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ABSTRACT

A method which balances data subject to
measurement error was initially proposed in the
1940s by Richard Stone and his associates. This
technique requires an estimate of the relative
reliabilities of the observed data matrix being
available. Practical applications have usually relied
upon subjective estimates of the normalisation
matrix but recently methods to estimate this matrix
using residuals from regressions or trends have been
proposed. This paper compares the properties of the
subjective, regression and trend approaches to
balancing a stylized set of accounts using Monte
Carlo simulations. It finds that when the

measurement errors in the accounts contain both
bias and a random component all the methods
provide average estimates of the variables which are
usually statistically different from the true values.
When the observed data contains only a random

element the regression and trend methods still
produce mean estimates which are statistically
different from the true data but the subjective
method does not. The paper suggests that the use of
either the trend or the regression methods to balance
national accounts may result in data which is as
misleading to analysts as the observed data itself.
Although further work is needed, the results do,
tentatively, indicate that in terms of the variance of
its estimates the subjective approach is relatively
robust to errors in the variance-covariance matrix.
However, when bias is present all the methods do
equally poorly and, because the resource
requirements of the trend approach is smaller than
for the other two methods, the trend method is
advocated as the preferred method of balancing the
accounts.
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A Monte Carlo study of alternative approaches to balancing

the national accounts

1 Introduction

The collection of national accounts data are subject to
a number of sources of measurement error which
result in the accounting restrictions only being
satisfied by the inclusion of residual errors or
balancing items. A technique for balancing data so
that it satisfies a set of restrictions was first
introduced by Stone, Champernowne and Meade
(1942) and the technique has been extended by a
number of authors to deal with various error
structures. The technique and its extensions all rely
on the availability of matrices of reliability for the
data. Construction of these matrices has lagged a
long way behind other developments in this field and
most applied work has relied upon subjective or a
priori values supplied by statisticians. Recently,
however, Weale (1989) has proposed an asymptot-
ically maximum likelihood method of estimating
relative reliabilities from regressions on the observed
data and a variant of his technique, which uses
trends, has been applied by Dunn and Egginton
(1990) to the UK national accounts.

The work reported in this note suggests that using
any of these methods, in isolation, is extremely
unlikely to result in the equivalence of the balanced
and the true data. Nevertheless, the use of objective
methods to balance the accounts has a useful
qualitative aspect. The reason for this is as follows:
In the subjective approach the person conducting the
analysis chooses the relative reliabilities to be used
in balancing formula. Consequently, the
adjustments made to balance the data simply reflect
prior beliefs (given the identities and residual errors
in the accounts). The objective approaches do not
impose prior beliefs (except for the reasonably
general assumptions about the structure of the
measurement error process) and the adjustments
made by these methods do give some indication of
the reliabilities of the data. Thus, even if the
quantitative adjustments are inaccurate, the
methods may give independent qualitative signals
about where resources, eg more extensive surveys,
could be concentrated to improve the coherence of the
national accounts.

In this respect it is interesting to note that, in broad
terms, the recent studies of the CSO (1989) and by
Dunn and Egginton (1990) suggest that measure-
ment errors are generally located in the financial

accounts rather than in the current or capital
accounts. Consequently for example, resources to
remove the discrepancy in the accounts of the
overseas sector may be most effectively used in
improving the capital account rather than the
current account. There are, however, a large number
of areas about which the two studies give conflicting
results. It is important, therefore, that the
properties of the objective approaches to estimating
the reliability matrix is understood.

However, the use of the objective approaches are in
their infancy and virtually nothing is known about
their small sample properties. If these were to be
shown to be poor, then they would not even provide
useful qualitative signals let alone quantitative
signals. This paper addresses this issue by
comparing the properties of the ‘regression’, ‘trend’
and ‘subjective’ methods of compiling the reliability
matrix, based upon a modified version of the national
accounts used in Dunn and Egginton (1990), when
the data contains both random measurement errors
and a bias component, by using Monte Carlo
simulations.

The Monte Carlo (stochastic) simulation procedure
used in this study begins by specifying the true data,
which obey the national account identities, a
distribution of random errors and bias components.
When added together these components give a
distribution of observed data. The observed data is
used to create the reliability matrix in the trend and
regression approaches and the observed data can be
balanced using the formula (1) discussed below. The
balanced data is then stored. New observed data is
then created by using another set of random errors
and the procedure is repeated 500 times. The
average of the stored (balanced) data is then
compared with the (known) true data to analyse the
formula’s performance in terms of unbiasedness and
the distribution of the stored data is analysed to give
insights into the efficiency of the estimators. The use
of a Monte Carlo procedure in this context is
unfamiliar but if the balancing formula is thought of
as an estimator and the balanced data as parameter
estimates then the procedure used in this paper is
similar to that used in numerous other studies.




The paper is set out as follows: section 2 outlines the
basic balancing formula and some extensions. It also
discusses some of the problems involved when, what
is termed, the subjective approach to setting the
reliability matrix is used. It should be understood
that the term ‘subjective’ in this context does not
necessarily mean that a formal Bayesian approach
has been adopted in the construction of the matrix.
Nor does it necessarily mean that entirely informal
methods have been adopted, it is quite likely that the
subjective construction of the reliability matrix has
relied upon objective analysis, for example, of the
structure of surveys used to construct the data or of
the data revision process. What is meant by
subjective in this study is that the method of
constructing the reliability matrix cannot be
modelled in a simple manner. The next two sections
set out the regression and trend approaches where,

2 The balancing formula

The problem is to adjust a vector of observed data
items, x, to a vector x*, which satisfies the linear
constraints Ax*=0, where the normalised distance
between x and x* is minimised. The basic solution to
this problem is to set

x'=x-VATAVA ") Ax 1)

where T is the transpose operator. This solution can
be interpreted in terms of least squares and has been
given a Bayesian interpretation by van der Ploeg
(1984). Byron (1978), on the other hand, describes
the problem in terms of a constrained quadratic loss
function. Given that the constraints matrix, A, is
determined unambiguously from the national
account identities, the problem becomes the choice of
an appropriate normalisation matrix, V. The choice
of V is essentially arbitrary but if the variables in x
are observations, recorded with error, of some
underlying processes that are not observable then it
seems sensible to let V reflect the relative
reliabilities of the observed data so that the less
reliable data take more of the balancing adjustment.
Hence the variance-covariance matrix of the
measurement errors may be a suitable choice of V.

This basic balancing rule can be extended in a
number of ways: missing observations [Stone (1977),
Byron (1978)], multiple prior estimates [Byron
(1978)], deterministic and stochastic constraints [van
der Ploeg (1982)], intertemporal constraints [Weale
(1988)] and error structures which include
autocorrelated, trend, systematic and cyclical
Each of these

components [van der Ploeg (1982)).

in contrast, the modelling of the construction of the
reliability matrix is straight forward being derived
from the residuals from regression and trends,
Sections 5 and 6 outline the system of accounts and
the data used in the study. The next three sections
describe, in turn, the information assumed to be
available to analysts using the three methods to
balance the accounts. The analysts, or their
supposed knowledge, do not refer to particular people
or institutions, they are simply agents invented for
the purposes of the Monte Carlo experiments.
Sections 10 to 12 analyse the results of the
simulations in terms of average differences from the
true data when bias is either present or absent and
the variances of the balanced data which is compared
both between methods and with the true variances.
The final sections provides some conclusions.

methods requires at least one variance-covariance
matrix and one each is required for each of the more
explicit formulations of the error structures (ie one
for the systematic component, one for the trend
component etc).

