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Introduction|( 1]

il The idea that an observed time series can be decomposed into two

or more unobserved components is one that has a long history in the
analysis of economic time series; two early contributions to the
literature being Babbage (1856) and Jevons (1866). The traditional
decomposition has usually been in terms of trend, cycle, seasonal and
irregular components and this classification of economic fluctuations
formed the basis for the early analysis of the business cycle

under taken by Persons (1919), which may be considered the forerunner

of the subsequent work on business cycles undertaken by the National
Bureau of Economic Research - see, for example, Burns and Mitchell
(1947). More recently, the division of a time series into unobserved
components has played an important role in the analysis of seasonal
adjustment [see Nerlove, et al. (1979, Chapter 8) for a convenient survey]
and, more generally, Sims (1974) has shown that if different components
of two time series are linked by different distributed lag relationships,
then the estimation of a distributed lag model between the two observed

series will lead to biased coefficients and misleading inferences.

2 Economic theorists have also become increasingly interested in
unobserved component models, particularly in the context of modelling
long-run or equilibrium behaviour. Friedman (1957), in his study of
the consumption function, introduced the concepts of permanent and
transitory income and these may be regarded as two unobserved components
of actual income. In his analysis of the natural rate of unemployment
hypothesis, Friedman (1968) also considers the effect of anticipated
and unanticipated inflation on labour market behaviour and such a
decomposition of an observed series has subsequently played an
important role in the rational expectations approach to the theory of
economic policy - see, for example, the models developed by Barro
(1976) and Sargent and Wallace (1976). The interpretation of an
unobserved component of an economic time series as an expectational

variable has also been considered by Nerlove et al. (1979, Chapter 13),

(1] This paper was prepared for and presented at the Money Study
Group Conference, Brasenose College, Oxford, in September 1981.




who assume that agents react not to observed variables but, rather,
to estimates of the current values of unobserved components, terming

such estimates 'quasi-rational' expectations.

3 As just stated, being unobserved by economic agents, these
individual components must be estimated before the decompositions
discusssed above can become fully operational and, in an attempt to
give empirical content to his decomposition of observed income,
Friedman (1957) assumed that permanent income was generated by an
exponentially weighted distributed lag of income with the 'smoothing
parameter' arbitrarily set at 0.33. In a series of papers, Barro has
constructed an empirical oroxy for anticipated money growth as the
predicted value obtained by regressing actual money growth on lagged
money growth and various other regressors, determining unanticipated
money growth by residual. [See, for example, Barro (1977) and for
an application to the United Kingdom, Attfield et al. (1981).) A
further approach to modelling the permanent or anticipated components
of economic time series has been followed by Lucas (1980), who uses
two-sided symmetrical moving averages of observed money growth,
inflation and interest rate-series to investigate two important
propositions of the quantity theory. The use of two-sided filters
has important implications , for it implies that agents not only use
past data in forming their expectations, but, as they care primarily
about the future, incorporate forward lookina hehaviour in their

optimal estimates of the current values of the comnonents.

4 This latter approach is explicitly derived using a well-developed
statistical theory for the estimation of unobserved components,
classic references being Wiener (1949) and Whittle (1963) with
Nerlove et al. (1979) providing a comprehensive exposition, and is
similar in spirit to the methodology to be presented in this paper.
However, as 1is discussed in detail later, the approach of Lucas
(1980) may be criticised for being conditional upon the adequacy of
certain simple stochastic processes that are assumed to generate the

components. This 'adhocery' may be avoided by utilising the

metihodology and algorithm of Burman (1980), which enables estimates

of trend, seasonal and irregular components to be obtained for i

observed time series that permit an autoregressive - integrated -

moving average (ARIMA) representation.
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5 Section 2 of the paper therefore presents an exposition of
unobserved component models, discusses the problems associated with
dynamically modelling observed time series, and summarises Rurman's
technique and algorithm for estimatina the individual components.
Section 3 utilises this technique to estimate the trend (or permanent)
components of three familiar macroeconomic time series and attempts
to bring out the salient features of the methodology. Sections 4
and 5 present two empirical applications of the unobserved component
model approach; the relationship between monev and prices and the
construction of permanent income and expected inflation variables for
subsequent insertion in an equation modelling bank lendinqg. Finally,

Section 6 presents some tentative conclusions and suggestions for

further research.




