High-Frequency Expectations from Asset Prices: A Machine Learning Approach

Aditya Chaudhry Sangmin S. Oh

Modelling with Big Data & Machine Learning 2020

Aditya Chaudhry Sangmin S. Oh

High-Frequency Expectations from Asset Prices: A Machine Learning Approach

Motivation

Much work in finance and macro seeks to answer:

- How do economic agents form expectations?
- o What real effects do expectations updates induce?
- How to identify causal effects on/of expectations updates at low frequency?
 - E.g. Why did real GDP growth expectations change between March 1 and April 1, 2020?

Common empirical tool: Low-frequency surveys of macro expectations

- E.g. Monthly Blue Chip survey, quarterly Survey of Professional Forecasters
- Unfortunately, many events occur between survey dates

Solution: Move to a higher frequency

Motivation

Much work in finance and macro seeks to answer:

- How do economic agents form expectations?
- What real effects do expectations updates induce?
- How to identify causal effects on/of expectations updates at low frequency?
 - E.g. Why did real GDP growth expectations change between March 1 and April 1, 2020?

Common empirical tool: Low-frequency surveys of macro expectations

- E.g. Monthly Blue Chip survey, quarterly Survey of Professional Forecasters
- Unfortunately, many events occur between survey dates

Solution: Move to a higher frequency

Motivation

Much work in finance and macro seeks to answer:

- How do economic agents form expectations?
- What real effects do expectations updates induce?
- How to identify causal effects on/of expectations updates at low frequency?
 - E.g. Why did real GDP growth expectations change between March 1 and April 1, 2020?

Common empirical tool: Low-frequency surveys of macro expectations

- E.g. Monthly Blue Chip survey, quarterly Survey of Professional Forecasters
- Unfortunately, many events occur between survey dates

Solution: Move to a higher frequency

This Paper

Goal: Construct a daily measure of aggregate growth expectations

• High-frequency series would enable clean identification in event studies.

Approach: Reinforcement Learning + Asset Prices

- Given: Quarterly cross-section of real GDP growth expectations from SPF
- Our task: Recover the daily series of expectations between two quarterly survey release dates

Application: Testing the "Fed Information Effect"

- Hawkish monetary policy surprises correspond to *increases* in surveyed real GDP growth expectations
- News between pre-FOMC survey and FOMC announcement may be omitted variable (Bauer and Swanson, 2020)

This Paper

Goal: Construct a daily measure of aggregate growth expectations

• High-frequency series would enable clean identification in event studies.

Approach: Reinforcement Learning + Asset Prices

- Given: Quarterly cross-section of real GDP growth expectations from SPF
- Our task: Recover the daily series of expectations between two quarterly survey release dates

Application: Testing the "Fed Information Effect"

- Hawkish monetary policy surprises correspond to *increases* in surveyed real GDP growth expectations
- News between pre-FOMC survey and FOMC announcement may be omitted variable (Bauer and Swanson, 2020)

This Paper

Goal: Construct a daily measure of aggregate growth expectations

• High-frequency series would enable clean identification in event studies.

Approach: Reinforcement Learning + Asset Prices

- Given: Quarterly cross-section of real GDP growth expectations from SPF
- Our task: Recover the daily series of expectations between two quarterly survey release dates

Application: Testing the "Fed Information Effect"

- Hawkish monetary policy surprises correspond to *increases* in surveyed real GDP growth expectations
- News between pre-FOMC survey and FOMC announcement may be omitted variable (Bauer and Swanson, 2020)

Key Findings

Measurement:

- 1. The RL approach successfully filters growth expectations from asset prices
 - R^2 of constructed daily series vs. observed quarterly series: 82.3%
 - Benchmarks: 64.7% for Naive, 2.3% for KF, 39.2% for MIDAS
- 2. Expectation updates correspond to salient macroeconomic events.

Application:

- No evidence to support the existence of Fed Information effect.
- Hawkish surprises correspond to *decreases* in real GDP growth expectations.

4/22

Key Findings

Measurement:

- 1. The RL approach successfully filters growth expectations from asset prices
 - R^2 of constructed daily series vs. observed quarterly series: 82.3%
 - Benchmarks: 64.7% for Naive, 2.3% for KF, 39.2% for MIDAS
- 2. Expectation updates correspond to salient macroeconomic events.

Application:

- No evidence to support the existence of Fed Information effect.
- Hawkish surprises correspond to *decreases* in real GDP growth expectations.

4/22

Key Findings

Measurement:

- 1. The RL approach successfully filters growth expectations from asset prices
 - R^2 of constructed daily series vs. observed quarterly series: 82.3%
 - Benchmarks: 64.7% for Naive, 2.3% for KF, 39.2% for MIDAS
- 2. Expectation updates correspond to salient macroeconomic events.

Application:

- No evidence to support the existence of Fed Information effect.
- Hawkish surprises correspond to *decreases* in real GDP growth expectations.

