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ABSTRACT 
A method which balances data subject to 
measurement error was initially proposed in the 
1940s by Richard Stone and his associates. This 
technique requires an estimate of the relative 
reliabilities of the observed data matrix being 
available. Practical applications have usually relied 
upon subj ective estimates of the normalisation 
matrix but recently methods to estimate this matrix 
using residuals from regressions or trends have been 
proposed. This paper compares the properties of the 

subjective, regression and trend approaches to 
balancing a stylized set of accounts using Monte 
Carlo simulations. It finds that when the 
measurement errors in the accounts contain both 
bias and a random component all the methods 
provide average estimates of the variables which are 
usually statistically different from the true values. 
When the observed data contains only a random 

element the regression and trend methods still 
produce mean estimates which are statistically 
different from the true data but the subj ective 
method does not. The paper suggests that the use of 
either the trend or the regression methods to balance 
national accounts may result in data which is as 
misleading to analysts as the observed data itself. 
Although further work is needed, the results do, 
tentatively, indicate that in terms of the variance of 
its estimates the subjective approach is relatively 
robust to errors in the variance-covariance matrix. 
However, when bias is present all the methods do 
equally poorly and, because the resource 
requirements of the trend approach is smaller than 
for the other two methods, the trend method is 
advocated as the preferred method of balancing the 
accounts. 



A Mon!e Carlo study of alternative approaches to balancing 
the natIonal accounts 

1 Introduction 
The collection of national accounts data are subject to 
a number of sources of measurement error which 
result in the accounting restrictions only being 
satisfied by the inclusion of residual errors or 
balancing items. A technique for balancing data so 
that it satisfies a set of restrictions was first 
introduced by Stone, Champemowne and Meade 
(1 942) and the technique has been extended by a 
number of authors to deal with various error 
structures. The technique and its extensions all rely 
on the availability of matrices of reliability for the 
data. Construction of these matrices has lagged a 
long way behind other developments in this field and 
most applied work has relied upon subjective or a 
priori values supplied by statisticians. Recently, 
however, Weale ( 1989) has proposed an asymptot
ically maximum likelihood method of estimating 
relative reliabilities from regressions on the observed 
data and a variant of his technique, which uses 
trends, has been applied by Dunn and Egginton 
(1 990) to the UK national accounts. 

The work reported in this note suggests that using 
any of these methods, in isolation, is extremely 
unlikely to result in the equivalence of the balanced 
and the true data. Nevertheless, the use of objective 
methods to balance the accounts has a useful 
qualitative aspect. The reason for this is as follows: 
In the subjective approach the person conducting the 
analysis chooses the relative reliabilities to be used 
in balancing formula. Consequently, the 
adjustments made to balance the data simply reflect 
prior beliefs (given the identities and residual errors 
in the accounts). The objective approaches do not 
impose prior beliefs (except for the reasonably 
general assumptions about the structure of the 
measurement error process) and the adjustments 
made by these methods do give some indication of 
the reliabilities of the data. Thus, even if the 
quantitative adjustments are inaccurate, the 
methods may give independent qualitative signals 
about where resources, eg more extensive surveys, 
could be concentrated to improve the coherence of the 
national accounts. 

In this respect it is interesting to note that, in broad 
terms, the recent studies of the CSO (1 989) and by 
Dunn and Egginton ( 1990) suggest that measure
ment errors are generally located in the financial 

accounts rather than in the current or capital 
accounts. Consequently for example, resources to 
remove the discrepancy in the accounts of the 
overseas sector may be most effectively used in 
improving the capital account rather than the 
current account. There are, however, a large number 
of areas about which the two studies give conflicting 
results. It is important, therefore, that the 
properties of the objective approaches to estimating 
the reliability matrix is understood. 

However, the use of the objective approaches are in 
their infancy and virtually nothing is known about 
their small sample properties. If these were to be 
shown to be poor, then they would not even provide 
useful qualitative signals let alone quantitative 
signals. This paper addresses this issue by 
comparing the properties of the 'regression', 'trend' 
and 'subjective' methods of compiling the reliability 
matrix, based upon a modified version of the national 
accounts used in Dunn and Egginton (1 990), when 
the data contains both random measurement errors 
and a bias component, by using Monte Carlo 
simulations. 

The Monte Carlo (stochastic) simulation procedure 
used in this study begins by specifying the true data, 
which obey the national account identities a 
distribution of random errors and bias compone�ts. 

When added together these components give a 
distribution of observed data. The observed data is 
used to create the reliability matrix in the trend and 
regression approaches and the observed data can be 
balanced using the formula (1) discussed below. The 
balanced data is then stored. New observed data is 
then created by using another set of random errors 
and the procedure is repeated 500 times. The 
average of the stored (balanced) data is then 
compared with the (known) true data to analyse the 
formula's performance in terms of unbiasedness and 
the distribution of the stored data is analysed to give 
insights into the efficiency of the estimators. The use 
of a Monte Carlo procedure in this context is 
unfamiliar but if the balancing formula is thought of 
as an estimator and the balanced data as parameter 
estimates then the procedure used in this paper is 
similar to that used in numerous other studies. 



The paper is set out as follows: section 2 outlines the 
basic balancing formula and some extensions. It also 
discusses some of the problems involved when what 
is termed, the subjective approach to setti�g the 
reliability matrix is used. It should be understood 
that the term 'subjective' in this context does not 
necessarily mean that a formal Bayesian approach 
has been adopted in the construction of the matrix. 
Nor does it necessarily mean that entirely informal 
methods have been adopted, it is quite likely that the 
subjective construction of the reliability matrix has 
relied upon objective analysis, for example, of the 
structure of surveys used to construct the data or of 
the data revision process. What is meant by 
subjective in this study is that the method of 
constructing the reliability matrix cannot be 
modelled in a simple manner. The next two sections 
set out the regression and trend approaches where, 

2 The balancing formula 
The problem is to adjust a vector of observed data 
items, x, to a vector x*, which satisfies the linear 
constraints Ax*=O, where the normalised distance 
between x and x* is minimised. The basic solution to 
this problem is to set 

x· = x - VA T(AVA T rl Ax (1) 

where T is the transpose operator. This solution can 
be interpreted in terms of least squares and has been 
given a Bayesian interpretation by van der Ploeg 
(1984). Byron ( 1978), on the other hand, describes 
the problem in terms of a constrained quadratic loss 
function. Given that the constraints matrix, A, is 
determined unambiguously from the national 
account identities, the problem becomes the choice of 
an appropriate normalisation matrix, V. The choice 
of V is essentially arbitrary but if the variables in x 
are observations, recorded with error, of some 
underlying processes that are not observable then it 
seems sensible to let V reflect the relative 
reliabilities of the observed data so that the less 
reliable data take more of the balancing adjustment. 
Hence the variance-covariance matrix of the 
measurement errors may be a suitable choice of V. 

This basic balancing rule can be extended in a 
number of ways: missing observations [Stone (1977), 
Byron ( 1 97 8)], multiple prior estimates [Byron 
( 1 97 8)], deterministic and stochastic constraints [van 
der Ploeg ( 1982)], intertemporal constraints [Weale 
( 1 988)] and error structures which include 
autocorrelated, trend, systematic and cyclical 
components [van der Ploeg (1982)]. Each of these 

2 

in contrast, the modelling of the construction of the 
reliability matrix is straight forward being derived 
from the residuals from regression and trends. 
Sections 5 and 6 outline the system of accounts and 
the data used in the study. The next three sections 
describe, in turn, the information assumed to be 
available to analysts using the three methods to 
balance the accounts. The analysts, or their 
supposed knowledge, do not refer to particular people 
or institutions, they are simply agents invented for 
the purposes of the Monte Carlo experiments. 
Sections 1 0  to 1 2  analyse the results of the 
simulations in terms of average differences from the 
true data when bias is either present or absent and 
the variances of the balanced data which is compared 
both between methods and with the true variances. 
The final sections provides some conclusions. 

methods requires at least one variance-covariance 
matrix and one each is required for each of the more 
explicit formulations of the error structures (ie one 
for the systematic component, one for the 
component etc). 

Until We ale (1989) nearly all the estimates of 
error variance-covariance matrices were 
subjectively. For example, van der Ploeg (1982) 
Barker et al (1984) in their analyses of 
production accounts and the UK social 
matrix respectively, construct the standard 
of the measurement error as a percentage 
observed value with the percentage being 
by the row and column reliabilities which, in 
were subjectively determined from Maurice (1 
Both papers reported balanced accounts which 
substantially different from a balanced set 
accounts which used a 'neutral' hypothesis that 
variance matrix was just proportional to 
observed value. Clearly the subjective element pI 
an important role in the overall balancing of 
accounts. (It can be noted that van der 
calculated the variance matrix of the 
error component using the variance matrix of the 
residual component divided by the number of time 

periods considered.) Stone (1982) also 
subjective estimates of reliability based on 
ranges provided by Maurice (1968) to determine 
variance matrix. 

There are a number of potential problems with 

subjective approach. First and foremost the relative 
reliabilities may simply be incorrect. This is 
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particular importance when Maurice's ( 1968) 
percentage margins of errors, which are in the form: 
less than 3%, 3-10% and greater than 1 0%, are used. 
For example, Stone (1982) uses these ranges but, 
Weale (1 988) shows that, on the assumption of zero 
covariances, the rating of the expenditure measure of 
GDP constructed from its components is inconsistent 
with the direct estimate using Stone's ratios. It 
should be noted that CSO ( 1989) avoided the problem 
of inconsistencies by asking data compilers for their 
estimates of the 90% probability range within which 
the true value would be expected to fall. 
Nevertheless, the relative measurement errors could 
still be incorrect simply because some compilers are 
more pessimistic than others. 

