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ABSTRACT 

Following the important work of Engle(1982), which introduced the idea of estimation 

subject to an error process which had an auto-regressive variance, the usefulness of 

the Auto-Regressive Conditional Heteroskedastic ( ARCH) model has become 

increasingly apparent. Important further developments in the area include the 

suggestion of Engle, Lilien and Robins( 1987) that some function of the conditional 

variance could be included in the structural equation being estimated (the ARCH in 

mean or ARCH-M model) and the generalization of the Arch process proposed by 

Bollerslev(1986) ( the GARCH and GARCH-M models). 

The ARCH or GARCH equation is assumed not to be stochastic. This is clearly an 

extreme assumption, even if the true equation is exact we might suspect that it is at 

least subject to measurement error. When this assumption is dropped and we consider 

a stochastic GARCH process the situation becomes much more complex however.This 

note shows how the stochastic GARCH-M (SGARCH-M) model may be put into state 

space form and estimated by the Kalman Filter, it shows that conventional GARCH-M 

estimation is a special case of SGARCH-M estimation when the GARCH equation is 

non-stochastic and there is no uncertainty about the initial conditions. The Kalman 

Filter provides a useful way of relaxing these two implausible assumptions. 
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1. INTRODUCTION 

Following the important work of Engle( 1982), which introduced the idea of estimation 

subject to an error process which had an auto-regressive variance, the usefulness of 

the Auto-Regressive Conditional Heteroskedastic ( ARCH) model has become 

increasingly apparent. Indeed the evidence of ARCH processes in areas such as 

financial modelling now seems overwhelming. Important further developments in the 

area include the suggestion of Engle, Lilien and Robins(1987) that some function of the 

conditional variance could be included in the structural equation being estimated (the 

ARCH in mean or ARCH-M model) which allows a much more satisfactory treatment of 

risk terms and the generalization of the Arch process proposed by BOllerslev(1986) 

which allowed a more parsimonious parameterisation of the model ( the GARCH and 

GARCH-M models). 

The ARCH or GARCH equation has a rather interesting status, it is the conditional 

variance of the structural equation at each point in time yet in the formal exposition it is 

an exact (non-stochastic) relationship. This is clearly an extreme assumption, even if 

the true equation is exact we might suspect that it is at least subject to measurement 

error. When this assumption is dropped and we consider a stochastic GARCH process 

the situation becomes more complex. In the case of ARCH and GARCH estimation this 

makes little difference as it is impossible to draw any inference about the conditional 

variance other than the initial estimate. When the model is extended to an ARCH in 

mean (ARCH-M) or GARCH in mean (GARCH-�) formulation by explicitly including the 

conditional variance in the structural equation this is no longer the case. The use of 

lagged errors which are based on the conditional variance at t-2 or greater means that 

the conditional variance is not properly conditioned on information at t-1, in the case of 

the ARCH-M model and the explicit use of the conditional variance at t-2 or greater 

compounds this problem in the GARCH-M formulation. This arises because when the 

conditional variance enters the structural equation it is possible to update this estimate 
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of the variance once the full information set at time t becomes available. This updating 

is exactly analogous to the Kalman Filter updating equations, so that the estimate of the 

conditional variance at time t+ 1 is then properly based on the information set at t. 

This note shows how the stochastic GARCH-M (SGARCH-M) model may be put into 

state space form and estimated by the Kalman Filter, it shows that conventional 

GARCH-M estimation is a special case of SGARCH-M estimation when the GARCH 

equation is non-stochastic and there is no uncertainty about the initial conditions. The 

Kalman Filter provides a useful way of relaxing these two implausible assumptions. 

Most of the analysis will concentrate on the GARCH-M formulation rather than 

ARCH-M, as the ARCH-M form may be thought of as nested within the more general 

GARCH-M framework, the results and statement are general to both models. 

The next section of this note gives a brief account of the ARCH and GARCH model, 

section 3 sets out the state space model and the Kalman Filter when the state equation 

contains some observed components. Section 4 gives the state space representation 

of the S GARCH-M model and discusses the Kalman Filter estimation and the 

relationship between the two estimation strategies. Section 5 presents an illustration of 

the estimation of a simple time series model of inflation using OLS, standard GARCH-M 

and the new SGARCH-M procedure. Section 6 draws some conclusions. 

