Centre for Central Banking Studies

Applied Bayesian econometrics for central bankers

Andrew Blake and Haroon Mumtaz

@) BANK OF ENGLAND

Applied Bayesian Econometrics for Central Bankers

Andrew Blake

Haroon Mumtaz
CENTER FOR CENTRAL BANKING STUDIES, BANK OF ENGLAND
E-mail address: Andrew.Blake@bankofengland.co.uk

QUEEN MARY, UNIVERSITY OF LONDON
E-mail address: h.mumtaz@qmul.ac.uk

ABSTRACT. The aim of this handbook is to introduce key topics in Bayesian econometrics from an applied perspective.

The handbook assumes that readers have a fair grasp of basic classical econometrics (e.g. maximum likelihood
estimation). It is recommended that readers familiarise themselves with the Matlab© programming language to derive
the maximum benefit from this handbook. A basic guide to Matlab(©) is provided in the appendix to this handbook.

The first chapter of the handbook introduces basic concepts of Bayesian analysis. In particular, the chapter
focuses on the technique of Gibbs sampling and applies it to a linear regression model. The chapter shows how to
code this algorithm via several practical examples. The second chapter introduces Bayesian vector autoregressions
(VARs) and discusses how Gibbs sampling can be used for these models. The third chapter shows how Gibbs sampling
can be applied to popular econometric models such as time-varying VARS and dynamic factor models. The fourth
chapter applies Gibbs sampling to Markov Switching models. The next chapter introduces the Metropolis Hastings
algorithm which is applied to DSGE model estimation in Chapter 6. The final chapter considers advanced models
such as dynamic factor models with time-varying parameters. We intend to introduce new topics in revised versions
of this handbook on a regular basis.

The handbook comes with a set of Matlab(© codes that can be used to replicate the examples in each chapter.
The code (provided in code.zip) is organised by chapter. For example, the folder ‘Chapterl’ contains all the examples
referred to in the first chapter of this handbook. The views expressed in this handbook are those of the authors, and
not necessarily those of the Bank of England. The reference material and computer codes are provided without any
guarantee of accuracy. The authors would appreciate feedback on possible coding errors and/or typos.

Contents

Part 1. A Practical Introduction to Gibbs Sampling

Chapter 1. Gibbs Sampling for Linear Regression Models

1.

Ol W

Introduction

A Bayesian approach to estimating a linear regression model
Gibbs Sampling for the linear regression model

Further Reading

Appendix: Calculating the marginal likelihood for the linear regression model using the Gibbs sampler.

Chapter 2. Gibbs Sampling for Vector Autoregressions

1.

© 0 ND O W

The Conditional posterior distribution of the VAR parameters and the Gibbs sampling algorithm
The Minnesota prior

The Normal inverse Wishart Prior

Steady State priors

Implementing priors using dummy observations

Applicationl: Structural VARs and sign restrictions

Application 2: Conditional forecasting using VARs and Gibbs sampling

Further Reading

Appendix: The marginal likelihood for a VAR model via Gibbs sampling

Chapter 3. Gibbs Sampling for state space models

1.

© 0N O W

Introduction

Examples of state space models

The Gibbs sampling algorithm for state space models

The Kalman filter in Matlab

The Carter and Kohn algorithm in Matlab

The Gibbs sampling algorithm for a VAR with time-varying parameters
The Gibbs sampling algorithm for a Factor Augmented VAR

Gibbs Sampling for a Mixed Frequency VAR

Further reading

Chapter 4. Gibbs Sampling for Markov switching models

1.

PO NSO

Switching regressions
Markov Switching regressions
A Gibbs sampling algorithm for MS models
The Hamilton filter in Matlab
The backward recursion to draw S; in Matlab
Gibbs Sampler for the MS model in Matlab
Extensions
Further reading

Part 2. The Metropolis Hastings algorithm

Chapter 5. An introduction to the the Metropolis Hastings Algorithm

1.

P NSO

Introduction

The Metropolis Hastings algorithm

The Random Walk Metropolis Hastings Algorithm

The independence Metropolis Hastings algorithm

A VAR with time-varying coefficients and stochastic volatility

Convergence of the MH algorithm

Further Reading

Appendix: Computing the marginal likelihood using the Gelfand and Dey method

Chapter 6. Bayesian estimation of Linear DSGE models

iii

—_

w w w

25

29
29
31
36
41
48
52
o6
64
64

69
69
69
70
74
74
7
81
93
95

101
101
101
102
105
106
108
110
125

131

133
133
133
133
153
166
171
174
175

179

iv CONTENTS

1. The DSGE model
2. Metropolis Hastings Algorithm
3. Further Reading

Part 3. Further Topics

Chapter 7. State-Space models with time-varying parameters
1. Introduction
2. A dynamic factor model with time-varying parameters and stochastic volatility
3. Priors and the Gibbs Sampling algorithm
4. Further reading

Chapter 8. Appendix: Introduction to Matlab©
1. Introduction
2. Getting started
3. Matrix programming language
4. Program control
5. Numerical optimisation

Bibliography

179
185
188

189

191
191
191
192
201

205
205
205
205
209
212

215

Part 1

A Practical Introduction to Gibbs Sampling

CHAPTER 1

Gibbs Sampling for Linear Regression Models

1. Introduction

This chapter provides an introduction to the technique of estimating linear regression models using Gibbs sam-
pling. While the linear regression model is a particularly simple case, the application of Gibbs sampling in this
scenario follows the same principles as the implementation in a more complicated models (considered in later chap-
ters) and thus serves as a useful starting point. We draw heavily on the seminal treatment of this topic in Kim and
Nelson (1999). A more formal (but equally accessible) reference is Koop (2003).

The reader should aim to become familiar with the following with the help of this chapter

The prior distribution, the posterior distribution and Bayes Theorem.
Bayesian treatment of the linear regression model.

Why Gibbs sampling provides a convenient estimation method.
Coding the Gibbs sampling algorithm for a linear regression in Matlab

2. A Bayesian approach to estimating a linear regression model

Consider the task of estimating the following regression model

Y;g = BXt+Ut (21)
vy o~ N(O,O’Q)

where Y; is a T x 1 matrix of the dependent variable, Y; is a T x K matrix of the independent variables and
deterministic terms. We are concerned with estimating the K x 1 vector of coefficients B and the variance of the
error term o2.

A classical econometrician proceeds by obtaining data on Y; and X; and writes down the likelihood function of
the model

F (Vi|B,0?) = (270%) " exp (_ (Y, — BX,) (Y, — BXt))

o (2.2)

and obtains estimates B and 62 by maximising the likelihood. In this simple case these deliver the familiar OLS
estimator for the coefficients Bors = (X]X;)~ " (X]Y;) and the (biased) maximum likelihood estimator for the error
variance 6% = % For our purpose, the main noteworthy feature of the classical approach is the fact that the
estimates of the parameters of the model are solely based on information contained in data.

Bayesian analysis departs from this approach by allowing the researcher to incorporate her prior beliefs about
the parameters B and o2 into the estimation process. To be exact, the Bayesian econometrician when faced with the
task of estimating equation 2.1 would proceed in the following steps.

Step 1. The researcher forms a prior belief about the parameters to be estimated. This prior belief usually represents
information that the researcher has about B and ¢ which is not derived using the data Y; and X;. These
prior beliefs may have been formed through past experience or by examining studies (estimating similar
models) using other datasets. (We will discuss the merits of this approach for specific examples in the
chapters below). The key point is that these beliefs are expressed in the form of a probability distribution.
For example, the prior on the coefficients B is expressed as

P (B) ~ N (Bo; %) (2.3)

where the mean By represents the actual beliefs about the elements of B.