The second major problem with subjective calculation 
of the variance matrix is the absence of published 
estimates of covariances. Clearly appropriate 
covariances could remove the inconsistencies, noted 
by Weale, in Stone's ratios. Weale ( 1982) suggests 
that redefining the accounts may allow some 
covariances to be imposed and some covariances, 
interrelating the price, volume and value of a 
variable, can be calculated theoretically [Weale 
(1988)]. Despite this the off-diagonal elements of the 
variance-covariance matrix are usually assumed to 
be zero and even if some covariances are calculated 
the matrix remains sparse. However, Dunn and 
Egginton (1990) suggest that the presence or absence 
of covariance terms plays an important role in 
determining the size and direction of adjustments. 
On the other hand, van der Ploeg (1984) argues that, 
in some instances, ignoring covariances may not be 

3 The regression approach 
The Weale approach again employs the balancing 
formula ( 1 )  derived earlier but derives the rule from 
maximising a likelihood function based on several 
assumptions about the measurement error; in 
particular that the errors are normally distributed 
and are not serially correlated. The 
variance-covariance matrix, V, of the measurement 
errors, to be used in the balancing formula, is 
obtained from the regression residuals and this 
provides an asymptotic maximum. likelihood estimate 
of the true data. 

The essence of the Weale approach is as follows. The 
measurement error is considered to be made up of 

too bad an approximation. A final problem is that 
subjective estimates may not be available. Crossman 
(1 988), for example, used Stone's ratios, which were 
derived from UK data, to balance the Australian 
national accounts . 

For these reasons the estimation of the 
variance-covariance matrix by other, more objective, 
means is to be welcomed not only because they might 
supply better balanced estimates but also because 
they can provide a qualitative cross-check on the 
acljustments made by the use of a subjective 
variance-covariance matrix. This is not to argue that 
the subjective and objective settings of the 
variance-covariance matrix need be mutually 
exclusive. Indeed, a mixture of the two approaches 
would appear preferable, a priori. An early attempt 
at an objective setting of the variance-covariance 
matrix was Weale (1985 ) who used an analysis of 
data revisions in his study of the US economy. 
However, reVlSlons are only one source of 
measurement error and the relevance of a 
variance-covariance matrix based on the history of 
revisions may well decline significantly as the 
vintage of the data increases. For this reason the 
setting of the variance-covariance matrix by 
reference to the revision history of the variables 
alone does not appear to be a plausible option.Cl) 
Recently, however, Weale (1 989) has proposed that 
the variance-covariance matrix be based on the 
residuals from regressions on the variables to be 
balanced. The next section outlines Weale's 
regression approach in more detail. 

two additive components: a bias component which is 
correlated with the true data and a second random 
element which is independent of the true data. It is 
also assumed that neither component of the 
measurement error obeys the accounting identities. 
If the bias component was zero throughout then it 
would be sufficient to set V as the 
variance-covariance matrix of the actual series to be 
balanced. At first sight this seems wrong because 
some series are genuinely more volatile than others 
and yet may be more reliably measured. However , 

since genuine volatility in a series must be reflected 
elsewhere for the accounting identities in the true 
series to hold, We ale shows that such variance is 

(I) Nevenheless, the presence of measurement errors which will later be revised away does suggesl that the variance-covariance matrix needs to be allowed to 

.e change with respect 10 data vintage. This is not considered funher in this paper. 



purged from V on multiplication by the restriction 
matrix within the balancing formula. 

This result means that although variance due to 
genuine volatility and variance due to measurement 
error cannot be distinguished for each series, the 
total variance can be employed in the construction of 
V. The restrictions matrix then purges that variance 
which satisfies the accounting identities and the 
balancing adjustment should reflect only variance 
due to measurement error. 

Problems occur when the assumption that the bias is 
zero is dropped. Then, because of the correlation of 
the biases with the true series, the restrictions 
matrix is no longer able to purge 'genuine' variance 
from V and the balancing adjustments will reflect 

4 The trend approach 
Dunn and Egginton ( 1990) have argued that for 
practical purposes removal of the bias component can 
be achieved by the use of trends rather than by 
regressions. They argue that the choice of available 
regressors is extremely large and the relevance of 
any particular variable to the bias component, given 
that the dependent variable is the observed series 
not the measurement error, will be hard to 
determine. Furthermore, in practice the regressor 
variables may also be measured with error and there 
is a risk that these errors may be correlated with the 
random component of the measurement errors. The 
partitioning between the bias and random 
components of the measurement error may not, 
therefore, be achieved in practice. 

Dunn and Egginton (1990) note that the assumption 
that the bias component is correlated with the true 
data and the random component is independent is 
essentially arbitrary. They propose the equally 
arbitrary assumption that the low frequency part of 
the spectrum of the measurement error is correlated 

5 The system of accounts 
Tables 1 and 2 present a stylised system of the 
national accounts which is a highly compact version 
of that used by Dunn and Egginton (1990). By 
assumption, each of the variables are measured 

4 

genuine noise. Weale overcomes this by using 
regressions to explain the bias and remove it from 
the observed data. It does not matter whether the 
regressions explain, and remove, variance due to 
genuine volatility or not, providing this is done 
consistently across series. However, if the 
regressions also explain part of the true data a two 
step approach, where the bias is first removed from 
the data and then the remaining measurement error 
is allocated across variables, cannot be used. We ale 
assumes, in the absence of other data, that the 
variance-covariance matrices of the bias and the 
random components are the same to a scalar 
multiple. Thus the bias can be allocated in the same 
proportions as the random element and the data can 
be balanced in one step without bias adjustment. 

with the true data but the high frequency component 
is independent. Thus the bias can be removed by the 
application of a low frequency filter. They also 
demonstrate that the regression and trend 
approaches are simply particular choices of a state 
space representation of the data in terms of a true 
series and measurement errors. The methods are, 
however, practical alternatives both to each other 
and to the subjective approach outlined above. 

Each of the three methods; subjective, regression 
and trend will result in accounts which balance. 
Even if the varlance-covariance matrix is specified 
correctly, however, the balanced data will not 
necessarily be the same as the true data and, 
consequently, the extent to which the balanced and 
the true data diverge cannot be revealed by analysis 
of real data. An indication of the relative abilities 
the three methods can be gauged from simulations 
on a constructed set of national accounts. These 
accounts, the true data and the observed data are 
described in the next sections. 

independently and this implies that the covariances 
cannot be used to balance the GDP identities as was 
done by Dunn and Egginton (1990). Without 
aggregation the number of restrictions, given the 



19 
rn 
le 
to 
le 
le 
70 
m 
)r 
le 
le 
le 
if 
le 
.n 

1t 
le 
;0 
Id 
;e 
le 
e, 
;T 

IS 
le 

Table 1: StyJized nominal income, expenditure and 
flow of funds accounts 

I 2 3 4 S 6 
Person Public Corporations Overseas Not Row 

Cunent net receipts I YXJ YGC 
�dSum 

Current grants 2 YJG (YJG) 
Transfers overseas 3 £ITA EGTA (EITA+EGTA) 
Stock appreciation 4 YSAJ YSAG YSAI 
Debt interest 

payments S EOBT 
Company savings 6 SXI 
Net interest, profits 
and dividends 7 BIPO 

Expendirure taXes 
8 ESAB and subsidies TE FCA9 

Fixed investment 
and stock building 9 009 IXG9 IXI9 IX9 

Cunent expendi� 10 C9 G9 X9-M9 

Aow ofFunds 
Net deposits with 

corporations 11 OXXJ OXXG DXXI DXXO 0 
Public sector 

borrowing 12 BXGJ BXGG BXXI 0 
Miscellaneous 

IJaIlsactions 13 PEXX PUXX ICXX OUXX 0 
Column Sum 0 0 0 0 

Note GDfY9 = Sum rows I to 7 minus expcndirure WlCS. 
GOPE9 = Sum rows 8, 9 and 10 
GDPY9 = GOPE9 

Both X9 onc! M9 _ measured independently but_ included in \he some row for compactne,� 
Variables in brackets have no independenc estimates thereby avoiding the need (or resaictions. 

number of stimulations performed, would have 
provided too large a burden on computer resources to 
be justified. Consequently, the accounts were 
aggregated, in particular by removing the distinction 
between the industrial and financial sectors. Table 1 
provides the nominal income and expenditure 
accounts and the flow of funds for 4 sectors of the 
economy. It can also be seen that for some items, for 
example receipts of transfers by the overseas sector, 
there are no explicit measures. On the other hand, 
some measures are identified in slightly more detail 
than the accounts suggest. For example, public 
sector current receipts (YGC) includes taxes on 
expenditure (TE). Thus the accounts implicitly 
identify total other current receipts even though they 
are not separated out in the accounts. 

Each of the sectoral columns in table 1 sum to zero, 
that is each sector's current income minus current 
expenditure equals investment in fixed assets plus 
net purchases of financial assets. 

Each of the rows numbered 11 to 13 in table 1 also 
sum to zero; that is, an increase in assets must 
result in an increase in the liabilities of another 
sector. The sum of row 9 gives total fixed 
investment, IX9, whilst the sum of row 8, taxes on 
expenditure plus subsidies gives the factor cost 
adjustment, FCA9. The sum of the rows 1 to 7 minus 
taxes on expenditure gives the income measure of 
GDP, GDPY9, and the sum of rows 8, 9 and 10 gives 

the expenditure measure of GDP, GDP9, both of 
which are equivalent. Thus there are 35 variables, 
all of which are measured independently and 12 
restrictions, of which only 11 need be imposed since

. 
if 

any eleven are satisfied then the twelth will 
automatically hold. (The corporations column is 
balanced by residual.) 