2. THE GARCH-M MODEL 

Engle, Lilien and Robins (1987) suggest an extension of Engle's (1982) ARCH model 

whereby the conditional first moment of a time series itself becomes a function of the 

conditional second moment, which follows an ARCH process: 

2 , n 

'Y. et . + K. Zt l -l 

(1  ) 

(2) 
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where Xt and Zt are vectors of weakly exogenous conditioning variables. Engle, Lilien 

and Robins( 1987) term this kind of model ARCH-in-mean or ARCH-M. Note the tf i s  

the conditional variance of tt formed at period t based on the information set (a-field) of 

all  information u p  to period t- 1, note that by assumption (2) is a non-stochastic 

equation. 

A further extension of the ARCH formulation, which imposes smoother behaviour on the 

conditional second moments, has been suggested by Bollerslev ( 1986). In Bollerslev's 

GARCH formulation, the conditional second moments are functions of their own lagged 

values as well as the squares and cross-products of lagged forecast errors. Bollerslev 

did not consider the GARCH-M extension although this is a fairly obvious one which 

was subsequently used in Bollerslev, Engle and Wooldridge( 1988}. Thus, for example, 

the GARCH-M (n, p) formulation of the above model would consist of (1) and 

n 
+ 1: 

i=l 
2 P 

A. € • + 1: l t-l i=l 

where the Bi and Ai are coefficients. 

2 B.h 1 l t-

Stacking all of the parameters of the system into a single vector 

( 3) 

and applying Schweppe's ( 1965) prediction error decomposition form of the likelihood 

function, the log-likelihood for a sample of T observations (conditional on initial values) 

is proportional to 

T 2 T 2 2 
= 1: - l o g I ht(IJ} 1- 1: € /h 

t=l t=l t t 

(where we have assumed normality of the forecast errors). 

(4 ) 
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Although the analytic derivatives of (4) can be computed (see Engle, Lilien and Robins, 

1987) variable-metric algorithms which employ numerical derivatives are simpler to use 

and easily allow changes in specification. Under the usual regularity conditions 

(Crowder, 1976), maximization of (4) will yield maximum likelihood estimates with the 

usual properties. 

The difficulty with the GARCH equation (3) when it is not exact can be most easily 

appreciated by focusing on the information sets which are being used. Assume that ha 
and € 0 are known and that n=p= 1 then 

so hr is properly conditioned on information at period O. But when we use equation (3) 

to form an estimate of h� this is no longer the case, to begin with, 

(5) 

So € 1 is based on a mixture of information, most of which is dated at t=1 but the 

conditional variance is dated at t=o. In the actual use of the Garch equation (3) the 

lagged term in the conditional variance is also based on information dated at t=O. 

= A + o + (6 ) 

So the estimate of h� is based on nO and partly on Y1 and x1' In order to fully utilize the 

information set n1 we should update our estimate of hr when observations on Y1 and 

x1 become available and also derive a new estimate of the error € 1 based on n1 . 

These updated estimates should then be used in the GARCH equation. 

The next two section considers how we might do this. 
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3.'THE ST ATE SPACE FORM AND THE K ALMAN FILTER 

In this section a standard state space formulation is presented with the appropriate 

Kalman Filter equations tor the 'uniwariate case,following Harvey(1987}. Let 

(7) 

be the measurement equation, where Yt is a measured variable Zt is the state vector of 

unobserved variables 6 and 01. are parameters and et - NID(O,rt} and Xt is fixed. The 

state equation is then given as, 

(8) 

Where qr and {j are parameters, Wt is fixed and w- NID(O,Qt}. 

The only departure from the standard state space form given in many text books is in 

the introduction of Xt into the measurement equation and Wt into the state equations. 

This is not an important elaboration as long as both Xt and Wt are known at time t. 

The appropriate Kalman Filter prediction equations are then given by defining Zt as the 

best estimate of Zt based on information up to t and Pt as the covariance matrix of the 

estimate Zt' and stating; 

(9) 

and 

(10) 
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Once the current observation on Yt becomes available we can update these estimates 

using the following equations. 

(11 ) 

and 

(12) 

Equations (9)-(12) then jointly represent the Kalman Filter equations. 

If we then define the one step ahead prediction errors as, 

Then the concentrated log likelihood function is proportional to, 

where ft = a'Pt lt-1 a + rt and N= T-k where k is the number of periods needed to derive 

estimates of the state vector. 

