Estimating a Model of Decentralized Trade with Asymmetric Information

Tristan Hennig

(University of Cambridge)

Modelling with Big Data and Machine Learning Conference, Bank of England

6 November 2020

Motivation	Related literature	Data	Model	Methodology	Results	Appendix
Motivation						

• Many financial products trade in over-the-counter (OTC) markets. (Examples: corporate bonds, derivatives, MBS, munis, ...)

- M	otiva	ation	

Data

Model

Methodology

Motivation

- Many financial products trade in over-the-counter (OTC) markets. (Examples: corporate bonds, derivatives, MBS, munis, ...)
- Fundamental risk: Will bond issuer default?
- Information friction: Some market participants know more than others

Related literature

Data

Model

Methodology

Motivation

- Many financial products trade in over-the-counter (OTC) markets. (Examples: corporate bonds, derivatives, MBS, munis, ...)
- Fundamental risk: Will bond issuer default?
- Information friction: Some market participants know more than others
- · Search friction: market participants must search to find trading partner

Related literature

.

Model

Methodology

Appendix

Motivation

- Many financial products trade in over-the-counter (OTC) markets. (Examples: corporate bonds, derivatives, MBS, munis, ...)
- Fundamental risk: Will bond issuer default?
- Information friction: Some market participants know more than others
- Search friction: market participants must search to find trading partner
- Recent developments have decreased search cost:
 - Electronic trading
 - RFQ systems
 - Regulation (e.g. MiFID II): min. proportion of trade on exchange
- Are lower search cost beneficial?

IVЛ	otiv:	ation
	0	1000

Data

Model

This paper

- Focus on liquidity: bid-ask spread
- Spread arises due to adverse selection
- Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2018) develop unified framework of trade with
 - Search frictions
 - Asymmetric information

IVЛ	otiv:	ation
	0	1000

ta

Model

This paper

- Focus on liquidity: bid-ask spread
- Spread arises due to adverse selection
- Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2018) develop unified framework of trade with
 - Search frictions
 - Asymmetric information
- Trade-off:
 - Lower search cost \rightarrow More liquidity trades \rightarrow Adverse selection less severe \rightarrow Spreads decline
 - Lower search cost \rightarrow More liquidity trades \rightarrow Learning slows \rightarrow Spreads increase (eventually)
- Which effect dominates depends on parameter values
- Question: Where are real financial markets?

IVЛ	otiv:	ation
	0	1000

1

Model

This paper

- Focus on liquidity: bid-ask spread
- Spread arises due to adverse selection
- Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2018) develop unified framework of trade with
 - Search frictions
 - Asymmetric information
- Trade-off:
 - Lower search cost \rightarrow More liquidity trades \rightarrow Adverse selection less severe \rightarrow Spreads decline
 - Lower search cost \rightarrow More liquidity trades \rightarrow Learning slows \rightarrow Spreads increase (eventually)
- Which effect dominates depends on parameter values
- Question: Where are real financial markets?
- Result: Liquidity improves (first effect dominates)

Motivation	Related literature	Data	Model	Methodology	Results	Appendix
Related literatu	ıre					

- Theoretical literature on trading in OTC markets is vast
 - Seminal paper: Duffie, Garleanu, and Pedersen (2005)
 - Survey: Weill (2020)
 - This paper: Uses model from Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2018)
 - LSVZ model unique in this literature for looking jointly at search and information frictions
- Empirical analysis of OTC markets
 - Dealer networks: Li and Schurhoff (2019), Hagstromer and Menkveld (2019)
 - Electronic trading: O'Hara and Zhou (2019), Vogel (2019)
 - Transaction costs: Edwards, Harris, and Piwowar (2007), Bessembinder, Maxwell, and Venkataraman (2006)
 - None of these papers jointly consider a search friction and asymmetric information
- Structural estimation of a model of a search market
 - Eckstein and Wolpin (1990), Carrillo (2012), Gavazza (2016), Feldhutter (2012)
 - This paper: Similar technique but focus on corporate bond market

Motivation	Related literature	Data	Model	Methodology	Results	Appendix
Data						

- U.S. corporate bond market
- Mergent FISD database: characteristic information
- Eliminate non-standard bonds (convertible, variable coupon, asset backed, perpetual, private placed, etc.)
- 6,755 "speculative grade" and 39,722 "investment grade" bonds

Motivation	Related literature	Data	Model	Methodology	Results	Appendix
Data						

- U.S. corporate bond market
- Mergent FISD database: characteristic information
- Eliminate non-standard bonds (convertible, variable coupon, asset backed, perpetual, private placed, etc.)
- 6,755 "speculative grade" and 39,722 "investment grade" bonds
- Main data source: FINRA TRACE ("Trade Reporting And Compliance Engine")
- Contains universe of transactions in U.S. corporate bonds
- Period: October 2015 to October 2019