Table 1 could, if so desired, be balanced separately 
from the real variables but this may imply 
implausible price deflators. However, the 
restrictions between real and nominal variables, 
given by restrictions 1 to 7 in table 2, are non-lin�ar 
and cannot be directly dealt with by the balancmg 
formula outlined above. One method which 
circumvents this problem is to take logs of each of 
these variables (including the price deflators) and 
enter these, together with the corresponding real and 
nominal variables into the variable set and the 
constraints matrix. The logarithmic identities (1 to 7 
from table 2) are contained within the constraint 
matrix but the logarithmic data are not linked to the 
natural variables by any linear constraints, rather 
the covariances are used to ensure that the balanced 
natural variables and the exponent of the balanced 
value of the logarithmic variables are approximately 
equal. Thus, even if there were no covariances 
between the measurement errors, the variance 
covariance matrix will not be diagonal using this 
method. The use of logarithms is, however, only an 
approximation and the Monte Carlo simulations 
provide a test of whether or not this approximation is 
good enough or whether other methods need to be 
sought. Restriction 8 and 9 in table 2, which define 
the real expenditure measure of GDP and the 
equality of the real income and expenditure 
measures of GDP, are imposed in the restrictions 
matrix, A. The addition of the national accounts of 
the real side of the economy adds a further 8 
variables (the price deflators are not added in an 
unlogged form) which are measured independently 
and 21 variables in logs to bring the total to 64. The 
total number of restrictions is raised to 14. In matrix 
terms the observed variables, x, are a vector of 
dimension 64x1, the restrictions matrix A is of 
dimension 13x64 and the variance-covariance 
matrix, V, is of dimension 64x64. 

Table 2: Real GDP and prices identities 
I Consumers' expendirure C9 E PC·CONS 
2 Public sector current expendi� G9 PG·G 
3 Fixed invesunent IX9 PIX·IX 
4 Exports X9 co PX·X 
5 imports M9 PM·M 
6 Factor cost adjustment FCA9 PFCA ·FCA 
7 GOP expenditure GOP9 ., PGOp·GOPE 
8 Real G OP expenditure 

components GOPE CONS+G+IX+X-M-FCA 
9 GOP Income GOPE GOPY 

5 



6 The observed data 

This section describes the construction of the 
observed data, x. Initially seasonally adjusted data 
consistent with the November 1989 Economic Trends 
and t�e November 1989 Bank of England Quarterly 
Bulletm was balanced for the period from the second 
quarter of 1979 to the fourth quarter of 1988 using 
the same 3 term moving average method (see 
equation 1 0  below) and variables as in Dunn and 
Egginton (1990). This balanced data was aggregated 
to form the 'true' data which obeys the accounts 
given in tables 1 and 2. To each of these variables 
measurement errors were added which are 
comprised of 2 components: an independent random 
component, et, which has a mean of zero and a 
standard deviation equal to 5% of the mean value of 
the true data (see appendix 1 for these values), and a 
bias component which is determined by: 

(2) 

where �l and �2 are parameters which are different 
for each variable (see appendix 2) and Zl and Z2 are 

variables which determine the bias (see appendix 3). 
The observed data is therefore equal to: 

(3) 

where x; is the true data. The bias component has a 
mean of zero over the sample period (ensured by the 
presence of the constant terms) but there is no 
reason to suppose that the variance-covariance 
matrices of the bias and the random components are 
equivalent up to a scalar multiple. The presence of 
the measurement errors results in the restrictions 
given in tables 1 and 2 not holding, ie Ax 1:- 0 and 
the problem faced by analysts is to estimate the 
variance-covariance matrix which will ensure that 
the balanced data is identical to the true data. The 
subjective, regression and trend approaches are used, 
in turn, ·to estimate the variance-covariance matrix 
and the problem facing each approach is set out 
below. 

7 Balancing using the subjective approach 
In this experiment it is assumed that the analysts 
have the following information. They are aware that 
there are random measurement errors on each of the 
series which are independently measured and, for 
the purposes of the Monte Carlo simulations, it is 
assumed that they know the variances which 
underlie these error processes. This is highly 
unlikely to occur in practice, but these assumptions 
do not mean that the analyst possesses the actual 
variance-covariance matrix which determines the 
random errors. This is because with only 250 
independent replications being used it is unlikely 
that the true underlying process will be established. 
Thus, the analysts do not possess the operationally 
relevant variance-covariance matrix which may, for 
example, contain significant covariance terms even 
though these are not present (except for logarithmic 
linking purposes) in the true variance-covariance 
matrix. It is also assumed that the analysts know 
that there is a mean zero bias component to the 
measurement error. However, they do not know the 
magnitude of the bias in any given period. They 
therefore expect that the bias is zero and they make 
no prior adjustments to the data. The analysts' final 
problem is to calculate elements of the 
variance-covariance matrix corresponding to the logs 
of variables and the covariances between the 
variables for which linear constraints cannot be 

6 

imposed. All other covariances are assumed to be 
zero by the analysts both because of their expectation 
that the bias term is zero and because they know this 
is true for the underlying random error processes. 

Weale (1988) provides the formulae for the 
calculation of these elements and these can be 
slightly simplified because the analysts know that all 
real and nominal variables have been constructed 
independently by the data compilers. Consequently, 
the covariances of the random component between 
nominal and real variables; logs of nominal and real 
variables; and the logs of real variables and nominal 
variables and vice versa are all zero. The remaining 
covariances are given by: 

Cov (log w, log Pw) = -var (w)/� 

Cov (log W, log Pw) = var (W)1W2 

Cov (W, log P w) = var (W)IW 

Cov (w, log Pw) = -var (w)/w 

Cov (W, log W) = var (W)IW 

Cov (w, log w) = var (w)/w 

The variance terms are calculated as: 
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Var (log W) = vaT (W)1W2 

Var (log w) = var (w)l� 
Var (log Pw) = var (W)!W2 + var (w)/� 

Where: var (.) are the variances of the random 
component of measurement errors, W is the nominal 
variable, w is the corresponding real variable and p" 
is the price deflator (defined as W/w). The accounts 
analysed in this paper require the calculation of 21 
variance terms and 84 covariance terms. 

As both Var (W) and Var (w) are known by the data 
compilers to be constant, the variance-covariance 
matrix only alters in the simulations because the 
observed values of the variables change with each 
simulation. Nevertheless, the non-constancy of the 
matrix has potentially important consequences for 
the performance of the balancing procedure. With a 
constant variance-covariance matrix and 
measurement errors which have a mean of zero for a 
given time period, an asymptotically consistent 
estimate of the true data can be found with any 
variance-covariance matrix. As would be expected, 
the balancing formula, (1) above, can be replaced by 
the mean of the observed replications. 

This can be shown as follows: 

(4) 

using the balancing formula (1), substituting in (4) 
above and using the fact thatAx' = O. 

(5) 

where Xn is the balanced data in replication n for 
time period t. 

ent is the measurement error for replication n for time 
period t. 

As ent is assumed to be mean zero, then its sum over 
the N replications is also zero. Thus 

I,Xn = Nx· (6) 

where N is the total number of replications. Hence, 
provided the number of replications is large enough, 

the mean of the balanced data will equal the true 
data, x " irrespective of the choice of V (provided it is 
constant between replications). In fact V in (5) above 
could be set so that the final term becomes zero and 
in this case an estimator of the true data simply 
becomes the mean of the observed value from each 
replication. In the case of antithetic random errors 
only a matched pair of observations would be 
required to achieve an unbiased estimate of the true 
data. The intuition of this is clear, a large error on 
one side of the variable will be offset by another 
equally large error on the other side so that on 
average the balanced data equals the true value. 
This result does not follow if bias is present, ie the 
mean of the measurement error is not zero, in which 
case the bias is only removed if the 
variance-covariance matrix exactly corresponds with 
the distribution of the bias. 

However, if the variance-co variance matrix changes 
between replications, as it will do as the calculated 
covariances depend upon the observed data, then the 
final term of equation (5) above will not cancel for 
antithetic pairs and, in general, the number of 
replications required before the mean estimate of the 
balanced data is equivalent to the true data will be 
larger than with a constant variance-covariance 
matrix. There is, therefore, no guarantee that the 
use of the subjective approach will necessarily result 
in data which is on average statistically equivalent to 
the true data. 

Although, as demonstrated above, any fixed 
variance-covariance matrix will on average balance 
the data correctly, the penalty for specifying an 
incorrect matrix (but not one which is simply a scalar 
multiple of the true variance-covariance matrix) is 
that the variance of the balanced data will, in 
general, be increased. This follows from an 
application of the Rao-Blackwell theorem by which it 
can be shown that the balancing formula is the 
minimum variance unbiased estimator of the true 
data, if the observed data is distributed normally 
[van der Ploeg (1984)]. It should be noted in passing 
that the balanced variances need not increase as the 
degree of error in the variance-covariance matrix 
rises (in the sense that all but one element of the 
variance-covariance matrix increases in magnitude). 

8 Balancing using the regression method 
In this case the analysts are assumed to be aware of 
the bias component and to know that it is determined 
by the variables Z1 and Z2 which are known with 

certainty. The analysts do not know the parameters 
(�I, �2) or the constant which determines the bias but 
they do know that it has a zero mean. Nor do they 

7 



know the variance-covariance matrix of the random 
component of the measurement errors and they 
assume that the variance-covariance matrices of both 
the bias and random components of the 
measurement error are equivalent up to a scalar 
multiple. The statisticians choose to construct the 
variance-covariance matrix from the regression 
residuals of Zl and Z2 on the observed data for the 
period second quarter of 1 979 to the fourth quarter of 
1 988. They calculate the residuals for the 
logarithmic data by taking the log of the fitted value 
from the regression on the natural variables and 
subtracting this from the log of the natural variable 
(a log of a residual cannot be taken because the 
residual can be negative). 

