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Introduction[1] 

In a recent paper, Currie (1981) drew attention to the importance of 

assessing the dynamic long-run properties of estimated equations. He 

showed, in a number of empirical examples, that the equilibrium value 

of the dependent variable was sensitive to the rates of growth of the 

explanatory variables, and the magnitude and speed with which these 

effects were transmitted may be such as to be of concern when using the 

equations for short and medium-term forecasting. In view of this, 

Currie (page 706) suggested the possibility that a test for the validity 

of the constraint that the long-run dynamic effects are zero[2] be 

integrated within the modelling framework, associated particul arly with 

Hendry and Mizon (1978) and Davidson et al (1978), which proceeds from a 

general unrestricted dynamic model to a specific restricted model. 

2 One of the results of the analysis of this paper is that the 

imposition of the rate of growth (and higher order growth) constraints 

may so change the lag profiles, relating explanatory and dependent 

variables, and the short -run and steady state characteristics of an 

equation, as to cause considerable doubt as to whether an 

insignificant test statistic should lead, in the absence of any other 

rationalisation, to imposition of the constraint. [3) 

3 In this analysis, we stay within the single equation framework of 

Currie (1981) and Hendry and Mizon (1978), and consider the 

autoregressive distributed lag model given by: [4) 

[1] The authors woul d like to thank lain Saville and Nigel Jenkinson 
for many enlightening discussions; and Simon Babbs and 
Jeremy Richardson for writing the computer programs and providing 
many helpful comments. All are members of the Bank's Economics Division. 

[2] Equivalently referred to as the rate of growth (or first order 
growth) constraint. 

[3) We have noticed that a commonly held, if only vaguely formulated, 
prior is that lag profiles should be smooth, and that a lag 
distribution with weights changing sign is often viewed with 
consternation. 

[4] The disturbance terms, assumed independent and identically 
distributed (i.i.d.) are left implicit in this and similar 
equations. 
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Y =a t ( 1 ) 

Equation 1 should be interpreted as a reduced form equation which, 

if necessary, has taken into account the simultaneous dependencies of 

a larger structural form. [ 1] Further explanatory variables could be 

added to the specification in equation 1 but this would complicate 

the notation without further analytical insight. All variables are 

assumed to be logarithms; hence, �x
t 

is interpreted as the rate 

of growth of x at time t. It is well known that the static 

equilibrium version of equation 1 is given by: 

where the coefficient on x is the long-run multiplier (or elasticity) 

for a unit change in the level of x. Currie ( 1981) derived the 

equilibrium version of equation 1 for the case of x, and hence y, 

growing at a constant rate. We may interpret his results as showing 

that in dynamic equilibrium there will be the usual static long-run 

multiplier and a long-run multiplier associated with the constant 

rate of growth of x. It is this latter multiplier that has been 

termed the rate of growth coefficient, [2] and we endorse the view 

that calculating and commenting on this coefficient should become a 

routine part of reporting estimated model results. 

4 I n  Section 2, we show how Currie's result may be obtained as a 

special case of a more general approach which will allow the 

calculation of growth effects for any order of growth. we derive 

the implicit distributed lag of the equilibrium value of y on all 

orders of growth of the explanatory variable. The third section 

analyses the effects of imposing the constraints that the rate of 

growth coefficient and the second order growth coefficient are zero 

in a number of simple, but commonly occurring, distributed lag models. 

[1] For a further distinction and illustration of the difference 
between structural and reduced form steady state relationships, 
see Patterson and Ryding (1982). 

[2] The rate of growth effect is the product of the rate of growth 
coefficient and the rate of growth of x. 

6 



In the fourth section, we consider the problem of testing the 

hypothesis that the k-th order growth coefficient is zero. This 

complements Currie's paper in which the choice of an appropriate 

test statistic was not considered. We show that the Wald principle, 

which only requires unrestricted estimates, allows the easy 

calculation of test statistics. In the fifth section, we present 

some empirical examples which illustrate the results of the earlier 

sections. The last section contains our concluding comments. In 

the appendix, a proof is given of the lemma and result used in the 

second section. 

7 



2 

The order of growth coefficients 

5 Given equation 1, which we rewrite in terms of the lag 

operator L as: 

where: w(L) 

B (L) 

y (L) 

a + w(L)x 
t 

B(L)/Y(L) 

J 
B . L

j L: 
j=O J 

M Q, 
1 - L: y .R, L 

£=1 

(X) 

a + (2) 

we are interested in deriving the lag weights in the potentially 

infinite distributed lag of y
t 

on 

k latter being defined by (1-L) x
t

' 

the rates of growth of x
t

' these 

k = 0,1 • • • • •  00• That is, we 

seek: 

6 

aw(L)X
t 

an k,x,t 

, k = 0 , 1 • • •  oo and TI k,x,t 
k 

_ (1-L) x
t 

we denote these lag weights as \ to distinguish them from 
k 

(X) 

(3) 

w(L) = L: w
iL

i
, and write the distributed lag of y

t 
on the rates of 

i=O 

growth of x
t 

as: 

(X) 

a* + L: \.rr. t 
i=O 

1 1,x, 
(4) 

7 From, for example, Dhrymes (197 1, Chapter 1) we know that, provided 

certain convergence criteria are met, the lag weights associated with 

Lkx
t

' k = 0,1 • • •  oo, are obtained from: 

8 



8 k Hence, the lag weights associated with {1-L) x , k 
t 

are given by: 

= 
d k w{L) 

k /k! 
d { 1-L) /L= 1 

0,1 • • •  00 , 

{5) 

the k-th order derivative being evaluated at L=1 implying { 1-L}=O. 