Motivation	Related literature	Data	Model	Methodology	Results	Appendix
Data						

- U.S. corporate bond market
- Mergent FISD database: characteristic information
- Eliminate non-standard bonds (convertible, variable coupon, asset backed, perpetual, private placed, etc.)
- 6,755 "speculative grade" and 39,722 "investment grade" bonds
- Main data source: FINRA TRACE ("Trade Reporting And Compliance Engine")
- Contains universe of transactions in U.S. corporate bonds
- Period: October 2015 to October 2019
- Eliminate D2D trades
- Cleaning procedure: Dick-Nielsen (2014)
- \sim 46 million transactions

Motivation	Related literature	Data	Model	Methodology	Results	Appendi
Summary statis	stics					

		Time t	o maturity	
	< 1 year	1-3 years	3-10 years	$> 10 \ {\rm years}$
NA	660	651	500	F14
Mean amount outstanding	000m	051m	589m	514m
Median amount outstanding	500m	500m	400m	350m
Mean trade size	615k	421k	428k	789k
Median trade size	30k	25k	25k	50k
Mean no. of trades per week	16	16	16	7
Median no. of trades per week	8	8	7	3

Table: Summary statistics on the trading activity in investment grade bonds

Model

Appendix

The Model

Environment:

- Two states of the world: $j \in \{h, l\}$
- A single risky asset with fundamental value v_j , $v_h > v_l$
- Time t = 1, 2, ..., game ends every period with chance 1δ

Related literature

ta

Model

The Model

Environment:

- Two states of the world: $j \in \{h, l\}$
- A single risky asset with fundamental value v_j , $v_h > v_l$
- Time t = 1, 2, ..., game ends every period with chance 1δ

Players:

- A continuum of traders (investors) and dealers with mass 1 each.
- All agents are risk-neutral and live forever
- Dealers can take unrestricted positions in the asset
- Traders are either "owners" or "non-owners"

The Model

Environment:

- Two states of the world: $j \in \{h, I\}$
- A single risky asset with fundamental value v_j , $v_h > v_l$
- Time t = 1, 2, ..., game ends every period with chance 1δ

Players:

- A continuum of traders (investors) and dealers with mass 1 each.
- All agents are risk-neutral and live forever
- Dealers can take unrestricted positions in the asset
- Traders are either "owners" or "non-owners"

Payoffs:

- When game ends asset pays v_j.
- For investor *i* the asset also pays flow payoff of ω_t + ε_{it} where ω_t ^{iid} ~ N(0, σ_ω²), ε_{it} ^{iid} ~ N(0, σ_ε²) (denote cdfs by F and G respectively)

Model

Appendix

The LSVZ Model

Information:

- Traders perfectly know the state of the world whereas dealers do not.
- Dealers have common prior $Pr(j = h) = \mu_0$.
- Dealers learn over time by observing investors.

a

Model

The LSVZ Model

Information:

- Traders perfectly know the state of the world whereas dealers do not.
- Dealers have common prior $Pr(j = h) = \mu_0$.
- Dealers learn over time by observing investors.

Timing:

- 1. Game ends with probability 1δ .
- 2. Each investor meets a dealer with probability π .
- 3. The dealers then quote a bid and ask price.

 $A_t = \mathbb{E}_{j,\omega}(V|I_t, \text{buy at } A_t), \ B_t = \mathbb{E}_{j,\omega}(V|I_t, \text{sell at } B_t)$

- 4. Investor decides: trade or walk away. Threshold rule: buy if $\epsilon > \overline{\epsilon}_j$, sell if $\epsilon < \underline{\epsilon}_j$, walk away otherwise; Thresholds depend on prices, aggregate shock, and reservation value $R_{j,t}$
- 5. Dealers observe aggregate trading. Equivalent to observing $R_{j,t} + \omega_t$
- 6. Dealers update using Bayes' rule.

otive	atio	
OLIV		

Data

Model

Appendix

Methodology

- Simulated Method of Moments (SMM) McFadden (1989), Pakes and Pollard (1989)
- Principle as in GMM: Match model moments and data moments
- No closed form solution simulated data moments

Related literature

Data

Model

Methodology

- Simulated Method of Moments (SMM) McFadden (1989), Pakes and Pollard (1989)
- Principle as in GMM: Match model moments and data moments
- No closed form solution simulated data moments
- The SMM estimator is

$$\hat{eta} = rg \min_eta \left(rac{1}{S} \sum_{s=1}^S m_s(eta) - m_D
ight)' W\left(rac{1}{S} \sum_{s=1}^S m_s(eta) - m_D
ight)$$

- I set W to be the inverse covariance matrix of the data moments
- S = 10 (Michaelides and Ng (2000))

Related literature

Data

Model

Appendix

Methodology

- Simulated Method of Moments (SMM) McFadden (1989), Pakes and Pollard (1989)
- Principle as in GMM: Match model moments and data moments
- No closed form solution simulated data moments
- The SMM estimator is

$$\hat{eta} = rg \min_eta \left(rac{1}{S} \sum_{s=1}^S m_s(eta) - m_D
ight)' W\left(rac{1}{S} \sum_{s=1}^S m_s(eta) - m_D
ight)$$