The residuals for the price deflators are calculated as 
the logarithm of the price deflator minus the log of 
the ratio of the fitted values for the respective value 
and volume variables. However, the use of this 
technique to construct the covariances for the 
logarithmic variables implies an inconsistent error 
structure between the natural variables and their 
logarithmic counterparts because the residual 
calculated for the logarithmic variables are 
(approximately) in percentage not level terms. An 
alternative method would be to use the formulae 
given by Weale (1 988) for the calculation of the 
variances and covariances but this has the 
disadvantage that other covariances are not defined. 
Thus, if the analysts believe covariances are 
potentially important, they may be reluctant to set 
them to zero and would prefer to use the 
approximation. 

Again it should be noted that the assumption that 
the determinants of the bias are known with 
certainty is optimistic. It is also highly unlikely that 
the components of the measurement errors will have 
similar variance-covariance matrices up to a scalar 
multiple. Indeed it is not true in the data which is 
investigated in this study. Recognising this last 
point, the analysts may use an alternative procedure 

9 Balancing using the trend approach 
The analysts are aware that the data contains a bias 
component which is likely to be correlated with the 
true data. They are unaware of the determinants of 
the bias and they do not know the variance
covariance matrix of the random component. Thus 
they have the least prior information available and 
indeed the trend approaches prior data requirement 
is less than either of the other methods. In the 
absence of this knowledge they assume that the bias 

8 

which removes the bias from the data, and then 
balance the accounts. The estimate of the bias is 
constructed from the knowledge that the mean of the 
bias term is zero together with the estimated 
parameters �l and �2' This allows an estimate of the 
constant term in the bias equation to be constructed 
using: 

1\ 1\ 

- (�l Zl + �2 Z2) = constant (7) 

where Zl and Z2 are the means of Zl and Z2 
respectively. Using the estimated parameters and 
the constant, the bias for each quarter can be 
estimated and subtracted from the observed data and 
this adjusted data can be balanced. The 
variance-covariance matrix is still formed from the 
regression residuals as in the one step method. The 
two step procedure does, however, provide 
inconsistent estimates of the parameters. The 
reason is that the regressions have measurement 
errors in the dependent variables and these errors 
are correlated with the dependent variables (the 
biases), ie the model which the analysts would wish 
to know is: 

(8) 

whereas they actually estimate: 

(9) 

where bt = bias, x; = true data, et = random 
measurement error, cov ( x; , bt ) ;t 0, c = constant, VI 
= random error 

Moreover, the expectation of the left hand side 
equation (9) is not zero because it contains the true 
value of actual data (x;). This is why the constant 
from the regression is replaced by that calculated 
using equation (7). It is not, therefore, even possible 
to conclude that the parameters will be 
underestimated. 

and the random measurement errors have the same 
variance-covariance matrix up to a scalar multiple ie 
the same assumption made by the analysts using the 
regression approach. In the present case however 

they choose to remove the bias component by 
running the data through a low frequency filter given 

by: 

0.25 wt +1 + 0.5 wt + 0.25wt_1 (10) 
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The residuals from the filtering process are used to 
construct the variance-covariance matrix. The choice 
of this filter is entirely arbitary but the use of 

methods such as variate difference to determine the 
trend to fit also contain a subjective element [see 
Kendal (1 973)] and as such it was decided to retain 
the same simple moving average process for each 
variable. Of course, allowing differing moving 
average processes also increases the complexity of 
the trend method and hence reduces its 
attractiveness when compared with the other 

10 The simulation results including bias 
For each of the 3 methods there are two simulations: 
one with bias added and one without. A further 
simulation is run for the regression approach where 
the data is adjusted to remove the estimated bias 
prior to balancing. In total there are 7 simulations 
each consisting of 250 antithetic pairs of random 
measurement errors (ie 500 replications). The bias 
remains the same in each replication and the random 
errors are identical across simulations. The number 
of replications per simulation is the same as that 
used by Hall and Stephenson (1990). 

The simulations provide direct estimates of 64 
variables and a further 7 price deflators are implicit. 
However, the two GDP estimates are not 
independent and, consequently, 69 estimates can be 
evaluated. The evaluation is simply a test of the 
difference between the mean value of each variable 
from the replications and the true value using a 
t-test. The results are given in table 3. Table 4 
allows the evaluation of the appropriateness of the 
logarithmic approximations. The difference of the 
estimated means of the 21 logged and natural 
variables are tested using a t-test. 

The results of the simulations containing the biases 
are given in columns 1 ,  3 and 5 of table 3. As can be 
seen, the hypothesis that the average of the balanced 
data and the true data are the same can be rejected 
for virtually all of the variables no matter which 
method was used to balance the data. The 
subjective, trend and regression methods managed to 
pass the t-tests, 9, 8 and 5 times respectively at the 
5% level of significance. There is also little coherence 
in which variables pass and which fail the t-test, 
although all 3 methods produce balanced data for the 
log of G (real government expenditure) and unlogged 
G which are close to its true value. However, as 
table 4 indicates, the logarithmic approximation 
which links real and nominal variables produces 
estimates which are statistically similar. Hence 

methods. The filter can be used directly on 
logarithmic variables and, as the analysts are 
un ware of the functional form of the bias, they 
arbitrarily construct the residual for logarithmic 
variables from: 

log w, - ( 0.25 log W/+1 + 0.5 log w, + 0.25 log W/-I ) 

rather than from, say: 

log w, -log ( 0.25 W'+l + 0.5 w, + 0.25 W/-I ) 

given that one of these variables passes a t-test in 
table 3 it might be expected that its logarithmic 
counterpart would also pass the t-test (the exception 
to this being nominal imports (M9) which just passes 
in its log form but fails in its unlogged form using the 
trend method). Making an allowance for this, the 
results are worse than they appear and they clearly 
suggest that none of the methods can deal with data 
which contains both random and bias components. 

Of course, simply because the average balanced 
estimate and the true data are statistically different 
it does not follow that the differences are necessarily 
numerically large. However, as table 5 ( columns 1 ,  3 
and 5) shows, the average percentage error can be 
large and the use of any of these methods to balance 
the accounts is likely to produce accounts which are 
as misleading to the analyst as the measured data 
itself. As these methods all produce results which 
are equally poor this suggests that should balanced 
accounts be required the use of the trend method 
would be preferable because its information and 
resource requirements are so much smaller than the 
other methods. 

A comparison of the difference between the average 
estimate of the balanced data and the true data with 
the bias reveals a strong positive correlation of 
between 0.85 (for the subjective approach) and 0.81 
(for the trend approach) for these methods. 
Regressions of the average balancing error on the 
bias reveal that a £1 million increase in the bias 
results in between £0.97 and £1 .03 million increase 
in the average error. We cannot reject the 
hypothesis that the average error for each variable 
for each method rises one for one with the bias. 
Hence, because the mean of the random 
measurement error is zero, the balancing exercises 
have been, on average, unable to improve upon the 
unbalanced accounts. Whilst the presence of bias in 
the observed data is not the whole reason for the 
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failure of the methods to correctly balance the data, 
these results suggest that removing the bias would 
result in an improvement in the number of variables 
which pass their respective �tests. 

Column 6 of table 3 reports the results for the two 
stage regression method discussed above. The 
removal of the bias results in slightly more variables 
passing t-tests ( 12  compared with 5 for the one step 
approach). However, this can hardly be described as 
a vast improvement. Clearly, the problem of 
inconsistent parameter estimates is a serious one for 
this data set. For example, the average of the 
estimated parameters for GDP9 (the nominal 
expenditure measure of GDP) are 94.5 and 1 440.0 
respectively and this gives an estimate of the 
constant term as 6226.6. For the first quarter of 
1 984 these parameters give a bias estimate of 
-2390.9 whereas the true bias is only -760.0. Thus, in 
this example, the correlation between the bias and 
the true value of GDP9 is sufficient to cause an 
overadjustment of the data prior to balancing which 
in turn contributes to the failure of the balancing 
procedure to determine the true value of GDP9. In 
passing it can also be noted that, with the exception 
of the real government expenditure variable, G, the 
variables which pass the t-tests using the one-step 
approach are not those which pass the t-tests using 
the two-step approach. 

The poor results reported when the observed data 
contains bias may, however, be due to insufficient 
numbers of simulations. This can be evaluated by 
forming a 95% confidence interval around the 
estimate of the standard deviation of the mean of the 
balanced data. By taking the upper bound to this 
confidence interval and using it as the estimate of 
the standard deviation we can derive a lower bound 
to the number of variables failing the t-tests. Thus 
the t-test is replaced by the following test: 

- + 
o 1 .960 ) 

..In � . �  
where i is the estimated mean of variable x derived 
from the replication. 

1 0  

x is the true value. 

o is the estimated standard deviation of the variable 
x. 

n is the number of replications (500). 

nl2 is used in place of n because antithetic errors 
were used in the replications which can be thought of 
as halving the sample size. 

The original t-test was 

{ i - x }  
(J = T  Tn 

Thus 

{i - x } T 
0 

= Tn 

Hence the adjusted test can be written as: 

T / (1 + 1 .1n-l 

The term in brackets (with n=500) is equal to 1 .124 
and consequently the adjustment reduces the value 
of the t-tests by 12.4%. In other words, only those 
variables with t-statistics, reported in table 3, which 
are below 2.20 would pass the adjusted t-tests at the 
5% level of significance. However, the number of 
t-tests with values of between 1 .96 and 2.20 are 
small, with at most 3 extra variables passing the 
adjusted t-test (for the trend method when no bias is 
present). These results strongly suggest that the 
large number of rejections recorded when bias is 
present in the measured data are not due to 
insufficient replications but are due to the inability of 
the model to deal with biases which do not possess a 
similar variance-covariance matrix to the random 
error component. 
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11 The simulation results excluding bias 
As none of the above approaches appear capable of 
dealing with measurement errors which include a 
bias term, this raises the question of what the small 

sample properties of the methods are when dealing 
with a random error term alone. Columns 2, 4 and 7 

of table 3 report the t-tests for the subjective, trend 
and 'regression' m ethods respectively. 