Unobserved component models and signal extraction

6 Suppose that Yy and x, are two observed time series, each of

which can be decomposed into two components, viz:

= +
yt yt Syt (h

= +
e T Txe T Sxt 4
all sequences being assumed to be jointly covariance stationary. It

is further assumed that the T and S components, which may be thought
of as, for example, trend-seasonal or permanent—transitory

decompositions, are related by the distributed lag models:

T
yt

L}

C(B)'I‘xt + u, (31)

S
yt

D(B)Sxt + vt (4)

where ug and v, are white noise sequences uncorrelated with each
other or with Tx and Sx, and C(B) and D(B) are one-sided, possibly
infinite, polynomials in the lag operator B. The empirical lag

distribution between the observed y and x is defined as Y, where:

\ = 1 + — 5
/t Y(B)xt Wy E(wtxs) 0 for all t, s (5)

7 If gab(z) is the cross covariance generating function between
the jointly covariance stationary series a, and bt then from

equation 2:

gxx(z) = gT(z) + gS(Z) (6)

and from equations 1, 3 and 4:

gyx(z) = C(z) gT(z) + D(z)gs(z). (7)




Using a result due to Whittle (1963) we obtain:

g _(z) C(Z)gT(Z) D(z)gs(z)

Y(z) = L — = * -
9. (2) Iy (2) 9., (2) (8)
= C(z) [1-h(z)] + D(z) h(z)
where h(z) = gs(z)/gxx(z). So in the frequency domain it is

seen that the Fourier transform of Y is simply a weighted average of
the transforms of C and D with weights varying with frequency.

Thus, if Sy and Sx are indeed seasonal components, then it would

seem reasonable to assume that h(z) is close to unity near the
seasonal frequencies and close to zero (though positive) away from
them. Hence Y (z) will tend to be close to D(z) near seasonal
frequencies and closer to C(z) elsewhere. However, the effects in
the time domain will be quite different, for Sims (1974) shows that
lag distributions fitted between unadjusted seasonal series will
often show spurious seasonal fluctuations in the coefficients as well
as being two-sided. This latter phenomenon results whenever
different lag distributions link different unobserved components,
irrespective of whether a seasonal/non-seasonal classification has
been made. This general result is of obvious importance, for it
immediately flags that something is wrong, but unfortunately two-sided
lag distributions can result from a variety of causes, for example,
simultaneity or time aggregation [Sims (1972)], so that the precise

nature of the misspecification may be difficult to ascertain.

8 Of course, unconstrained two-sided lag distributions are not
usually estimated and typically Y will be constrained to be one-sided
with parametric forms being adopted to either truncate or smooth the
pattern of the lag coefficients. Sims (1974) also points out

that such restrictions on Y are likely to both conceal and aggravate
the bias caused by differences in the C and D polynomials and therefore
such biases could be potentially important in applied macroeconomic

research.

9 Two special cases are of interest. If C = D, then Y = C, and

any decomposition of the observed series is irrelevant, whereas if

D = 0, so that Sy and Sx are independent:




C(z)gT(z)
Y(z) = C(z) [1-h(2)] =

gxx(z)
and Sims (1974) shows that the correct lag distribution between T

and Tx' C(B), will be obtained by investigating the relationship

between y and Tx.

10 This discussion therefore emphasises that, if there are different
distributed lag relationships linking pairs of components of two

time series, and if we are primarily interested in the relationship
between one particular pair, for example, the trend or permanent
components, then estimating an unrestricted two-sided distributed lag
model between the observed series will produce biased lag coefficients
and hence misleading inferences. Moreover, the possible presence of
non-zero future coefficients may result in the incorrect conclusion
that simultaneity or time aggregation problems are present. If, as is
more likely in practice, smoothness constraints are placed on the
distributed lag coefficients, the problem of bias will still be
present but could be obscured. Thus it may be very important to
investigate relationships not between observed economic time series
but between certain pairs of components, bearing in mind that the
behaviour of such components vis-s-vis the observed series will also
often be of considerable interest, particularly as many theories

suggest that variables should appear in permanent or expected form.