Until Weale (1989) nearly all the estimates of the
error variance-covariance matrices were determined
subjectively. For example, van der Ploeg (1982) and
Barker et al (1984) in their analyses of UK
production accounts and the UK social accounts
matrix respectively, construct the standard deviation
of the measurement error as a percentage of the
observed value with the percentage being determined
by the row and column reliabilities which, in turn,
were subjectively determined from Maurice (1968)
Both papers reported balanced accounts which were
substantially different from a balanced set o
accounts which used a ‘neutral’ hypothesis that the|
variance matrix was just proportional to the
observed value. Clearly the subjective element plays|
an important role in the overall balancing of the
accounts. (It can be noted that van der Ploeg‘
calculated the variance matrix of the systematic
error component using the variance matrix of the
residual component divided by the number of time
periods considered.) Stone (1982) also wused
subjective estimates of reliability based on the
ranges provided by Maurice (1968) to determine the
variance matrix.

There are a number of potential problems with the
subjective approach. First and foremost the relative
reliabilities may simply be incorrect. This is of
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particular importance when Maurice’s (1968)
percentage margins of errors, which are in the form:
less than 3%, 3-10% and greater than 10%, are used.
For example, Stone (1982) uses these ranges but,
Weale (1988) shows that, on the assumption of zero
covariances, the rating of the expenditure measure of
GDP constructed from its components is inconsistent
with the direct estimate using Stone’s ratios. It
should be noted that CSO (1989) avoided the problem
of inconsistencies by asking data compilers for their
estimates of the 90% probability range within which
the true value would be expected to fall
Nevertheless, the relative measurement errors could
still be incorrect simply because some compilers are
more pessimistic than others.

The second major problem with subjective calculation
of the variance matrix is the absence of published
estimates of covariances. Clearly appropriate
covariances could remove the inconsistencies, noted
by Weale, in Stone’s ratios. Weale (1982) suggests
that redefining the accounts may allow some
covariances to be imposed and some covariances,
interrelating the price, volume and value of a
variable, can be calculated theoretically [Weale
(1988)]. Despite this the off-diagonal elements of the
variance-covariance matrix are usually assumed to
be zero and even if some covariances are calculated
the matrix remains sparse. However, Dunn and
Egginton (1990) suggest that the presence or absence
of covariance terms plays an important role in
determining the size and direction of adjustments.
On the other hand, van der Ploeg (1984) argues that,
in some instances, ignoring covariances may not be

3 The regression approach

The Weale approach again employs the balancing
formula (1) derived earlier but derives the rule from
maximising a likelihood function based on several
assumptions about the measurement error; in
particular that the errors are normally distributed
and are not serially correlated. The
variance-covariance matrix, V, of the measurement
errors, to be used in the balancing formula, is
obtained from the regression residuals and this
provides an asymptotic maximum likelihood estimate
of the true data.

The essence of the Weale approach is as follows. The
measurement error is considered to be made up of

too bad an approximation. A final problem is that
subjective estimates may not be available. Crossman
(1988), for example, used Stone’s ratios, which were
derived from UK data, to balance the Australian
national accounts.

For these reasons the estimation of the
variance-covariance matrix by other, more objective,
means is to be welcomed not only because they might
supply better balanced estimates but also because
they can provide a qualitative cross-check on the
adjustments made by the use of a subjective
variance-covariance matrix. This is not to argue that
the subjective and objective settings of the
variance-covariance matrix need be mutually
exclusive. Indeed, a mixture of the two approaches
would appear preferable, a priori. An early attempt
at an objective setting of the variance-covariance
matrix was Weale (1985) who used an analysis of
data revisions in his study of the US economy.
However, revisions are only one source of
measurement error and the relevance of a
variance-covariance matrix based on the history of
revisions may well decline significantly as the
vintage of the data increases. For this reason the
setting of the variance-covariance matrix by
reference to the revision history of the variables
alone does not appear to be a plausible option.”
Recently, however, Weale (1989) has proposed that
the variance-covariance matrix be based on the
residuals from regressions on the variables to be
balanced. The next section outlines Weale’s
regression approach in more detail.

two additive components: a bias component which is
correlated with the true data and a second random
element which is independent of the true data. It is
also assumed that neither component of the
measurement error obeys the accounting identities.
If the bias component was zero throughout then it
would be sufficient to set V as the
variance-covariance matrix of the actual series to be
balanced. At first sight this seems wrong because
some series are genuinely more volatile than others
and yet may be more reliably measured. However,
since genuine volatility in a series must be reflected
elsewhere for the accounting identities in the true
series to hold, Weale shows that such variance is

(1) Nevertheless, the presence of measurement errors which will later be revised away does suggest that the variance-covariance matrix needs 1o be allowed 10
change with respect to data vintage. This is not considered further in this paper.



purged from V on multiplication by the restriction
matrix within the balancing formula.

This result means that although variance due to
genuine volatility and variance due to measurement
error cannot be distinguished for each series, the
total variance can be employed in the construction of
V. The restrictions matrix then purges that variance
which satisfies the accounting identities and the
balancing adjustment should reflect only variance
due to measurement error.

Problems occur when the assumption that the bias is
zero is dropped. Then, because of the correlation of
the biases with the true series, the restrictions
matrix is no longer able to purge ‘genuine’ variance
from V and the balancing adjustments will reflect

4 The trend approach

Dunn and Egginton (1990) have argued that for
practical purposes removal of the bias component can
be achieved by the use of trends rather than by
regressions. They argue that the choice of available
regressors is extremely large and the relevance of
any particular variable to the bias component, given
that the dependent variable is the observed series
not the measurement error, will be hard to
determine. Furthermore, in practice the regressor
variables may also be measured with error and there
is a risk that these errors may be correlated with the
random component of the measurement errors. The
partitioning between the bias and random
components of the measurement error may not,
therefore, be achieved in practice.

Dunn and Egginton (1990) note that the assumption
that the bias component is correlated with the true
data and the random component is independent is
essentially arbitrary. They propose the equally
arbitrary assumption that the low frequency part of
the spectrum of the measurement error is correlated

5 The system of accounts

Tables 1 and 2 present a stylised system of the
national accounts which is a highly compact version
of that used by Dunn and Egginton (1990). By
assumption, each of the variables are measured

genuine noise. Weale overcomes this by using
regressions to explain the bias and remove it from
the observed data. It does not matter whether the
regressions explain, and remove, variance due to
genuine volatility or not, providing this is done
consistently across series. However, if the
regressions also explain part of the true data a two
step approach, where the bias is first removed from
the data and then the remaining measurement error
is allocated across variables, cannot be used. Weale
assumes, in the absence of other data, that the
variance-covariance matrices of the bias and the
random components are the same to a scalar
multiple. Thus the bias can be allocated in the same
proportions as the random element and the data cap
be balanced in one step without bias adjustment.

with the true data but the high frequency component
is independent. Thus the bias can be removed by the
application of a low frequency filter. They also
demonstrate that the regression and trend
approaches are simply particular choices of a state
space representation of the data in terms of a true
series and measurement errors. The methods are,
however, practical alternatives both to each other
and to the subjective approach outlined above.

