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The Promise of ML Needs to be Benchmarked

• Anticipating and preparing for crises are important yet intrinsically difficult

• Early warning system (EWS) is developed to tackle this challenge
◦ Kaminsky et al. (1998) for signal extraction approach; Frankel and Rose (1996) for logit

regression

• Machine learning (ML) is introduced to the literature and expands the choice set
◦ Non-parametric model structure could help prevent overfitting and accommodate more

complex relationship

• However, macro data in EWS is small in some important aspects, making it different from
other ML applications

• Hence models need to be evaluated and ranked carefully based on prediction performance



Performance Uncertainty and Ranking Significance
• Statistical significance in ranking matters, especially when data is small and

interpretability is important
◦ In case of no significant performance difference, traditional statistical models may be

preferred given its interpretability

• To test the significance in performance difference, performance uncertainty arising from
sampling needs to be estimated

• For macro data, which sources of sampling variation matter? Or what are plausible
alternative histories?

• This paper touches on performance uncertainty and ranking significance of early-warning
models

◦ Propose three sources of sampling variation that are important for macro data
◦ Construct confidence intervals (CIs) to estimate performance uncertainty
◦ Test ranking significance using conditional performance difference



Results: Wide Confidence Intervals, but Significant Performance Difference

• EWS performance varies substantially with histories: CIs are generally wide
◦ Interestingly, CIs of signal extraction approach are wider

• Degree of performance uncertainty depends on the source of sampling variation and model
algorithm

◦ CIs are wider when accounting for some specific sources of variation in SE/RF

• Signal extraction approach performs significantly better than random forests
◦ In fixed cutoff testing, for all variations, at 10% significant level
◦ But in rolling cutoff testing, greater performance uncertainty and no significance



ML May Win,
but Performance Could Vary with Data



ML Holds Promise, but Not a Panacea

• Suppose that crises follow: yit = f (Xit−1, εit ; θt−1)

◦ yit is crisis event ∈ {0, 1}, f is a non-linear function, Xit−1 is a vector of explanatory
variables, θt−1 is the global regime, and εit is an idiosyncratic shock.

• Machine learning holds promise: non-parametric model structures
◦ Accommodate much more flexibility in function f : non-monotonicities, non-linearities,

interactions, and etc.
◦ Hyperparameters help prevent overfitting

• But macro panel data is small in the context of crisis prediction
◦ Global shocks: shifts in global regime θt−1 is infrequent but substantial
◦ Idiosyncratic shocks: trajectories of countries or part of their histories are affected
◦ Countries are not many and crisis events yit are even fewer and heterogeneous



Three Sources of Sampling Variation

• Assess model performance uncertainty arising from sampling: The extent to which model
performance varies if the model is estimated and evaluated on a different dataset,
representing a different history

• Three sources of sampling variation, in line with the three aspects in which macro panel
data is small

◦ Histories of global regimes: Global shocks are infrequent but substantial
⇒ What if some of the global crisis waves didn’t happen?

◦ Histories of countries: Idiosyncratic shocks changed countries’ trajectories
⇒ What if some of the countries followed different histories, e.g., by taking different policy
actions that prevented or triggered crises?

◦ Types of countries: Countries are not many and crises are even fewer
⇒ What if some of the countries were more like a certain type, e.g., LICs → EMs → AEs?



Crisis Definition and Explanatory Indicators



Sudden Stops in EMs
• 10 sudden stop-prone EMs; 1990-2017

• Sudden stops in net private capital inflows
• Capital inflows

GDP t <
Capital inflows

GDP t−1 - 2%
• Capital inflows

GDP t <
Capital inflows

GDP t−2 - 2%
• Or IMF programst > 500% of quota

• With growth impacts
• ∆%GDPt − 1

5
∑s=5

s=1 ∆%GDPt−s < 10th percentile
• Or IMF programst+1 > 500% of quota

• Rare and brutal: 6.4%



25 Explanatory Indicators Implied by Basu et al. (2019)



Model Choice and Design



Signal-Extraction Approach (SE)

• Simple algorithm
◦ Identify variable-specific threshold
◦ Aggregate variable-specific flags

• Pros:
◦ Simple to implement and easy to interpret
◦ Able to impose priors and not data hungry
◦ Exhaustively tested: won horse race in Berg et al., 2005

• Cons: Cannot address
◦ Non-monotonicities
◦ Non-linearities
◦ Interactions



Machine Learning (ML): Random Forests

• Ensemble models based on decision trees
◦ Split samples sequentially and recursively
◦ Ensemble trees into forests
◦ Impute using surrogates

• Pros: Capture
◦ Non-monotonicities
◦ Non-linearities
◦ Interactions

• Cons:
◦ Difficult to interpret
◦ Easy to manipulate
◦ Overfitting



Cutoff-Based Testing Procedure

• Fixed cutoff
◦ Estimate up to year 2007, and test on years afterwards
◦ Stable performance with large test set

• Rolling cutoff
◦ Estimate up to year t, and test on year t + 1 and t + 2
◦ Average performance over five test sets with cutoff year t = 2007, 2009, 2011, 2013, and

2015
◦ Difficult to manipulate and assess performance updating over the GFC

• Evaluation metrics:
◦ Sum of errors = #false alarms

#noncrises + #missed crises
#crises .