Literature

1. Measurement of latent economic and financial variables in time-series

- Popular approaches: balanced panel regressions, state-space models, latent VARs
- Stock and Watson (1989), Bernanke et al. (1997), Evans (2005), Van Binsbergen and Koijen (2010), Brandt and Kang (2001)
- **Our Approach**: Estimate expectations of variables using a variant of the state-space approach.

2. Application of machine learning methods in finance

- Popular approaches: shrinkage and selection, neural networks, and tree-based models for prediction
- Rapach et al. (2013), Kelly et al. (2017), Giglio and Xiu (2018), Kozak et al. (2019), Moritz and Zimmermann (2016)
- **Our Approach**: We show reinforcement learning can outperform the traditional filtering approach.

Roadmap

Empirical Framework

Empirical Performance of RL

Testing the "Fed Information Effect"

Conclusion

Empirical Framework

Asset prices: equities and fixed income

• Baseline: CRSP value-weighted portfolio and CRSP U.S. Treasury five-year fixed-term index

Growth Expectations: cross-sectional mean of quarterly SPF surveys Summary Statistics

- We focus on one-quarter ahead real GDP growth forecasts
- E.g. Survey conducted in mid 2018:Q3 / Expectation pertains to growth in 2018:Q4

Time Period: 1990:Q3 – 2018:Q4

Asset prices: equities and fixed income

• Baseline: CRSP value-weighted portfolio and CRSP U.S. Treasury five-year fixed-term index

Growth Expectations: cross-sectional mean of quarterly SPF surveys Summary Statistics

- We focus on one-quarter ahead real GDP growth forecasts
- E.g. Survey conducted in mid 2018:Q3 / Expectation pertains to growth in 2018:Q4

Time Period: 1990:Q3 – 2018:Q4

Asset prices: equities and fixed income

• Baseline: CRSP value-weighted portfolio and CRSP U.S. Treasury five-year fixed-term index

Growth Expectations: cross-sectional mean of quarterly SPF surveys Summary Statistics

- We focus on one-quarter ahead real GDP growth forecasts
- E.g. Survey conducted in mid 2018:Q3 / Expectation pertains to growth in 2018:Q4

Time Period: 1990:Q3 – 2018:Q4

Framework: The Environment

Expected returns and dividend growth have a factor structure: GDP growth and some latent factor

$$\begin{aligned} \theta_{t+1} &= \mu + \delta \theta_t + \epsilon_{t+1}, \quad \epsilon_{t+1} \sim N\left(0, \sigma_{\epsilon}^2\right) & (\text{GDP Growth}) \\ \zeta_{t+1} &= \tau + \psi \zeta_t + \xi_{t+1}, \quad \xi_{t+1} \sim N\left(0, \sigma_{\xi}^2\right) & (\text{Latent Factor}) \\ \forall i, d_{t+1}^i - d_t^i &= \gamma + \beta^i \theta_{t+1} + \nu_{t+1}^i, \quad \nu_{t+1}^i \sim N\left(0, \sigma_{\nu}^2\right) & (\text{Dividend Growth}) \\ \forall i, \mathbb{E}_t \left[r_{t+1}^i\right] &= \alpha + \phi^i \zeta_t & (\text{Conditional Expected Returns}) \\ \text{Corr} \left(\epsilon_t, \xi_{t+1}\right) &= \pi \end{aligned}$$

Applying Campbell-Shiller (1988) decomposition yields the following where $\rho = 1 / (1 + \exp(\overline{d-p}))$

$$\forall i, r_{t+1}^i = \gamma + \left(\beta^i + \frac{\delta\beta^i}{1 - \rho\delta}\right) \boldsymbol{\theta}_{t+1} - \frac{\delta\beta^i}{1 - \rho\delta} \boldsymbol{\theta}_t - \frac{\phi^i}{1 - \rho\psi} \left(\boldsymbol{\zeta}_{t+1} - \boldsymbol{\zeta}_t\right) + \nu_{t+1} \qquad \text{(Realized Returns)}$$

Implication: Can filter estimates of latent growth rate θ_t from multiple asset returns r_t^{\dagger}

Aditya Chaudhry Sangmin S. Oh

High-Frequency Expectations from Asset Prices: A Machine Learning Approach

Framework: The Environment

Expected returns and dividend growth have a factor structure: GDP growth and some latent factor

$$\begin{aligned} \theta_{t+1} &= \mu + \delta \theta_t + \epsilon_{t+1}, \quad \epsilon_{t+1} \sim N\left(0, \sigma_{\epsilon}^2\right) & (\text{GDP Growth}) \\ \zeta_{t+1} &= \tau + \psi \zeta_t + \xi_{t+1}, \quad \xi_{t+1} \sim N\left(0, \sigma_{\xi}^2\right) & (\text{Latent Factor}) \\ \forall i, d_{t+1}^i - d_t^i &= \gamma + \beta^i \theta_{t+1} + \nu_{t+1}^i, \quad \nu_{t+1}^i \sim N\left(0, \sigma_{\nu}^2\right) & (\text{Dividend Growth}) \\ \forall i, \mathbb{E}_t \left[r_{t+1}^i\right] &= \alpha + \phi^i \zeta_t & (\text{Conditional Expected Returns}) \\ \text{Corr} \left(\epsilon_t, \xi_{t+1}\right) &= \pi \end{aligned}$$