These lag weights are easily evaluated using the following result 

which is proved in Appendix 2: 

d {1-L) k/L=1 

k 
= {-1)

kd w{L) _ 

dL k /L=1 
{6) 

9 The proof of this result rests on the following lemma which is 

stated here and proved in Appendix 2: 

. j 
i+ 1 i 

1-L J 
= E .c. {- 1) { 1-L) 

i= 1 J 1 
{7 ) 

where . C . is the binomial coefficient for choosing i from j. 
J 1 

10 It is of some interest to note that the lemma allows any x . to 
t-J 

be expressed in terms of x and a linear combination of the j i-th 
t 

order differences, ie the rates of growth, of x
t

. 

1 1  For purposes of reference, Table A shows the order of growth 

effects for k = 0,1,2,3; higher order effects are easily obtained 

using equation 6. 

12 The zero order growth coefficient is seen to be just the static 

long-run multiplier or elasticity; the first order growth 

coefficient has been termed the rate of growth coefficient or 

dynamic multiplier, and the second order growth coefficient might 

be called the acceleration effect. 
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Table A 

Order of growth coefficients (a) 

0 

2 

3 

0 J M -1 ( -1) ( .1: 8. jCO) ( 1 -L: y �
) 

]=0 J � = 1  

( -1)
3 [ � 

S=O 

M J M 
( L:y�C 1

)
3-S ( L:S C )( 1  L: )-(r+1- S) 

n =1 � · 'j S 
- Y � 

N ]= S  J �= 1 

(a) Binomial coefficients are left explicit, though 
j

c
0= 1, 

j
c

1=j, etc. 
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1 3  The result (equation 6 )  which is used to derive the order of 

growth coefficients can now be seen to motivate the interpretation 

that the absence of a rate of growth effect implies the mean lag 

in equation 1 is zero , see Currie ( 1 9 8 1 , page 7 07 ) .  

because the mean lag is given by: 

ow (L ) 
a L/L= , 

1 w < 1 > (- 1 ) A
,I

w( 1 )  

This is so 

where w( 1 )  is w(L) evaluated at L= 1 , and A
1 

is the rate of growth 

coefficient. Such an interpretation could also be pursued for the 

higher order growth coefficients. [ 1 ]  For example , if the variability 

of the normalised w. sequence is defined , see Dhrymes ( 1 97 1 ,  
1 

Chapter 1 ) , as: 

Var { w�} 
1 w"( 1 ) /w( 1 ) + w ' ( 1 ) /w( 1 ) - [w ' ( 1 ) /w( 1 ) ]

2 

from (5 ) 

h { * } { L j 11 - 2 
I 

2 
1 w ere w .  = W. j w( 1 ) ,  and w ( 1 ) = a w(L ) ()L evaluated at L= , 1 1 

then the absence of rate of growth (first order) , A
1

, and acceleration 

(second order) coefficients , A
2

, �mplies var{w•} = 0; and if the first 

k growth coefficients are zero then the k-th order moment about 

the mean is zero. However , we should bear in mind , in such 

interpretations , that the signs of the lag coefficients , w. , are not 1 
all constrained to be the same , hence they cannot be interpreted as 

probabilities even if normalised by dividing through by w( 1 ) . 

[1 ] This interpretation can lead to some difficulties. For example , 
if w( 1 )  is positive , the mean lag and rate of growth coefficient 
are of opposite sign; thus , if the latter is positive , the mean 
lag is negative. In his analysis of Hendry and Mizon ' s  ( 1 9 7 8 )  
demand for money functions , Currie ( 1 9 8 1 , page 7 09 )  finds in their 
preferred equation rate of growth coefficients on income and 
prices of - 6 . 1  and - 1 .7 respectively , the sign of the first of 
these being difficult to rationalise; these coefficients imply 
positive mean lags of 3.8 and 1 . 7  quarters respectively ,  whereas 
in the ' general ' version of the demand for money function 
[Currie ( 1 9 8 1 , page 7 1 2 ) ] , the coefficients are - 1 7.8 and 2. 5 , 

implying mean lags of 6. 2 and -7.8 quarters respectively. 

1 1  



3 

Constraining the growth coeff icients to be zero: an 
analysis of some simple models 

14 We saw earl ier that the mean lag is -A
1

/w( 1) , where A
1 

is the 

rate of growth coeffic ient; thus , prov ided w( 1)
-l 

is not equal to 

zero , the mean lag will be zero if , and only if , A
1 

= 0 .  For the 

mean lag to be zero there must be at least one change of sign in the 

lag weights after w
0

. Thus , a monotonic lag d istribut ion , with 

lag weights all of the same sign , apart perhaps from w
0

, can only 

constra in A
1 

to zero at the cost forcing the w
i

, i > 0 ,  to be zero . 

In th is sect ion ,  we illustrate this and other implications with some 

s imple models . 

15 We use the notation AD(M , J) to denote an autoregressive d istributed 

lag model of order M in y(L) and J in 8(L) . 