Each of the three methods; subjective, regression
and trend will result in accounts which balance.
Even if the variance-covariance matrix is specified
correctly, however, the balanced data will not
necessarily be the same as the true data and,
consequently, the extent to which the balanced and
the true data diverge cannot be revealed by analysis
of real data. An indication of the relative abilities of
the three methods can be gauged from simulations
on a constructed set of national accounts. These
accounts, the true data and the observed data are
described in the next sections.

independently and this implies that the covariances
cannot be used to balance the GDP identities as was
done by Dunn and Egginton (1990). Without
aggregation the number of restrictions, given the
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Table 1: Stylized nominal income, expenditure and
flow of funds accounts

1 2 3 4 5 [
Person Public Corporations Overseas  Not Row
alloc
Current net receipts 1 YX) YGC ated Sum
Current grants 2 YJG (YJG)
Transfers overseas 3 EJTA EGTA (EJTA+EGTA)
Stock appreciation 4  YSAJ  YSAG YSAI
Debi interest
payments 5 EDBT
Company savings 6 SXI
Netinterest, profits
and dividends 7/ BIPD
Expenditure taxes
and subsidies 8 ESAB TE FCA9
Fixed investment
and stock building 9 DJ9 IXG9 IX19 X9
Current expenditure 10 (6] G9 X9-M9
Flow of Funds
Net deposits with
corporations 11 DXXJ DXXG DXXI DXXO 0
Public sector
borrowing 12 BXGJ BXGG BXX1 0
Miscellaneous
transactions 13 PEXX PUXX ICXX OUXX 0
Column Sum 0 0 0 0
Note GDPY?9 = Sum rows 1 1o 7 minus expenditure taxes.

GDPE9 = Sum rows 8,9 and 10
GDPY9 = GDPE9

Both X9 and M9 are measured indk y but d in the same row for compactness.
Vanabies in brackets have no mdcp:nd:nl emmlles thereby avoiding the need for restnctons

number of stimulations performed, would have
provided too large a burden on computer resources to
be justified. @ Consequently, the accounts were
aggregated, in particular by removing the distinction
between the industrial and financial sectors. Table 1
provides the nominal income and expenditure
accounts and the flow of funds for 4 sectors of the
economy. It can also be seen that for some items, for
example receipts of transfers by the overseas sector,
there are no explicit measures. On the other hand,
some measures are identified in slightly more detail
than the accounts suggest. For example, public
sector current receipts (YGC) includes taxes on
expenditure (TE). Thus the accounts implicitly
identify total other current receipts even though they
are not separated out in the accounts.

Each of the sectoral columns in table 1 sum to zero,
that is each sector’s current income minus current
expenditure equals investment in fixed assets plus
net purchases of financial assets.

Each of the rows numbered 11 to 13 in table 1 also
sum to zero; that is, an increase in assets must
result in an increase in the liabilities of another
sector. The sum of row 9 gives total fixed

investment, IX9, whilst the sum of row 8, taxes on
expenditure plus subsidies gives the factor cost
adjustment, FCA9. The sum of the rows 1 to 7 minus
taxes on expenditure gives the income measure of
GDP, GDPY9, and the sum of rows 8, 9 and 10 gives

the expenditure measure of GDP, GDP9, both of
which are equivalent. Thus there are 35 variables,
all of which are measured independently and 12
restrictions, of which only 11 need be imposed since if
any eleven are satisfied then the twelth will
automatically hold. (The corporations column is
balanced by residual.)

Table 1 could, if so desired, be balanced separately
from the real variables but this may imply
implausible price deflators. However, the
restrictions between real and nominal variables,
given by restrictions 1 to 7 in table 2, are non-linear
and cannot be directly dealt with by the balancing
formula outlined above. One method which
circumvents this problem is to take logs of each of
these variables (including the price deflators) and
enter these, together with the corresponding real and
nominal variables into the variable set and the
constraints matrix. The logarithmic identities (1 to 7
from table 2) are contained within the constraint
matrix but the logarithmic data are not linked to the
natural variables by any linear constraints, rather
the covariances are used to ensure that the balanced
natural variables and the exponent of the balanced
value of the logarithmic variables are approximately
equal. Thus, even if there were no covariances
between the measurement errors, the variance
covariance matrix will not be diagonal using this
method. The use of logarithms is, however, only an
approximation and the Monte Carlo simulations
provide a test of whether or not this approximation is
good enough or whether other methods need to be
sought. Restriction 8 and 9 in table 2, which define
the real expenditure measure of GDP and the
equality of the real income and expenditure
measures of GDP, are imposed in the restrictions
matrix, A. The addition of the national accounts of
the real side of the economy adds a further 8
variables (the price deflators are not added in an
unlogged form) which are measured independently
and 21 variables in logs to bring the total to 64. The
total number of restrictions is raised to 14. In matrix
terms the observed variables, x, are a vector of
dimension 64x1, the restrictions matrix A is of
dimension 13x64 and the variance-covariance
matrix, V, is of dimension 64x64.

Table 2: Real GDP and prlces identities

1 Consumers’expenditure = PC*CONS
2 Public sector current expenditure G9 = PG*G
3 Fixed investment IX9 = PIX*IX
4 Expons X9 = PX°*X
5 Impons M9 = PM°*M
6 Factor cost adjustment FCA9 = PFCA*FCA
7 GDPexpenditure GDP9 = PGDP*GDPE
8 Real GDP expenditure
components GDPE =  CONS+G+IX+X-M-FCA
9 GDP Income GDPE = GDPY



6 The observed data

This section describes the construction of the
observed data, x. Initially seasonally adjusted data
consistent with the November 1989 Economic Trends
and the November 1989 Bank of England Quarterly
Bulletin was balanced for the period from the second
quarter of 1979 to the fourth quarter of 1988 using
the same 3 term moving average method (see
equation 10 below) and variables as in Dunn and
Egginton (1990). This balanced data was aggregated
to form the ‘true’ data which obeys the accounts
given in tables 1 and 2. To each of these variables
measurement errors were added which are
comprised of 2 components: an independent random
component, e, which has a mean of zero and a
standard deviation equal to 5% of the mean value of
the true data (see appendix 1 for these values), and a
bias component which is determined by:

By z1; + B229; + constant (2)

where B, and B, are parameters which are different
for each variable (see appendix 2) and 2, and 2, are

variables which determine the bias (see appendix 3),
The observed data is therefore equal to:

x; + B121; + B22z2; + € + constant (3)

where x; is the true data. The bias component has a
mean of zero over the sample period (ensured by the
presence of the constant terms) but there is no
reason to suppose that the variance-covariance
matrices of the bias and the random components are
equivalent up to a scalar multiple. The presence of
the measurement errors results in the restrictions
given in tables 1 and 2 not holding, ie Ax=# 0 and
the problem faced by analysts is to estimate the
variance-covariance matrix which will ensure that
the balanced data is identical to the true data. The
subjective, regression and trend approaches are used,
in turn, to estimate the variance-covariance matrix
and the problem facing each approach is set out
below.

7 Balancing using the subjective approach

In this experiment it is assumed that the analysts
have the following information. They are aware that
there are random measurement errors on each of the
series which are independently measured and, for
the purposes of the Monte Carlo simulations, it is
assumed that they know the variances which
underlie these error processes. This is highly
unlikely to occur in practice, but these assumptions
do not mean that the analyst possesses the actual
variance-covariance matrix which determines the
random errors. This is because with only 250
independent replications being used it is unlikely
that the true underlying process will be established.
Thus, the analysts do not possess the operationally
relevant variance-covariance matrix which may, for
example, contain significant covariance terms even
though these are not present (except for logarithmic
linking purposes) in the true variance-covariance
matrix. It is also assumed that the analysts know
that there is a mean zero bias component to the
measurement error. However, they do not know the
magnitude of the bias in any given period. They
therefore expect that the bias is zero and they make
no prior adjustments to the data. The analysts’ final
problem is to calculate elements of the
variance-covariance matrix corresponding to the logs
of variables and the covariances between the

variables for which linear constraints cannot be

imposed. All other covariances are assumed to be
zero by the analysts both because of their expectation
that the bias term is zero and because they know this
is true for the underlying random error processes.