Table 3: T -Tests on differences between the variables and 
the estimated mean 

Subjective 
with without 
bias bias 

GDP9 -24.97 0.00 
GDPE · 1 2.69 0.00 
G9 ·7.69 0.00 
1X9 -1 .30 om 
IXG9 - 1 0.25 .{l.00 
009 - 1 4.99 .{l.00 
1X19 1 4.93 om 
C9 -20.98 om 
X9 -5.93 0.00 
M9 -0.93 0.00 
FCA9 0.69 -0.00 
TE 2.01 .{l.00 
ESAB 7 .5 1  .{l.00 
YGC -24.35 0.00 
YXJ ·9.20 om 
SX1 -27.56 -0.01 
YSAG ·34.97 0.00 
YSAJ -9.33 0.00 
YSAI -8. 1 0  0.00 
YJG - 1 4.55 0.00 
EDBT -5.09 0.00 
B1PD ·7.59 .{l.00 
EJTA - 1 2.44 .{l.00 
EGT A 6.22 0.00 
CONS - 1 1 .83 0.00 
IX · 1 5.03 0.00 
G .{l.94 0.00 
X -6.57 0.00 
M - 1 0.70 0.00 
FCA -8.03 0.00 
BXGJ 7 1 .85 .{l.00 
BXX1 .{l.92 0.00 
BXGG -66.65 -0.00 
DXXO 1 1 1 .85 -0.00 
DXXG - 1 24.63 .{l.00 
DXXJ 76.58 .{l.00 
DXXJ ·73 . 1 4  0.00 
PUXX -59.36 .{l.00 
OUXX 96.83 0.00 
PEXX 73.3 1 .{l.00 
1CXX -95.30 0.00 
Log GDP9 -24.00 0.87 
Log GDPE · 1 2.02 0.69 
Log G9 -7.51 0.13  
Log IX9 .{l. 1 I  1 . 1 8  
Log C9 -20.40 0.55 
Log X9 ·5.52 0.40 
Log M9 .{l.49 0.43 
Log FCA9 1 .00 0.31 
Log CONS · 1 1 .49 032 
Log IX - 1 5m 0.02 
Log G .{l.91 0.03 
Log X -6.51 0.05 
Log M -6.70 0.87 
Log FCA -8.02 om 
Log PGDP ·6.38 0.55 
Log PG -3.44 0.94 
Log PC -3.49 0.33 
Log PIX 14.23 1 .49 
Log PX 3 . 1 2  1 .07 
Log PM 8.92 1 .06 
Log PFCA 7.70 1 . 1 1  
PG ·3.54 0.88 
PC ·3.41 0.68 
PIX 1 3.74 0.98 
PX 2.93 0.88 
PM 8.72 0.85 
PFCA 7.53 0.93 
PGDP -6.52 0.48 

Total number 
passing t·test 
at 5% level 9 

Critical values 

69 

1 0%  

1 .645 

Tmld 
with without 
bias bias 

-24 .20 --:t.s7 
- 1 3.30 -3.69 

-6.22 0.52 
-4.16 -4.07 
· 1 . 1 7  7.32 

-21 .97 -1 3.90 
6.35 .{l.83 

- 1 6.22 2.09 
-6.50 -2.81 
2.09 2.60 
2.45 0.28 
2.95 -0.58 
\ .94 ·3.83 

-19.45 0.17 
·8.80 -0.76 

-14.32 -4.67 
· 1 2.51  -13.16 

3.02 8.03 
2.66 5.75 

- 1 1 .98 0.1 4  
-8.02 -5.20 
·3.30 -1 .79 
-8.72 -5.47 
- 1 .77 -3.29 
·8.23 1 .5 1  

- 1 3.93 -4.55 
0.91 1 .35 

-6.79 ·2.22 
-6.26 2.74 
-3.24 3.71 
5.88 2.73 
3 . 1 7  4.07 

-5.78 -4.59 
1 2.91 0.40 

2.08 7.81 
6.46 2.48 

-7. 1 0  ·3.53 
1 .27 4.43 

20.03 1 3.00 
0.67 -5.47 

·8.96 ·3.80 
·22.06 -2.12 
- 1 3.54 -4.43 

·5.46 0.67 
-3.81 -4.06 

- 1 5.06 1 .76 
-6.56 -2.80 
1 .96 2.36 
2.25 .{l. l 8  

-8.32 1 .39 
- 1 3.38 -4.23 

1 .08 1 .38 
-6.82 -2.28 
-6.04 2.90 
-3. 1 7  3.67 
·5.80 2.35 
-3.95 0.32 
-2.68 0.78 
1 1 .58 2.95 
2.99 1 .21 
7 . 1 4  0.29 
5 .02 -2. 1 7  

-4.28 0.21 
·2.72 0.85 
1 1 .94 2.95 

3.22 1 .21  
7.57 0.29 
5.22 · 1 .90 

·5.95 2.37 

8 26 

5% 1 %  
1 .960 2.576 

Regression 
with with 
bias bias 

adjust· 

mI 
-17.03 

-6.58 
-10.88 
-10.08 
-27.80 

3.51 
·20.34 

-3.82 
.{l.42 
3.25 
4.99 
6.35 

-20.68 
· 1 1 .32 
- 1 6.22 
-23.06 

-5.01 
2.27 

-1 3.78 
·7.66 

· 1 3.44 
9.45 

- 1 3.75 
· 1 1 .63 
-21 .51 

0.18 
-6.25 

· 1 1 .64 
·3.97 
1 4.25 
·6. 10 
-3.52 
10.78 
-4.00 
7.60 

-7.99 
.{l.04 
8.70 
2.49 

-6.05 
·26.43 
- 1 7.97 

·5. 1 1  
·1 1 .28 
- 1 8.88 

·5. 1 1  
- 1 . 1 8  
4.46 

-12. 12  
·21.83 

0.01 
-6.90 

- 1 1 .78 
-4.23 
·5. 1 5  
·3. 1 5  
-2.37 
1 6.94 

2.55 
9.67 
6.94 

-4.22 
·3.60 
1 5.83 

3.22 
1 0.51 

5.97 
·5.56 

5 

mmL 
23.36 
2 1 .80 
·2.23 
56.73 

-27.56 
8 . 13  

69.42 
26.80 

·1 2.99 
1 2.87 
2 1 . 1 7  

9.80 
-46.25 
· 1 3.80 
24.41 
4 1 . 1 8  

3.70 
48. 1 8  
40.64 

·22.35 
·26.81 
1 1 .69 

1 46. 1 2  
·23.95 
23.45 
29.44 
-0.40 
1 4.49 
32.77 
15.72 

- 19.37 
34.40 

-30.72 
30.42 
22.68 

0.66 
·5.28 
·8.89 

5 1 .45 
-17.41 

·1 .25 
21 .95 
20.80 
·2.54 

49.22 
25.24 

·13.70 
1 2.33 
20.55 
22.75 
27.26 
-0.68 
1 4.20 
32.24 
1 5.45 

0.00 
.{l.64 
0.52 

1 1 .39 
·22.37 
-18.10 

1 .65 
.{l.63 
-0.24 
10.96 

·22.00 
- 1 8.04 

1 .89 
-0.07 

1 2  

without 
bias 

1.63 
2.27 
0.72 
2.87 

·9.97 
·2.63 
6.20 
2.61 

- 1 .04 
1 .52 
2.75 
1 .85 

·9.92 
.{l.34 
2.30 
3.39 

·1 3.78 
9.5 1 

1 1 .63 
· 1 .23 
-4.76 
·2.96 
22. 1 2  

·19.43 
5.03 
0.93 
1 .00 
3.34 
5.06 
6.93 
0.19 

· 1 1 .90 
8.25 
8.31 
8.12 

-0. 19 
-1 .08 
-0. 14 
10.10 

-10.34 
0.85 
0.74 
1 .55 
0.17 
1 .83 
1 .78 

· 1 .64 
0.69 
1 .84 
4.65 
0.33 
0.70 
2.96 
4.62 
6.58 

-0.25 
0.00 

-0.80 
2.20 

-4.47 
·3.94 
·1 .20 
0.46 

-0.05 
3.10 

-4.22 
·3.58 
·0.42 
0.52 

32 

It should be noted that the results reported in 

column 7 were derived without the use of any 
regressions by using the variance-covariances of the 

observed data. Column 4 on the other hand, still sets 
the variance-covariance matrix by using the 
residuals from the filtered data. The rationale for 
this is that the analysts who were assumed to know 

both the variables which determine the bias and 
their magnitude would also know that these 

variables now do not determine the bias and would 

no longer use them to construct the 
variance-covariance matrix. The analysts using the 
trend approach are, however, unaware of the source 
of biases and simply assume that some is present 
even when it is not. Hence the analysts using the 
trend approach continue to form the 

variance-covariance matrix from filter residuals. 

Column 2 of table 3 gives the results of the t-tests for 
the subjective approach and, as might be expected, 

given that the true variance-covariance matrix is 
almost constant, the method passes the t-tests for all 
of the variables. For the logarithmic variables, 

where the corresponding elements of the 
variance-covariance matrix are constructed, and as a 

consequence are non-constant, the t-statistics are 
relatively larger. Nevertheless, from table 5, column 

2, it can be seen that the average percentage errors 
for both the logarithmic variables and for the price 

deflators are relatively small, being, at most, 0.4% in 
the case of the logarithmic price deflator for 

investment and stockbuilding (PIX). This result 

gives further support to the use of logarithmic 
approximations to simultaneously balance value and 

volume data. 