AD( 1 , 0) 

This is a simple Koyck lag w ith 0 < y1 
< 1 if the impl ied lag 

2 
distribution is to be monotonic. In this case A

1 = - y1
8
0

/( 1- Y1) , 

which can only be constrained to zero by setting Y
1 

= 0 ,  but th is 

impl ies w
0 

= 8
0 

and w
i 

= 0 ,  i > 0 .  

16 AD( 1 , 1) a
0 

+ 8
0 

x
t 

+ 8 x + y y 
1 t- 1 1 t- 1 

Th is is an immed iate general isation of the Koyck lag[ 1] wh ich allows 

non-monoton ic ity , for 0 < Y
1 

< 1, in the sense that there may be a 

d ifference of s ign between w
0 

and the sequence {w
i

} ,  i > 0 .  

However , this is not suff ic ient to allow imposition of A
1 

= 0 and 

st ill obtain a non-degenerate lag distribut ion; it is the pattern in 

the w
i

, i > 0 ,  which is important as w
0 

receives a zero we ight in the 

( 1] Note that the first order error correct ion model is AD( 1 , 1) w ith 
the homogeneity constraint , w(1) = ( 8

0 + 8
, > /( 1- y, > = 1 ,  thus 

12 

this constraint serves to set the f irst order growth coeffic ient 
equal to the negat ive of the mean lag. 



mean lag . Formally , the mean lag is 
y

1 
-- + 
1- Y  B +B ; 

1 0 1 

setting this to zero implies y1 = - s1
!s0

, and hence: ( 1 ]  

w
0 

= s
0

, w
i 

= o, i > o. 

17 AD(2 , 0 )  

I n  this model >..1 = - s
0 ( y 1 + 2 y2) (1 - Y1

- y2 )
-2

, which if set 

equal to zero implies y
1 

= - 2 y2
• Chart 1 [ 2] illustrates the 

effect of this constraint on the roots of the difference equation . 

I mposing the constraint forces the difference equation to have either 

a pair of complex roots , or one positive and one negative root with 

the negative dominant . The case of stable complex roots occurs for 

- 1 < y
2 

< 0 ,  and implies that the lag distribution generates damped 

sinusoidal oscillations . The necessary condition for stability 

1 2 
IY 1 

+ y 2 1 < 1, implies that - 1 < y 2 < 3 and - j. < y 1 
< 2 . For 

1 
0 < Y 2 < 3, we have the second case with one root of either sign and 

the dominant negative root inducing alternating signs in the lag 

weights . Charts 2 and 3 illustrate two possible lag distributions . 

1 8  Chart 1 is also useful in analysing the effects of imposing the 

constraint that the second order growth coefficient , >..
2

, is zero . 

I n  an AD(2 , 0 ) model : 

2 -3 -2 
B o ty 1 

+ 2 Y 2) ( 1 - Y 1 - Y 2 l + B oY 2 ( 1 - Y 1 
- Y 2 l 

Setting this equal to zero implies the constraint: [3] 

[ 1 J w 0 = B 
0 

, w 
1 = y 1 

w 0 + B 
1 

= 0 , w 
2 = Y 1 

w 
1 = 0 , • • • • e tc • 

(2] Chart 1 and all other charts appear in Appendix 1 .  

(3] In  deriving this and other constraints , we assume 1-Y
1 

- Y2
F 0; 

that is , we rule out unit roots , since the growth coefficients are 
not defined in this case; however , it is convenient , particularly 
in presenting the diagrammatic illustrations , to treat the 
constraints as continuous functions of y 1 and y2 and make any 
such necessary qualifications in the text . 

13 



Y� + 3 Y� + 3 Y 2 
Y 

1 
+ Y 2 

= 0 

19 This constraint , which is an ellipse , is plotted in Chart 1 .  The 

ellipse has points of tangency with the complex roots boundary at 

Y1 
= Y2 

= 0 ,  and Y1 
= 2 , y

2 
= - 1  and is otherwise inside the 

complex roots region , hence imposition of the second order constraint 

forces the roots of the difference equation to be a complex pair if 

the lag distribution is to be admissible and non-degenerate . 

20 I mposition of both first and second order constraints is shown 

diagrammatically by the intersection of the linear constraint , 

Y1 
= - 2 y

2
, and the ellipse . [ 1] This occurs at the origin and at 

two unit roots , hence only one of the constraints can be imposed. 

2 1 AD(2 , 1) 

I n  this model the first order growth coefficient is: 

Setting this to zero gives the constraint: 

( Y  
1 

+ 2 Y 2) ( 1 + y 
2) 

- 1  

The first order constraint is now a ray from the fixed point 

y
1 

= 2 ,  y
2 

= - 1  with slope depending on C - - 8
1

; 8
0

, where stability 

requires that C lies in the interval -00 < C < 1 ;  the ray cuts the 

y1 
axis at c, hence the first order constraint in the AD( 2 , 0) model 

is reproduced at c = 0 .  Note that for 0 < C < 1 the constraint passes 

through the regions of two positive roots . However , in an AD(2 , 1 ) 

model , roots in this region are not sufficient to ensure that the lag 

[ 1 ] Alternatively note that: 

1 4  

-1 
>..

2 = -( y
1 + 2 Y2> ( 1  - Y1 - Y2> >..