Applying Campbell-Shiller (1988) decomposition yields the following where $\rho = 1 / (1 + \exp(\overline{d - p}))$:

$$\forall i, r_{t+1}^{i} = \gamma + \left(\beta^{i} + \frac{\delta\beta^{i}}{1 - \rho\delta}\right) \theta_{t+1} - \frac{\delta\beta^{i}}{1 - \rho\delta} \theta_{t} - \frac{\phi^{i}}{1 - \rho\psi} \left(\zeta_{t+1} - \zeta_{t}\right) + \nu_{t+1}$$
(Realized Returns)

Implication: Can filter estimates of latent growth rate θ_t from multiple asset returns r_t^i

Aditya Chaudhry Sangmin S. Oh

١

SPF forecasters as Bayesians:

- Observes only returns (r_t^i), not underlyng GDP growth rate (θ_t)
- Estimates θ_t using the Kalman Filter (KF)

Cross-sectional disagreement:

- Cross-sectional disagreement is an important feature of survey data.
- Introduce heterogeneity among agents in *prior-mean* and *learning*.
 - 1. Prior-mean heterogeneity

Mean of each agent's prior belief regarding θ_t at the start of the quarter: drawn from a normal distribution.

2. Learning heterogeneity

Each agent's parameter in the state and observation equations: drawn from a normal distribution centered at the true parameter value.

- Parametrized by signal-to-noise ratio (s) that determines the parameter distribution

Implication: Forecasters differ in starting points and learning rules

SPF forecasters as Bayesians:

- Observes only returns (r_t^i), not underlyng GDP growth rate (θ_t)
- Estimates θ_t using the Kalman Filter (KF)

Cross-sectional disagreement:

- Cross-sectional disagreement is an important feature of survey data.
- Introduce heterogeneity among agents in *prior-mean* and *learning*.
 - 1. Prior-mean heterogeneity

Mean of each agent's prior belief regarding $heta_t$ at the start of the quarter: drawn from a normal distribution.

2. Learning heterogeneity

Each agent's parameter in the state and observation equations: drawn from a normal distribution centered at the true parameter value.

- Parametrized by signal-to-noise ratio (s) that determines the parameter distribution

Implication: Forecasters differ in starting points and learning rules

SPF forecasters as Bayesians:

- Observes only returns (r_t^i), not underlyng GDP growth rate (θ_t)
- Estimates θ_t using the Kalman Filter (KF)

Cross-sectional disagreement:

- Cross-sectional disagreement is an important feature of survey data.
- Introduce heterogeneity among agents in *prior-mean* and *learning*.
 - 1. Prior-mean heterogeneity

Mean of each agent's prior belief regarding θ_t at the start of the quarter: drawn from a normal distribution.

2. Learning heterogeneity

Each agent's parameter in the state and observation equations: drawn from a normal distribution centered at the true parameter value.

- Parametrized by signal-to-noise ratio (s) that determines the parameter distribution

Implication: Forecasters differ in starting points and learning rules

SPF forecasters as Bayesians:

- Observes only returns (r_t^i), not underlyng GDP growth rate (θ_t)
- Estimates θ_t using the Kalman Filter (KF)

Cross-sectional disagreement:

- Cross-sectional disagreement is an important feature of survey data.
- Introduce heterogeneity among agents in *prior-mean* and *learning*.
 - 1. Prior-mean heterogeneity

Mean of each agent's prior belief regarding θ_t at the start of the quarter: drawn from a normal distribution.

2. Learning heterogeneity

Each agent's parameter in the state and observation equations: drawn from a normal distribution centered at the true parameter value.

- Parametrized by signal-to-noise ratio (s) that determines the parameter distribution

Implication: Forecasters differ in starting points and learning rules

• Denote $\mu_{i,t} \equiv \mathbb{E}_t^i [\theta_{t+1}]$ as agent *i*'s period *t* expectation of growth at period t + 1

• KF implies this law of motion for agent *i*'s expectation: • Kalman Filter Setup

$$\mu_{i,t} = c_{0,t}^{i} + c_{1,t}^{i} \mu_{i,t-1} + \left(\mathbf{c}_{2,t}^{i}\right)' \mathbf{r}_{t}$$

where c_1 and c_2 are functions of underlying structural parameters

- We estimate the moments directly rather than keep track of the entire cross-section
- Averaging across all agents:

$$\mu_t \equiv \frac{1}{N} \sum_{i=1}^{N} \mu_{i,t} = \frac{1}{N} \sum_{i=1}^{N} c_{0,t}^i + \frac{1}{N} \sum_{i=1}^{N} c_{1,t}^j \mu_{i,t-1} + \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{c}_{2,t}^i\right)' \mathbf{r}_t$$