Table 4: T-Tests on logarithmic approximation 

Subjective Trend Re�sion 
with without wtih wllhout wllh With Wllhout 
bias bias bias bias bias bias bias 

-- --- __ Illjl!�Im�OI 
GDP9 -0.69 .{l.62 0.34 0.51 0.41 0.72 � 
G9 .{l. 1 3  .{l.09 .{l.30 .{l. 1 3  -0.78 0.21 0.37 
IX9 .{l.84 .{l.83 .{l. 1 0  0. 1 1  -0.20 0.21 0.87 
C9 .{l.4O .{l.39 .{l.04 0.14 -0.45 0.19 0.58 
X9 -0.27 -0.29 0.21 0. 1 2  0.98 0.65 0.48 
M9 -0.31 -0.30 -0.06 0.02 0.57 0.21 0.57 
FCA9 -0.22 -0.22 -0.01 0.32 · 1 . \4 0.56 0.62 
GDPE -0.48 -0.47 0. 1 7  0.54 0.57 0.73 0.52 
G -0.02 -0.02 -0. 1 2  -0.03 0.12 0.20 0.21 
IX -O.D1 -0.01 .{l.30 .{l.20 0.09 0.77 0.43 
CONS .{l.24 .{l.22 .{l.03 0.09 0.27 0.43 0.38 
X -0.04 -0.04 .{l.09 0.03 0.36 0.26 0.29 
M · 1 .09 -0.70 -0. 1 8  .{l. l 1  0.06 0.23 0.45 
FCA -0.01 -0.01 .{l. 10 0.06 0. 1 5  0.23 0.3 1 
POOP -0. 10 .{l.06 0.13  -0.05 -0.14  -0.05 0.54 
PG .{l.07 -0.05 -0. 14 -0.08 -0.66 0.01 0.31 
PIX -0.36 -0.36 0.24 0.25 -0.22 -0.69 0.76 
PC 0.54 0. 1 7  0.01 0.03 -0.81 .{l.54 0.54 
PX -0. 1 3  -0. 1 4  0.24 0.07 0.47 0.28 0.44 
PM ·0. 15 ·0. 1 5  0. 1 3  0. 1 1  0.44 0. 14 0.48 
PFCA -0. 12 -0. 1 3  0. 1 3  0. 1 8  .{l.88 0. 1 8  0.57 

Number 
passing t·tests 
at 5% level 21  21 21  2 1  2 1  21  21  

Critical values 1 0% 5% 1 %  
1 .645 1 .960 2.576 

1 1  



Table S:Percentage error of the average balanced data 
from the true data 1984 Ql 

GDP9 
GDPE 
GDPY 
GDPY9 
G9 
IX9 
IXG9 
009 
1X19 
C9 
X9 
M9 
FCA9 
TE 
ESAB 
YGC 
Y XJ 
SXI 
YSAG 
YSAJ 
YSAI 
YJG 
EDBT 
BIPD 
EJTA 
EGTA 
CONS 
IX 
G 
X 
M 

Subjective 
with without 
bias bias 

�.8 
- 1 .6 
- 1 .6 
-2.8 
- 1 .6 
-0.1 
-2.2 
-3.2 
2.9 

-3.0 
.{l.9 
.{l.1 
0.1 
003 
l .5 

-2.8 
- 1 .5 
-4.1 
-6.1 
-2.5 
-3.0 
-3.2 
- \ . 1  
- 1 .5 

l A  
1 .0 

-2.1 
-3.3 
.{l.2 
- l A  
-2.3 
- 1 .9 
23.6 
-0.0 
4.8 

Tft:nd 
wnh wliliout 
bias bias 

-=IT --:0:2 
-2.0 .{l.5 
-2.0 .{l.5 
-3.2 .{l.2 
- 1 .7 0. 1 
.{l.8 .{l.7 
.{lA -2.1 
-6.8 -3.6 
2.7 .{lJ 

-2.8 0.3 
- 1 .3 .{l.5 
004 0.5 
0.5 0.0 
0.5 .{l. 1 
0.6 - 1 .0 

-2.9 0.0 
- 1 .7 .{l. l 
-5.7 -LS 

-37.2 -3 1 .3 
2.5 5 . 1  
4.5 7.8 

-3.1 0.0 
-204 - 1 .3  
-2.9 -1 .3  
3.2 1 .6 

-2.1 -3.1 
- 1 .9 003 
-4.3 - 1 .2 
0.2 003 

- 1 .9 -0.5 
- 1 .8  0.7 
-0.9 0.9 
3803 1403 

6.4 604 
1 2.9 8.0 

-7430803 

FCA 
BXGJ 
BXXI 
BXGG 
DXXO 
DXXG 
DXXJ 
DXXI 
PUXX 
OUXX 
PEXX 
ICXX 
Log GOP9 
Log GOPE 
Log G9 
Log IX9 
Log C9 
Log X9 
Log M9 
Log FCA9 
Log CONS 
Log IX 
Log G 

� 
0.0 
0.0 

.{l.o 
0.0 
0.0 

.{l.o 
.{l.o 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

-0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

-0.0 
.{l.o 
0.1 
0.1 
0.0 
0.1 
0.1 
0.1  
0. 1 
0.1 
0. 1 
0.0 
0.0 
0.0 
0.2 
0.0 
0.1  
0.3 
0.1 
0.4 
003 
003 
003 
003 
0.2 
0.2 
0.2 
0.2 
0.3 
0.1 

-76399.3 - 1 910.5 

Log X 
Log M 
Log FCA 
Log PGOP 
Log PG 
Log PC 
Log PIX 
Log PX 
Log PM 
Log PFCA 
PG 
PC 
PIX 
PX 
PM 
PFCA 
PGOP 

2542.8 
- 1 3.9 
- 13 . 1  
1 59.5 
- 1 9.2 

9.1  
1 5.5 
-2.7 
- 1 .6 
- 1 .6 
-0.0 
-3.0 
.{l.8 
.{l. 1 
0.2 

-2.0 
-3.3 
-0.2 
- l A  
- 1 .9 
- 1 .9 
- \ . 1  
- 1 . 1  
- 1 .0 
3.7 
0.8 
2.5 
204 

- 1 . 1  
.{l.8 
3.5 
0.8 
204 
2.3 

- 1 . 1  

Average absolute % error 
(excluding OXXO and OXXG) 

5033 0.06 

- 1 285.1 -3845.8 
- 19.9 -6.0 
-21 .6 -804 

-91 .4 -251 .6 
-39.9 -20.6 

L3 -8.0 
23.8 8.0 
-3.2 .{lJ 
-2.0 -0.6 
- 1 .6 0.2 
.{l.8 .{l.7 
-2.8 0.3 
- 1 .3 .{l.5 
0.5 0.5 
0.5 .{l.o 

- 1 .8 003 
-4.2 - 1 . 1  
0.3 0.3 

- 1 .9 -0.5 
- 1 .7 0.7 
-0.9 0.9 
- \ . 1  004 
- 1 .5 0.1 
.{l.7 0.2 
4.0 0.7 
0.9 003 
2.6 0.0 
\ .8 .{l.6 

- 1 .6 0.1 
.{l.7 0.2 
4. 1  0.8 
\ . 1  003 
2.7 0.1 
1 .9 .{l.6 

- 1 . 1  004 

5.98 5.95 

WliIi With wlilioul 
bias bias bias 

adjusttnent 
"TI 2.2 o:s 
-2.1 203 004 
-2.1 2.3 004 
-3. 1 2.2 0.8 
- l A  .{lA 004 
-2.3 9.6 2.0 
-3.0 -604 -2.6 
-7.5 1 .9 - 1 .8 

1 .4 22.6 6.7 
-2.8 3.3 L S  
.{l.7 -2.0 0.5 
.{l.1 2.2 0.9 
.{l.6 303 1 .7 
0.8 1 .3 1 .0 
2.0 - 1 1 .7 -3.4 

-2.7 - l .S .{l.2 
- 1 .8 3.3 1 . 1  
-6.1 1 1 .8 2.8 

-51 .9 603 -27.1 
-5.1 34.9 10.2 
3.9 50.2 20.8 

-2.7 -3.7 -0.7 
- 1 .7 -5.0 - 1 .9 

- 15.0 9.5 ·5.0 
-7.0 -74.6 -29.8 

- 1 2.5 - 1 6.8 - 14.0 
- 1 .9 304 1 .2 
-604 7.2 0.4 
0.0 .{l. l 0.2 

- l A  2.7 0.9 
-2.6 6. 1 1 .9 
-0.9 3.1  1 .7 
5604 -57.5 0.7 
-8.3 -30.0 -1 504 
5.0 -35.6 · 12. 1  

-96426.1 -202674.9 83520.9 
1 573.9 -6652.0 -2873.7 

-14.8 - 1 .0 0.4 
- 14.8 -704 -2.3 

1 .7 3 19.5 5.8 
- 1 7.7 -80.0 -25.6 

2.7 - 1 3.9 -804 
1 1 .9 1 .8 - 1 .2 
-3. 1 2.1 004 
-2.2 2.2 003 
- 1 . 1  -0.5 0.1 
-2.2 9.5 1 .2 
-2.7 3.2 1 .0 
- 1 .0 -2.1 .{l.8 
.{l.3 2.1 004 
1 .0 3.2 1 . 1  

-2.0 3.3 \ . 1  
-604 7.0 0.1 
0.0 -0. 1 0.1 

- 1 .5 2.6 0.8 
-2.6 6.0 1 .7 
-0.9 3.1  1 .7 
-0.9 0.0 -0. 1 
-0.9 -0.2 0.0 
.{l.5 0. 1 -0.3 
4.8 2.6 0.8 
0.7 -4.5 - 1 .6 
2.6 -3.6 - l A  
2.2 004 -0.6 

- 1 .2 -0.2 0.2 
.{l.7 -0.0 -0.0 
4.7 203 1 .3  
0.8 -404 - l A  
2.8 -3.6 - 1 .2 
1 .8 0.5 .{l.2 

.{l.9 .{l.0 0.2 

4.96 1 3048 3043 

Note: The large pcra:ntage erron on DXXO (net deposits with c:orpontions made by the OverseAS sector) 
and DXXG (nel deposits with corporations made by the public secror) rtsult from the lnIe values of these 
variable.s being smaU (-{l.0l71 and -{l.9732 rtspectively) in the faS! quaner of 1984. The actual avenge 
em,,' can-esponding 10 the oolurnns above � (in £'s millions). 