11 Of course, such components are, by their very nature, unobserved,
and hence must be estimated if analysis using them is to be attempted.
The problem of estimation may best be illustrated by considering the
classical approach to predicting (or extracting) Tx' say. This
assumes that Tx and Sx are generated by the following processes.

= T +e ,lal <1 (9)

Txt xt—1 B!

s .. =17 (10)
xt t

where Et and ﬂt are mutually uncorrelated white noise sequences

with variances Oé and O% respectively. Thus the 'permanent'’

component is assumed to follow a first order autoregressive process

10




whereas the 'transitory' component is white noise. The problem is

then to estimate T g given the record of observations on xt =T > 85
X

Xy Xt
. 4 3 o 2
and a standard criterion is the minimisation of E[Txt = Txt]
where:
[e0]
T =Uy(B)x, = L ; ;
xt WiB) e ] w]xt—].
e

Following Whittle (1963, Chapter 5), the least squares estimator

A

Txt based on the entire history of the observed xt series is

given by:
2 _ = 0 = [31
Lte Pola et LIS BRE X (11)
==
sl L7 R i e iR

where: B = bl e 2(1 = & % c ; and
A =-af ot

e/n'

12 For values of the 'signal to noise' variance ratio A near zero, B
is approximately equal to a and %xt will then be given by a very

long moving average of future and past values of x. On the other
hand, if A is large, B will be close to zero, in which case %x

=
will be almost equal to the most recently observed value x . This

t
behaviour seems quite reasonable since, when A is small, most of the
period-to-period variation in the observed series is, on average, due
to variation in the transitory component, and vice versa for large

values of A.

13 If o equals unity (that is, T follows a random walk), then
X

the optimal estimator is given by:

>

=Tl Bl (12)

xt (==

O g\ /&2 T
2

where: B* =

and this is equivalent to the models considered by Lucas (1980).




14 The above estimators will only be optimal, in the minimum mean |
square error sense, if the unobserved components Tx and Sx are
actually generated by the processes assumed in equations 9 and 10.

To check the adequacy of these assumptions, the implied model for
X, may be tested against the data. Combining equations 2, 9 and

10 yields:

1 -« + -
: BIXg = E¢ * My — 0Ny

(1 - BB)at say. (13)

15 Hence, if the classical signal extraction model characterised by
equations 9 and 10 is appropriate, then the observed series snould be
adequately modelled by an ARIMA (1,0,1) process. As all series are
assumed to be covariance stationary, various transformations and
Jdifferences will typically have heen performed on the actually
onserved series X . If, say, xt is obtained after differencing

f(Xt) d times [that is, xt = (1—B)df(xt)], then f(Xt) must

be adequately modelled by an ARIMA (1, d, 1) process for the classical
signal extraction model to be appropriate. Restricting o to equal
unity therefore requires E(Xt) to be generated by an ARIMA (0, 4 +

1, 1) process and Granger and Newbold (1977, page 203) suggest that
this model may be a useful representation of many non-seasonal
econonic series. In fact, if Y (B) is restricted to be one-sided,
the optimal extraction equation 12 corresponds to the use of simple
exponential swmoothing [cf Friedman (1957)]. However, if Sx
corresponds to a seasonal, rather than a transitory, component, then
the assumpton that it is white noise is clearly unrealistic, and hence
the derived ARIMA (1, d, 1) model for the observed series will be
inadequate. Nerlove et al. (1979) consider unobserved component
models having components generated by particular ARIMA forms, implying
that the observed series follows a high order but highly restricted
ARIMA model. However, a modelling approach that removes this
arbitrariness of a priori specification of the ARIMA forms generating
the components is to identify and estimate the appropriate model for
the observed series and, conditional upon this model, extract optimal
estimates of the underlying components. Such an approach has been
proposed by Burman (1980), whose algorithm allows trend, seasonal and

irregular components to be estimated for any series that can be

12




adequately characterised by an ARIMA seasonal model. Only a brief
exposition of the technique, termed Minimal Signal Extraction (MSX),

is given here - full details may be found in Burman (1980).