1 .
1 represents the belief that the first
coefficient equals 1 and the second equals —1. The variance of the prior distribution ¥o controls how strong this prior
belief is. A large number for Yo would imply that the researcher is unsure about the numbers she has chosen for By

and wants to place only a small weight on them. In contrast, a very small number for Xy implies that the researcher

EXAMPLE 1. In the case of two explanatory variables, the vector By =

is very sure about the belief expressed in By.In the case of two explanatory variables Yo may equal X = (100 100)

representing a ‘loose prior’ or an uncertain prior belief.

4 1. GIBBS SAMPLING FOR LINEAR REGRESSION MODELS

Step 2. The researcher collects data on Y; and X; and write down the likelihood function of the model

(Y - BXy)' (Y, — BXy)
202)

This step is identical to the approach of the classical econometrican and represents the information about
the model parameters contained in the data.

Step 3. The researcher updates her prior belief on the model parameters (formed in step 1) based on the information
contained in the data (using the likelihood function in step 2). In other words, the researcher combines the
prior distribution P (B, 02) and the likelihood function F (Yt|B, 02) to obtain the posterior distribution
H (B,UQ\Yt).

More formally, the Bayesian econometrician is interested in the posterior distribution H (B,UQ\Yt) which is
defined by the Bayes Law

F(Y;|B,0?) = (27702)7T/2 exp <—

F(Y}\B 02) X P(B 02)

H B 2 Y — ? ? 2.4
(y O | t) F(Y) ()
Equation 2.4 simply states that the posterior distribution is a product of the likelihood F (Yt|B , 02) and the prior
P (B,c?) divided by the density of the data F(Y) (also referred to as the marginal likelihood or the marginal data
density). Note that F'(Y) is a scalar and will not have any operational significance as far as estimation is concerned
(although it is crucial for model comparison, a topic we return to). Therefore the Bayes Law can be written as

H (B,0*Y;) < F (Y| B,0”) x P (B,0?) (2.5)

Equation 2.5 states that the posterior distribution is proportional to the likelihood times the prior. In practice, we
will consider equation 2.5 when considering the estimation of the linear regression model.

As an aside note that the Bayes law in equation 2.4 can be easily derived by considering the joint density of the
data Y; and parameters B, 0%, G (Yt, B, 02) and observing that ir can be factored in two ways

G (Yi, B,o%) = F(Y;) x H(B,0?|Y;) = F(Yy|B,0”) x P(B,0”)

That is the joint density G (Y}, B, 02) is the product of the marginal density of Y; and the conditional density
of the parameters H (B, 0?|Y;). Or equivalently the joint density is the product of the conditional density of the data
and the marginal density of the parameters. Rearranging the terms after the first equality leads to equation 2.4.

These steps in Bayesian analysis have a number of noteworthy features. First, the Bayesian econometrician is
interested in the posterior distribution and not the mode of the likelihood function. Second, this approach combines
prior information with the information in the data. In contrast, the classical econometrician focusses on information
contained in the data about the parameters as summarised by the likelihood function.

To motivate the use of Gibbs sampling for estimating H (B, 0?|Y;) we will consider the derivation of the posterior
distribution in three circumstances. First we consider estimating the posterior distribution of B under the assumption
that o2 is known. Next we consider estimating the posterior distribution of o2 under the assumption that B is known
and finally we consider the general case when both sets of parameters are unknown.

2 is known. Consider the scenario where the

2 already. As discussed above, the

2.1. Case 1: The posterior distribution of B assuming ¢
econometrician wants to estimate [in equation 2.1 but knows the value of o
posterior distribution is derived using three steps.

Setting the prior. In the first step the researcher sets the prior distribution for 8. A normally distributed prior
P (B) ~ N (By, X) for the coefficients is a conjugate prior. That is, when this prior is combined with the likelihood
function this results in a posterior with the same distribution as the prior. Since the form of the posterior is known
when using conjugate priors these are especially convenient from a practical point of view. The prior distribution is
given by the following equation

(2m) /2 5| "% exp [~0.5 (B — By)' 53" (B — By)] (2.6)
x exp [~0.5(B — By)' S5 (B — Bo)]

The equation in 2.6 simply defines a normal distribution with mean By and variance Y. Note that for practical
purposes we only need to consider terms in the exponent (second line of equation 2.6) as the first two terms in 2.6

((277)7[{/2 |Zo|7%) are constants.

Setting up the likelihood function. In the second step, the researcher collects the data and forms the
likelihood function:

F(Y;|B,0*%) = (2#02)771/2 exp (— (¥ - BXt2)U(2Yt — BXt)) (2.7)
(Ve = BX,)' (V; — BX,)
X exp (— By)

. -T
As 02 is assumed to be known in this example, we can drop the first term in equation 2.7 (2#02) /2

BAYESIAN APPROACH TO ESTIMATING A LINEAR REGRESSION MODEL

Prior-N(1,10)

Atight and a loose prior

F1GURE 1. Loose and tight prior for the coefficients. An example

Calculating the posterior distribution. Recall from equation 2.5 that the posterior distribution is propor-

tional to the likelihood times the prior. Therefore to find the posterior distribution for B (conditional on knowing o2)
the researcher multiplies equation 2.6 and 2.7 to obtain

— (2.8)

Equation 2.8 is simply a product of two normal distributions and the result is also a normal distribution. Hence the
posterior distribution of B conditional on o2 is given by:

H (B|o®,Y;) « exp [-0.5 (B — By)' Sg' (B — Bo)] x exp (_ (Y; — BX;) (Y — BXt))

H (Blo®Y;) "N (M*,V*) (2.9)

As shown in Hamilton (1994) pp 354 and Koop (2003) pp 61 the mean and the variance of this normal distribution
are given by the following expressions

M*

1 - 1
@¢+;g&) @g&+§gn>

1 -1

—1 /

<ZO + ;XtXt>

Consider the expression for the mean of the conditional posterior distribution M* = (35" + 2 X/ X;) - (35'Bo + HX[V7).
Note that the final term X/Y; can be re-written as X{X;B,s where By = (Xt’X,g)_1 X[Y:. That is

1 -1 1
Aﬂ:@y+§ﬁ&> @J&+Fﬁxag (2.11)

The second term of the expression in equation 2.11 shows that the mean of the conditional posterior distribution is
weighted average of the prior mean By and the maximum likelihood estimator B,;s with the weights given by the
reciprocal of the variances of the two (in particular 3 ! and %X{Xt). A large number for ¥ would imply a very
small weight on the prior and hence M* would be dominated by the OLS estimate. A very small number for ¥, on
the other hand, would imply that the conditional posterior mean is dominated by the prior. Note also that if the
prior is removed from the expressions in equation 2.10 (i.e. if one removes By and 3, ! from the expressions) , one

(2.10)
V*

is left with the maximum likelihood estimates.

EXAMPLE 2. Figure 1 shows a simple example about a prior distribution for a regression model with 1 coefficient
B. The X-axis of these figures show a range of values of B. The Y-axis plots the value of the normal prior distribution
associated with these values of B. The left panel shows a a prior distribution with a mean of 1 and a variance of 10.
As expected, the prior distribution is centered at 1 and the width of the distribution reflects the variance. The right
panel compares this prior distribution with a tighter prior centered around the same mean. In particular, the new
prior distribution (shown as the red line) has a variance of 2 and is much more tightly concentrated around the mean.