DXXO 1 2.71 
DXXG -24.75 

1 2  

0.0 
0.0 

1 3.07 0.32 
J 2.51 37043 

1 6.50 34.68 1 4.29 
- 1 5.32 64.74 27.97 

The trend (see column 4 of table 3) and 'regression' 
approaches (see column 7 of table 3) pass the t-tests 
for 26 and 32 cases respectively and for both methods 
the t-statistics have been reduced, in absolute terms 
in around 75% of the cases. Nevertheless, as thes� 
methods result in less than half of the variables 
passing the t-tests they strongly suggest that the 
small sample properties of the estimators underlying 
these methods are rather poor, especially when any 
variance-covariance matrix will produce unbiased 
estimates of the true variables when the 
measurement error is mean zero. 

It should be borne in mind that the asymptotic 
properties of the regression approach would be 
improved by regressing the observed data on 
variables which explain the true data. If all of the 
true data was explained by the regressors the 
variance-covariance matrix formed from the 
residuals would not change between antithetic pairs 
of errors. Hence, errors in balancing the accounts 
would cancel between the pairs and the mean 
estimate of the balanced data would be equivalent to 
the true data. Thus the properties of the regression 
approach could be improved by removing at 
some of the true data from the observed data prior 
the forming of the variance-covariance matrix. 
the trend approach a similar result could be VL/I,Q.l.LlCU. 
by increasing the period from which 
variance-covariance matrix was calculated 
would reduce the probability of spurious 
between the true data and the measurement error. 
A risk associated with this procedure is however, 
that process underlying the measurement error 
not be constant over time and this would need to be 
taken into account when balancing the observed 
data. However, as argued above, any 
variance-covariance matrix will correctly balance the 
data and so these avenues of research are Dot 
explored in this paper. Moreover, the 
nature of assuming how much of the true data 
explained in the regression approach would 
make it difficult to examine the benefits, in terms 
reduced variance, of this procedure. In the 
remaining section we have, therefore, only examined 
the sensitivity of the variance of the 
estimates to changes to the 
matrix used in the subjective approach. 



n' 
ts 
Is 
s, 
le 
!S 

ic 
le 

12 Variances of the balanced data 

As observed above, the assumption that the analysts 
using the subjective approach know the true 
variance-covariance matrix is highly unlikely. This 
raises the question of what size of errors can be made 
in setting the variance-covariance matrix before the 
performance of the subjective approach, in terms of 
the variance of its estimates, significantly 
deteriorates. There are numerous methods by which 
the variance-covariance matrix can be changed and 

Table 6: Standard Deviations of Balanced Data 

GDP9 
GDPE 
GDPY 
GDPY9 
G9 
1X9 
IXG9 
IXJ9 
IXI9 
C9 
X9 
M9 
FCA9 
TE 
ESAB 
YGC 
YXJ 
SXI 
YSAG 
YSAJ 
YSAI 
YJG 
EDBT 
BIPD 
EJTA 
EGTA 
CONS 
IX 
G 
X 
M 
FCA 
PGDP 
BXGJ 
BXXI 
BXGG 
DXXO 
DXXG 
DXXJ 
DXXI 
PUXX 
OUXX 
PE XX 
ICXX 
Log GDP9 
Log GDPE 
Log G9 
Log lX9 
Log C9 
Log X9 
Log M9 
Log FCA9 
Log CONS 
Log IX 
Log G 
Log X 
Log M 
Log FCA 
Log PGDP 
Log PG 
Log PC 
Log PIX 
Log PX 
Log PM 
Log PFCA 
PG 
PC 
PIX 
PX 
PM 
PFCA 

Pen:emage errors 
0% 10% 

1 730.1 l'7w.3 
2 1 37 . 1  2 1 37. 1  
2 1 37.1  2 1 37. 1  
1 730.1 1 729.5 

795.5 795.8 
327.0 327.0 
1 54.7 1 54.7 
1 9 1 .8 1 9 1 .8 
270.4 270.4 

1 555.7 1 552.7 
74 1 .8 74 1 .8 
739.9 739.9 
4 5 1 . 1  451 .3  
450.0 450. 1 

78.7 78.7 
893.5 894.4 

1 589.0 1 585.8 
284.9 285.0 

4.6 4.6 
6. 1  6.1  

52.9 52.9 
508.8 508.9 
196.6 1 96.7 

38.3 38.3 
2.4 2.4 

28.2 28.2 
2052.0 2052.0 

7 1 8.8 7 1 8.8 
952.4 952.4 

1 1 6 1 .0 1 1 6 1 .0 
1084.2 1 084.2 

608.8 608.0 
3.5 3.5 

37.8 37.8 
14.4 14.4 
40.6 40.6 

2.5 2.5 
4.4 4.4 

63.0 63.0 
62.3 62.3 
50.6 50.6 
39.9 39.9 
82.2 82.3 
72.3 72.3 

1 73 1 .5 1 730.7 
2 1 36.2 2 1 36.2 

795.3 795.6 
327.4 327.5 

1 555.6 1 552.8 
74 1 .6 74 1 .6 
739.8 739.8 
450.7 45 1 .0 

205 1 .6 205 1 .6 
7 1 8.8 7 1 8.8 
952.4 952.4 

1 1 60.8 1 1 60.8 
1 430.6 1 426.9 

608.8 608.8 
3.5 3.5 
6.6 6.6 
5.8 5.8 
5.0 5.0 
5.3 5.3 
5.5 5.5 
6.4 6.4 
6.6 6.6 
4.7 4.7 
5.0 5.0 
5.3 5.3 
5.5 5.5 
6.4 6.4 

1 00% 
mn 
2 1 37.1 
2 1 37.1 
1 75 1 .5 

798.6 
327.5 
1 54.8 
1 9 1 .7 
270.7 

1 555. 1 
74 1 .6 
740.0 
452.6 
4 5 1 .3 

78.7 
900.1 

1 585.7 
285.3 

4.6 
6.1 

53.0 
509.0 
1 96.7 

38.3 
2.4 

28.2 
2052.0 

7 1 8.8 
952.4 

1 1 61 .0 
1 084.2 

608.8 
3.6 

37.8 
1 4.4 
40.6 

2.5 
4.4 

63.0 
62.3 
50.6 
39.9 
82.2 
72.3 

1752.0 
2 1 36.2 

798.5 
327.9 

1 554.9 
741.6 
739.8 
452.2 

205 1 .6 
7 1 8.8 
952.4 

1 1 60.8 
1 4 1 2.5 

608.8 
3.6 
6.7 
5.8 
5.0 
5.3 
5.5 
6.5 
6.7 
4.7 
5.0 
5.3 
5.5 
6.5 

Trend 
1OOI:O 
2500.0 
2500.0 
2001.0 
1017.9 
600.8 
249.5 
273.0 
596.9 

1 857.3 
946.1 
982.6 
5 1 2.6 
504.0 
1 1 9.7 

1 1 58.8 
1 892.5 
754.2 

78.0 
1 8.7 

244.7 
610.7 
278.0 
1 66.3 

7.4 
21 3.2 

2599.3 
1 01 8. 1  
1 1 10.0 
1 5 1 2.9 
1459.5 

750.2 
3.8 

750.2 
894.7 

1 254.4 
22.6 

1 34.6 
1069.4 
1 053.7 
1 357.1 
400.3 

1 259.2 
1 1 82.0 
224 1 .7 
2499.4 
1 076.8 

633.8 
1993.1 

980.4 
1 09 1 . 3  

559.0 
2559.0 
1 026.9 
1 1 1 1 .0 
1478.2 
1451 .2 

734.5 
4.0 
7.9 
5.7 
7.1  
6.7 
7.5 
7.7 
7.6 
5.6 
7.1 
6.8 
7.3 
7.7 

Regression 
1 68 1 .8 
2052.3 
2052.3 
1 68 1 .8 

786.6 
630.0 
219.4 
238.6 
566.9 

1 48 1 .3 
946.1 

1 017.3 
490.5 
475.5 
1 23.0 

1 025.4 
1 5 1 2. 1  

714.3 
59.0 
23.1 

249.2 
451 .9 
204.3 
212.4 

15.1 
165.3 

1 935.1 
970.8 
847.6 

1 1 68.2 
1 1 43.6 

455.9 
3.4 

455.9 
605.7 
796.3 

34.2 
85.7 

672.9 
643.6 
895.4 
409.4 
71 1 .4 
876. 1 

1 8 1 5.0 
2035.9 

838.5 
592.5 

1 544.1 
967.3 

1068.4 
542.4 

1 9 17.0 
962.0 
850. 1 

1 1 43.3 
1 1 38.5 

567.9 
3.5 
6. 1 
4.4 
5.9 
5.3 
5.5 
6.6 
5.9 
4.3 
6.2 
5.3 
5.4 
6.4 

No«: all !he standMd doviations of !he pria: doflalon and logge<! price deO.,on 

in this paper the effects are analysed by increasing 
the measurement error corresponding to the nominal 
income measure of GDP (GDPY9) by 1 0% and by 
1 00%. The results of these changes are given in 
table 6. 