Weale (1988) provides the formulae for the
calculation of these elements and these can be
slightly simplified because the analysts know that all
real and nominal variables have been constructed
independently by the data compilers. Consequently,
the covariances of the random component between
nominal and real variables; logs of nominal and real
variables; and the logs of real variables and nominal
variables and vice versa are all zero. The remaining
covariances are given by:

Cov (log w, log P,) = -var (w)/w*
Cov (log W, log P,) = var (W)/W?
Cov (W, log P,) = var (W)/W
Cov (w, log Py) = -var (w)/w

Cov (W, log W) = var (W)W

Cov (w, log w) = var (w)/w

The variance terms are calculated as:
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Var (log W) = var (W)/W?
Var (log w) = var (w)/w?
Var (Jlog P.) = var (W)/W? 4 var (w)/w?

Where: var (.) are the variances of the random
component of measurement errors, W is the nominal
variable, w is the corresponding real variable and P
is the price deflator (defined as W/w). The accounts
analysed in this paper require the calculation of 21
variance terms and 84 covariance terms.

As both Var (W) and Var (w) are known by the data
compilers to be constant, the variance-covariance
matrix only alters in the simulations because the
observed values of the variables change with each
simulation. Nevertheless, the non-constancy of the
matrix has potentially important consequences for
the performance of the balancing procedure. With a
constant variance-covariance matrix and
measurement errors which have a mean of zero for a
given time period, an asymptotically consistent
estimate of the true data can be found with any
variance-covariance matrix. As would be expected,
the balancing formula, (1) above, can be replaced by
the mean of the observed replications.

This can be shown as follows:
Letx, = x " +e¢; (4)

using the balancing formula (1), substituting in (4)
above and using the fact that Ax * = 0.

Xy = x"+ep— VAT(AVAT) ™ A (enr) (5)

where x, is the balanced data in replication n for
time period ¢.

e, is the measurement error for replication n for time
period ¢.

As e, is assumed to be mean zero, then its sum over
the N replications is also zero. Thus

> %, = Nx* ®)

where N is the total number of replications. Hence,
provided the number of replications is large enough,

the mean of the balanced data will equal the true
data, x °, irrespective of the choice of V (provided it is
constant between replications). In fact V in (5) above
could be set so that the final term becomes zero and
in this case an estimator of the true data simply
becomes the mean of the observed value from each
replication. In the case of antithetic random errors
only a matched pair of observations would be
required to achieve an unbiased estimate of the true
data. The intuition of this is clear, a large error on
one side of the variable will be offset by another
equally large error on the other side so that on
average the balanced data equals the true value.
This result does not follow if bias is present, ie the
mean of the measurement error is not zero, in which
case the bias is only removed if the
variance-covariance matrix exactly corresponds with
the distribution of the bias.

However, if the variance-covariance matrix changes
between replications, as it will do as the calculated
covariances depend upon the observed data, then the
final term of equation (5) above will not cancel for
antithetic pairs and, in general, the number of
replications required before the mean estimate of the
balanced data is equivalent to the true data will be
larger than with a constant variance-covariance
matrix. There is, therefore, no guarantee that the
use of the subjective approach will necessarily result
in data which is on average statistically equivalent to
the true data.

Although, as demonstrated above, any fixed
variance-covariance matrix will on average balance
the data correctly, the penalty for specifying an
incorrect matrix (but not one which is simply a scalar
multiple of the true variance-covariance matrix) is
that the variance of the balanced data will, in
general, be increased. This follows from an
application of the Rao-Blackwell theorem by which it
can be shown that the balancing formula is the
minimum variance unbiased estimator of the true
data, if the observed data is distributed normally
[van der Ploeg (1984)). It should be noted in passing
that the balanced variances need not increase as the
degree of error in the variance-covariance matrix
rises (in the sense that all but one element of the
variance-covariance matrix increases in magnitude).

8 Balancing using the regression method

In this case the analysts are assumed to be aware of
the bias component and to know that it is determined
by the variables z, and 2z; which are known with

certainty. The analysts do not know the parameters
(B1, B2) or the constant which determines the bias, but
they do know that it has a zero mean. Nor do they



know the variance-covariance matrix of the random
component of the measurement errors and they
assume that the variance-covariance matrices of both
the bias and random components of the
measurement error are equivalent up to a scalar
multiple. The statisticians choose to construct the
variance-covariance matrix from the regression
residuals of z; and z; on the observed data for the
period second quarter of 1979 to the fourth quarter of
1988. They calculate the residuals for the
logarithmic data by taking the log of the fitted value
from the regression on the natural variables and
subtracting this from the log of the natural variable
(a log of a residual cannot be taken because the
residual can be negative).

The residuals for the price deflators are calculated as
the logarithm of the price deflator minus the log of
the ratio of the fitted values for the respective value
and volume variables. However, the use of this
technique to construct the covariances for the
logarithmic variables implies an inconsistent error
structure between the natural variables and their
logarithmic counterparts because the residual
calculated for the logarithmic variables are
(approximately) in percentage not level terms. An
alternative method would be to use the formulae
given by Weale (1988) for the calculation of the
variances and covariances but this has the
disadvantage that other covariances are not defined.
Thus, if the analysts believe covariances are
potentially important, they may be reluctant to set
them to zero and would prefer to use the
approximation.

Again it should be noted that the assumption that
the determinants of the bias are known with
certainty is optimistic. It is also highly unlikely that
the components of the measurement errors will have
similar variance-covariance matrices up to a scalar
multiple. Indeed it is not true in the data which is
investigated in this study. Recognising this last
point, the analysts may use an alternative procedure

9 Balancing using the trend approach

The analysts are aware that the data contains a bias
component which is likely to be correlated with the
true data. They are unaware of the determinants of
the bias and they do not know the variance-
covariance matrix of the random component. Thus
they have the least prior information available and
indeed the trend approaches prior data requirement
is less than either of the other methods. In the

absence of this knowledge they assume that the bias

which removes the bias from the data, and then
balance the accounts. The estimate of the bias js
constructed from the knowledge that the mean of the
bias term is zero together with the estimated
parameters ﬁ, and Bz. This allows an estimate of the
constant term in the bias equation to be constructed
using:

A A
- (B1 21 +PB2 22) = constant (7)

where 2, and 2, are the means of z and 3
respectively. Using the estimated parameters and
the constant, the bias for each quarter can be
estimated and subtracted from the observed data and
this adjusted data can be balanced. The
variance-covariance matrix is still formed from the
regression residuals as in the one step method. The
two step procedure does, however, provide
inconsistent estimates of the parameters. The
reason is that the regressions have measurement
errors in the dependent variables and these errors
are correlated with the dependent variables (the
biases), ie the model which the analysts would wish
to know is:

by = Brz1s + Bozoy + ¢ (8)
whereas they actually estimate:
bi+x;+e = Przyy + Pazos + € + vy (9)

where b, = bias, x;=true data, e, = random
measurement error, cov (x;, b,)# 0, ¢ = constant, vfI
= random error

Moreover, the expectation of the left hand side of
equation (9) is not zero because it contains the true
value of actual data (x; ). This is why the constant
from the regression is replaced by that calculated
using equation (7). It is not, therefore, even possible
to conclude that the parameters will be
underestimated.

and the random measurement errors have the same
variance-covariance matrix up to a scalar multiple ie
the same assumption made by the analysts using the
regression approach. In the present case however
they choose to remove the bias component by
running the data through a low frequency filter given
by:

0.25w,,, +0.5w, +0.25w,, 10)
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The residuals from the filtering process are used to
construct the variance-covariance matrix. The choice
of this filter is entirely arbitary but the use of
methods such as variate difference to determine the
trend to fit also contain a subjective element [see
Kendal (1973)) and as such it was decided to retain
the same simple moving average process for each
variable.  Of course, allowing differing moving
average processes also increases the complexity of
the trend method and hence reduces its
attractiveness when compared with the other

10 The simulation results including bias

For each of the 3 methods there are two simulations:
one with bias added and one without. A further
simulation is run for the regression approach where
the data is adjusted to remove the estimated bias
prior to balancing. In total there are 7 simulations
each consisting of 250 antithetic pairs of random
measurement errors (ie 500 replications). The bias
remains the same in each replication and the random
errors are identical across simulations. The number
of replications per simulation is the same as that
used by Hall and Stephenson (1990).