16 Thus, consider the general ARIMA (p, d, q) (P, D, Q)S seasonal

model for the observed series xt

x, = f£f(B)a,_ = SO a,

1 -1 - 85° ¢@ 065 (14)

where 8(B) is of degree g* = q + Qs and ¢ (B) and ¢ (8°) are of
degrees p and P respectively. By noting that (1 - Bs)D and

Q(Bs) can, in principle, be factored into seasonal and non-seasonal
parts, for example (1 - BS)D = (1 - B)D (L aF 18 ¢ 5o ar BS_1)D,
equation 14 can be rewritten with its denominator rearranged into

components having no common factor:

N 6 (B) 3
s d)m(B) ll)S(B) t (15)

where wm(B) and ws(B) may be regarded as trend and seasonal

components respectively.

17 If it is also assumed that xt can be decomposed into trend (T),

seasonal (S) and irregular (R) components such that:

Kol = Lo o S LR
i t

t t (16)

with Tt = fT(B)bt; S, = fS(B)Ct; R fR(B)dt' b

t t c, and dt being

®Y T
. . . . ] 2 2 2 .
independent white noises with variances Ob’ OC and Od’ then Whittle (1963)

showed that the optimal linear estimator of Tt is given by:

@7 it (B)fT(F)

i

=3
I

X

O NIO N

gl E(B)E(E)

(17)
-1 . . . . . 2
where F = B ', with similar expressions being obtained for St and

R, Burman (1980) shows that equation 17 can be rewritten as:

13




o CT(B,F)

T T sm®moem ¢ (18)

where CT(B,F) is a symmetrical polynomial in B and F of degree
p* = p + d + sD + sP. i
18 The MSX algorithm estimates %t, gt and ﬁt by partitioning the
spectrum of xt into trend, seasonal and irregular components and then
generating the filters required. Although the original formulation ‘
of this 'signal extraction' technique was developed for a doubly

infinite x series and filter the expected values of the signal series

can be obtained by extending the observed series with backcasts and

forecasts. Only a limited number of these predictions are, in fact,

required in practice because of the particular algorithm employed. i

19 This algorithm, primarily designed for seasonal adjustment purposes,
also has a procedure for modifying extreme residuals after preliminary
estimates of the components have been made and has a further refinement

to deal with bias in multiplicative models, ie models in which xt = log(xt).
20 Having thus obtained estimates of the unobserved trend, seasonal

and irregular components, these can then be used for a variety of

pur poses. The earlier analysis has emphasised distributed lag
relationships between components and therefore techniques such as

transfer function methodology can be employed to model such interactions.
Alternatively, the estimated trend, if it is classified as the 'permanent'
component, may be immediately compared with the observed series, the
difference between the two being the transitory component. The trend
component could also be regarded as an estimate of the 'expected' value

of the variable, on the Nerlove et al. (1979) view that economic agents
react not to observed values but rather to estimates of the current

values of the unobserved components. In this case the estimated
component, being constructed using future as well as past values of the
observed series, will incorporate forward looking behaviour, although

both types of information enter symmetrically. On either interpretation,

the estimated trend component can be used to empirically model such

variables.

14




Some examples of the estimation of unobserved components

21 This section discusses the estimation of certain unobserved components
of three quarterly economic time series using the MSX methodology and
algorithm developed by Burman (1980). The series investigated are
seasonally unadjusted £M3, the retail price index and the local authority

three-month rate.

22 Conventional identification and estimation techniques led to the
following ARIMA(l,l,O)(O,l,l)4 model for x = 1n(£M3), the sample period
being 1963 Q1 to 1980 Q4.

4
[1 - .92 B ]
o 5 4 _ (7}
(1 B) (1 B )xt [1 < .54 B] at
(L) (19)

G = .0159 0,(10) = 10.1 T = 67.

23 Coefficient standard errors are shown in parentheses, 0 is the
equation standard error, T is the effective sample size and Ql(v) is
the Ljung-Box (1978) portmanteau statistic asymptotically distributed

2
as X (v) on the null hypothesis that a, is white noise.

24 The quarterly 'permanent' growth rate (1 - B)ln(%x) obtained by
application of MSX is plotted against the observed seasonally-adjusted
money growth rate (1 - B)xa in Chart A. The permanent growth rate

is seen to smooth out the irreqular transitory fluctuations while
leaving the accelerations of money growth in 1972-73, 1977 and 1980
clearly defined.

25 The retail price index (RPI) was found to be adequately modelled by
an ARIMA(l,l,l)(O,l,l)4 model for y = 1ln(RPI), the sample period again
being 1963 Q1 to 1980 Q4.