1 
+ 8

0
y2(1  - Y1 

-

setting this to zero and solving simultaneously with 

y1 = y2 = 0 ,  and y1 
= 2, y2 = - 1 . 

gives 



d istr ibut ion has weights , apart from w
0

, of the same sign; [ 1] 

indeed , s ince the constra int ensures the mean lag is zero , we k now 

there is at least one change of sign after w
0

• 

2 2  Some of the potent ial lag d istr ibutions are illustrated in Charts 5 

and 6 for the reg ions of two posit ive roots - for example , B, C ,  E -

and one pos it ive dominant and one negative root - A ,  D .  

2 3 The lag distr ibut ions for the examples w ith two posit ive roots are 

approx imately rnonoton ic.  For example , in B the lag weights w
0 

to 

w
8 

are pos itive only thereafter becom ing negative and small (the 

smallest is w
12 

= - 0 . 0 16 6 8  compared w ith the long-run response of 2 . 5 ) .  

Examples C and E are very s im il ar to Koyck l ag d istribut ions . In 

these cases , the mean l ag is forced to zero by mult iply ing up the 

small opposite signed weights which would otherwise be thought 

neglig ible . However , whilst such approximate monoton icity may be 
thought desirable , it is necessary to note that the area of the 

parameter space wh ich reproduces th is property is small compared w ith 

'the total area compatible w ith stabil ity , necessary conditions be ing 

0 < C < 1 ,  - 1 < Y2 < 0 ,  and Y� > -4Y2• 

24 The constra int that the second order growth coefficient is zero in 

an AD(2 , 1) model is , after some rearrangement : 

y� ( 1 - z ) + 3 y� ( 1 - �z ) + 3 Y 2 Y 
1 
( 1 - z ) + Y 2 ( 1 + 2 z) + Y 

1 
z = o 

where Z = B
,

f( B
0 

+ 8
1 ) • 

- 3  < z < 1 , ie -oo < c 
an hyperbol a .  [ For z 
in an AD(2 , 0) model . ]  

< 
The constra int is an ell ipse for 

0 . 75 , a parabola at Z = -3 , and otherw ise 

0 we reproduce the second order constra int 

Chart 4[2] illustrates the nature of th is 

constraint for Z = -1, C = 0 . 5 ,  and z = 2/ 3 , c = -2 . The conclusions 

[ 1] See Feller ( 1 95 0 , Chapter 1 1 ); the lag we ights are funct ions of 
the roots of Y(L) and , inter al ia , 8(L) evaluated at these roots . 

[2] The follow ing are useful in sketch ing this constra int : when 
Y 1 

= 0 ,  Y 2 = 0 ,  Y2 = -(1 + 2Z)/(3 - 2Z); when Y2 = 0 ,  Y
1 

= 0 ,  

Y 1 
= -Z/( 1 - Z) = C ,  and there is a f ixed po int at Y

1 
= 2 , Y

2 
= - 1 , 

through wh ich first and second order constra ints pass for all 
admissible values of z. 

15 



to be drawn , as far as the potent ia l lag d istributions are concerned , 

are broadly the same as in the case of a f irst order constraint . 

25 The f irst and second order constra ints are s imultaneously 

sat isf ied [1] at Y
1 

= 2 , Y2 = -1 and Y
1 

= C ,  Y2 = 0 .  The f irst set 

corresponds to two un it roots , and the second reduces the model from 

AD(2 , 1) to AD(1 , 1) ;  however , we k now that the impos it ion of the 

f irst order constraint in the latter model resu lts in a degenerate 

lag d istribut ion . 

26 AD(2 , 2 ) y
t 

et + 8 x + B x + 8 x + Yy + Y y 
0 0 t 1 t- 1 2 t-2 1 t- 1 2 t- 2 

(8 ) 

we consider this model only briefly in v iew of the earlier analys is . 

After some s implification , the constra int that A
1 

= 0 is: 

which implies the fo llow ing linear relat ion between y
1 

and y
2

: 

The second order constraint is: 

0 ( 1 0 )  

So lv ing this s imultaneously w ith the f irst order constra int g ives 

the two solut ions y
1 

= 2 , y2 
= - 1,  and Y1 

= -8
,

18
0

, Y2 = -8/ 8
0

. 

[1] The second order constraint , after some s implif ication , is: 
(y1 

+ 2 y2
) v  + y2 ( 8

0 
+ B

1l (1 - Y1 
- Y2l = 0 

16 

The f irst 

order constra int impl ies v = 0 ,  hence , to f ind y
1 

and y
2 such that 

both constra ints are sat isf ied , solve: 

y2 (8
0 + s

,l (
1 - Y , 

- Y2 ) = 0 and V = 0 s imultaneously; see also 

footnote [2] on page 15 . 



The first solution co r responds to two unit roots, and the second so lution [ 1 ) 

leads to the degenerate lag distribution w
0 

= B
0

, w
i 

= 0, i > 0 .  

27 We conclude that a third order model, when the model order is 

M provided J �M, is required if both first and second order 

constraints are to be imposed; and, in general, in an AD(M ,J) 

model, J � M, M - 1 constr aints on the order  of g r owth coefficients 

may be imposed simultaneous ly . 