The simulations provide direct estimates of 64
variables and a further 7 price deflators are implicit.
However, the two GDP estimates are not
independent and, consequently, 69 estimates can be
evaluated. The evaluation is simply a test of the
difference between the mean value of each variable
from the replications and the true value using a
t-test. The results are given in table 3. Table 4
allows the evaluation of the appropriateness of the
logarithmic approximations. The difference of the
estimated means of the 21 logged and natural
variables are tested using a t-test.

The results of the simulations containing the biases
are given in columns 1, 3 and 5 of table 3. As can be
seen, the hypothesis that the average of the balanced
data and the true data are the same can be rejected
for virtually all of the variables no matter which
method was used to balance the data. The
subjective, trend and regression methods managed to
pass the t-tests, 9, 8 and 5 times respectively at the
5% level of significance. There is also little coherence
in which variables pass and which fail the t-test,
although all 3 methods produce balanced data for the
log of G (real government expenditure) and unlogged
G which are close to its true value. However, as

table 4 indicates, the logarithmic approximation
which links real and nominal variables produces
estimates which are statistically similar.

Hence

methods. The filter can be used directly on
logarithmic variables and, as the analysts are
unware of the functional form of the bias, they
arbitrarily construct the residual for logarithmic
variables from:

logw, - (0.25log w,,; + 0.5logw, +0.25log w,., )
rather than from, say:

log w, - log ( 0.25 w,,; + 0.5 w, + 0.25 w,_, )

given that one of these variables passes a t-test in
table 3 it might be expected that its logarithmic
counterpart would also pass the t-test (the exception
to this being nominal imports (M9) which just passes
in its log form but fails in its unlogged form using the
trend method). Making an allowance for this, the
results are worse than they appear and they clearly
suggest that none of the methods can deal with data
which contains both random and bias components.

Of course, simply because the average balanced
estimate and the true data are statistically different
it does not follow that the differences are necessarily
numerically large. However, as table 5 (columns 1, 3
and 5) shows, the average percentage error can be
large and the use of any of these methods to balance
the accounts is likely to produce accounts which are
as misleading to the analyst as the measured data
itself. As these methods all produce results which
are equally poor this suggests that should balanced
accounts be required the use of the trend method
would be preferable because its information and
resource requirements are so much smaller than the
other methods.

A comparison of the difference between the average
estimate of the balanced data and the true data with
the bias reveals a strong positive correlation of
between 0.85 (for the subjective approach) and 0.81
(for the trend approach) for these methods.
Regressions of the average balancing error on the
bias reveal that a £1 million increase in the bias
results in between £0.97 and £1.03 million increase
in the average error. We cannot reject the
hypothesis that the average error for each variable
for each method rises one for one with the bias.
Hence, because the mean of the random
measurement error is zero, the balancing exercises
have been, on average, unable to improve upon the
unbalanced accounts. Whilst the presence of bias in
the observed data is not the whole reason for the



failure of the methods to correctly balance the data,
these results suggest that removing the bias would
result in an improvement in the number of variables
which pass their respective t-tests.

Column 6 of table 3 reports the results for the two
stage regression method discussed above. The
removal of the bias results in slightly more variables
passing t-tests (12 compared with 5 for the one step
approach). However, this can hardly be described as
a vast improvement. Clearly, the problem of
inconsistent parameter estimates is a serious one for
this data set. For example, the average of the
estimated parameters for GDP9 (the nominal
expenditure measure of GDP) are 94.5 and 1440.0
respectively and this gives an estimate of the
constant term as 6226.6. For the first quarter of
1984 these parameters give a bias estimate of
-2390.9 whereas the true bias is only -760.0. Thus, in
this example, the correlation between the bias and
the true value of GDP9 is sufficient to cause an
overadjustment of the data prior to balancing which
in turn contributes to the failure of the balancing
procedure to determine the true value of GDP9. In
passing it can also be noted that, with the exception
of the real government expenditure variable, G, the
variables which pass the t-tests using the one-step
approach are not those which pass the t-tests using
the two-step approach.

The poor results reported when the observed data
contains bias may, however, be due to insufficient
numbers of simulations. This can be evaluated by
forming a 95% confidence interval around the
estimate of the standard deviation of the mean of the
balanced data. By taking the upper bound to this
confidence interval and using it as the estimate of
the standard deviation we can derive a lower bound
to the number of variables failing the t-tests. Thus
the t-test is replaced by the following test:

(x — x)

[_0_ pe 1.960)
\/IT ';-.‘[E

where x is the estimated mean of variable x derived
from the replication.
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x is the true value.

o is the estimated standard deviation of the variable

H

n is the number of replications (500).

n/2 is used in place of n because antithetic errors
were used in the replications which can be thought of
as halving the sample size.

The original t-test was

gx—x!

—q-—° — o
— =

Thus

x-x) _T
c Vn

The term in brackets (with n=500) is equal to 1.124
and consequently the adjustment reduces the value
of the t-tests by 12.4%. In other words, only those
variables with t-statistics, reported in table 3, which
are below 2.20 would pass the adjusted t-tests at the
5% level of significance. However, the number of
t-tests with values of between 1.96 and 2.20 are
small, with at most 3 extra variables passing the
adjusted t-test (for the trend method when no bias is
present). These results strongly suggest that the
large number of rejections recorded when bias is
present in the measured data are not due to
insufficient replications but are due to the inability of
the model to deal with biases which do not possess a
similar variance-covariance matrix to the random
error component.
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11 The simulation results excluding bias

As none of the above approaches appear capable of
dealing with measurement errors which include a
bias term, this raises the question of what the small
sample properties of the methods are when dealing
with a random error term alone. Columns 2, 4 and 7
of table 3 report the t-tests for the subjective, trend
and ‘regression’ methods respectively.