15
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[1 - .30 B]I[1 .96 B4]

(1 =gy = 54)yt g 1o (.08)

[1 - .85 B %
(.08) (20)

0 = .0116 Q](l()) = 4.6 Of 67

26 Permanent or 'anticipated' inflation, (1 - B)ln(% ) is plotted
against observed inflation (1 - B)y in Chart B. Aqugn the irreqular
transitory fluctuations are smoothed out and the inflation peaks in
1975 and 1980 are clearly emphasised. Furthermore, the (annualised)
permanent inflation series was found to be almost identical to the
corresponding permanent inflation sgeries obtained using monthly data,

thus providing evidence of the robustness of the MSX algorithm.

27 Both series are seasonal and the models generating them are
therefore more complicated than the classical signal extraction
models discussed in the previous section. However, the local
authority rate (RLA) is non-seasonal, and was found to be adequately
modelled by an ARIMA(O,1,1) process for the longer sample period
1957 Q1 to 1980 Q2:

¢ = B)RLAt = (1 + .11 B) a (21

(.10)

it

0 = ,1409 Q}(]O) = 11.1 T = 93

thus supporting Granger and Newbold's (1977) suggestion that such a
model provides a good representation of a wide range of economic time
series. Moreover, the small coefficient estimate implies a large
signal to noise variance ratio (ie that most period-to-period variation
in RLA is due to variation in its permanent component) while the
insignificance of this coefficient suggests that RLA can be adequately
modelled by a random walk, this being consistent with the findings of
Goodhart and Gowland (1977). In this case, the optimal estimate of
the current permanent level of the interest rate is the observed

level itself and hence the trend component and observed series should
be almost identical on applying MSX to equation 21 and indeed this

was found to be the case.
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28 Thus, in all three examples, the extracted trend components are

found to be sensible and to bear ready economic interpretations.




The relationship between money and prices in the United Kingdom

29 This section considers in some detail the bivariate relationship
between two of the time series investigated in the previous section,

£M3 and the RPI, for the period 1963 Q1 to 1980 Q4.

30 Assuming that the relationship between the two series is
unidirectional, running from £M3 to RPI, the following transfer

function was developed:

(1 - .57 B)(1 - B)y, = .004 + (-.10 + .37 BG)(l = B)xt + a, (22)
(.08) (.003) (.05) (.05)

A

0 = .0106 Q1(12) = 6.4 T = 63

31 From this model it can be seen that there is a negative
contemporaneous relationship and a six-quarter delay before a
positive response from RPI to a change in £M3 occurs. The long-run
response is 0.62, significantly smaller than the quantity theory
hypothesis of unity. However, this contemporaneous correlation plus
the presence of significant correlations at three and five-quarter
leads provides evidence of feedback from RPI to £M3. While such
feedback is certainly plausible, the analysis of Section 2 suggests
that these correlations could be flagging the possibility of bias
due to different distributed lags linking the underlying components
of the two series, in which case the long-run response may be
substantially biased. This misspecification appears equally
plausible for it is unlikely that the permanent and transitory
components of money and prices would be related by identical lag
distributions. Moreover, many economists would feel that it is the
relationship between the permanent components of the two series that
is of fundamental importance, thus arguing that the investigation of
the relationship between £M3 and RPI should be carried out in terms

of the trend components Tx and Ty.

32 Modelling the extracted trend components @x and %y yields the

following transfer function:
20




A

~ 5
(1 - 2.03 B+ 1.78 B2 =61/ B3)(1 -B) In (T ), = .08 B (1 - B) 1ln (T))

t
(.10)  (.17)  (.09) H & w02 .
e
(1 + .38 B)
(.14) (23)
g = .0030 Q1(11) = 13.8 T = 62
33 No evidence of model inadequacy was found for this model, thus
suggesting that the deficiencies of equation 22 were due to
‘component' bias rather than feedback effects. Following Jenkins
(1979), equation 23 can be rewritten as:
2 8 A 5 A
(=200 3NBE N7 88BE =067 BRI nE (TEHIE=C08E B I'n (B )+ N (24)
y t X t 2
g = = 2
(1 + .38B) (1 B)Nt a (25)