0, 

1 7  



4 

Testing the hypothesis that the k-th order growth effect is zero 

(i) The Wald test statistic 

2 8 Of the three principles which can be used to construct test 

statistics (Wald,  likelihood ratio , Lagrange multiplier) , the Wald 

principle which utilises estimates from the unrestricted model 

is the easiest to apply in this context . The likelihood ratio 

and Lagrange multiplier princip les would both require estimation of 

the restricted model . 

2 9 The Wald test statistic is given by: 

( 1 1 ) 

where a � indicates an unrestricted estimator; h(8) is the vector of 

constraints on the coefficient vector 8 expressed in the form h(8) = 0; 

H is the matrix (a vector if one constraint) of derivatives of h(8) 

with respect to 0 evaluated at 8; and � is a consistent estimator of 

the asymptotic covariance matrix of e. Under the nu ll hypothesis , 

h(8) = 0 and certain regularity conditions , w is distributed 

asymptotically as x
2

(r ) , where r is the number of restrictions , 

that is , the dimension of h(8 ) . 

3 0  The hypothesis of most recent concern has been that there is no 

first order growth effect , see the examples in Currie ( 19 8 1 ); there 

are occasions , however , when hypotheses may be formulated on second 

order growth effects , and , presumably , the magnitude of all reasonable 

order growth effects will give some insight into the verisimilitude 

of an estimated model. 

3 1  For the Wald test to be applicable , certain regularity conditions 
) 

have to be satisfied. A pertinent one , in the present context , is 

that the first and second partial derivatives of h(8) should be 
uniformly continuous functions of 8 , see assumption VIb in Wald 

1 8  



( 19 4 3, page 4 6 3) • [ 1 ] From Table A (on page 10 ) , we see that all 

the growth coefficients , including the static long-run multiplier , 

include terms in the inverse of [1-Ey.R,), and hence so will their 

partial derivatives which will not be continuous ,  switching from +oo 

to -00 as Ey.R, crosses unity from below . However if Ey.R, 
= 1, the 

order of growth coefficients are not defined; therefore , to be 

consistent with the stability of the difference equation and the 

existence of the order of growth coefficients , we restrict the 

parameter space such that IL:y.R-
1 < 1. 

(ii) Calculation of the test statistics 

32 By way of illustration , we show how the test statistic is 

calculated for a single rate of growth coefficient . [2) 

3 3  The constraint is: 

h(6) 
M J -2 

( E y ££ > ( I: Bj > ( 1- Ey £) 
.R-=1 j=O 

J -1 
+ ( E B · j) ( 1- Ey n ) 

j=1 J :tv 

the relevant partial derivatives are: 

0 

j=O, • • •  J 

ah (6 )  J M 
-3 J -2 

J - 2 
- 2 ( E B . ) ( E y ££ ) ( 1 -Ey n ) + £ ( L: B . ) ( 1- Ey ) + 

ay£ j=o J £=1 N j=o J £ 
(
j�1

Bjj) (1-Ey,tl 

£=1 ,  . . •  M 

[1) The discussion in Theil (1971, page 3 7 2 ) is also relevant 
in establishing the existence of a limiting distribution for a 
discrete random variable which takes the zero value with 
positive probability. 

[2) Reference to Table A suggests that as Ey£ � 1, the hypothesis 

that the r-th order growth effect is zero is mathematically 
equivalent to that obtained by multiplying through by 

" r+ 1 
[ 1-�Y.R- 1 , and this latter approach is implicitly adopted in 

Currie ' s  (1981) formulation of the rate of growth constraint; 
however , such an approach is not statistically equivalent and we 
expect the tests based on the original formulation to be 
asymptotically more efficient . The difference in the case 
of the static multiplier is between basing the statistic 
alternatively on EB. = 0 or EB./(1- Ey0 ) = 0. 

J J :tv 
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Denote the row vector of such derivatives as h '  
1 

and h; respectively , 

then the test statistic , distributed as X
2

( 1 )  under 

the null hypothesis , is: 

with A = h' 
1

o(S)h
1 

+ 2h' 
1

c(S , y)h 2 + h '
2o( y)h 2 , where D( ) and 

C( ) denote , respectively , the dispersion and covariance matrices. 

The square root of this statistic is asymptotically normally 

distributed [ 1 ]  given that A is the estimated variance of the 

asymptotic distribution of h(8). 

( 1] see , for example ,  Theil ( 1 97 1 , pages 3 7 2-8) .  

2 0  



5 

Empirical examples 

34 In this section, we use two examples - a transactions demand for 

money equation and a consumption function - to illustrate and amplify 

the results of the previous sections. 

35 The first example is a conventional autoregressive distributed lag 

model of the demand for money [see, for example, Hendry and Mizon 

(1978) and Hendry (1979)] given by: 

( 12) 

where all variables are natural logarithms except the nominal 

interest rate which is entered as r = ln(1 + R /100); R is the 
t t 

local authority three-month rate; p is the implicit deflator for 

total final expenditure; y is total final expenditure at 1975 

prices; and m is the M1 definition of money. All data were 

seasonally unadjusted for the period 1964 Q2 to 1979 Q4, and the 

regression included three seasonal dummies. Maximum lags were set 

at 4 on each variable, and for notational convenience we refer to 

such a model with a uniform lag length as AD(4,.). Applying a 

uniform reduction in the lag lengths, we found both AD(3,.) and 

AD(2,.) models consistent with the data; the nested F-statistics 

being 0.81 and 1.28 respectively, with no indication of 

autocorrelation in any specification using a Lagrange multiplier 

test for up to fourth order autocorrelation. 