6 1. GIBBS SAMPLING FOR LINEAR REGRESSION MODELS

Likelihood function for Y;=5+e,&~N(0,1) Posterior Distribution using Prior-N(1,2)

0.9
0.8
07
»06
05
S

%04
03
02

0.1

wo

Posterior Distribution using different priors

&

Probabilty

o o
S

wo

FIGURE 2. The posterior distribution for the model Y; = 5X; + e, e; " N(0, 1) using different priors

The tope left panel of figure 2 plots the likelihood function for the simple regression model Y; = BX;+es, e, N(0,1), B =

5. As expected the likelihood function has its peak at B = 5. The top right panel shows the posterior distribution which
combines the prior distribution in figure 1 (N(1,2) shown as the red line) with the likelihood function. Note that as
the posterior combines the prior information (with a mean of 1) and the likelihood function, the posterior distribution
is not exactly centered around 5, but around a value slightly less than 5, reflecting the influence of the prior. Note
that if the prior is tightened significantly and its variance reduced to 0.01, this has the affect of shifting the posterior
distribution with the mass concentrated around 1 (red line in the bottom left panel). In contrast, a loose prior with a
prior variance of 1000 is concentrated around 5.

2.2. Case 2: The posterior distribution of ¢ assuming B is known. In the second example we consider
the estimation of 02 in equation 2.1 assuming that the value of B is known. The derivation of the (conditional)
posterior distribution of o2 proceeds in exactly the same three steps

Setting the prior. The normal distribution allows for negative numbers and is therefore not appropriate as a
prior distribution for o2. A conjugate prior for o2 is the inverse Gamma distribution or equivalently a conjugate prior
for 1/0? is the Gamma distribution.

DEFINITION 1. (Gamma Distribution): Suppose we have T iid numbers from the normal distribution vy

1
’UtNN (0, 5)

If we calculate the sum of squares of W = Zle vZ, then W is distributed as a Gamma distribution with T degrees
of freedom and a scale parameter 6
T 6
w-T <— > (2.12)

272

The probability density function for the Gamma distribution has a simple form and is given by
-we
g(W) x W2 exp (T) (2.13)

where the mean of the distribution is defined as E (W) = %.

Setting the prior (continued). We set a Gamma prior for 1/02. That is p (1/02) ~T (%, %“) where Tg

denotes the prior degrees of freedom and 6y denotes the prior scale parameter. As discussed below, the choice of
Ty and 6y affects the mean and the variance of the prior. The prior density, therefore, has the following form (see

equation 2.13.)
T
1=t —0o

2. A BAYESIAN APPROACH TO ESTIMATING A LINEAR REGRESSION MODEL

Inverse Gamma distribution for different scale parameters Inverse Gamma distribution for different degrees of freedom

T
1G(T,=16,=1)
———16(T,=16,2)
——1G(T,=1,6,24)

T
1G(T,=1,6,=1)
——— IG(T,=26,=1)
——IG(T,=4,6,=1)

©
T

F1GURE 3. The inverse Gamma distribution for different degrees of freedom and scale parameters.

Setting up the likelihood function.

In the second step, the researcher collects the data and forms the
likelihood function:

FIB.0Y) = (o) e (LAY - B (2.15)
2\ ~T/2 (Y — BXy)' (Y; — BXy)
x (02 exp (_ =)

As o2 is assumed to be unknown in this example, we cannot drop the entire first term in equation 2.15.
Calculating the posterior distribution. To calculate the posterior distribution of 1/02 (conditional on B)
we multiply the prior distribution in equation 2.14 and the likelihood function 2.15 to obtain

1 131 —8, " 1 ,
H ;|37Yt x— exp (5 5 | x0T Texp *E(Yt*BXt) (Y: — BXy)
.
T T
Bo1-g ,
%o (gm oo+ (- BXY (- BX)))
.

Lo (L (2.16)
exp 20_2 .

The resulting conditional posterior distribution for 1/02 in equation 2.16 can immediately be recognised as a Gamma
distribution with degrees of freedom 17 = % and 0; = 9°+(Y‘_BX2’5) (e —BX,)

. Note that the conditional posterior
distribution for o2 is inverse Gamma with degrees of freedom 7) and scale parameter 0.

Consider the mean of the conditional posterior distribution (given by g—i)
To+T
o+ (2.17)
0o + (Y: — BXy) (Y; — BXy)

It is interesting to note that without the prior parameters Ty and 6y, equation 2.17 simply defines the reciprocal of
the maximum likelihood estimator of 2.

EXAMPLE 4. The left panel of figure 3 plots the inverse Gamma distribution with the degrees of freedom held fixed
at Ty = 1, but for scale parameter 61 = 1,2,4. Note that as the scale parameter increases, the distribution becomes
skewed to the right and the mean increases. This suggests that an inverse Gamma prior with a larger scale parameter
incorporates a prior belief of a larger value for 0. The right panel of the figure plots the inverse Gamma distribution
for 01 = 1, but for degrees of freedom Ty = 1,2,4. As the degrees of freedom increase, the inverse Gamma distribution

is more tightly centered around the mean. This suggests that a higher value for the degrees of freedom implies a tighter
set of prior beliefs.

8 1. GIBBS SAMPLING FOR LINEAR REGRESSION MODELS

2.3. Case 3: The posterior distribution of ¢2 and B. We now turn to the empirically relevant case when

both the coefficient vector B and the variance 1/0? (in equation 2.1) is unknown. We proceed in exactly the same
three steps
Setting the prior. We set the joint prior density for

1 1 1
T
where P (B|Z) "N(By,0?%) and P (%) T (£, 970) That is: P (%) = #_nglexp (5793) as in section 2.2 and
P (B|%) = (2m)” K2 |o?%] 2 : exp [—0.5 (B — By)' (0220)71 (B — BO)]. Note that the prior for B is set conditional
on o?. This prior is referred to as the natural conjugate prior for the linear regression model. A natural conjugate
prior is a conjugate prior which has the same functional form as the likelihood.
Setting up the likelihood function. As above, the likelihood function is given by

/
F (Yi|B,0%) = (270%) % exp <_ (Y — BX;)J(QYt - BXt)>

Calculating the posterior distribution. The joint posterior distribution of B and the variance 1/0? is
obtained by combining 2.18 and 2.19

1 1
H (E,Bm) x p (B, §> x F (Y| B,o?) (2.20)

Note that equation 2.20 is a joint posterior distribution involving 0—12 and B. Its form is more complicated than
the conditional distributions for B and % shown in sections 2.1 and 2.2. To proceed further in terms of inference,
the researcher has to ‘isolate’ the component of the posterior relevant to B or # For example, to conduct inference
about B, the researcher has to derive the marginal posterior distribution for B. Similarly, inference on # is based
on the marginal posterior distribution for # The marginal posterior for B is defined as

(2.19)

T o1 1
1 (1Y) = [# (557) d (221)
0

while the marginal posterior for 0—12 is given by

1 7o
bt <§n> _ /H <§,Byt> dB (2.22)
0

In the case of this simple linear regression model under the natural conjugate prior, analytical results for these
integrals are available. As shown in Hamilton (1994) pp 357, the marginal posterior distribution for B is a multi-
variate T distribution, while the marginal posterior for —2 is a Gamma distribution. An intuitive description of these
analytical results can also be found in Koop (2003) Chapter 2.

However, for the linear regression model with other prior distributions (for example where the prior for the
coefficients is set independently from the prior for the variance) analytical derivation of the joint posterior and then
the marginal posterior distribution is not possible. Similarly, in more complex models with a larger set of unknown
parameters (i.e. models that may be more useful for inference and forecasting) these analytical results may be difficult
to obtain. This may happen if the form of the joint posterior is unknown or is too complex for analytical integration.