Table 3: T-Tests on differences between the variables and
the estimated mean

Subjective Trend Regression
with without with _ without with  with

] ; without
bias bias bias  bias bias  bias bias
adjust-

GDP9  -2497 000 -2420 -1.57 2791 % 1.63
GDPE  -1269 000 -1330 -3.69 -17.03 2180 227
G9 -71.69  0.00 622 052 658 223 072
1X9 -1.30 001 4.16  4.07 -10.88  56.73  2.87
IXG9 -1025 -0.00 117 132 -1008 -27.56 -9.97
1XJ9 -1499 000 -2197 -13.90 -27.80 8.13 -263
1X19 1493 001 6.35 -0.83 3.51 6942 620
o -2098  0.01 -1622 2.09 2034 2680 2.6l
X9 -5.93  0.00 -6.50 -2.81 2382 1299 -1.04
M9 -093  0.00 209 260 042 1287 152
FCA9 069 -0.00 245 028 325k 2NaN 0 2475
TE 2.01 -0.00 295 -0.58 499 980 185
ESAB 751 0.00 1.94 -3.83 6.35 4625 992
YGC -2435  0.00 -19.45 017 -2068 -1380 034
YXJ 920 0.01 -880 -0.76 -11.32 2441 230
SXI -27.56  -0.01 -14.32 467 -1622 4118 339
YSAG  -3497 0.00 -12.51 -13.16 -23.06 370 -13.78
YSAJ -9.33 0.0 302 803 -501 4818 951
YSAI -8.10 0.00 266 575 227 4064 11.63
YJG -14.55  0.00 -11.98 0.4 -13.78 2235  -1.23
EDBT -5.09  0.00 -8.02 .520 27166 2681 4.6
BIPD -1.59  -0.00 2330 -1.79 -13.44 1169  -296
EJTA -1244 000 -8.72 -5.47 945 146.12 2212
EGTA 622 0.00 2177 -3.29 21375 -2395 -19.43
CONS  -1183 0.00 -823 151 -11.63 2345 503
IX -15.03  0.00 -13.93  -4.55 -21.51 2944 093
G 094 0.00 0.91 1.35 018 -040 1.0
X -6.57  0.00 679 -2.22 625 1449 3.34
M -10.70  0.00 -6.26 274 -11.64 3277 506
FCA -803  0.00 324 371 397 1572 693
BXGJ 7185 -0.00 5.88  2.73 1425 -1937 019
BXXI 092 0.00 3.17 407 610 3440 -11.90
BXGG  -6665 -0.00 -5.78 4.59 -3.52  -3072 825
DXXO 11185 -0.00 1291 0.0 10.78 3042 8.3l
DXXG -124.63 -0.00 208  7.81 400 2268 8.2
DXXJ 76.58 -0.00 6.46  2.48 7.60 066 -0.19
DXX1 -73.14  0.00 -7.10  -3.53 2799 528 -1.08
PUXX  -59.36 -0.00 127 4.43 004 889 -014
OUXX 96.83  0.00 20.03 13.00 870 5145 10.10
PEXX 73.31  0.00 067 -547 249  -17.41 -1034
ICXX -9530 0.00 896 -3.80 -6.05 -125 085
Log GDP9 -24.00 0.87 22206 -2.12 2643 2195 074
Log GDPE -12.02  0.69 -13.54 -4.43 -1797 2080 1.55
LogG9  -7.51 0.13 -546  0.67 -5.11 254 017
LogIX9 011 1.18 -3.81 -4.06 41128 4922 1.83
LogC9 -2040 0.55 -1506  1.76 -1888 2524 178
Log X9 -5.52 040 -6.56 -2.80 511 -13.70  -1.64
LogM9 049 043 196 236 -1.18 1233 0.69
Log RCA9 100 0.3l 225 018 446 2055 184
LogCONS -11.49  0.32 832  1.39 21212 2275 465
Log X -1501 0.02 -13.38  4.23 22183 2726 033
Log G 091 0.03 108 1.38 0.01 068 070
Log X -6.51  0.05 -6.82 -2.28 690 1420 296
Log M 670 087 604 290 21178 3224 462
LogRCA -802 001 2317 367 423 1545 658
LogPGDP -638  0.55 -580 235 2SH'S 000 -025
LogPG  -344 094 2395 032 2315 064 000
LogPC  -349 0.33 268 078 -2.37 0.52 -0.80
LogPIX 1423 149 11.58 295 1694 1139 220
LogPX 3.2 107 299 121 255 -2237 447
Log PM 892 1.06 7.4 029 967 -18.10 -394
LogPRCA 770 1.1l 5.02  -2.17 6.94 165 -1.20
PG -3.54  0.88 -4.28  0.21 422 063 046
PC -3.41 068 2272 0.85 360 024 -0.05
PIX 1374 098 1194 295 1583 1096  3.10
PX 293 088 322 1.21 322 -2200 -4.22
PM 872 085 757 029 10.51 -1804  -3.58
PFCA 7.53 093 522  -190 5.97 189 -0.42
PGDP 6.52 0.8 595 237 556 007 052
Total number
Passing t-test
at 5% level 9 69 8 26 5 12 32
Criticalvalues 10% 5% 1%

1.645 1.960 2.576

It should be noted that the results reported in
column 7 were derived without the use of any
regressions by using the variance-covariances of the
observed data. Column 4 on the other hand, still sets
the variance-covariance matrix by using the
residuals from the filtered data. The rationale for
this is that the analysts who were assumed to know
both the variables which determine the bias and
their magnitude would also know that these
variables now do not determine the bias and would
no longer wuse them to construct the
variance-covariance matrix. The analysts using the
trend approach are, however, unaware of the source
of biases and simply assume that some is present
even when it is not. Hence the analysts using the
trend approach continue to form the
variance-covariance matrix from filter residuals.

Column 2 of table 3 gives the results of the t-tests for
the subjective approach and, as might be expected,
given that the true variance-covariance matrix is
almost constant, the method passes the t-tests for all
of the variables. For the logarithmic variables,
where the corresponding elements of the
variance-covariance matrix are constructed, and as a
consequence are non-constant, the t-statistics are
relatively larger. Nevertheless, from table 5, column
2, it can be seen that the average percentage errors
for both the logarithmic variables and for the price
deflators are relatively small, being, at most, 0.4% in
the case of the logarithmic price deflator for
investment and stockbuilding (PIX). This result
gives further support to the use of logarithmic
approximations to simultaneously balance value and
volume data.

Table 4: T-Tests on logarithmic approximation

Subjective Trend Regression

with without with  without with  with without

bias bias bias  bias bias  bias bias

T, adjusmment
GDP9 069 -0.62 0.34 0.51 0.41 0.72 0.62
G9 0.13 009 030 -013 -0.78 0.21 0.37
1X9 084 -0.83 -0.10 0.11 -0.20 0.21 0.87
9 040 -0.39 -0.04 0.14 -0.45 0.19 0.58
X9 -027 029 0.21 0.12 0.98 0.65 0.48
M9 -0.31 -030 -0.06 0.02 0.57 0.21 0.57
FCA9 -022 -022 -0.01 0.32 -1.14 0.56 0.62
GDPE -048 -047 0.17 0.54 0.57 0.73 0552
G -002 -002 -0.12 -0.03 0.12 0.20 0.21
IX -0.01 -0.01 030 020 0.09 0.77 043
CONS 024 022 -0.03 0.09 027 043 0.38
X 004 -004 -0.09 0.03 0.36 0.26 0.29
M -1.09 -0.70 -0.18  -0.11 0.06 0.23 0.45
FCA -0.01 -0.01 -0.10 0.06 0.15 0.23 0.31
PDGP 0.10 -0.06 0.13  -0.05 -0.14 -0.05 0.54
PG 007 -005 -0.14 008 -0.66 0.01 0.31
PIX -036 -0.36 0.24 0.25 -0.22 -0.69 0.76
PC 054 0.7 0.01 0.03 -0.81 0.54 0.54
PX -0.13 -0.14 .24 0.07 0.47 0.28 0.44
PM -0.15  -0.15 0.13 0.11 0.44 0.14 0.48
PFCA -0.12 -013 0.13 0.18 -0.88 0.18 0.57
Number
passing t-tests
at 5% level 21 21 21 21 21 21 2l
Critical values 10% 5% 1%

