai and election

specific heterogeneity Bt .
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Introduction

I We observe Yit(0) := Yit for pairs (i , t) with Xit = 0.

⇒ Want to to impute the unobserved potential outcome Yit(0) for

pairs (i , t) with Xit = 1.

I We are going to do this using matrix completion methods, which

rely on the N × T matrix of expected outcomes E
[
Yit(0)

∣∣∣AN ,BT
]

to have good low-rank approximations.
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Econometric Applications of Matrix Completion Methods

I Athey, Bayati, Doudchenko, Imbens & Khosravi (2017) and Bai and Ng

(2019) apply matrix completion methods to estimate ATE.

I Chernozhukov, Hansen, Liao & Zhu (2018) consider the case of “spiked

low-rank matrices” whose rank is allowed to converge to infinity.

I Archangelsky, Athey, Hirshberg, Imbens & Wager (2019) derived

consistency results for synthetic control estimators based on matrix

completion methods.

I Chen, Fan, Ma & Yang (2019) provided non-asymptotic distributional

guarantees for debiased convex and nonconvex matrix completion

estimators under normality and missing at random.

I Moon & Weidner (2018), Beyhum & Gautier (2019) consider nuclear

norm regularized estimators of the linear model with factor

structure.

etc.
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Main contribution of our paper

I We do not assume that the true DGP has a low-rank structure, but

allow for a general non-separable model Yit = g(X it ,Ai ,Bt ,U it).

I Our results highlight the potential of low-rank structures to

approximate very general DGPs.

I We suggest a new estimation method for the treatment effects

based on our DGP (where g is smooth, and Ai and Bt are

low-dimensional).

I (in practice, one might want to more parametric models like Pesaran

2006 and Bai 2009 , but it is useful to know that the general

nonparametric model allows “identification” = consistent estimation

as N,T →∞).
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Principal component analysis (PCA)

I Notice that Y = (Yit) is an N × T matrix, and we are interested in

applications where both N and T are large.

I Goal: Approximate the N × T matrix Y by a low-rank matrix:

Yit ≈
R∑

r=1

λir ftr

⇒ calculate the singular value decomposition (SVD)

Yit =

max(N,T )∑
r=1

sr uir︸︷︷︸
=λir

vtr︸︷︷︸
=ftr

(same as calculating the eigenvalue decomposition of YY ′ or Y ′Y )

⇒ only keep the R largest singular values sr for the approximation.
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Grayscale Image Example

orginal image

I This grayscale image can be interpreted as 750× 1125 matrix.
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Grayscale Image Example (cont.)

R = 1

I Using 1 principal component to reconstruct the image.

9 / 41



Grayscale Image Example (cont.)

R = 5

I Using 5 principal components to reconstruct the image.
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Grayscale Image Example (cont.)

R = 20

I Using 20 principal components to reconstruct the image.
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Grayscale Image Example (cont.)

R = 50

I Using 50 principal components to reconstruct the image.

12 / 41



Grayscale Image Example (cont.)
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I The singular values are quickly decreasing with R.

I The fraction of total variation explained quickly approaches one as

R increases.

I Analogous plots for actual economic variables.

(e.g. Yit = GDP of country i at time t)
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Is the same true for any large matrix?

I Can the first few principal components always explain a large

fraction of the data?

I No

e.g., for a 750× 1125 matrix with eit ∼ i.i.d.N (0, 1) (pure noise!)

we find:
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When can low-rank approximation explain the mean of Yit?

I Factor Model / Interactive Fixed Effects Model:

Yit =
R∑

r=1

λir ftr + eit ,

where λir are unobserved “factor loading” (R individual specific

effects), ftr are unobserved “factors” (R time specific effects), and

eit are unobserved “idiosyncratic errors” (mean zero noise).

⇒ see e.g. Stock and Watson (2002), Bai and Ng (2002), Bai (2003), . . .

⇒ In that case the PCA estimators λ̂ir and f̂tr (after appropriate

normalization choice) converge to λir and ftr as N,T →∞.
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When can low-rank approximation explain the mean of Yit?

I Nonseparable model: (no covariates, yet)

Yit = g(Ai ,Bt ,U it),

where we assume that the noise term satisfies

U it
d
= U js | AN ,BT

I By defining m(Ai ,Bt) := E [Yit | Ai ,Bt ] and Eit := Yit −m(Ai ,Bt)

we can rewrite the model as

Yit = m(Ai ,Bt) + Eit

⇒ m(Ai ,Bt) can be well-approximated by a low rank matrix if

(1) dim(Ai ) and dim(Bt) are relatively small.