Readers should pause at this point and reflect on two key messages from the three cases considered above:

EXAMPLE 3@ As shown by Case 1 and Case 2, conditional posterior distributions are relatively easy to
derive and work with.
e In contrast, as shown by Case 3, derivation of the marginal posterior distribution (from a joint posterior
distribution) requires analytical integration which may prove difficult in complex models.

This need for analytical integration to calculate the marginal posterior distribution was the main stumbling block
of Bayesian analysis making it difficult for applied researchers.

3. Gibbs Sampling for the linear regression model

It was the development of simulation method such as Gibbs sampling which greatly simplified the integration
step discussed above and made it possible to easily extend Bayesian analysis to a variety of econometric models.

DEFINITION 2. Gibbs sampling is a numerical method that uses draws from conditional distributions to ap-
proximate joint and marginal distributions.

As discussed in case 3 above, researchers are interested in marginal posterior distributions which may be difficult
to derive analytically. In contrast, the conditional posterior distribution of each set of parameters is readily available.
According to definition 2, one can approximate the marginal posterior distribution by sampling from the conditional
distributions.

3. GIBBS SAMPLING FOR THE LINEAR REGRESSION MODEL 9

We describe this algorithm in detail below, first in a general setting and then applied specifically to the linear
regression model. Most importantly, we then describe how to code the algorithm for linear regression models. Note
that all the files referred to below are saved in the sub-folder called chapter 1 in the main folder called code.

3.1. Gibbs Sampling a general description. Suppose we have a joint distribution of k£ variables

f(ZL'1,ZL’2...£Ek) (31)

This may, for example, be a joint posterior distribution.
and we are interested in obtaining the marginal distributions

Fla),i=1.k (3.2)

The standard way to do this is to integrate the joint distribution in 3.1. However, as discussed above, this integration
may be difficult or infeasible in some cases. It may be that the exact form of 3.1 is unknown or is to complicated for
direct analytical integration.

Assume that the form of the conditional distributions f(x;|z;), 4 # j is known. A Gibbs sampling algorithm with
the following steps can be used to approximate the marginal distributions.

(1) Set starting values for xj....zj

0 0
xl, '-':I;K

where the superscript 0 denotes the starting values.
(2) Sample x1 from the distribution of x; conditional on current values of xs....z

f (gc}|gcg7 x%)
(3) Sample 21 from the distribution of x5 conditional on current values of x1, z3...7},

f (3|21, 25..2%)

k. Sample z}, from the distribution of zj, conditional on current values of x1,zs...z%—1

f (zilat, 252k 1)
to complete 1 iteration of the Gibbs sampling algorithm.

As the number of Gibbs iterations increases to infinity, the samples or draws from the conditional distributions
converge to the joint and marginal distributions of z; at an exponential rate (for a proof of convergence see Casella and
George (1992)). Therefore after a large enough number of iterations, the marginal distributions can be approximated
by the empirical distribution of ;.

In other words, one repeats the Gibbs iterations M times (ie a number of iterations large enough for convergence)
and saves the last H draws of x; (for eg H = 1000). This implies that the researcher is left with H values for z1....xx.
The histogram for zj....z; (or any other estimate of the empirical density) is an approximation for the marginal
density of x7....xk.

Thus an estimate of the mean of the marginal posterior distribution for x; is simply the sample mean of the H

retained draws
1z
b
_§ B
b=1

where the superscript b indexes the (retained) Gibbs iterations. Similarly, the estimate of the variance of the marginal
posterior distribution is given by

How many Gibbs iterations are required for convergence? We will deal with this question in detail in section
section 3.7 below.

One crucial thing to note is that the implementation of the Gibbs sampling algorithm requires the researcher to
know the form of the conditional distributions f(x;|z;). In addition, it must be possible to take random draws from
these conditional distributions.

3.2. Gibbs Sampling for a linear regression. We now proceed to our first practical example involving a
linear regression model. We first describe the application of the Gibbs sampling algorithm to the regression. This is
followed immediately by a line by line description of Matlab code needed to implement the algorithm.

Consider the estimation of the following AR(2) model via Gibbs sampling

Y, =a+ B1Y; 1+ BaYi o+ v, 0 N(0,07) (3.3)

where Y; is annual CPI inflation for the US over the period 1948Q1 to 2010Q3. Let X; = {1,Y;_1,1 Y;_2} denote
the RHS variables in equation 3.3 and B = {«, By, B} the coefficient vector. Our aim is to approximate the marginal
posterior distribution of a, By, B, and o2. As discussed above it is difficult to derive these marginal distributions
analytically. Note, however, that we readily derived the posterior distribution of B = {«, By, B2} conditional on o2

10 1. GIBBS SAMPLING FOR LINEAR REGRESSION MODELS

(see section 2.1) and the posterior distribution of o conditional on B = {«, By, Ba} (see section 2.2) Estimation of
this model proceeds in the following steps

Step 1 Set priors and starting values. We set a normal prior for the coefficients B.

al Ya 0 0
p(B)NN B(l] , 0 Xp1 0 (34)
BY 0 0 Sp
Bog 3o

In other words, we specify the prior means for each coefficient in B (denoted as By in 3.4) and the prior
variance Y. For this example (with three coefficients) By is a 3 x 1 vector, while X is 3 X 3 matrix with
each diagonal element specifying the prior variance of the corresponding element of By.

We set an inverse Gamma prior for 02 and set the prior degrees of freedom Ty and the prior scale matrix 6y (see
equation 3.5). We will therefore work with the inverse Gamma distribution in the Gibbs sampler below. Note that
this is equivalent to working with Gamma distribution and 1/02.

Ty 6
2\ ~p—1 0 Y0
c°) T —, = 3.5
pe) T (3 7) 55)
To initialise the Gibbs sampler we need a starting value for either ¢2 or B. In this example we will assume that the
starting value for 02 = 0, ¢ where 03, ¢ is the OLS estimate of o%. In linear models (such as linear regressions and
Vector Autoregressions) the choice of starting values has, in our experience, little impact on the final results given
that the number of Gibbs iterations is large enough.

Step 2 Given a value for o2 we sample from the conditional posterior distribution of B. As discussed in section 2.1,

this is a normal distribution with a known mean and variance given

H (Blo®Y;) "N (M*,V*) (3.6)
where
1 ! 1
* o —1 !/ —1 !/

(%1) = (EO +§XtXt) (EO Bo+§Xth) (3.7)
1 -1

Vo= (S S5XX

(3x3) (o tozt t)

Note that we have all the ingredients to calculate M* and V* which in this example are 3 x 1 and 3 x 3
matrices respectively. We now need a sample from the normal distribution with mean M™ and variance V*.
For this we can use the following algorithm.

ArcoriTHM 1. To sample a k x lvector denoted by z from the N(m,v) distribution, first generate k x 1 numbers
from the standard normal distribution (call these 2°. Note that all computer packages will provide a routine to do
this). These standard normal numbers can then be transformed such that the mean is equal to m and variance equals
v using the following transformation

z=m+ 2% x vl/?

Thus one adds the mean and multiplies 2° by the square root of the variance.

Step 2 (continued) The procedure in algorithm 1 suggests that once we have calculated M* and V*, the draw for B is obtained

as /
B' = M* +| B x (V) (38)
(3x1) (3x1) (1x3) (3%3)

where B is a 1 x 3 vector from the standard normal distribution. Note that the superscript 1 in B! denotes
the first Gibbs iteration.