- I set W to be the inverse covariance matrix of the data moments
- S = 10 (Michaelides and Ng (2000))
- To compute SE use

$$A$$
var $(\hat{eta}) = \left(1 + rac{1}{S}
ight) \left[rac{\partial m_{s}(\hat{eta})}{\partial eta}' W rac{\partial m_{s}(\hat{eta})}{\partial eta}
ight]^{-1}$

Model

Methodology

Methodology – Calibration

- Some parameters are not identified by the data. Set them as follows
 - One model period = one trading week
 - Continuation chance: $\delta = 0.99$.
 - Initial belief: $\mu_0 = 0.9$.
 - $v_h = 1$ (bond does not default)
 - $v_l = 0$ (bond defaults)
- Remaining parameters to estimate via SMM: {π, σ_ω, σ_ε}.

Model

Methodology

Results

Appendix

Methodology – Moments

1. The average spread. Computation

2. The variance of the spread.

Model

Methodology

Results

Appendix

Methodology – Moments

- 1. The average spread. Computation
- 2. The variance of the spread.
- 3. The fraction of investors who traded.
- 4. The trade imbalance.

Model

Methodology

Results

Appendix

Methodology – Moments

- 1. The average spread. Computation
- 2. The variance of the spread.
- 3. The fraction of investors who traded.
- 4. The trade imbalance.
- 5. The variance of the price.
- 6. The price impact.

Results

High yield	< 1 year	1-3 years	3-10 years	> 10 years
π	0.23	0.15	0.23	0.22
	(0.06)	(0.01)	(0.02)	(0.01)
σ_{ω}	1.28	1.05	0.50	0.43
	(0.36)	(0.08)	(0.03)	(0.02)
σ_ϵ	10.43	8.55	2.91	1.65
	(2.56)	(2.46)	(0.35)	(0.15)

Investment grade	< 1 year	1-3 years	3-10 years	> 10 years
π	0.26	0.17	0.18	0.20
	(0.13)	(0.03)	(0.02)	(0.01)
σ_{ω}	2.14	2.10	0.99	0.57
	(1.41)	(0.31)	(0.09)	(0.04)
σ_ϵ	15.13	10.99	4.42	1.83
	(4.64)	(2.22)	(0.51)	(0.14)

Table: Results for the non-stationary version of the model. Standard errors in parentheses.

Model

Counterfactual analysis

Figure: Sensitivity analysis: Model-implied spreads for different values of π . All other parameters are fixed at their estimated value. The vertical line is drawn at the SMM estimate for π .

Motivation	Related literature	Data	Model	Methodology	Results	Appendix
Take away						

- Both information and search frictions shape trading in decentralized markets
- Data supports notion that trading reveals information over time

	+ i		+-	

Data

Model

Methodology

Take away

- Both information and search frictions shape trading in decentralized markets
- Data supports notion that trading reveals information over time
- Trading at different horizons exhibits different characteristics
- Regulation/policy may therefore have heterogeneous effects

$\sim +$		
	Vd	

Data

Model

Methodology

Appendix

Take away

- Both information and search frictions shape trading in decentralized markets
- Data supports notion that trading reveals information over time
- Trading at different horizons exhibits different characteristics
- Regulation/policy may therefore have heterogeneous effects
- Reduction in trading frictions slows down learning but increases liquidity overall

	+ i		+-	

Data

Model

Take away

- Both information and search frictions shape trading in decentralized markets
- Data supports notion that trading reveals information over time
- Trading at different horizons exhibits different characteristics
- Regulation/policy may therefore have heterogeneous effects
- Reduction in trading frictions slows down learning but increases liquidity overall

Thank you!

- Dataset only contains transactions, no order book!
- Spread has to be inferred using the "imputed roundtrip" measure developed by Feldhutter (2012)

Methodology – Spreads

- Dataset only contains transactions, no order book!
- Spread has to be inferred using the "imputed roundtrip" measure developed by Feldhutter (2012)
- Idea: Pre-arranged trades where dealer acts as middleman only
- Appear in dataset as pair of transactions in same security with same volume within 15 minutes of each other.
- The IRT measure is $P_{max} P_{min}$.

Methodology – Spreads

By trade size	< 25 <i>k</i>	25k - 100k	100k - 500k	> 500 <i>k</i>
HY	47	51	28	13
IG	53	53	26	11
By Maturity	< 1 year	1-3 years	3-10 years	> 10 years
HY	15	27	48	73
IG	13	23	46	77
Over time	15Q4 - 16Q3	16Q4 - 17Q3	17Q4 - 18Q3	18Q4 - 19Q3
HY	52	44	39	36
IG	57	49	44	38

Table: "Imputed Roundtrip" spreads for the corporate bonds in my sample. Values are in USD cents.