Motivated by this expression, we use the following approximating moment:

$$\mu_t \approx c_1 \mu_{t-1} + \mathbf{c}_2' \mathbf{r}_t$$

• Our task: Estimate c₁ and c₂

- Denote $\mu_{i,t} \equiv \mathbb{E}_t^i [\theta_{t+1}]$ as agent *i*'s period *t* expectation of growth at period t + 1
- KF implies this law of motion for agent *i*'s expectation: Kalman Filter Setup

$$\mu_{i,t} = c_{0,t}^{i} + c_{1,t}^{i} \mu_{i,t-1} + \left(\mathbf{c}_{2,t}^{i}\right)' \mathbf{r}_{t}$$

where c_1 and c_2 are functions of underlying structural parameters

- We estimate the moments directly rather than keep track of the entire cross-section
- Averaging across all agents:

$$\mu_t \equiv \frac{1}{N} \sum_{i=1}^{N} \mu_{i,t} = \frac{1}{N} \sum_{i=1}^{N} c_{0,t}^i + \frac{1}{N} \sum_{i=1}^{N} c_{1,t}^j \mu_{i,t-1} + \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{c}_{2,t}^i\right)' \mathbf{r}_t$$

Motivated by this expression, we use the following approximating moment:

$$\mu_t \approx c_1 \mu_{t-1} + \mathbf{c}_2' \mathbf{r}_t$$

• Our task: Estimate c₁ and c₂

- Denote $\mu_{i,t} \equiv \mathbb{E}_t^i [\theta_{t+1}]$ as agent *i*'s period *t* expectation of growth at period t + 1
- KF implies this law of motion for agent *i*'s expectation: Kalman Filter Setup

$$\mu_{i,t} = c_{0,t}^{i} + c_{1,t}^{i} \mu_{i,t-1} + \left(\mathbf{c}_{2,t}^{i}\right)' \mathbf{r}_{t}$$

where c_1 and c_2 are functions of underlying structural parameters

- We estimate the moments directly rather than keep track of the entire cross-section
- Averaging across all agents:

$$\mu_t \equiv \frac{1}{N} \sum_{i=1}^{N} \mu_{i,t} = \frac{1}{N} \sum_{i=1}^{N} c_{0,t}^i + \frac{1}{N} \sum_{i=1}^{N} c_{1,t}^i \mu_{i,t-1} + \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{c}_{2,t}^i\right)' \mathbf{r}_t$$

Motivated by this expression, we use the following approximating moment:

$$\mu_t \approx c_1 \mu_{t-1} + \mathbf{c}_2' \mathbf{r}_t$$

Our task: Estimate c₁ and c₂

- Denote $\mu_{i,t} \equiv \mathbb{E}_t^i [\theta_{t+1}]$ as agent *i*'s period *t* expectation of growth at period t + 1
- KF implies this law of motion for agent *i*'s expectation: Kalman Filter Setup

$$\mu_{i,t} = c_{0,t}^{i} + c_{1,t}^{i} \mu_{i,t-1} + \left(\mathbf{c}_{2,t}^{i}\right)' \mathbf{r}_{t}$$

where c_1 and c_2 are functions of underlying structural parameters

- We estimate the moments directly rather than keep track of the entire cross-section
- Averaging across all agents:

$$\mu_t \equiv \frac{1}{N} \sum_{i=1}^{N} \mu_{i,t} = \frac{1}{N} \sum_{i=1}^{N} c_{0,t}^i + \frac{1}{N} \sum_{i=1}^{N} c_{1,t}^j \mu_{i,t-1} + \left(\frac{1}{N} \sum_{i=1}^{N} c_{2,t}^i\right)' \mathbf{r}_t$$

Motivated by this expression, we use the following approximating moment:

$$\mu_t \approx c_1 \mu_{t-1} + \mathbf{c}_2' \mathbf{r}_t$$

Our task: Estimate c₁ and c₂

- Denote $\mu_{i,t} \equiv \mathbb{E}_t^i [\theta_{t+1}]$ as agent *i*'s period *t* expectation of growth at period t + 1
- KF implies this law of motion for agent *i*'s expectation: Kalman Filter Setup

$$\mu_{i,t} = c_{0,t}^{i} + c_{1,t}^{i} \mu_{i,t-1} + \left(\mathbf{c}_{2,t}^{i}\right)' \mathbf{r}_{t}$$

where c_1 and c_2 are functions of underlying structural parameters

- We estimate the moments directly rather than keep track of the entire cross-section
- Averaging across all agents:

$$\mu_t \equiv \frac{1}{N} \sum_{i=1}^{N} \mu_{i,t} = \frac{1}{N} \sum_{i=1}^{N} c_{0,t}^i + \frac{1}{N} \sum_{i=1}^{N} c_{1,t}^j \mu_{i,t-1} + \left(\frac{1}{N} \sum_{i=1}^{N} c_{2,t}^i\right)' \mathbf{r}_t$$