Step 3 Given the draw B!, we draw o2 form its conditional posterior distribution. As shown in section 2.2 the
conditional posterior distribution for o2 is inverse Gamma

H (o*|B,Y;) T (% 9—21) (3.9)
where
T, = To+T (3.10)
0, = 6o+ (Yi—B'X,) (Y, — B'X,)

A crucial thing to note about the posterior scale parameter of this distribution 6, is the fact that the second
term ((Yt - B 1Xt)/ (Yt - B 1Xt)) is calculated using the previous draw of the coefficient vector (in this case
B'). To draw from the inverse Gamma distribution in equation 3.9 we first calculate the parameters in
equation 3.10 and then use the following algorithm to draw (02)1 from the inverse Gamma distribution

(note that (O’Q)i denotes the ith Gibbs draw) .

3. GIBBS SAMPLING FOR THE LINEAR REGRESSION MODEL 11

ALGORITHM 2. To sample a scalar z from the Inverse Gamma distribution with degrees of freedom % and scale

parameter 2 i.e. T=1(L, 2): Generate T numbers form the standard normal distribution z2°~N(0,1). Then
D
T 01,0

is a draw from the T=Y(L, L) distribution.

Step 4 Repeat steps 2 and 3 M times to obtain B'...BM and (02)1 (0‘2)M. The last H values of B and ¢? from
these iterations is used to form the empirical distribution of these parameters. Note that this empirical
distribution is an approximation to the marginal posterior distribution. Note also that the first M — H
iterations which are discarded are referred to as burn-in iterations. These are the number of iterations
required for the Gibbs sampler to converge.

Its worth noting that it makes no difference which order steps 2 and 3 are repeated. For example one could start
the Gibbs sampler by drawing o2 conditional on starting values for B (rather than the other way around as we have
done here)

3.2.1. Inference using output from the Gibbs sampler. The Gibbs sampler applied to the linear regression model
produces a sequence of draws from the approximate marginal posterior distribution of B and ¢2. The mean of these
draws is an approximation to the posterior mean and provides a point estimate of of B and o2. The percentiles
calculated from these draws can be used to produce posterior density intervals. For example, the 5/ and the 95"
percentiles approximate the 10% highest posterior density intervals (HPDI) or 10% credible sets which can be used
for simple hypothesis testing. For example, if the highest posterior density interval for B does not contain zero, this
is evidence that the hypothesis that B = 0 can be rejected.

More formal methods for model comparison involve the marginal likelihood F(Y") mentioned in section 2. The
marginal likelihood is defined as

F(Y) = /F (Y|B,0%)p (B,0?) d=

where Z = B, 02. In other words, the marginal likelihood represents the posterior distribution with the parameters

integrated out. Consider two models M; and M. Model My is preferred if Fyy, (Y) > Fiy, (Y) or the Bayes factor
—;I;Z 8;; is larger than 1. In comparison to HPDIs, inference based on marginal likelihoods or Bayes factors is more
2
complicated from a computational and statistical point of view. First, while an analytical expression for F(Y") is
available for the linear regression model under the natural conjugate prior, numerical methods are generally required
to calculate the integral in the expression for F(Y') above. In the appendix to this chapter, we provide an example
of how Gibbs sampling can be used to compute the marginal likelihood for the linear regression model. Second,
model comparison using marginal likelihoods requires the researchers to use proper priors (i.e. prior distributions
that integrate to 1). In addition, using non-informative priors may lead to problems when interpreting Bayes Factors.

An excellent description of these issues can be found in Koop (2003) pp 38.

3.3. Gibbs Sampling for a linear regression in Matlab (examplel.m). We now go through the Matlab
code needed for implementing the algorithm described in the section above. Note that the aim is to estimate the
following AR(2) model via Gibbs sampling,.

Y; =a+ B1Yi 1+ BaYi o+ v, v, N(0,0?) (3.11)

where Y; is annual CPI inflation for the US over the period 1948Q1 to 2010Q3 and B = {«, By, B2}. The code
presented below is marked with comments for convenience. The same code without comments accompanies this
monograph and is arranged by chapter. The code for the example we consider in this section is called examplel.m
and is saved in the folder

Consider the code for this example presented in 4 and 5. Line 2 of the code adds functions that are needed as
utilities—eg for taking lags or differences. We will not discuss these further. On line 5, we load data for US inflation
from an excel file. Line 7 creates the regressors, a constant and two lags of inflation (using the function lag0 in the
folder functions). Line 11 specifies the total number of time series observations after removing the missing values
generated after taking lags. Line 14 sets prior mean for the regression coefficients.

af 0
B |=|o
BY 0

The prior mean for each coefficient is set to zero in this example. The prior variance is set to an identity matrix on
line 15 in this example.

o O 0 1 0 0
0 Xp1 O =010
0 0 Zpo 0 01

Line 17 sets the prior degrees of freedom for the inverse Gamma distribution while line sets 6y the prior scale
parameter. Line 20 sets the starting value of B, while line 21 sets the starting value for 2. Line 22 specifies the total

12 1. GIBBS SAMPLING FOR LINEAR REGRESSION MODELS

1 clear

2 addpath ('functions'); %this line adds functions to take lags etc
3 %$an AR 2 model for US inflation

4 %load inflation data

5 Y=xlsread('\data\inflaticn.xls"');

6 T=rows(Y):

7 X=[ones(T,1l) lag0(Y,1l) lagO(Y,2)];:

8 %$remove missing obs

9 Y=Y (3:end):

10 X=X (3:end, :);

11 T=rows (X);

12 %$step 1 set priors and starting values
13 %priors for B

a’ > 0 O
BY || o =y o0
BY 0 0 Zp

14 BO=[0;0;0]¢ /BO/' Zo
15 Sigmal=eye(3);

16 $priors for sigma2

17 TO=1;

18 D0=0.1; 0

19 %starting values
20 B=BO;

21 sigma2=1;

22 reps=5000; $total numbers of Gibbs i1terations

23 burn=4000; $percent of burn-in iterations

24 outl=[];

25 out2=[]:

26 for i=l:reps

27 %$step 2 Sample B conditional on sigma N (M*,V*)

28

M=inv (inv (Sigma0)+ (1/sigmaz)* (X'*X))* (inv (Sigmal) *BO+ (1/sigmaz) *X'*Y) ;

M= (55" + G—g)axt)*l (2'Bo + LX)

(3x1)

29 V=inv (inv (Sigma0)+ (1/sigma2)* (X'*X)) ;
-1
e = (35 + LX)
(3x3) o

30 chck=-1;
31 while chck<0 $check for stability
32 B=M+ (randn(1l,3)*chol(V))"';
!
1 _Aq% D *\ 1/2
Bl=M* +| B x (")
(3x1) (3xl) (1x3) (3x3)

33 b=[B(2) B(3):1 01:
34 ee=nmax (abs(eig(b)));
35 if ee<=1

36 chck=1;

FicURE 4. Example 1: Matlab code

number of Gibbs iterations, while line 23 specifies the number to discard (in this example we save 1000 iterations for
inference). outl and out2 on line 24 and 25 are empty matrices that will save the draws of B and o2 respectively. Line
26 starts the main loop that carries out the Gibbs iterations. On line 28, we begin the first step of the Gibbs algorithm
and calculate the mean of the conditional posterior distribution of B (M* = (S + g—gX{Xt)_l (25'Bo + 5 X[Y3))
and on line 29 we calculate the variance of this conditional posterior distribution. Line 32 draws from the normal
distribution with this mean and variance. Note that it is standard to restrict the draw of the AR coefficients to be
stable. This is why line 31 has a while loop which keeps on drawing from the coefficients from the normal distribution
if the draws are unstable. Stability is checked on line 33 by computing the eigenvalues of the coefficient matrix written