from which it can now be seen that there is a five-quarter delay in
the reaction of permanent prices to a change in permanent money, the
response peaking at seven quarters after which the response path is
cyclically damped with a long-run response of 1.09 and a mean lag of
eleven quarters. This dynamic response is therefore consistent with
quantity theory implications, unlike that of the relationship between
the observed series, which has the additional disadvantage that it
might be erroneously respecified as a feedback model rather than a
model having different distributed lags linking different components.
It may also be noted that the relationship between the permanent
components is somewhat stronger than the relationship between the
observed series, the use of %x to explain @y reduces the unexplained
variation in Ty by ten per cent, whereas the use of £M3 to explain

RPI reduces the unexplained variation in RPI by only five per cent.

34 It could also be hypothesised that the transitory components of
£M3 and RPI are independent, in which case the appropriate relationship
to be modelled would be that between RPI and Tx. Cross correlating

A 4 A
the approximately white noise series (1 - B ) sxt and (1 - B ) S ,

yt

21




where § = gM3 - T and S = RPI - T » produced the significant
xt t xt yt & yt
Haugh (1976) test statistic of Q2(24)= 96.6, this being asymptotically
2
distributed as X on the null hypothesis of independence. Hence
this confirms that the appropriate analysis of the £M3 and RPI
relationship is between the 'trend' or 'permanent' components of the

two series.

35 This application of unobserved component models therefore lends
support to the view of Lucas (1980) that the quantity theory is
essentially a characteristic of 'long-run average' behaviour and that
such behaviour can be empirically captured by analysing the relationship

between the permanent components of money and prices.

22




Modelling bank lending

36 In the Bank of England (1979) model of the UK economy, bank
lending to persons is assumed to be a function of nominal transitory
income and the real cost of such lending. Within the model, nominal
transitory income is defined as the difference between real personal
disposable income (net of current grants to persons from the public
sector), RY, and real permanent non-grant personal income, YDPM,
inflated by the price deflator for total consumption, PC. The
permanent income series YDPM is generated by a twelve—quarter
approximation to a simple exponential smoothing algorithm with

'smoothing constant' set at 0.3, that is:

~ 0. Rl
YDPM_ = 0.3 RY + 0.7 YDPM__, (26)

As Granger and Newbold (1977) show, this is equivalent to assuming

that RY is generated by the ARIMA(O,1,l) model:

(1 - B)RYt = (1 - .70 B)at (27)

Estimation of such a model yields:

(1 - B)RY = (I - .02 B)a
- (.10) °© (28)

G = 279 Q, (1) = 17.6

The parameter estimate is clearly insignificantly different from zero

and indeed RY is adequately characterised as a random walk:

(1 = B)RYt = at (29)

o = 278 Q1(12) = 17.8

Since this model means that the smoothing constant in equation 26

is zero, this implies that the optimal estimate of real permanent

23




income YDPMt is current observed real income RYt' hence transitory

real income, and therefore in this context transitory nominal income,

is always zero.

37 A more satisfactory method of constructing transitory nominal
income would be to extract the permanent component of nominal personal
disposable income, NY, and hence obtain the transitory component by
subtraction. Univariate analysis of this income series yielded the

model:

(= =) (1 = B4) 1n (NYt) = (1 - .56 B4)a
(.09) (30)

G = ,0184 Q,(10) = 10.1

and the transitory income series TYB thus derived is plotted in
Chart C along with the model based alternative TYA = PC(RY - YDPM).
It is seen that for the early part of the data period, 1965-69, both
series follow similar paths but from 1970 onwards the fluctuations in
TYA become much greater than those in TYB, this being confirmed by
the standard deviations of the two series. It is interesting to

note that both series can be adequately modelled by MA(l) processes

as befits variables having only transient characteristics.