1.645 1.960 2.576



Table S:Percentage error of the average balanced data
from the true data 1984 Q1

Subjective ~ Trend Regression

with without with  without with \i%ﬂw_k without

bias bias bias  bias bias  bia bias

e = adjustment
GDP9 -28 00 32 02 31 22 08
GDPE' -1.6 0.0 -20 -0.5 221 243 0.4
GDPY -1.6 0.0 -20 0.5 221 23 04
GDPY9 -2.8 0.0 -3.2 0.2 -3.1 929} 0.8
G9 -1.6 0.0 -1.7 0.1 -14 -0.4 04
1X9 -0.1 0.0 0.8 0.7 -23 9.6 2.0
1XG9 -2.2 0.0 04 =21 -3.0 -6.4 -2.6
1XJ9 -3.2 0.0 -6.8 -3.6 -1.5 19 -1.8
1X19 29 0.0 237 03 1.4 226 6.7
(o} -3.0 0.0 -2.8 0.3 -2.8 33 15
X9 0.9 0.0 -1.3 0.5 0.7 -2.0 0.5
M9 0.1 0.0 04 0.5 -0.1 22 0.9
FCA9 0.1 0.0 0.5 0.0 0.6 33 1.7
TE 0.3 0.0 0.5 0.1 08 13 1.0
ESAB 1.5 0.0 0.6 -1.0 20 -11.7 -34
YGC -2.8 0.0 -29 0.0 -2 -1.5 0.2
YX) -1.5 0.0 -1.7 0.1 -1.8 33 1.1
SX1 4.1 -0.0 -5.7 -1.5 -6.1 11.8 2.8
YSAG -6.1 0.0 -37.2 -313 -51.9 6.3 =271
YSA) -25 0.0 225) 5.1 -51 349 10.2
YSAI -3.0 0.0 4.5 7.8 39 50.2 208
YJG -3.2 0.0 -31 0.0 2.7 -3 -0.7
EDBT -1.1 0.0 -24 -1.3 -1.7 -5.0 -19
BIPD -1.5 0.0 -2.9 -1.3 -15.0 9.5 -5.0
EJTA 14 0.0 32 1.6 -1.0 2746 298
EGTA 1.0 0.0 =21 -3.1 -12.5 -168  -14.0
CONS 221 0.0 -1.9 0.3 -1.9 34 1.2
1X -33 0.0 -4.3 -1.2 -6.4 7.2 04
G 0.2 0.0 0.2 0.3 0.0 0.1 0.2
X -14 0.0 -1.9 -0.5 -1.4 27 0.9
M -23 0.0 -1.8 0.7 -2.6 6.1 19
FCA -1.9 0.0 -0.9 0.9 -09 34 1.7
BXG)J 23.6 0.0 383 143 56.4 -57.5 0.7
BXXI1 -0.0 0.0 6.4 6.4 -83 2300 -15.4
BXGG 4.8 0.0 129 8.0 5.0 -356 -12.1
DXXO -74308.3 0.0 -76399.3 -1910.5 -96426.1 -202674.9 83520.9
DXXG  2542.8 0.0 -1285.1 -38458 15739 -6652.0 -2873.7
DXX) -13.9 0.0 -19.9 -6.0 -14.8 -1.0 0.4
DXX1 -13.1 0.0 -21.6 -84 -14.8 -74 =23
PUXX 159.5 0.0 <914 -251.6 1.7 319.5 5.8
OUXX -19.2 0.0 <399  -206 -17.7 -80.0 -256
PEXX 9.1 -0.0 1.3 -8.0 ¥ -13.9 -84
1ICXX 15.5 0.0 238 8.0 119 1.8 -1.2
Log GDP9  -2.7 0.1 232 -03 -3.1 2.1 04
Log GDPE -1.6 0.1 -2.0 -0.6 -2.2 22 03
Log G9 -1.6 0.0 -1.6 0.2 -1.1 -0.5 0.1
Log IX9 -0.0 0.1 0.8 0.7 222 9.5 1.2
Log C9 -3.0 0.1 -2.8 0.3 -2.7 32 10
Log X9 0.8 0.1 -1.3 0.5 -1.0 =21 -0.8
Log M9 0.1 0.1 0.5 0.5 0.3 2.1 04
Log FCA9 0.2 0.1 0.5 0.0 1.0 32 1.1
Log CONS -2.0 0.1 -1.8 0.3 -20 33 I8l
Log IX -33 0.0 -42 -1.1 -6.4 7.0 0.
Log G -0.2 0.0 0.3 0.3 0.0 -0.1 0.
Log X -14 0.0 -19 -0.5 -1.5 26 0.8
LogM -1.9 0.2 -1.7 0.7 -2.6 6.0 1.7
Log FCA -1.9 0.0 -0.9 0.9 -09 31 1.7
Log PGDP -1.1 0.1 -1.1 04 -0.9 0.0 -0.1
Log PG -1.1 03 -1.5 0.1 -0.9 -0.2 0.0
Log PC -1.0 0.1 0.7 0.2 0.5 0.1 -0.3
Log PIX 37 04 4.0 0.7 48 2.6 0.8
Log PX 0.8 03 0.9 03 0.7 -4.5 -1.6
Log PM u5 0.3 26 0.0 26 -3.6 -14
Log PFCA 24 0.3 1.8 0.6 222 04 -0.6
PG -1.1 0.3 -1.6 0.1 -1.2 -0.2 0.2
PC 0.8 0.2 0.7 0.2 0.7 -0.0 -0.0
PIX 35 0.2 4.1 0.8 4.7 23 1.3
PX 0.8 0.2 1.1 0.3 0.8 44 -1.4
PM 24 0.2 27 0. 2.8 -3.6 -1.2
PFCA 23 0.3 1.9 0.6 18 0.5 0.2
PGDP -1 0.1 -1.1 0.4 0.9 0.0 0.2
Average absolute % error
(excluding DXXO and DXXG)

533 006 5.98 5.95 4.96 13.48 343

Note: The large percentage errors on DXXO (net deposits with corporations made by the overseas sector)
and DXXG (net deposits with corporations made by the public sector) result from the oue values of these
variables being small (-0.0171 and -0.9732 respectively) in the first quaner of 1984. The actua) average

crTors car ding to the above are (in £'s millions).
DXXO 12.71 0.0 13.07 0.32 16.50 3468 1429
DXXG -24.75 0.0 12.51 3743 -15.32 64.74 21797
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The trend (see column 4 of table 3) and ‘regression
approaches (see column 7 of table 3) pass the t-tests
for 26 and 32 cases respectively and for both methods
the t-statistics have been reduced, in absolute terms,
in around 75% of the cases. Nevertheless, as these
methods result in less than half of the variables
passing the t-tests they strongly suggest that the
small sample properties of the estimators underlying
these methods are rather poor, especially when any
variance-covariance matrix will produce unbiased
estimates of the true variables when the
measurement error is mean zero.

It should be borne in mind that the asymptotic
properties of the regression approach would be
improved by regressing the observed data on
variables which explain the true data. If all of the
true data was explained by the regressors the
variance-covariance matrix formed from the
residuals would not change between antithetic pairs
of errors. Hence, errors in balancing the accounts
would cancel between the pairs and the mean
estimate of the balanced data would be equivalent to
the true data. Thus the properties of the regression
approach could be improved by removing at least
some of the true data from the observed data prior to
the forming of the variance-covariance matrix. For
the trend approach a similar result could be obtained
by increasing the period from which the
variance-covariance matrix was calculated which
would reduce the probability of spurious correlation
between the true data and the measurement error.
A risk associated with this procedure is however,
that process underlying the measurement error may
not be constant over time and this would need to be
taken into account when balancing the observed
data. However, as argued above, any constan
variance-covariance matrix will correctly balance the
data and so these avenues of research are no
explored in this paper. Moreover, the arbitran
nature of assuming how much of the true data i
explained in the regression approach would als
make it difficult to examine the benefits, in terms o
reduced variance, of this procedure. In the
remaining section we have, therefore, only examined
the sensitivity of the variance of the balanced
estimates to changes to the variace-covariance
matrix used in the subjective approach.