37
38
39
40
41
42
43

3. GIBBS SAMPLING FOR THE LINEAR REGRESSION MODEL

end

end

Yetep 3 sample sigmal2 conditional on B from IG{T1,D1};
$compute residuals

resids=Y-X*B;

$compute posterior df and scale matrix

T1=TO0+T;

1y =1p+1

44

D1=D0+resids'*resids;

0, = 0y + (¥, - B'X,) (¥: - BLX})

45
46
47
48

A

49
50
51
52
53
54
55
56
57
58
59
60
6l
G2
63
64
65
66
a7
68
3=
70
71
72
73
74
75
76

$draw from IG
zO0=randn (T1,1);
z0z0=z0"'"*z0;
sigma2=D1/z0z0;

D

ZO!ZO

if i>burn

outl=[outl;B'];

out2=[out2;sigma2] ;
end
end
$plot marginal posterior distributicns
subplot(2,2,1);
hist(outl(:,1),50);
axis tight
title('Constant');
subplot(2,2,2);
hist(outl(:,2),50);
axis tight
title('AR(1l) coefficient');
subplot(2,2,3);
hist (outl(:,3),50);
axis tight
title('AR(2) coefficient');
subplot(2,2,4);
hist(out2(:,1),50);
axis tight
title("\sigma™{2}"');
$compute mean of the marginal posteriocr distribution of B
MB=mean (ocutl) ;
$compute standard error
VB=std(outl);
$compute 95% error band
ER=prctile(cutl, [5 95]);

Published with MMATIAB® 7.9

FIGURE 5. Example 1: Matlab Code (continued)

13

14 1. GIBBS SAMPLING FOR LINEAR REGRESSION MODELS

AR(1) coefficient

AR(2) coefficient

FICURE 6. Results using examplel.m

Posterior Mean | Standard Deviation | 5th and 95th percentiles
a |0.2494 0.0799 (0.1104,0.3765)
By | 1.3867 0.0557 (1.2922,1.4806)
By | —0.4600 0.0550 (—0.5532, —0.3709)

TABLE 1. Results using examplel.m

in first order companion form. That is the AR(2) model is re-written as (this is the companion form)

()= (0 (1 8)(2) ()

By Bs

1 0
that this check for stability is not required for the Gibbs sampling algorithm but usually added by researchers for
practical convenience. Line 41 computes the residuals using the last draw of the coefficients. Line 43 computes the
posterior degrees of freedom for the inverse Gamma distribution 77 = Ty + 7. Line 44 computes the posterior scale
parameter 61 = 6y + (Y} — BlXt)l (Yt — BlXt) . Line 46 to 48 draw from the inverse Gamma distribution using
algorithm 2. Lines 49 to 51 save the draws of B and o2 once the number of iterations exceed the burn-in period.
Running this file produces the histograms shown in figure 6 (see lines 54 to 70 in examplel.m—these histograms are
drawn using the retained draws in outl and out2). These histograms are the Gibbs sampling estimate of the marginal
posterior distribution of the coefficients and the variance. Note that the mean of the posterior distribution is easily
calculated as the sample mean of these saved draws. Similarly, the sample standard deviation and percentiles provide
measures of uncertainty. Researchers usually report the posterior mean, the standard deviation and the 5th and 95th
percentiles of the posterior distribution. Examplel.m produces the following moments for the coefficients (see table
1).

Note that the percentiles of the distribution are a useful measure of uncertainty. These represent HPDIs, or the
posterior belief that the parameter lies within a range (see Canova (2007) page 337 and Koop (2003) pp 43). Suppose
that the lower bound for o was less than 0. Then this would indicate that one cannot exclude the possibility that
the posterior mean for « is equal to zero.

Then the AR model is stable if the eigenvalues of) are less than or equal to 1 in absolute value. Note

3.4. Gibbs Sampling for a linear regression in Matlab and forecasting (example2.m). The file ex-
ample2.m considers the same model as in the previous subsection. However, we know use the AR model to forecast
inflation and build the distribution of the forecast. This example shows that one can easily obtain the distribution of
functions of the regression coefficients. Note that the forecast from an AR(2) model is easily obtained via simulation.
In other words, given a value for the current and lagged data and the regression coefficients, the 1 period ahead
forecast is

Vi1 = a+ B1Y; + BV g + (0v*) (3.12)

3. GIBBS SAMPLING FOR THE LINEAR REGRESSION MODEL 15

clear

addpath (*functions'); %this line adds functions to take lags etc
$an AR 2 model for US inflation

$load inflation data
Y=xlsread({'\data\inflaticn.xls");

T=rows (Y)

X=[ones(T,1) lag0(Y,1) lagO(Y,2)]:

$remove missing obs

9 Y=Y (3:end):

10 X=X (3:end, :);

11 T=rows (X);

12 %$step 1 set priors and starting values

13 %priors for B

14 BO=[0;0;01;

15 Sigmal=eye(3);

16 $priors for sigmaZ2

17 TO0=1;

18 D0=0.1;

19 %starting values

20 B=BO0;

21 sigma2=1;

22 reps=5000; $total numbers of Gibbs iterations
23 burn=4000; $percent of burn-in iterations
24 outl=[]:

25 out2=[]:

26 out3=[];

27 for i=l:reps

28 %$step 2 Sample B conditional on sigma N (M*,V*)

® o U W N

M=inv (inv (Sigma0)+(1l/sigma2) * (X'*X})) * (inv (Sigmal) *BO+(1/sigma2) *X'*Y);
30 V=inv (inv (Sigmal)+(1/sigma2)* (X"*X));

31 chek==1g

32 while chck<0 $check for stability
33 B=M+ (randn (1,3)*chol(V))"';

34 b=[B(2) B(3):1 01:

35 ee=max (abs(eig(b)));

36 1f ee<=1

37 chck=1;

38 end

38 end

40 %step 3 sample sigma? conditional on B from IG(T1,D1);
41 Scompute residuals

42 resids=Y-X*B;

43 Scompute posterior df and scale matrix

44 T1=TO+T;

45 D1=DO+resids'*resids;

46 $draw from IG

47 zO0=randn(T1,1);

48 z0z0=z0"'"*z0;

49 sigma2=D1/z0z0;

50 if i>burn

51 outl=[outl;B'];

52 out2=[out2; sigma2] ;

53

54 $compute forecast for 2 years

55 vhat=zeros (14,1);

56 vhat{l:2)=Y(end-1:end); $%$starting values

57 cfactor=sgrt(sigma2); %standard deviation of the shocks
58 for m=3:14

59 vhat (m)=[1 vhat(m-1) wyhat(m-2)]*B+(randn(l,1l)*cfactoer);

FicURE 7. Example 2: Matlab code

where v* is a scalar drawn from the standard normal distribution. Similarly, the 2 period ahead forecast is
Yipo = a+ By Yy + BoY; + (0v%) (3.13)

and so forth. Note that we incorporate future shock uncertainty by adding the term ov* i.e. a draw from the normal
distribution with mean 0 and variance o2.

The code shown in figures 7 and 8 is identical to example 1 until line 54. Once past the burn in stage, we not
only save the draws from the conditional distributions of the coefficients and the variance, but we use these draws to

compute a two year ahead forecast for inflation. Line 55 intialises an empty matrix yhat which will save the forecast.