◦ AUC for reference



Performance Uncertainty Estimation



Resampling on the Entire Sample

• Three steps: (1) generating new samples; (2) estimating and testing models; (3)

constructing confidence intervals

• Procedure as follows:

1 Perform resampling on the original entire sample S to obtain a new sample Sj .

2 Split the new sample Sj into training set and test set based on cutoff rules.

3 Estimate different models (signal extraction model and random forests) on the same training

set and tested on the same test set. Model performance on the test set are then calculated.

4 Repeat 1.-2. for 200 times, and construct confidence intervals using the model performance

calculated.



Jackknifing along Three Dimensions
• Jackknife resampling: imposing priors while preserving panel data structure

• Three aspects of small data nature ⇒ three sources of sampling variation ⇒ three
dimensions of jackknifing

◦ Global shocks are infrequent but substantial
⇒ Histories of global regimes: what if some of the global crisis waves didn’t happen?
⇒ Drop years

◦ Idiosyncratic shocks changed countries’ trajectories
⇒ Histories of countries: what if some of the countries followed different histories?
⇒ Drop country-year blocks

◦ Countries are not many and crises are even fewer
⇒ Types of countries: what if some of the countries were more like a certain type?
⇒ Drop countries

• Also consider an i.i.d. jackknifing to compare



Jackknifing along Three Dimensions



Construct Confidence Intervals

• Unlike standard jackknifing that drops one single observation, 5% of data is dropped for
sufficient variation while preserving enough data

• Macro panel data is cross-sectionally and temporally correlated
• Dropping one year is to drop 1/38 ≈ 2.6% of data

• θ̂ the estimator of model performance obtained from the original sample;
θ̂∗j the estimator of model performance obtained from the jackknifing sample j = 1, 2, . . . , 200

1 Order the estimators obtained from the jackknifing θ̂∗ such that θ̂∗1 ≤ . . . ≤ θ̂∗J , with
subscript denoting the jth element in the ordered list.

2 For a significance level α, select the [J · α/2]th and [J · (1 − α)/2]th elements from the
above ordered list of estimators, i.e., θ̂∗J·α/2 and θ̂∗J·(1−α/2).

3 Construct the two-tailed confidence interval of θ̂ with the significance level α as[
2θ̂ − θ̂∗J·(1−α/2), 2θ̂ − θ̂∗J·α/2

]
.



Individual Confidence Intervals are Wide

• Signal extraction approach
◦ Largest CI generated by dropping years

⇒ Global regimes matter
⇒ Likely because it distinguishes only the set of
crises and non-crises

• Random forests
◦ Largest CI generated by dropping country-year

blocks
⇒ Countries’ histories matter
⇒ Likely because it learns aggressively from
individual crisis events

• Overlapping CIs
◦ Not necessarily indicate insignificant difference.



Ranking Significance Assessment



CIs for Conditional Performance Difference

• To rank models, they should be estimated and tested on the same training and test set
respectively, i.e., compared within each history

◦ Not fair to compare models estimated/tested on a dataset with and without the GFC

• The estimator now is a conditional performance difference that is calculated within each
jackknifing sample, and confidence intervals are constructed for it

• θ̂1 for SE and θ̂2 for RF
1 Calculate the difference in performance estimators obtained from the original sample,

∆θ̂ = θ̂1 − θ̂2

2 Calculate the differences in performance estimators obtained from the jackknifing,
∆θ̂∗j = θ̂∗1,j − θ̂∗2,j for j = 1, 2, . . . , J

3 Same as previous procedure but for ∆θ̂ and ∆θ̂∗j



Performance Difference is Significant

• H0 : ∆θ = 0
◦ θ denote sum of errors
◦ Difference between SE and RF
◦ Whether zero is inside the CI

• SE performs significantly better than ML
◦ When accounting for all variations
◦ At 10% confidence level
◦ Despite of overlapping individual CIs



Greater Uncertainty and No Significance in Rolling Cutoff Testing
Individual Performance Conditional Performance Difference



Conclusions & Next Steps

• EWS performance varies substantially with histories: CIs are generally wide
◦ Interestingly, CIs of signal extraction approach are wider

• Degree of performance uncertainty depends on the source of sampling variation and model
algorithm

◦ SE: CIs are wider when accounting for variations in global regimes
◦ RF: CIs are wider when accounting for variations in country histories

• Signal extraction approach performs significantly better than random forests
◦ In fixed cutoff testing, for all variations, at 10% significant level
◦ But in rolling cutoff testing, greater performance uncertainty and no significance

• Next steps: how CIs depend on (i) number of variables; (ii) percentage of data dropped;
(iii) random seed variation alone ...



Thank you!