36 The steady state associated with the AD(2,.) model is given by: 

m -11.27 - 10.41r + 0.9345p + 2.183y - 11.41n - 36.22n (13) 
(1.48) (18.40) (2.12) (0.909) 1 ,p (0.430) 1 ,y 

where we have assumed that second order growth in p and y is absent, 

and hence first order growth in r is also absent.[1] The figure in 

[1] Patterson and Ryding (1982) consider in greater detail the link 
between orders of growth of prices and the nominal interest rate. 
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parentheses below a coefficient is the Wald statistic for the 

hypothesis that the coefficient is zero, distributed as x
2 (1) under 

the null. All Wald statistics use the divisor T-k rather than T, 

where T is the sample size and k is the total number of coefficients. 

The Wald statistic for the joint hypothesis that all dynamic 

multipliers is zero, distributed as x2 (3) under the null, is 1.205. 

37 The dynamic multipliers on prices and expenditure are negative and 

insignificant at conventional levels of significance. Cur ri e ( 1 9 81) 

similarly reports negative dynamic multipliers on prices and 

expenditure for Hendry and Mizon's (1978) preferred sterling M3 

equation. Currie (1981, page 709) suggests a rationale for the 

negative dynamic multiplier on prices in terms of the substitution 

between money balances and real assets as inflation alters their 

relative returns. A negative dynamic multiplier on expenditure is, 

however, difficult to explain and Currie notes, of Hendry and Mizon, 

that they 'offer no rationale for its entry' [Currie (1981, page 

709) ). In view of this we consider the model resulting from 

re-estimation with the constraint that the dynamic multiplier on 

expenditure is equal to zero. We also note[1) from Section 3 earlier 

that an AD (2,.) is the last stage at which this constraint can be 

, imposed without implying a degenerate lag distribution on expenditure. 

expenditure. 

38 Tables B and C opposite summarise the effects of imposing the 

constraint that the dynamic multiplier on expenditure is zero. 

39 Inspection of each column of Table B reveals that the effects of 

imposing the constraint on one variable are pervasive; and this is 

so as Table c reveals, because the constraint is effected through 

changes in the coefficients on the lagged dependent variable as 

well as through the distributed lag coefficients on expenditure. 

40 From Table B we see that both the static and dynamic multipliers 

undergo very marked changes. Indeed, the changes are such as 

to suggest that the constrained estimates are uniformly 

unacceptable. The mean lags have been extended on the price level 

[1] This assumes in the notation of Section 3 that M� J ,  that 
is, the implied rational lag polynomial is 'proper'. 
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Table B 

Demand for M 1 : AD (2, .) model with A1 (expenditure) = 0 

Variable Static Dynamic 'Mean' lag 
multiplier (./..0) multiplier o..,) 

u c u c u c 

r -10.41 -36.4 171.21 2410.0 16.45 66.21 

p 0. 9 3 45 2.785 -11.41 -152.7 12.21 54.83 

y 2. 183 0.233 -36.22 0 16.59 0 

u = unconstrained. 

c = constrained. 

Table C 

The demand for M1: effects of imposing the constraint 
A 

1 (expenditure) = 0 

Coefficients on lagged dependent 
variable 

y1 

y2 

Ey 

Sum of coefficients on expenditure Eo 

Roots of the difference equation 

Unconstrained 

0.6994 

0.2305 

0.9299 

0. 1531 

0.9437 

-0.2442 

Percentage 
response 
at 10 years 

u c 

90.3 45.2 

93.0 54.7 

90.2 100 

Constrained 

0.8213 

0.1615 

0.9828 

0.0040 

0.9852 

-0.3278 
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and the interest rate from 3 or 4 years to an implausible 1 3  1 / 2 and 

1 6  1/ 2 years respectively. 

41 The lag distributions on expenditure before and after imposition 

of the constraint are shown in Charts 7 and 8 respectively. In both 

cases , as the roots of the difference equations indicate , there will 

be non-monotonicity in the cumulated response; however , in the 

unconstrained lag distribution , Chart 7 ,  this is very minor compared 

with the distribution in Chart 8 ,  which is implied by the constraint 

that the mean lag is set to zero. 

4 2  This example , and the analysis of Section 3 ,  suggests that 

imposition of the constraint , that a dynamic multiplier be set equal 

to zero , has far-reaching effects which may well outweigh the 

problems associated with non-zero,  but insignificant , dynamic 

multipliers. We therefore regard with some caution the suggestion 

in Currie ( 1 9 8 1 )  that setting insignificant dynamic multipliers to 

zero should become an integral part of the model building strategy 

which considers increasingly restricted versions of a general model. 

4 3  Rather than imposing a dynamic multiplier constraint in the AD(2 , . ) 

model for M1 , we considered whether a further reduction in the lag 

length wa s acceptable , a path which would rule out setting a dynamic 

multiplier to zero without implying a degenerate lag distribution. 