16 1. GIBBS SAMPLING FOR LINEAR REGRESSION MODELS

60 end

61l $save

62 out3=[out3 [Y;vhat(3:end)]];

63 end

64 end

65 %$plot marginal posterior distributions
66 figure (1)

67 subplot(2,2,1);

68 hist(outl(:,1),50);

69 axis tight

70 title('Constant');

71 subplot(2,2,2):;

72 hist(outl(:,2),50);

73 axis tight

74 title('AR(1l) coefficient');

75 subplot(2,2,3);

76 hist(outl(:,3),50);

77 axis tight

78 title('AR(2) coefficient');

79 subplot(2,2,4);

80 hist{out2(:,1),50);

81 axis tight

82 title('\sigma{2}");

83 %compute mean of the marginal posterior distribution of B
84 MB=mean (outl) ;

85 %compute standard error

86 VB=std(outl);

87 %compute 95% error band

88 EB=prctile(outl, [5 95]);

B89 ¢plot forecast distribution

90 figure(2)

91 TT=1947.25:0.25:2012.5;

92 outx=prctile(out3', [10 20 30 40 50 60 70 80 90])'; Sshere prctile
calculates percentiles of the forecast distribution
93 plot (TT,cutx) ;

94 x1im([2000 2013])

Published with MATLAB® 7.9

FIGURE 8. Example 2: Matlab code (continued)

Line 56 fills the first two values of yhat as actual values of inflation in the last two periods of the sample. Line 58
to 60 carries out the recursion shown in equations 3.12 and 3.13 for 12 periods. Line 62 saves actual inflation and
the forecast in a matrix out3. The crucial thing to note is that this done for each Gibbs iteration after the burn-in
period. Therefore in the end we have a set of 1000 forecasts. This represents an estimate of the posterior density.
On line 92 we calculate the percentiles of the 1000 forecasts. The result gives us a fan chart for the inflation forecast
shown in figure 9.

3.5. Gibbs Sampling for a linear regression with serial correlation. We now proceed to our second
main example involving the linear regression model. We illustrate the power of the Gibbs sampler by considering

3. GIBBS SAMPLING FOR THE LINEAR REGRESSION MODEL 17

I I I I
-2
2000 2002 2004 2006 2008 2010 2012

F1GURE 9. The distribution of the forecast of inflation using example2.m

the model in 3.3 but allowing for first order serial correlation in the residuals. We first describe the application of
the Gibbs sampling algorithm to the regression. This is followed immediately by a line by line description of Matlab
code needed to implement the algorithm. This algorithm was first developed in Chib (1993).

Consider the estimation of the following AR(2) model via Gibbs sampling

Yi = a+B1Y:1+BY; o+ (3.14)
v = pu—1 tE,E ~ N(Oagz)

where Y; is annual CPI inflation for the US over the period 1948Q1 to 2010Q3. Let X; = {1,Y;_1,1 Y;_2} denote
the RHS variables in equation 3.3 and B = {«, By, B} the coefficient vector. Our aim is to approximate the marginal
posterior distribution of «, By, By and o2 and p.

The key to seeting up the Gibbs sampler for this model is to make the following two observations

e Suppose we knew the value of p. Then the model in equation 3.14 can be transformed to remove the serial
correlation. In particular we can re-write the model as

(Ye = pYi1) =a(l—p)+ Bi(Yi—1 — pYi2) + Ba(Yi—2 — pYi_3) + (vr — pvs—1) (3.15)
Yy Y, Y, €t

That is we subtract the lag of each variable times the serial correlation coefficient p. Note that the trans-
formed error term vy — pv;_1 is serially uncorrelated. Therefore after this transformation we are back to the
linear regression framework we saw in the first example (see section 3.2). In other words, after removing
the serial correlation, the conditional distribution of the coefficients and of the error variance is exactly as
described for the standard linear regression model in section 3.2.

e Suppose we know «, B; and Bs. Then we can compute v; = Y; — (o + B1Y;—1 + B2Y;_2) and treat the
equation v; = pvy_1 + &4,6¢ ~ N(0,02) as a linear regression model in v;. Again, this is just a standard
linear regression model with an iid error term and the standard formulas for the conditional distribution of
the regression coefficient p and the error variance o2 applies.

These two observations clearly suggest that to estimate this model, the Gibbs sampler needs three steps (instead
of two in the previous example). We draw a, B; and By conditional on knowing o2 and p after transforming the
model to remove serial correlation (as in equation 3.15). Conditional on «, By and By and o2 we draw p. Finally,
conditional on «, By,Bs and p we draw o2. The steps are as follows

Step 1 Set priors and starting values. We set a normal prior for the coefficients B.

al Ya 0 0
pBN| | B || 0 =m0 (3.16)
BY 0 0 Xpo

Bo o

18 1. GIBBS SAMPLING FOR LINEAR REGRESSION MODELS

In other words, we specify the prior means for each coefficient in B (denoted as By in 3.4) and the prior
variance Y. For this example (with three coefficients) By is a 3 x 1 vector, while X is 3 X 3 matrix with
each diagonal element specifying the prior variance of the corresponding element of By.

We set a normal prior for the serial correlation coefficient p

p(p) "N (0°,%)) (3.17)

We set an inverse Gamma prior for 02 and set the prior degrees of freedom T and the prior scale matrix 6y (see

equation 3.18).
o1 (To O
p(o?) T 1(7050) (3.18)

To initialise the Gibbs sampler we need a starting value for 2 and p. In this example we will assume that the starting
value for 02 = 0%, ¢ where 02 5 is the OLS estimate of 0. We assume that the starting value for p = 0.

Step 2 Given a value for 02 and p we sample from the conditional posterior distribution of B. As discussed above,
this is done by first transforming the dependent and independent variables in the model to remove serial
correlation. Once this is done we are back to the standard linear regression framework. We create the
following transformed variables

Y} = Yi-pYia
Xt* = X;—pXi1

where X} represent the right hand side variables in our AR model. The conditional distribution of the
regression coefficients is then given as

H (Bl|o®,p,Y;) "N (M*,V*) (3.19)
where
1 -t 1
* _ —1 * * —1 * *
(%1) = (20 +§Xt’xt) (20 Bﬁpxt’yt) (3.20)
—1

Vo= (St XX
(3x3) 0 o2t ¢

Note that the mean and variance in equation 3.20 is identical to the expressions in equation 3.7. We have
simply replaced the dependent and independent variables with our transformed data.

Step 3 Conditional on 02 and B we sample from the conditional distribution of p. Given the previous draw of
B we can calculate the model residuals vy = Y; — (o + B1Y;—1 + B2Y;_2) and treat the equation v; =
pvi_1 + €t,60 ~ N(0,0%) as an AR(1) model in v;. Therefore, the conditional distribution for p is simply a
normal distribution with the mean and variance derived in section 2.1. That is, the conditional distribution
is

H (plo®, B,Y;) "N (p*, 2*) (3.21)
where
-1
= (2t ix% St + ix' (3.22)
(1€<1) - P o2 tt P P o2 tYt .
* _ 2—1 i / -
(1Z><1) o o o2 Telt

where y; = v and x; = vi—1. With a value for p* and z* in hand, we simply draw p from the normal
distribution with this mean and variance

pt = p +
(1x1) (1x1)

x (2%)1/?
(1x1) (1x1)
where p is a draw from the standard normal distribution.
Step 4 Given a draw for B and p we draw o2 form its conditional posterior distribution. As shown in section 2.2
the conditional posterior distribution for o2 is inverse Gamma

H (c*B,Y;) T! (% 9—21> (3.23)
where
T, = To+T (3.24)
01 = 0o+ (Y7 - B'X;) (Y, - B'X))

Note that the term ((Y;* — Bng‘)/ (Y — B1X})) is calculated using the éid residuals Y;* — B' X} (where
B! is the previous draw of the coefficient vector).