38 The real interest rate variable, measuring the cost of bank

lending, is constructed in the Bank model as the difference between

the local authority three-month rate, RLA, and an inflation expectations
variable PEXP, based mainly on past movements in prices but also
including expectations of any change in the exchange rate. Given

the theme of this paper, an alternative expectations series could be
obtained by extracting the permanent component of the price series

used in the construction of PEXP. The following univariate model

for this series, the imputed wholesale price index of manufacturing
output (net of tax), PIMN, was obtained:

(1 - .95 BY

(1 - B) (1 - B4) 1n (PIMN)t= L > a,
(t = .50 B - .39 B)

(ESRIRIH) (.12) (31)

0= .0096 Q,(9) = 11.0
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Transitory income

Chart C
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39 The extracted permanent component was then converted into an
annual expected inflation series, ISIG, analogous to PEXP. The two
real interest rate series constructed using these alternatives are
shown in Chart D. There is seen to be a reasonably close
correspondence between the two series with that based on the
extracted component, RRB, being somewhat smoother than RRA, the

series constructed using the model variable PEXP.

40 Having obtained these alternative measures of transitory income
and real interest rates, their empirical performance vis—a-vis their
Bank model analogues was investigated through the modelling of bank
lending to the UK private sector (persons), LDJ; a notoriously

difficult variable to model adequately.

41 A reasonable equation using the model variables was found to be:

LDJ, = .53 LDJ_ . + .43 LDJ_ . + .01 TYA_ . - 10.16(RRA__ . - RRA_ )
1y S o1 F?2 o(oe) T (6.9 ! =
- 29.4
(21.7) (32)
~ _2
0=137 R =.73 (12 =16.2 T=59

while the analogous equation using the constructed variables was:

LDJ, = .48 LDJt—1 + .46 LDJt—Z - .09 TYB L 15.87 (RRB

i = RRBt_ )
(.12) (.12) (.09) (8.46)

t-1 2

= 22501
(20.96) (33)

138 R = .72 0,(12) = 14.9 T

Q>
]

63

Neither equation performs particularly satisfactorily with a number
of coefficients being rather imprecisely determined. For both
equations changes in real interest rates heve a negative impact
effect on bank lending but a zero overall effect, with the impact

effect being stronger for RRB, based on the extracted inflation



expectations series. The coefficient of this latter variable is
also significantly different from zero at a marginal level of less

EhanteERliOs

42 Although both transitory income variables are insignificant, the
'optimally extracted' alternative is at least correctly signed, with
the long-run response implying that a £100 million increase in
transitory income will lead to a £157 million decrease in bank
lending, although this response is rather slow, the mean lag being

almost six years.

43 These results, although not entirely satisfactory, do suggest
that the use of such optimally extracted components to proxy permanent
or expected variables may be of potential importance in the modelling
of var ious macroeconomic relationships. It may be argued, however,
that the use of two-sided filters to construct trend components
having permanent or expectational connotations requires economic
agents to process information that they cannot possess. An
alternative procedure would be to extract the current value of the
trend component by successively truncating the observed ser ies before
applying the MSX algorithm recursively, thus utilising no future
information other than optimal forecasts. Initial experimentation
suggests that such a method leads to only minor chanaes in the values
of the extracted component, but further research into this important

area is continuing.
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Conclusions

44 This paper has considered how the idea of unobserved components

of economic time series may be of use in certain areas of macroeconomic
modelling. The estimation of such components in a general, model-
based framework has now become feasible using the methodology and
algorithm of Burman (1980), although it should be emphasised that the

results presented here are still tentative and exploratory.

45 It has been argued that the decompositions thus considered may be
interpreted in a variety of ways that might be of interest to economists,
particularly given the increasing role of expectations and permanent

or anticipated variables in macroeconomic models. The technique
advocated here enables ad hoc approaches to the construction of such
variables to be avoided and also allows forward looking behaviour to

be incorporated by the use of future as well as past values of the
observed series in the calculation of these components. Moreover,
long-run relationships between economic variables may be investigated
along the lines suggested by Lucas (1980), but avoiding the restricted

framework employed by that author.

46 The presence of unobserved components has also been shown to have
important potential consequences for empirical macroeconomic practice,
for the presence of different distributed lags linking different
components of time series has been shown to produce biased coefficients
and possibly misleading inferences when distributed lag models are
estimated between observed time series. This has been amply
demonstrated by the investigation of the relationship between £M3 and

the RPI.

47 Finally, it should be pointed out that the decomposition of an
observed time series used in this paper is not unique and, for
example, Beveridge and Nelson (1981) have developed an alternative
decomposition designed specifically for identifying turning points in
business cycles. Investigation into the comparison of alternative
methods for decomposing time series is therefore an important area of

further research.
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