Motivated by this expression, we use the following approximating moment:

$$\mu_t \approx c_1 \mu_{t-1} + \mathbf{c}_2' \mathbf{r}_t$$

Our task: Estimate c₁ and c₂

The Standard Model: Given utility function and state transition dynamics, derive optimal action

RL Approach: State transition dynamics unknown \Rightarrow learn optimal action through experience

- Agent: Econometrician seeks to learn...
- Action: Best way to update previous expectation estimate based on new observed asset returns
- Objective: Minimize Euclidean distance between estimated and true expectations at quarter-end

Implication: We seek to learn optimal linear learning rule g for updating daily growth expectations

The Standard Model: Given utility function and state transition dynamics, derive optimal action **RL Approach:** State transition dynamics unknown \Rightarrow learn optimal action through experience

- Agent: Econometrician seeks to learn...
- Action: Best way to update previous expectation estimate based on new observed asset returns
- **Objective:** Minimize Euclidean distance between estimated and true expectations at quarter-end

Implication: We seek to learn optimal linear learning rule g for updating daily growth expectations

The Standard Model: Given utility function and state transition dynamics, derive optimal action **RL Approach:** State transition dynamics unknown \Rightarrow learn optimal action through experience

- Agent: Econometrician seeks to learn...
- Action: Best way to update previous expectation estimate based on new observed asset returns
- **Objective:** Minimize Euclidean distance between estimated and true expectations at quarter-end

Implication: We seek to learn optimal linear learning rule g for updating daily growth expectations

The Standard Model: Given utility function and state transition dynamics, derive optimal action **RL Approach:** State transition dynamics unknown \Rightarrow learn optimal action through experience

- Agent: Econometrician seeks to learn...
- Action: Best way to update previous expectation estimate based on new observed asset returns

• **Objective:** Minimize Euclidean distance between estimated and true expectations at quarter-end **mplication:** We seek to learn optimal linear learning rule g for updating daily growth expectations

The Standard Model: Given utility function and state transition dynamics, derive optimal action **RL Approach:** State transition dynamics unknown \Rightarrow learn optimal action through experience

- Agent: Econometrician seeks to learn...
- Action: Best way to update previous expectation estimate based on new observed asset returns
- Objective: Minimize Euclidean distance between estimated and true expectations at quarter-end

Implication: We seek to learn optimal linear learning rule g for updating daily growth expectations

The Standard Model: Given utility function and state transition dynamics, derive optimal action **RL Approach:** State transition dynamics unknown \Rightarrow learn optimal action through experience

- Agent: Econometrician seeks to learn...
- Action: Best way to update previous expectation estimate based on new observed asset returns
- $\circ~$ Objective: Minimize Euclidean distance between estimated and true expectations at quarter-end

Implication: We seek to learn optimal linear learning rule *g* for updating daily growth expectations

The Standard Model: Given utility function and state transition dynamics, derive optimal action **RL Approach:** State transition dynamics unknown \Rightarrow learn optimal action through experience

- Agent: Econometrician seeks to learn...
- Action: Best way to update previous expectation estimate based on new observed asset returns
- $\circ~$ Objective: Minimize Euclidean distance between estimated and true expectations at quarter-end

Implication: We seek to learn optimal linear learning rule g for updating daily growth expectations

A. Naive Approach: Model μ_t as a random walk

B. Kalman Filter:

- $\circ~$ Derive optimal Kalman gain expression given state (μ_t) and observation (r_t) equations lacksquare sum
- Estimation via maximum likelihood
- Number of parameters: 3m + 11 where *m* is the number of assets
- C. Mixed-Data Sampling (MIDAS) Regression:
 - For each day within quarter, forecast end-of-quarter survey release using lagged asset returns escored
 - Use previous 90 days of returns following Ghysels & Wright (2009)
 - \circ Number of parameters: m + 4 per day for T days within quarter

A. Naive Approach: Model μ_t as a random walk

B. Kalman Filter:

- Derive optimal Kalman gain expression given state (μ_t) and observation (r_t) equations $\mathbf{v}_{\text{second}}$
- Estimation via maximum likelihood
- Number of parameters: 3m + 11 where *m* is the number of assets
- C. Mixed-Data Sampling (MIDAS) Regression:
 - For each day within quarter, forecast end-of-quarter survey release using lagged asset returns esum
 - Use previous 90 days of returns following Ghysels & Wright (2009)
 - \circ Number of parameters: m + 4 per day for T days within quarter

A. Naive Approach: Model μ_t as a random walk

B. Kalman Filter:

- Derive optimal Kalman gain expression given state (μ_t) and observation (r_t) equations $\mathbf{v}_{\text{second}}$
- Estimation via maximum likelihood
- Number of parameters: 3m + 11 where *m* is the number of assets

C. Mixed-Data Sampling (MIDAS) Regression:

- For each day within quarter, forecast end-of-quarter survey release using lagged asset returns estimate
- Use previous 90 days of returns following Ghysels & Wright (2009)
- Number of parameters: m + 4 per day for T days within quarter