That is to say the likelihood function may be expressed as a function of the one step 

ahead prediction errors suitably weighted. 

4. The GARCH-M MODEL IN STATE SPACE FORM 

A comparison of equations (7) and (1) and (8) and (3) will quickly show that the 

GARCH-M model is already very close to a state space representation, all we need to 

do is to reinterpret some of the notation of the state space model. For simplicity I will 

only consider the GARCH(1,1) model but higher order GARCH models can be treated 
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'In an exactly analogous fashion. To begin with, in the state equation (8) we interpret Wt 

10 be a 2x1 vector which is made up of a constant and eT - 1  ,this equation is then 

identical to the GARCH equation (3) where we identify Zt with tf. The Zt term in the 

r-m,easurement equation is then seen as the variance term which is identical to the 

variance term in equation (1), we then only need to make explicit allowance for the 

structure of the variance of the measurement equation and this is done simply by 

equating rt with Zt. The SGARCH-M state space model may then be written out as, 

(13) 

and 

(14 ) 

This model would be identical to the equations (1) and (3) when 0t=O and PO=O, that is 

when the GARCH equation is non stochastic with certain initial conditions, This can be 

seen by noting that if 0t=O and PO=O, then the updating equations, (1 1) and (12), are 

none operational and ft=rt=zt and the likelihood function becomes equivalent to (4), 

When this is not the case the Kalman Filter equations may be used to estimate the 

model for known values of the parameters of the. model. When any of the parameters or 

variances ire unknown this procedure may be used to define the likelihood function 

conditional on the unknown parameters and this may be used for maximum likelihood 

estimation of the stochastic GARCH-M model. 

A further point of interest is that the SGARCH-M model also nests the standard ARCH 

and GARCH model when 5=0. In this case the updating equations (11) and ( 12) again 

become non operational and with PO=O the likelihood function is again equivalent to the 



8 

standard GARCH likelihood function (4) (as ft=zt). So the problem of the dating of the 

information set only occurs when 6 is non zero. Although if Po is non-zero the 

likelihood function is slightly different as the early observations receive less weight 

because of the uncertainty of the initial conditions. 

The use of the standard Kalman Filter does however raise one potential problem with 

regard to the sign of the conditional variance Zt. Under the assumption that Po is non 

zero and at is normally distributed it is always possible that Zt could be updated to a 

negative value. In practice this can be seen as extremely unlikely for sufficiently small 

values of Po and at, but it is certainly an important conceptual problem. The solution is 

of course to assume that "1 follows some distribution other that the normal one, the log

normal distribution would be a suitable choice, an extended Kalman Filter algorithm 

could then be defined to cope with this assumption. The standard Kalman Filter also 

presents certain practical difficulties as the use of diffuse priors in the form of a very 

large estimate of Po will often produce estimates of Zt which become negative in the 

early periods of the recursion, and so this attractive assumption is not fully operational. 

An extended Kalman Filter is however computationaly unatractive and would of course 

still be dependent on the specific distributional assumption made. One solution to the 

problem is to assume that Po follows a truncated normal distribution, thus the filter 

works in the usual way except when a negative value for Zt would result and then Zt 

would simply be set to some small (non zero value). This of course can not be justified 

on the grounds of maximum likelihood estimation but following the argument of 

Griliches(1983) or Van Praag(1983) it may be viewed as a Ouasi- or pseudo-maximum 

likelihood estimator as long as E(vt)=ft. Thus under this assumption while the 

estimation will not be fully efficient it will be consistent. This is the estimation technique 

which will be used below in the example. 

This generalization of the standard model has a number of advantages; It forms the 

expectation of the variance of the measurement equation conditional on information at 

t-1 during the prediction stage, it then updates it at the updating stage to use 
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information at 1. This means that the lagged term in (6) is conditional on information at 

1-1 (as it was updated after the initial estimate based on information at t-2). This is in 

contrast to the lagged term in the standard GARCH model which is not updated. The 

standard Kalman Filter smoothing algorithm can also be used to produce optimal 

estimates of the time varying variance conditional on the whole sample of data. Neither 

of these stages are possible in the standard procedure. 