The first point to note is the marginal decline in the 
balanced standard deviation of GDPY9 as its 
variance is increased by 1 0%. This is because, as 
noted above, the analysts are assumed to know the 
true distribution of the errors but the true 
distribution is not established by the use of 500 
replications. The true standard deviation (see 
appendix 1 )  is 3468.7778 but the actual standard 
deviation is 3553.6718. Thus multiplying the initial 
variance of GDPY9 by 1 0% produces a smaller 
balanced variance of GDPY9 because the initial 
variance is closer to the variance of the observed 
data. This also, explains why some of the balanced 
variances, for example public sector nominal 
investment IXG9, exceed the true variances reported 
in appendix 1 .  The main point is that for deviations 
around the original variance-covariance matrix, the 
changes in the variances of the balanced data are, on 
the whole, minor or non-existent even when the error 
on GDPY9 is 1 00%. An error of this magnitude 
seems likely to be at the upper end of the error range 
made by analysts and we tentatively conclude that, 
for the model under examination, at least, the 
subjective approach appears to be robust to errors in 
specifying the variance-covariance matrix. 
Obviously, further work on this area needs to be 
undertaken particularly on models in which 
covariances play an important role. 

Table 6 can also be used to compare balanced 
variances using the subjective trend and 'regression' 
approaches. In only one case (log PC) is the variance 
smaller for the trend method and for 24 cases the 
variance is smaller for the regression method than 
the subjective approach. Thus the subjective 
approach is clearly more efficient than the trend 
method in small samples and it is on the whole 
slightly more efficient than the regression method. A 
comparison of table 6 and appendix 1 reveals that 
the standard deviation of the variables are reduced 
compared with the theoretical standard deviations by 
balancing in 35 of the 43 comparisons (81 %) when 
the subjective approach is used. For the instances 
where the standard deviation is increased the rise is 
always marginal. On the other hand, 56% and 70% 
of the variables have their standard deviations 
increased when the regression and trend methods 
respectively are used to balance the data. Had the 
correct variance-covariance matrix been used the 
standard deviations would have been reduced or left 
unchanged by balancing. 

1 3  



13 Conclusions 

The results of the Monte Carlo simulations on the 
three approaches of deriving the variance-covariance 
matrix lead to the following conclusions. The 
logarithmic approximation which allows both volume 
and value data to be balanced simultaneously 
appears to be highly robust. None of the approaches 
can deal with measurement errors which include a 
bias term. Virtually all the mean estimates of the 
balanced variables are statistically and numerically 
different from their true values. A two step 
regression approach in which an estimate of the bias 
i s  removed from the data prior to balancing also 
failed to significantly improve this performance. 
When the measurement error contained only a 
random component, the success rate of the trend and 
regression approaches increased, but the results 
suggest that the small sample properties of the 
estimators are poor. These results indicate that data 

1 4  

derived from these two methods may be as 
misleading to the analyst as the measured data 
itself. Although further work is needed in this area 
the results do, tentatively, suggest that in terms of 
the variance of its estimates the subjective approach 
is relatively robust to errors in the 
variance-covariance matrix. In the Monte Carlo 
simulations presented in this paper the subjective 
approach clearly outperforms both the trend and 
regression approaches when bias is absent and is not 
clearly inferior when bias is present. However, in 
the more likely situation when bias is present all the 
methods do equally poorly and, because the 
information and resource requirements of the trend 
approach are so much smaller than for the other two 
methods, the trend method is advocated as the 
preferred method of balancing the accounts. 
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Appendix 1 

Standard deviations of the random components 
of the measurement errors 

Variable Standard Variable Standard 
Deviation Deviation 

GDP9 3468.7778 EGTA 26.6661 
GDPE 3739.3932 CONS 2676.0534 
GDPY 3739.3932 IX 739.1898 
GDPY9 3468.7778 G 9 1 75454 
G9 846.9406 X 1 225. 1 3 1 7  
IX9 708.8022 M 1 207.4579 
IXG9 1 50.4732 FCA 6 1 1 .0691 
009 1 87.4732 BXGJ 43.3336 
009 370.8288 BXXl 1 4.3237 
C9 2497.9362 BXGG 1 05.8790 
X9 1 070.6291 DXXG 4.3420 
M9 1075.6245 DXXO 2.6009 
FCA9 579.9014 DXXl 95.857 1 
TE 675.8948 DXXI 90.2434 
ESAB 77.9934 PUXX 56. 1 5 1 7  
YGC 1 7 1 7.3826 OUXX 40. 1 088 
YXl 2243.2427 PEXX 1 1 1 .9247 
SXl 457 . 1 675 ICXX 92.6422 
YSAG 4.3552 
YSAJ 6.4827 
YSAI 53.3258 
YJG 508.1446 
EDBT 1 92.9501 
BIPD 40.7 196 
£ITA 2.5185 

"The SW1danI deviation of Ill< mcasumnen' error is connructed as 5% oflll< mean of Ill< absolule 
value of the true da1a over the period from the second quancr of 197910 !he founh quantr of 1988. 

See Tables I and 2 ror a CUlde 10 the nocatioo. 

Appendix 2 

Parameters used to calculate the bias 

component of the measurement errors 

Bias Parameters Bias in 1984 Percentage 
Ql level 

PI * Constant 

GDP9 "3lJ" 565.0000 -760.0000 --
-1

-
. 1

-

GDPE 22 1 75 646.6667 -558.3333 - 1 .0 
GDPY 50 1 50 233.3333 -1 266.6667 -1 .7 

GDPY9 60 1 50 1 30.0000 - 1 520.0000 -2.2 

G9 1 9  8 - 1 56.333 -481.3333 -2.9 

1X9 2 27 1 1 4.3333 -50.6667 -0.4 

IXG9 3 3 - 1 6.0000 -76.0000 -2.3 

009 5 -2 -61.6667 - 1 26.6667 -3.2 

009 5 1 -46.6667 -1 26.6667 -2.0 

C9 60 - 1 00  - 1 1 20.0000 - 1 520.0000 -3.2 

X9 5 -60 -351.6667 - 1 26.6667 -0.6 

M9 4 30 1 08.6667 - 1 01 .3333 -0.5 

FCA9 -2 37 205.6667 50.6667 0.5 

TE -2 -40 - 1 79.3333 50.6667 0.4 

ESAB - I  5 35.3333 25.3333 0.2 

YGC 20 1 0  - 1 56.6667 -506.6667 - 1 .5 

YXl 50 - 1 0  -566.6667 -1 256.6667 -2.9 

SXl -4 - 1 0  -8.6667 101 .3333 1 .2 

YSAG 0.2 -0.5 -6.6333 -7.1333 -6.1 

YSAJ 0.1 0.1  -0.5333 -2.5333 -2.5 

YSAJ I - I  - 1 5.3333 -25.3333 -3.9 

YJG 1 0  - 1 5  - 1 78.3333 -253.3333 -2.4 

EDBT 2 3 -5.6667 -50.6667 - 1 .2 

BIPD 0.5 2 4.8333 - 1 2.6667 - 1 .5 

£ITA 0.05 0.1 -0.0617 - 1 .8670 2.1 

EGTA -0.3 1 .0 8.1000 7.6000 0.9 

CONS 55 -90 -101 8.3333 - 1 393.3333 -2.7 

IX 20 - 1 0  -256.6667 -506.6667 -3.5 

G 3 -80 -43 1 .0000 -76.0000 -0.4 

X 1 6  -70 -515.3333 405.3333 - 1 .7 

M 1 8  30 -36.0000 -456.0000 -2.0 

FCA 8 7 -47.6667 -202.6667 1 .7 

BXGJ -5 7 86.6667 1 26.6667 24.6 

BXXI 0.02 2 9.7933 -0.5067 0.03 

BXGG 3.7 1 1  1 6.7667 -93.7333 3.7 

DXXO -0.5 -O.Q\ 5.1 1 67 - 1 2.6667 -74037.2 

DXXG I -0. 1 -10.3833 -24.8833 2556.8 

DXXl -6 -20 -38.0000 1 52.0000 -9.8 

DXXI 1 1  -4 - 1 33.6667 -278.6667 - 1 8.0 

PUXX -5 6 - 2 1 .6667 23.3333 -27.7 

OUXX -7 3 87.3333 177.3333 -19.8 

PEXX - 1 2  7 1 59.0000 304.0000 1 0.2 

ICXX 1 2  - 1 1 - 1 79.0000 -304.0000 1 5.3 

11w: bias componen, is calcu1a1ed as j},z, + Ibzt+ CQIlSWIL See appendix 3 for !he value, of 11 and n. 

See Tables I and 2 ror. cuide to tb. nocalion. 
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Appendix 3 

Constructed values of the bias variables 

�riQ!! A- � 1979 Q2 0.2 
Q3 -4.2 -23.0 

Q4 -8.2 -22.0 
1980 Q I  - 1 1 .8 -21.0 

Q2 -15.0 -20.0 
Q3 -17.8 - 1 9.0 

Q4 -20.2 - 1 8.0 
1981 QI -22.2 - 1 7.0 

Q2 -23.8 - 1 6.0 
Q3 -25.0 -IS.O 
Q4 -25.8 -14.0 

1 982 Q I  -26.2 -1 3.0 
Q2 -26.2 - 1 2.0 
Q3 -25.8 - 1 1 .0 

Q4 -25.0 -10.0 
1 983 Q I  -23.8 -9.0 

Q2 -22.2 -8.0 
Q3 -20.2 -7.0 

Q4 -17.8 -6.0 
1 984 Q I  -IS.O -S.O 

Q2 - 1 1 .8 -4.0 
Q3 -8.2 -3.0 

Q4 -4.2 -2.0 
1 985 Q I  0.2 - 1 .0 

Q2 5.0 0.0 
Q3 10.2 1 .0 
Q4 1 5.8 2.0 

1 986 Q I  2 1 .8 3.0 
Q2 28.2 4.0 
Q3 35.0 5.0 
Q4 42.2 6.0 

1 987 Q I  49.8 7.0 
Q2 57.8 8.0 
Q3 66.2 9.0 
Q4 75.0 10.0 

1 988 Q I  84.2 1 1 .0 
Q2 93.8 1 2.0 
Q3 103.8 1 3.0 
Q4 1 1 4.2 14.0 
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