12 Variances of the balanced data

As observed above, the assumption that the analysts
using the subjective approach know the true
variance-covariance matrix is highly unlikely. This
raises the question of what size of errors can be made
in setting the variance-covariance matrix before the
performance of the subjective approach, in terms of
the wvariance of its estimates, significantly
deteriorates. There are numerous methods by which
the variance-covariance matrix can be changed and

Table 6: Standard Deviations of Balanced Data

anggagemrs
10% 100% Trend Regression
17301 17253 T7313 26010 16818
2137.1 2137.1 2500.0 20523
2137.1 2137.1 [ 2500.0 20523
1730.1 1729.5 o 2001.0 16818
795.5 795.8 i 1017.9 786.6
327.0 327.0 » 600.8 630.0
154.7 154.7 . 249.5 2194
191.8 o 273.0 238.6
270.4 } 596.9 566.9
1552.7 b 1857.3 14813
741.8 d 946.1 946.1
9826 1017.3
5126 490.5
504.0 475.5
119.7 123.0
1158.8 10254
1892.5
754.2
78.0
18.7
2447
610.7
278.0
166.3
74
2132
25993
1018.1
1110.0
15129
1459.5
750.2
38
750.2
894.7
1254.4
22.6
134.6
1069.4
1053.7
1357.1
400.3
1259.2
1182.0
2241.7
2499.4
1076.8
633.8
1993.1
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Note: all the sandarddeviations of the price deflators and logged price deflators

in this paper the effects are analysed by increasing
the measurement error corresponding to the nominal
income measure of GDP (GDPY9) by 10% and by
100%. The results of these changes are given in
table 6.

The first point to note is the marginal decline in the
balanced standard deviation of GDPY9 as its
variance is increased by 10%. This is because, as
noted above, the analysts are assumed to know the
true distribution of the errors but the true
distribution is not established by the use of 500
replications. The true standard deviation (see
appendix 1) is 3468.7778 but the actual standard
deviation is 35563.6718. Thus multiplying the initial
variance of GDPY9 by 10% produces a smaller
balanced variance of GDPY9 because the initial
variance is closer to the variance of the observed
data. This also, explains why some of the balanced
variances, for example public sector nominal
investment IXG9, exceed the true variances reported
in appendix 1. The main point is that for deviations
around the original variance-covariance matrix, the
changes in the variances of the balanced data are, on
the whole, minor or non-existent even when the error
on GDPY9 is 100%. An error of this magnitude
seems likely to be at the upper end of the error range
made by analysts and we tentatively conclude that,
for the model under examination, at least, the
subjective approach appears to be robust to errors in
specifying the variance-covariance matrix.
Obviously, further work on this area needs to be
undertaken particularly on models in which
covariances play an important role.

Table 6 can also be used to compare balanced
variances using the subjective trend and ‘regression’
approaches. In only one case (log PC) is the variance
smaller for the trend method and for 24 cases the
variance is smaller for the regression method than
the subjective approach. Thus the subjective
approach is clearly more efficient than the trend
method in small samples and it is on the whole
slightly more efficient than the regression method. A
comparison of table 6 and appendix 1 reveals that
the standard deviation of the variables are reduced
compared with the theoretical standard deviations by
balancing in 35 of the 43 comparisons (81 %) when
the subjective approach is used. For the instances
where the standard deviation is increased the rise is
always marginal. On the other hand, 56% and 70%
of the variables have their standard deviations
increased when the regression and trend methods
respectively are used to balance the data. Had the
correct variance-covariance matrix been used the
standard deviations would have been reduced or left
unchanged by balancing.




13 Conclusions

The results of the Monte Carlo simulations on the
three approaches of deriving the variance-covariance
matrix lead to the following conclusions. The
logarithmic approximation which allows both volume
and value data to be balanced simultaneously
appears to be highly robust. None of the approaches
can deal with measurement errors which include a
bias term. Virtually all the mean estimates of the
balanced variables are statistically and numerically
different from their true values. A two step
regression approach in which an estimate of the bias
is removed from the data prior to balancing also
failed to significantly improve this performance.
When the measurement error contained only a
random component, the success rate of the trend and
regression approaches increased, but the results
suggest that the small sample properties of the
estimators are poor. These results indicate that data

derived from these two methods may be as
misleading to the analyst as the measured data
itself. Although further work is needed in this are;
the results do, tentatively, suggest that in terms of
the variance of its estimates the subjective approach
is relatively robust to errors in the
variance-covariance matrix. In the Monte Carly
simulations presented in this paper the subjective
approach clearly outperforms both the trend and
regression approaches when bias is absent and is not
clearly inferior when bias is present. However, in
the more likely situation when bias is present all the
methods do equally poorly and, because the
information and resource requirements of the trend
approach are so much smaller than for the other two
methods, the trend method is advocated as the
preferred method of balancing the accounts.
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Appendix 1 Appendix 3

Standard deviations of the random components Constructed values of the bias variables
of the measurement errors

Period 25

Variable Standard Variable  Standard 1979 : =25

Dewiation Deviation i ‘%gg
GDP9 3468.7778 EGTA 26.6661 1980 ] -21.0
GDPE 3739.3932 CONS 2676.0534 -200
GDPY 3739.3932 X 739.1898 -19.0
GDPY9 3468.7778 917.5454 Q4 -18.0
G9 846.9406 12251317 -17.0
1X9 708.8022 1207.4579 -16.0
1XGY 150.4732 611.0691 -15.0
XJ9 187.4732 433336 -14.0
1X19 370.8288 143237 1 -13.0
o) 2497.9362 105.8790
X9 1070.6291 4.3420
M9 1075.6245 2.6009
FCA9 579.9014 958571
TE 675.8948 90.2434
ESAB 77.9934 56.1517
YGC 1717.3826 40.1088
YXJ 22432427 111.9247
SXI 457.1675 92.6422
YSAG 4.3552
YSAJ 6.4827
YSAI 53.3258
YJG 508.1446
EDBT 192.9501
BIPD 40.7196
EJTA 2.5185

The standard deviation of the measurement eTTor is constucted as 5% of the mean of the absolute
value of the Tuc data over the penod from the second quaner of 197910 the fourth quarter of 1988.

See Tables 1 and 2 for a guide to the notation.
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Appendix 2

Parameters used to calculate the bias
component of the measurement errors

Bias Parameters Bias in 1984 Percentage
Ql level

Constant
565.0000 -760.0000
646.6667 -558.3333
2333333 -1266.6667
130.0000 -1520.0000
-156.333 -481.3333
114.3333 -50.6667
-16.0000 -76.0000
-61.6667 -126.6667
-46.6667 -126.6667
1120.0000 -1520.0000
-351.6667 -126.6667
108.6667 -101.3333
205.6667 50.6667
-179.3333 50.6667
35.3333 25.3333
-156.6667 -506.6667
-566.6667 -1256.6667
-8.6667 101.3333
-6.6333 -7.1333
-0.5333 -2.5333
-15.3333 -25.3333
-178.3333 -253.3333
-5.6667 -50.6667
4.8333 -12.6667
-0.0617 -1.8670
8.1000 7.6000
-1018.3333 -1393.3333
-256.6667 -506.6667
-431.0000 -76.0000
-515.3333 405.3333
-36.0000 -456.0000
-47.6667 -202.6667
86.6667 126.6667
9.7933 -0.5067
16.7667 -93.7333 35
5.1167 -12.6667  -74037.2
-24.8833 2556.8
152.0000 -9.8
-278.6667 -18.0
23.3333 =217
177.3333 -19.8
304.0000 102
-304.0000 15.3
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The bias componentis calculatcd as Bizi + fr2r+ constant. See appendix 3 for the values of z1 and 2.

Ser Tables 1 and 2 fora guide to the notation.
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