5. AN ILLUSTRATION 

It has become almost traditional to illustrate ARCH and GARCH processes using the 

example of inflation, both Engle(1982} and Bollerslev(1986} showed that a simple AR(4} 

model of GNP inflation for the USA seemed to be a satisfactory model except that there 

was strong evidence of ARCH or GARCH processes in the residuals. This section will 

replicate these results for the U K  using quarterly data for the GDP deflator over the 

period 195901 to 198804. The model is estimated in terms of the inflation rate defined 

as 1I"t=log(GDPrGDPt_1}. Table 1 gives the estimation results for the three procedures; 

The OLS results show an a bsence of serial correlation with sensible parameter 

estimates but there is clear evidence of non-normality in the residuals as well as strong 

ARCH effects. The GARCH-M estimates clearly correct for the ARCH effects and even 

though 0 is very small and poorly determined the GARCH correction is clearly 

important, the scaled residuals still exhibit considerable non normality however and the 

sum of A1 and q. is o bviously greater than unity. The SGARCH-M results find a 

significant variance for the GARCH equation (O>O) and the results are rather more 

plausible in that the A1 and q. now sum to less than unity. The normality test on the 

scaled residuals also suggests that the residuals are much closer to being normal. The 

et' statistics are all rather high in the case of the SGARCH-M model (they were based on 

the inverse of the Hessian of the likelihood function) and may be misleading if the 
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l ikelihood function is locally peaked at the maximum. So in order to confirm the 

significance of the variance of the GARCH equation the Likelihood ratio test for the 

restriction that 0=0 was also calculated, this gave LR=6.97, which is also highly 

significant. 

Figures 1 and 2 show the estimated variance terms produced by the two procedures, 

the overall pattern is clearly quite similar with peaks in the variance following the bursts 

of inflation in 1973 and 1979. The detail is however different with the relative size of the 

peaks in the SGARCH-M model being less but rather smoother, this is due mainly to 

the different parameter estimates for the GARCH process which the two procedures 

yield. The estimate for the overall level of the variance is also rather different in the two 

models with the SGARCH-M variance being much smaller, due of course to the 

existence of the non-zero 0 variance. 
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Table 1. RESULTS FOR TH E ESTIMATION OF THE GDP INFLATION RATE 

OLS GARCH-M SGARCH-M 

CONSTANT 0.0043(2.3) 0.0037(3.0) 0.0039(53) 

1I't-1 0.22(2.4) 0.26(2.8) 0.32(48) 

1I't-2 0.41 (4.3) 0.27(3.4) 0.27(32) 

11' t-3 0.20(2.2) 0.074(1.1  ) 0. 14(47) 

1I't-4 -0.05(0.5) 0.03(0.5) 0.011 (37) 

6 6.2(0. 13) 0.005(44) 

AO 0.00005(0.02) 0.00002(31 ) 

A1 0.46(11.6) 0.51 (250) 

qs 1. 13(0.2) 0. 18(33) 

Q 0.000054(30) 

LB(1 ) 0.0 0.24 0.31 

LB(2) 0.0 0.37 0.67 

LB(4) 1.75 2.21 2.56 

LB(8) 7.72 3.4 7.19 

BJ(2) 54.4 136.4 5.99 

LB2(1 ) 2.9 0.21 0.25 

LB2(2) 9.25 0.61 0.46 

LB2(4) 13. 11 0.90 1.29 

LB2(8) 15.7 2.00 5. 84 

LB(n) is the Ljung-Box test of a random correlogram distributed x2(n). BJ is the Berra

Jarque test of normality in the scaled residuals distributed as x2(2) and LB2 is the 

Ljung-Box test carried out on the squared residuals. 

SGARCH-M statistics are based on the smoothed estimate 
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6. CONCLUSION 

This note has argued that the assumption of a stochastic G ARCH process is a 

reasonable generalization of the conventional exact assumption. Under this assumption 

when the conditional variance of an equation is entered into that equation explicitly. as 

in the GARCH-M model. it is possible to update the initial estimate of the conditional 

variance as the current value of the endogenous variable becomes available in a 

manner exactly analogous to the conventional Kalman Filter. If this is not done then the 

conditional variance formed in the next period will not be properly conditioned on 

information dated up to the previous period. The SGARCH-M model can be expressed 

in state space form and estimated using a Kalman Filter which includes this updating 

procedure. It is also shown that the standard GARCH-M likelihood function emerges as 

a special case of the stochastic GARCH-M model. 
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