A. Naive Approach: Model μ_t as a random walk

B. Kalman Filter:

- Derive optimal Kalman gain expression given state (μ_t) and observation (r_t) equations 💽 Sector
- Estimation via maximum likelihood
- Number of parameters: 3m + 11 where *m* is the number of assets

C. Mixed-Data Sampling (MIDAS) Regression:

- For each day within quarter, forecast end-of-quarter survey release using lagged asset returns estimate
- Use previous 90 days of returns following Ghysels & Wright (2009)
- Number of parameters: m + 4 per day for T days within quarter

Empirical Performance of RL

Results

Recursive estimation:

- Fit model on previous *N* quarters and apply to one quarter out-of-sample
- Baseline: Average models fit on previous N = 40 60 quarters Estimation Timeline

Evaluation:

We construct the **daily** series for each method and compute **quarterly** correlations with actual investor expectations from surveys.

	RL	Naive	MIDAS	KF
RMSE	0.449	0.588	0.916	39.103
R^2		0.647	0.392	0.0237

Results

Recursive estimation:

- Fit model on previous *N* quarters and apply to one quarter out-of-sample
- Baseline: Average models fit on previous N = 40 60 quarters Estimation Timeline

Evaluation:

We construct the **daily** series for each method and compute **quarterly** correlations with actual investor expectations from surveys.

	RL	Naive	MIDAS	KF
RMSE	0.449	0.588	0.916	39.103
R^2	0.823	0.647	0.392	0.0237

Validation with Macroeconomic Events

• Major daily changes in estimated growth expectations correspond to significant macroeconomic events

	Expectations Update (%)	Event
2011-08-08	-0.65	U.S. credit rating downgrade
2011-08-09	0.51	Fed promises to keep interest rates near zero for two years
2008-10-15	-0.51	Weak Fed economic forecasts, Bernanke comments
2008-10-28	0.50	Unclear
2011-08-04	-0.45	Weak jobs data, Japan weakens Yen, ECB re-enters bond market
2008-10-09	-0.44	Unclear
2009-03-23	0.44	Treasury announces TARP
2008-09-29	-0.43	House rejects bank bailout plan
2011-08-11	0.40	Jobless claims fall, strong earnings
2009-03-10	0.38	Citi earnings positive (were expected to be negative)

Testing the "Fed Information Effect"

Omitted Variable Bias in Low-Frequency Regressions

Usual Fed Information Effect regression: $\mathbb{E}_{t+15}[g_Q] - \mathbb{E}_{t-15}[g_Q] = \beta_0 + \frac{\beta_1}{\beta_1} Shock_t + \epsilon_t$

- $\mathbb{E}_{t+15}[g_Q]$ and $\mathbb{E}_{t-15}[g_Q]$ are one-month apart surveyed expectations around monetary event at day t
- E.g. Nakamura & Steinsson (2018) use monthly Blue Chip forecasts and find $\beta_1 > 0$.

Omitted variable: Economic news released between day t - 15 and day t - 1 (in ϵ_t)

• The estimate $\hat{\beta}_1$ will be positively biased if:

 $Corr(\mathbb{E}_{t+15}[g_Q] - \mathbb{E}_{t-15}[g_Q], Econ News_{t-15:t-1}) > 0, \quad Corr(Shock_t, Econ News_{t-15:t-1}) > 0$

Omitted Variable Bias in Low-Frequency Regressions

Usual Fed Information Effect regression: $\mathbb{E}_{t+15}[g_Q] - \mathbb{E}_{t-15}[g_Q] = \beta_0 + \frac{\beta_1 Shock_t}{\beta_1 Shock_t} + \epsilon_t$

- $\mathbb{E}_{t+15}[g_Q]$ and $\mathbb{E}_{t-15}[g_Q]$ are one-month apart surveyed expectations around monetary event at day t
- E.g. Nakamura & Steinsson (2018) use monthly Blue Chip forecasts and find $\beta_1 > 0$.

Omitted variable: Economic news released between day t - 15 and day t - 1 (in ϵ_t)

• The estimate $\hat{\beta}_1$ will be positively biased if:

 $\textit{Corr}(\mathbb{E}_{t+15}\left[g_{\textit{Q}}\right] - \mathbb{E}_{t-15}\left[g_{\textit{Q}}\right],\textit{Econ News}_{t-15:t-1}) > 0, \quad \textit{Corr}(\textit{Shock}_{t},\textit{Econ News}_{t-15:t-1}) > 0$

Our Test of the Fed Information Effect

• Our daily growth expectations series on day t - 1 already incorporates *Econ News*_{t-15:t-1}.

• Therefore, we run:

$$\mathbb{E}_{t}\left[g_{Q}\right] - \mathbb{E}_{t-1}\left[g_{Q}\right] = \beta_{0} + \beta_{1}Shock_{t} + +\epsilon_{t}$$

where

$$Corr(\mathbb{E}_{t}[g_{Q}] - \mathbb{E}_{t-1}[g_{Q}], Econ News_{t-15:t-1}) = 0$$

- *Shock*_t is monetary policy news shock from Nakamura & Steinsson (2018)
 - First principal component of 30-minute changes in five interest rate futures around FOMC announcements

Daily Autocorrelation

Our Test of the Fed Information Effect

• Our daily growth expectations series on day t - 1 already incorporates *Econ News*_{t-15:t-1}.