The data would accept an AD( 1 , . )  model with the maximum cumulated 

type 1 error for lag simplification set [1 ) at 7 1 / 2%. Having 

accepted this simplification , we also found the data would accept 

homogeneity of degree one with respect to the price level and 

expenditure , [2) such a restriction in turn implying the error 

correction model of Davidson et al ( 1 9 7 8 ) . 

state is given by : 

The resulting steady 

[1) The results would have been unchanged had a 5% or 1 0% significance 
level been used at each stage; using 2 1 / 2% the Sidak inequality 
actually implies an upper limit on the cumulated type 1 error of 

1 - ( 1  -cd
n

, equal to 7. 3% in this case. 

[2) The relevant F-statistics being 1 . 6 9  for a reduction from AD(2 , . ) 
to AD( 1 , . ) , and 1 . 2 7 for the restriction of AD(l , . )  to an error 
correction mechanism. 
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m - p - Y = 0.375 - 4.66r - 10.69 TI - 9.87 TI 
(10.31) (17.36) 1·P (26.14) 1·Y ( 14) 

44 The static multiplier on the interest rate and the dynamic 

multipliers on the price level and expenditure are all now 

significant. Moreover, the lag distributions indicate a monotonic 

approach to a new equilibrium; Chart 9 gives the lag distribution 

on expenditure to illustrate this point. The mean lags are given 

by the negative of the dynamic multipliers for the price level and 

expenditure. This example would suggest that ignoring insignificant 

dynamic multipliers may lead to a preferred model which has more 

acceptable properties than one which has imposed constraints on the 

dynamic multipliers. 

45 The second example is a consumption function of the kind estimated 

by Davidson et al (1978) . The dependent variable is consumers' 

expenditure on non-durable goods and services, C; the explanatory 

variables are real personal disposable income, Y ,  and the implicit 

price deflator for non-durable goods and services, P. The data are 

annual for the period 1950-1975, with real variables defined in 1975 

prices, and all variables entered in natural logarithms indicated by 

lower case letters. Estimation[1] of an AD(2,.) model resulted in 

the following steady state: 

c = 1.011y + 0.0293p - 7.471 n1 (283.9) (0.009) (0.362) ,y 
- 2.737 TI 

(0.089) 1·P ( 15) 

The number in parentheses below a coefficient is the Wald statistic 

for the hypothesis that the coefficient is zero. The level of 

prices has almost no effect on the level of consumption, whereas 

consumption is negatively related to the rate of inflation, TI , 
1 ,p 

and the rate of growth of real disposable income, n
1 

• However, 
,y 

neither of these dynamic multipliers are individually or jointly 

significantly different from zero; the Wald statistic for the joint 

hypothesis that both dynamic multipliers are zero being 4.213. 

[1] Because of its illustrative nature, we used OL S in this example; 
Davidson et al (1978, page 689) found little change in their 
coefficient estimates and goodness of fit using instrumental 
variables in a quarterly model. 
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46 At this stage, on the basis of the above test statistics, a 

researcher might reasonably drop prices altogether and constrain the 

dynamic multiplier on real income to be zero. An alternative, which 

is illustrated here, is to keep the inflation effect in view of its 

importance in accounting for observed changes in the savings ratio, 

and to constrain to zero the insignificant dynamic multiplier on real 

income. Imposing this constraint results in the roots of the 

estimated difference equation being forced outside the unit circle. 

The sum of the coefficients on the lagged dependent variables is 

0.9180 for the unconstrained case and 1.0067 with the imposition of 

the rate of growth constraint. Examining the lag distributions and 

summary lag statistics for the unconstrained and constrained 

estimation reveals a marked change not only for expenditure but also 

for prices; the cumulative responses for prices being given in 

Charts 10 and 11 respectively, with the latter clearly illustrating 

the explosive nature of the estimated model.[1] 

[1] As an alternative modelling strategy, in this example we also 
estimated the basic error correction model, that is, an AD (1,.) 
model with a long-run marginal propensity to consume of unity. 
In error correction form this was: 

26 

6c = 0.534 6yt - 0.130 lipt - 0.101 (c - y) t-1 t (10.00) (3.36) (4.02) 

('t' statistics in parentheses.) 

The 't' statistic on lip indicates that prices do have a role to 
play in the consumption function. The steady state is given by: 

C = y - 4. 61 TT - 1 • 29 TT 
(28.90)

1'Y (46.45)
1'P 

(Wald statistics in parentheses.) 



6 

Conclusions 

47 we have shown that, with a suitable interpretation, a rational 

distributed lag function W (L) is the generating function of the 

lag weights associated with the growth rates of an explanatory 

variable, x. The equilibrium value of the dependent variable, y, 

can then easily be written as a function of the growth rates of x up 

to any desired order. [1] 

4 8  The analysis of a number of simple, but commonly occurring, 

autoregressive distributed lag models illustrated the effects of 

constraining either, or both, the first and second order growth 

coefficients to zero. We noted that imposing either of these 

constraints was likely to have a substantial impact on the profile 

of the lag distribution, in particular on whether or not such a 

profile was smooth. 