(2) m(·, ·) is well-behaved. (e.g. sufficiently smooth)
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Simple example

Binary choice mean function:

m(Ai ,Bt) = 1(Ai + Bt > 0), with Ai ,Bt ∼ i.i.d.N (0, 1)

⇒ again simulating a 750× 1125 matrix from this DGP gives
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Full model with covariates

I Model:

Yit = g(X it ,Ai ,Bt ,U it), i ∈ N = {1, . . . ,N}, t ∈ T = {1, . . . ,T},

where Yit , X it observed; Ai , Bt , U it unobserved; g unknown.

I Assumptions:

U it
d
= U js | XNT ,AN ,BT , for all i , j ∈ N, t, s ∈ T,

and

U it ⊥⊥ X js | AN ,BT , for all i , j ∈ N, t, s ∈ T,
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Motivation for this model

I This model can be motivated from a purely statistical perspective as

a latent variable model using the Aldous-Hoover representation for

exchangeable arrays, e.g. Xu, Massouli and Lelarge (2014),

Chatterjee (2015), Orbanz and Roy (2015), and Li and Bell (2017).

I We think of it as a structural model where the unobserved effects

Ai and Bt are associated with individual heterogeneity and

aggregate shocks, respectively.

I Our model similar to the nonseparable panel model in

Chernozhukov, Fernández-Val, Hahn and Newey (2013), but we

incorporate time effects Bt , which allow the relationship between

Yit and X it to vary over time in an unrestricted fashion.
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Parameters of interest

I The structural function itself g is generally not identified.

I Let Yit(x) := g(x ,Ai ,Bt ,U it(x)) be the potential outcome

obtained by setting exogenously X it = x and drawing

U it(x)
d
= U it | AN ,BT . Average structural functions (ASFs):

µ(x) :=
1

NT

N∑
i=1

T∑
t=1

E
[
Yit(x)

∣∣∣AN ,BT
]

I In the paper we also consider µt(x) specific on t = 1, . . . ,T ,

conditional ASF (e.g. for ATT estimation), and and also discuss

quantile treatment effect.

I In the following we will focus on the case X it ∈ {0, 1}, implying

that

µ(1)− µ(0)

is the average treatment effect.

⇒ How to estimate those effects?
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PCA = Least Squares Estimator

I Without covariates the PCA estimator reads

{
λ̂, f̂

}
∈ argmin
{λ∈RN×R ,f ∈RT×R}

N∑
i=1

T∑
t=1

(
Yit −

R∑
r=1

λir ftr

)2

⇒ Ê
[
Yit

∣∣∣AN ,BT
]

=
∑R

r=1 λ̂ir f̂tr .

⇒ easy and fast to compute via SVD.

I With covariates we need E
[
Yit(x)

∣∣∣AN ,BT
]

for x ∈ {0, 1}.

⇒ for each x ∈ {0, 1} the outcome Yit(x) is only observed for a subset

D(x) of pairs (i , t).

⇒ PCA for unbalanced panels?
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Matrix Completing (nuclear norm minimization)

I The problem

argmin
{λ∈RN×R ,f ∈RT×R}

∑
(i,t)∈D(x)

(
Yit − λ′i f t

)2
can equivalently also be expressed as

min
Γ∈RN×T

∑
(i,t)∈D(x)

(Yit − Γit)
2 s.t. rank(Γ ) ≤ R,

where Γ is an N × T matrix.

I Used here:

Γ = λ f ′ ⇔ rank(Γ ) ≤ R ⇔
min(N,T )∑

r=1

1 (sr (Γ ) > 0) ≤ R,

where s1(Γ ) ≥ s2(Γ ) ≥ . . . ≥ smin(N,T )(Γ ) ≥ 0 are the singular

values of Γ .
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Matrix Completing (nuclear norm minimization)

I rank(Γ ) ≤ R is a non-convex constraint.

I Convex relaxation of this constraint:
min(N,T )∑

r=1

sr (Γ )︸ ︷︷ ︸
=:‖Γ ‖1

≤ const.

where ‖Γ ‖1 is the nuclear norm (or trace norm).

I An estimate for Γ = λf ′ is given by

Γ̂ (x) = argmin
Γ∈RN×T

∑
(i,t)∈D(x)

(Yit − Γ it)
2 s.t. ‖Γ ‖1 ≤ const.

= argmin
Γ∈RN×T

∑
(i,t)∈D(x)

(Yit − Γit)
2 + ρ ‖Γ‖1,

where ρ > 0 is a penalty parameter. This is a convex problem.