• Therefore, we run:

$$\mathbb{E}_{t}\left[g_{Q}\right] - \mathbb{E}_{t-1}\left[g_{Q}\right] = \beta_{0} + \beta_{1} Shock_{t} + +\epsilon_{t}$$

where

$$\mathit{Corr}(\mathbb{E}_t\left[g_Q
ight] - \mathbb{E}_{t-1}\left[g_Q
ight]$$
 , $\mathit{Econ}\ \mathit{News}_{t-15:t-1}) = 0$

- *Shock*_t is monetary policy news shock from Nakamura & Steinsson (2018)
 - First principal component of 30-minute changes in five interest rate futures around FOMC announcements

Daily Autocorrelation

Our Test of the Fed Information Effect

• Our daily growth expectations series on day t - 1 already incorporates *Econ News*_{t-15:t-1}.

• Therefore, we run:

$$\mathbb{E}_{t}\left[g_{Q}\right] - \mathbb{E}_{t-1}\left[g_{Q}\right] = \beta_{0} + \beta_{1} Shock_{t} + +\epsilon_{t}$$

where

$$\mathit{Corr}(\mathbb{E}_t\left[g_Q
ight] - \mathbb{E}_{t-1}\left[g_Q
ight]$$
 , $\mathit{Econ News}_{t-15:t-1}) = 0$

- Shock_t is monetary policy news shock from Nakamura & Steinsson (2018)
 - First principal component of 30-minute changes in five interest rate futures around FOMC announcements

Daily Autocorrelation

Results

Comparison to Nakamura & Steinsson (2018)

	Full Sample 2005:03-2014:12 Ex.		NS (2018) 2000:01-2014:12	
Panel A. Response t	o Policy News Shock			
Policy news shock	-0.83 (<i>t</i> : -3.632)	-0.82 (<i>t</i> : -2.938)	1.04 (<i>t</i> : 2.971)	
Observations	71	63	90	
Panel B. Response to Fed Funds Rate (FFR) Shock				
FFR Shock	-0.39 (<i>t</i> : -1.914)	-0.38 (<i>t</i> : -2.028)	N/A	
Observations	71	6 3		

• Negative coefficients: Hawkish surprises are viewed as contractionary

• Implication: No evidence of a Fed Information Effect.

Conclusion

Conclusion

Main Findings:

- $\circ~$ RL + asset prices \Rightarrow High-frequency real GDP growth expectations
- $\circ~$ Estimated daily series attains R^2 of 82.3% vs. original quarterly SPF series

Implications:

- 1. High-frequency series provides sharp tool for empirical work
 - Can help shed light on sources and mechanisms of expectations formation
- 2. Application to test Fed Information Effect We find no evidence of this effect.

Conclusion

Main Findings:

- $\circ~$ RL + asset prices \Rightarrow High-frequency real GDP growth expectations
- Estimated daily series attains R^2 of 82.3% vs. original quarterly SPF series

Implications:

- **1**. High-frequency series provides sharp tool for empirical work
 - Can help shed light on sources and mechanisms of expectations formation
- 2. Application to test Fed Information Effect We find no evidence of this effect.

Appendix

Appendix: SPF Summary Statistics (Winsorized at 5%)

	# Forecasters	# Months	CX Mean	CX Median	CX Std	Real GDP Growth
Mean	35.956	114	2.531	2.510	0.683	2.520
Std Dev	6.014	114	0.929	0.946	0.228	2.307
Autocorr(1)		114	0.742	0.735	0.730	0.359

Appendix: SPF Forecast Cyclicality

Appendix: SPF Forecast Accuracy (RMSE)

Appendix: SPF Forecast Accuracy (Correlation)

Appendix: Do Asset Prices Matter?

Asset 1	Asset 2	Coeff. on Asset 1	Coeff. on Asset 2	R-squared
CRSP Value-weighted Return	5YR Fixed-term Index Return	0.036	-0.199	0.383
5YR Fixed-term Index Return	Change in BAA-10Y Spread	-0.178	-0.013	0.344
5YR Fixed-term Index Return	Change in Weighted Average of Forex Value	-0.242	-0.036	0.334
5YR Fixed-term Index Return	Change in VIX index	-0.225	-0.003	0.328
5YR Fixed-term Index Return	Slope of Yield Curve	-0.221	0.013	0.317
5YR Fixed-term Index Return	Change in AAA-10Y Spread	-0.213	-0.003	0.316
CRSP Value-weighted Return	Change in BAA-10Y Spread	0.030	-0.022	0.261
CRSP Value-weighted Return	Change in AAA-10Y Spread	0.038	-0.016	0.253
Slope of Yield Curve	Change in BAA-10Y Spread	0.029	-0.027	0.234
Change in BAA-10Y Spread	Change in VIX index	-0.029	-0.001	0.224
Change in AAA-10Y Spread	Change in BAA-10Y Spread	-0.002	-0.027	0.222