49  The test statistics for hypotheses on the order of growth 

coefficients can be simply calculated using the Wald principle, 

which only requires estimation of the unrestricted model. Two 

empirical examples were used to illustrate the calculation of 

these test statistics and the effects of imposing a rate of growth 

constraint. In these examples, it was clear that the imposition of 

such a constraint had a very marked effect not only on the variable 

which was being constrained, but also, because the constraint implied 

changes to the coefficients on the lagged dependent variables, on 

the other explanatory variables in the equation. For example, in 

the demand for M 1  equation, the imposition of the rate of growth 

constraint on expenditure led to marked changes in the constrained 

steady state, and a severe attenuation in the lag distributions on 

the interest rate and price level. In the consumption expenditure 

example, the roots of the estimated difference equation were forced 

outside the unit circle by the imposition of a rate of growth 

[ 1] In evaluating the importance of order of growth effects, it is 
necessary to bear in mind that the effect on equilibrium will 
depend on the order of growth coefficient and the magnitude of 
growth. 
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constraint. We consider, therefore, that it is important to treat 

with some caution the suggestion to integrate the testing and 

imposition of rate of growth constraint (s) within the framework of 

nesting increasingly restricted specifications of a general model. 
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Chart 2 

Lag distribution for complex roots and A1 
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Chart 4 

The constraints A1 = 0, A
2 

= 0 in an AD(2 , l) model 
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Chart 5 
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AD(2,1), C = 0.9 

A:11 = .35, 12 = .5 w(1) = 2/3 

,>ne pu!;i tive do.ni.nant, one n<"gilti ve root 

Chart 6 

H:11 = 1.56, 12 = -.6 w (l) = 2.5 
tv10 !X'!'i t i ve t·oot s 

In illl cases B0=l.O, i\ =-.9 

c = .9 

l .lll 

i 

Some lag distributions (a) which satisfy A1 0 in an 

AD(2,1), C = 0.5 

).0 

0:11 = .125, 12 = .25 w(1) = -1.6 

one positive dominant:, one n<>gative root 

E:11 = .65, 12 = -. 1 w(l) = -2./.22 

two pcsitive root£ 

1.0 

c = .5 

(a) Lags at which overshooting occurs, A:0,2; B: 4; C:2; 0:0,2; E:1. 
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Chart 7 

M1: unconstrained lag on expenditure 
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Chart 8 

M1: constrained lag on expenditure 
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Chart 9 

Ml: lag on expenditure with ECM 
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Chart 1 0 
Cumulative lag distribution on prices in AD(2 , . )  consumption model 
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Append ix 2 

Derivation of results used in Sect ion 2 

50 The result to be proved is: 

0( 1-L)
k

/L= 1  
( -l)

k ok
w(L) 

oL 
k

/L=1 

5 1  We first prove the follow ing lemma: 

i 
j 

'+1 
. 

1-L = L: . C.(-1)
1 

( 1-L)
1 

i= 1 J 1 

The proof is by induct ion. The lemma is easily verified d irectly 

for small values of j; we then assume it is true for j and show it 

is true for j+1. 

5 2 The following relat ionsh ips are used in the proof: 

'+1 
. 

1-LJ = ( 1-L) + ( 1-LJ) L  

. 
i+1 

( 1-L) 
1 

- ( 1-L) 
i 

( 1-L ) [1- ( 1-L) ] 

( 1-L)  
i

L 

= .c .  + .c.  
1 J 1 J 1-

. c .  
J J 

( 1 ) 

(2) 

(3 ) 

( 4 )  

(5 ) 

0 +1 
5 3  Proof: 1-LJ = 

j+l 
i i+1 L: (.C. + .C. 

1
) ( 1-L) (- 1) , using relationship 3 

i=1 
J 1 J 1-
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j 
. C .  ( 1 -L)  (- 1) 

i+1 
(- 1 )

j+2 
. C . ( 1 -L)

j+1 
jC

O 
( 1 -L) + E + 

J J 
i=1 

j 
+ E 

i=2 

j 

j
C

O 
( 1-L)  + E 

i= 1 

J 1 

i i+1 
. C .  1

( 1 -L)  (- 1 ) , 
J 1 -

[ i+1 i 
. C .  (- 1) (1-L)  + 
J 1 

using relat ionsh ip 4 

(- 1) 
i+2 

( 1-L)  
i+1 ] 

' +1 
j 

1-L
J 

j
C

O 
( 1-L) + E 

i=1 
. C . (- 1)

i+1 
J 1 [ ( 1-L) 

i 
- ( 1 -L)  

i+1 ] 
j 

j
C

O 
( 1-L)  + E 

i= 1 

i+1 i 
. C . (- 1 )  ( 1 -L) L ,  
J 1 

us ing relat ionsh ip 2 

The last step uses relat ionsh ips 1 and 5 and the assumpt ion that the 

lemma is true for j .  

5 4  Return ing to the result to be proved , we have : 

w(L) = 
00 

E 
i=O 

i 
w . L  1 

Using the lemma to subst itute for L
i

, i = 0 • • •  

w(L ) 

hence : 

3 8  

00 

L: 
i=O 

w .  -1 

00 00 

E E 
j=1 i=j 

w . .  C .  (- 1) 
j+1 

( 1 -L)  
j 

1 1 J 

00 

d ( 1-L)  
k 

/L= 1 
(- 1)

k 
k !  

(6) 

(7 ) 



Dif ferentiating w(L) , with respect to L ,  k times and evaluating at 

L = 1 ,  we obtain: 

()() 

(8 ) 

Comparison of relationships 7 and 8 shows the result is proven. 
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