I See Recht, Fazel and Parrilo (2010) and Hastie, Tibshirani and

Wainwright (2015) for surveys on “matrix completion”. 23 / 41



Estimation of ASF and ATE

I Matrix completion via nuclear norm minimization:

Γ̂ (x) = argmin
Γ∈RN×T

∑
(i,t)∈D(x)

(Yit − Γit)
2 + ρ ‖Γ ‖1,

I Average across i , t to estimate ASF

µ̂(x) =
1

NT

N∑
i=1

T∑
t=1

[
Dit(x)Yit + {1− Dit(x)}Γ̂it(x)

]
,

where Dit(x) := 1{Xit = x}.

I Finally,

ÂTE = µ̂(1)− µ̂(0).

I Analogously for µ̂(0|1) to get ATT, and for time specific effects.
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Sampling assumptions

I Remember:

Yit = g(X it ,Ai ,Bt ,U it)

= m(X it ,Ai ,Bt) + Eit ,

where

m(x ,Ai ,Bt) := E [Yit | X it = x ,Ai ,Bt ] ,

Eit := Yit −m(X it ,Ai ,Bt)

We assume that:

I Ai is independent and identically distributed across i .

I Bt is independent and identically distributed over t.

I Eit is in independent across i and over t, conditional on XNT , AN ,

BT , with uniformly bounded fourth moments.
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Smoothness assumption

I Let

m(x , a,b) =
∞∑
j=1

sj(x) uj(x , a) vj(x ,b)

be the functional singular value decomposition of m(x , a,b). We

assume that
∞∑
j=1

sj(x) <∞.

I For example, if (a,b) 7→ m(x , a,b) is continuously differentiable up

to order s, then

sj(x) . j
− s

da∧db ,

by Theorem 3.3 of Griebel and Harbrecht (2013), where da ∧ db is

the minimum of da and db. This implies that
∑∞

j=1 sj(x) <∞ if

s > da ∧ db.
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Consistency of Matrix Completion Estimator

Let n(x) = |D(x)|.

Lemma

Let above assumptions hold, and let ρ/
√
N + T →∞ and

ρ
√
NT/n(x)→ 0 as N,T →∞. Then,

1

n(x)

∑
(i,t)∈D(x)

[
Γ̂it(x)−m(x ,Ai ,Bt)

]2
= oP(1).

This is just a technical lemma, because the consistency result we would

like to obtain is

1

NT

N∑
i=1

T∑
t=1

[
Γ̂it(x)−m(x ,Ai ,Bt)

]2
= oP(1),
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Restricted strong convexity

I The existing literature on matrix completion relies on the concept of

restricted strong convexity to derive the desired result on the last

slide. Under certain conditions on a matrix M with entries Mit , and

on XNT (which determines the set D(x)), there exists a constant

c > 0 such that with high probability

1

NT

N∑
i=1

T∑
t=1

M2
it ≤

c

n(x)

∑
(i,t)∈D(x)

M2
it .

I See e.g. Theorem 1 in Negahban and Wainwright (2012), Lemma

12 in Klopp et al. (2014), and Lemma 3 in Athey, Bayati,

Doudchenko, Imbens and Khosravi (2017).

I Thus, if the matrix M with entries Mit = Γ̂it(x)−m(x ,Ai ,Bt)

satisfy restricted strong convexity, then the desired result follows

from Lemma 1.
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Main consistency theorem
We do not show

1

NT

N∑
i=1

T∑
t=1

[
Γ̂it(x)−m(x ,Ai ,Bt)

]2
= oP(1),

in our paper, but instead directly establish consistency of

µ(x) =
1

NT

N∑
i=1

T∑
t=1

m(x ,Ai ,Bt).

Theorem

Under appropriate assumptions (see paper) we have

µ̂(x) = µ(x) + oP(1).

For this result we require Xit to be weakly correlated across i and over t,

and also Pr
(
Xit = x | AN ,BT

)
> 0 for all i and t.
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Debiasing Using Matching Methods

I The matrix completion (MC) estimator has two sources of bias:

I low-rank approximation bias

I shrinkage bias

⇒ Those biases make inference based on the MC estimator very

difficult. We therefore consider alternative debiased estimators.
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Debiasing Using Matching Methods

I Let λ̂i (x) and f̂ t(x) be the R × 1 vectors that satisfy

Γ̂it(x) = λ̂i (x)′ f̂ t(x),

I Simple matching estimator: for values x 6= Xit we construct

counterfactuals by

Γ̆it(x) = Yi∗(i,t,x),t∗(i,t,x),

where i∗(i , t, x) ∈ N and t∗(i , t, x) ∈ T are a solutions to

minj∈N,s∈T

∥∥∥λ̂i (x)− λ̂j(x)
∥∥∥2 +

∥∥∥f̂ t(x)− f̂ s(x)
∥∥∥2

s.t. Xjs = x .