Table 3: Regressions of Forecast Innovations on Asset Returns

Appendix: Kalman Filter Setup

Rearranging the state-space equations and expression for returns yields:

• State equations:

$$\theta_{t+1} = \mu + \delta \theta_t + \epsilon_{t+1}$$

$$\zeta_{t+1} = \tau + \psi \zeta_t + \xi_{t+1}$$

• Observation equations:

$$\forall i = 1, ..., d, \quad r_{t+1}^{i} = \begin{bmatrix} \gamma & \left(\beta^{i} + \frac{\delta\beta^{i}}{1 - \rho\delta}\right) & -\frac{\delta\beta^{i}}{1 - \rho\delta} & -\frac{\phi^{i}}{1 - \rho\psi} & \frac{\phi^{i}}{1 - \rho\psi} \end{bmatrix} \begin{bmatrix} 1 \\ \theta_{t+1} \\ \xi_{t} \\ \zeta_{t+1} \\ \zeta_{t} \end{bmatrix} + \nu_{t+1}$$

• Kalman gain is thereby a linear combination of current asset returns $(r_{t+1}^i, \forall i)$ and lag 1-day expectation

Aditya Chaudhry Sangmin S. Oh

Appendix: Cross-Sectional Kalman Filter

Rearranging the state-space equations and expression for returns yields:

• State equations:

$$\begin{aligned} \theta_{t+1} &= \mu + \delta \theta_t + \epsilon_{t+1} \\ \zeta_{t+1} &= \tau + \psi \zeta_t + \xi_{t+1} \\ \mu_{t+1} &= \mathbf{c}_2' (\mathbf{1}\gamma + \mathbf{a}\mu + \mathbf{c}\tau) + \mathbf{c}_2' (\mathbf{a}\delta + \mathbf{b}) \theta_t + \mathbf{c}_2' \mathbf{c}(\psi - 1) \zeta_t + c_1 \mu_t \end{aligned}$$

• Observation equation:

 $\mathbf{c}_{2}'\mathbf{r}_{t}=\mu_{t}-c_{1}\mu_{t-1}$

		-

Appendix: Cross-Sectional MIDAS

- Let d_t be a day on which we observe $y_t = \mu_t$, the quarterly-observed surveyed CX mean
- Let r_{τ}^{i} be the return of asset *i* on day τ
- We seek to forecast y_t on each day $d_{t-1} < \tau < d_t$ (i.e. each day between survey releases)
- For each such day, fit the following model:

$$\mathbf{y}_t = \alpha^{\tau} + \rho^{\tau} \mathbf{y}_{t-1} + \sum_{i=1}^m \beta_i^{\tau} \gamma^{\tau}(L) \mathbf{r}_{\tau}^i + \epsilon_t$$

where $\gamma^{\tau}(L)$ is a lag-polynomial of order *I*. Thus,

$$\gamma^{\tau}(L)r_{\tau}^{i} = \sum_{s=\tau-l+1}^{\tau} \gamma_{s}^{\tau} r_{s}^{i}$$

- $\circ\,$ To limit the number of parametes, we use the beta lag specification from Ghysels & Wright (2009)
 - Parameterizes $\gamma^{\tau}(L)$ with only two parameters

Appendix: Estimation Timeline

Appendix: Daily Estimated Series Summary Statistics

	RL	Naive	MIDAS	KF
Panel A: Daily Series				
Mean	2.476	2.401	2.445	32.888
Std Dev	1.044	0.946	0.911	19.139
Autocorr(1)	0.997	0.997	0.673	0.960
Skewness	-2.431	-2.475	-2.912	2.652
Excess Kurtosis	7.006	7.208	27.095	12.608
Panel B: Change in Daily Series				
Mean	0.002	0.000	001	0.570
Mean of Absolute Values	0.036	0.000	0.385	0.597
Std. Dev.	0.060	0.000	0.736	1.923
Skewness	-0.670	0.000	0.920	6.998
Kurtosis	17.282	0.000	75.606	61.905

Appendix: Unconditional Daily Correlations

	USA	ret_5yr	RL	MIDAS	KF	Naive
USA	1.00	-0.41	0.87	0.11	0.01	-
ret_5yr	-0.41	1.00	-0.16	-0.03	0.02	-
RL	0.87	-0.16	1.00	0.14	0.01	-
MIDAS	0.11	-0.03	0.14	1.00	-0.01	-
KF	0.01	0.02	0.01	-0.01	1.00	-
Naive	-	-	-	-	-	-

Appendix: 1-Year Rolling Daily Correlations

Aditya Chaudhry Sangmin S. Oh

Modelling with Big Data & Machine Learning 2

Appendix: CX Mean Policy Weights

Appendix: CX Mean Autocorrelation

First difference of our daily growth expectations series displays no autocorrelation across days

A Baci