I Estimate µ(x) by

µ̆(x) =
1

NT

N∑
i=1

T∑
t=1

[
Dit(x)Yit + {1− Dit(x)}Γ̆it(x)

]
,
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Debiasing Using Matching Methods

I Two-way matching estimator: for values x 6= Xit we construct

counterfactuals by

Γ̃it(x) = Yi,t∗(i,t,x) + Yi∗(i,t,x),t − Yi∗(i,t,x),t∗(i,t,x),

where i∗(i , t, x) ∈ N and t∗(i , t, x) ∈ T are a solutions to

minj∈N,s∈T

∥∥∥λ̂i (x)− λ̂j(x)
∥∥∥2 +

∥∥∥f̂ t(x)− f̂ s(x)
∥∥∥2

s.t. Xis = Xjt = Xjs = x .

I Estimate µ(x) by

µ̃(x) =
1

NT

N∑
i=1

T∑
t=1

[
Dit(x)Yit + {1− Dit(x)}Γ̃it(x)

]
,

I Here, we find the match (j , s) with Xjs = x that not only is the

closest to (i , t) in terms of the estimated factor structure, but also

corresponds to a unit j with Xjt = x and a time period s with

Xis = x . Then, we estimate the counterfactual Γit(x) as a linear

combination of Yjt , Yis and Yjs .
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Debiasing Using Matching Methods

I We also consider matching estimates that use multiple matches for

each pair (i , t), which is variance reducing.

I In the paper we show consistency of these matching estimators µ̃(x)

under appropriate assumptions, but full inference results are still

missing.
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Monte Carlo simulations

I Generate data for N = T = 30 from the model

Yit(x) = x + g(Ai ,Bt) + Uit(x), for x ∈ {0, 1},

where Uit(x) ∼ i.i.d. N (0, 1/4), Ai ,Bt ∼ i.i.d.U(0, 1), and for g we

use the Gaussian kernel similar to that used in Bordenave, Coste

and Nadakuditi (2020) and Griebel and Harbrecht (2010).

I DGP for Xit ∈ {0, 1} that resembles the empirical application.

I Estimators:

I naive difference in means (Dmeans)

I difference-in-difference (DiD).

I matrix completion (MC)

I two-way matching method with k matches (TWM-k)

I simple matching method with k matches (SM-k)
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Monte Carlo simulations: results for µ(0 | 1)

Bias St. Dev. RMSE

Dmeans 0.59 0.02 0.59

DiD 0.70 0.03 0.70

MC 0.74 0.02 0.74

TWM-1 0.03 0.14 0.14

TWM-5 0.03 0.11 0.12

TWM-10 0.04 0.10 0.11

TWM-30 0.07 0.09 0.12

SM-1 0.12 0.10 0.16

SM-5 0.15 0.07 0.17

SM-10 0.19 0.06 0.20

SM-30 0.31 0.05 0.31

based on 1, 000 simulations
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Monte Carlo simulations: results for µt(0 | 1)
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Election Day Registration (EDR) and Vote Turnout

I Effect of allowing vote registration in election day on vote turnout

in the U.S. (Xu, 2017)

I Data: 24 presidential elections from 1920 to 2012, 47 states

excluding Alaska, Hawaii and North Dakota (early adopter)

I Turnout rate, Yit , is total ballots counted divided by voting-age

population

I 4 waves of EDR adoption: ME, MN and WI in 1976; WY, ID and

NH in 1994; MT and IA in 2008; and CT in 2012

I Focus on average treatment effect on the treated; staggered

adoption (Athey & Imbens, 2018)

I Treated states have higher turnouts in pretreatment periods
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Assessing Pretreatment Parallel Trends
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Average Treatment Effect on the Treated by Year
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Quantile Treatment Effects on the Treated
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Concluding Remarks
Main message:

I Low-rank approximations are useful for two-way fixed effects models

even if the underlying DGP is not of low-rank.

I For unbalanced panels one can replace PCA with matrix completion

estimators, e.g. Athey, Bayati, Doudchenko, Imbens & Khosravi (2017).

I We can identify (via large N,T ) interesting average effects in fully

non-parametric panel data models with two-way effects.

Interesting future work:

I Choice of tuning parameters (penalty parameter ρ, or number of

factors).

I Inference.

I How general can the DGP for Xit be?
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