3. GIBBS SAMPLING FOR THE LINEAR REGRESSION MODEL 19

clear

addpath ('functions');

%an AR 2 model for US inflation with autocorrelated AR(1) disturbances
$load inflation data
Y=xlsread({'\data\inflaticn.xls");
T=rows (Y)

X=[ones(T,1) lag0(Y,1) lagO(Y,2)]:
$remove missing obs

9 Y=Y (3:end):

10 X=X (3:end, :);

11 T=rows (X);

12 %$step 1 set priors and starting values
13 %priors for B

® o U W N

a® >, 0 0
B [l 0 =m o

0
///—///r”’//’/' Z;Z 0 0 EIBZ
14 BO=[0;0:0]; /,—jé/ o

15 Sigmal=eye(3);
16 $priors for sigma2

17 TO0=1;
2 -1 Lo %
pe?)T (5 5)

18 D0=0.1;
19 s$priors for rho

0
20 rho0=0; ;)

Zp

21 Sigmalr=1;

22 %$starting values
23 B=B0;

24 rho=rho0;

25 sigma2=1;

26 reps=15000;

27 burn=12000;

28 outl=[]; %will save the inflation forecast

29 out2=[];

30 out3=[]:

31 for i=l:reps

32 %step 2 Sample B conditional on sigma N(M*,V*)

33 %remove gerial correlation
*
}1 = }3 —'[)}371

)(? :ZAX} —'[szfl

34 ystar=Y-lagO(Y,1)*rho;

35 xstar=x-lag0(X,1)*rho;
36 ystar=ystar(2:end,:);
37 xstar=xstar(2:end, :);

38
M=inv (inv (Sigma0)+(1l/sigmaZ) * (xstar"*xstar))* (inv (Sigmal)*BO+(1/sigmal)*
xstar'*ystar);

i (e (e)

FicUure 10. Example 3: Matlab code

Step 5 Repeat steps 2 and 4 M times to obtain B'...BM, p'.. p™and (02)1 (UQ)M. The last H values of B, p
and o2 from these iterations is used to form the empirical distribution of these parameters. This example
shows that we reduce a relatively complicated model into three steps, each of which are simple and based
on the linear regression framework. As seen in later chapters, Gibbs sampling will operate in exactly the
same way in more complicated models—i.e. by breaking the problem down into smaller simpler steps.

3.6. Gibbs Sampling for a linear regression with serial correlation in Matlab (example3.m). The
matlab code for this example is a simple extension of examplel.m and shown in figures 10, 11 and 12. Note that the

20 1. GIBBS SAMPLING FOR LINEAR REGRESSION MODELS

39 V=inv (inv (Sigma0)+ (1/sigma2)* (xstar'*xstar));

-1

* -1 1 */
e = (3 + LX)
(3x3) g
40 chck=-1;
41 while chck<0
42 B=M+ (randn(l,3)*chol{V))";
43 b=[B(2) B(3);1 01;:
44 ee=max (abs(eig(b))):
45 1f ee<=1
46 chck=1;
47 end
48 end
49 %$step 3 compute rho
R v =Y, (06 +B1Y +B2Y;_2)
51 x=lagO0(y,1);
52 y=y(2:end):
53 x=x(2:end);

54
MM=inv (inv (Sigmalr)+(1/sigma2)* (x"*x))* (inv (SigmaOr) *rho0+ (1/sigmaz2) *x'*

-1
— -1 1 .7 —1 A0 1
pr = (Zp +?xtxt) (EP 0 +;xtyt)
V)i ()
55 VV=inv (inv (SigmaOr)+{1/sigma2)* (x'*x));

. 1, 1w\ !
7 = (ZP +—2xtxt)
(1x1) g
56 %$draw rho but again ensure stationarity
57 chck=-1;
58 while chck<0
59 rho=MM+ (randn (1,1)*chol (VVv))"
60 ee=abs (rho);
61 if ee<=1
62 chck=1;
63 end
64 end
65 %$step 3 sample sigma2 conditional on B from IG(T1,D1);
66 %$compute residuals

* 1 v*

67 resids=ystar-xstar*B;]3 l; ;X}
68 %compute posterior df and scale matrix
69 T1=TO+T;
70 D1=DO+resids'*resids;
71 %draw from IG
72 z0=randn(T1,1);
73 z0z0=z0"*z0;
74 sigma2=D1/z0z0;
75 1f i>burn

76 $compute forecast for 12 guarters

77 vhat=zeros(14,1);

78 vhat=zeros(14,1);

79 vhat{l:2)=Y(end-1:end); $%$starting values

80 cfactor=sgrt(sigma2); $%$standard deviation of the shocks
81 for m=3:14

82 vhat (m)=vhat (m-1) *rho+randn(1,1) *cfactor;

83 vhat (m)=[1 vhat(m-1) yhat (m-2)]*B+vhat(m);

Fiaure 11. Example 3: Matlab code (continued)

underlying data is exactly as before. This is loaded and lags etc created using the commands from lines 5 to 11. Lines
14 and 15 set the prior mean and variance for B for lines 17 and lines 18 sets the prior scale parameter and degrees
of freedom for the inverse Gamma prior for o2. Lines 20 and 21 set the mean and variance for the normal prior for
p, ie. p(p) N (po, Ep) Lines 23 to 25 set starting values for the parameters. The first step of the Gibbs sampling
algorithm starts on line 34 and 35 where we create Y* = Y; — pY;_1, X; = Xy — pX;_1, the data transformed to
remove serial correlation. Lines 38 and 39 calculate the mean and the variance of the conditional distribution of B
using this tranformed data. As in the previous example, lines 40 to 48 draw B from its conditional distribution, but
ensure that the draw is stable. Line 50 calculates the (serially correlated) residuals vy = Y; — (o + B1Y;—1 + B2Y;_2)

3. GIBBS SAMPLING FOR THE LINEAR REGRESSION MODEL 21

84

85 end

86 $save

87 outl=[outl [Y;vhat(3:end)]];
88 out2=[out2;B'];

89 out3=[out3; rho];

90 end

91 end

92 figure (1)

93 TT=1947.25:0.25:2012.5;

94 out2x=prctile(outl',[10 20 30 40 50 60 70 80 90])';
95 plot (TT,out2x):;

96 x1im([2000 20131)

Published with MATLAB® 7.9

FIGURE 12. Example 3: Matlab code (continued)

using the previous draw of «, By and Bs and lines 50 and 51 create y; = vy and x; = vs—1. Line 54 calculates the

mean of the conditional distribution of p, p* = (Z;l + %x;xt)_l (Z;l o+ %x;yt) while line 55 calculates the
(1x1)

variance of the conditional distribution (z*) = (E;l + %x,@xt)_l. Line 59 draws p from the normal distribution
1x1

*

using p' = p* +| p x (29"
(1x1) (1x1) (1x1) (1x1)
Line 67 calculates the serially uncorrelated residuals Y;* — B! X}. These are used on lines 69 to 74 to draw o2 from

and the while loop ensures that p is less than or equal to 1 in absolute value.

22 1. GIBBS SAMPLING FOR LINEAR REGRESSION MODELS

I I I I
-2
2000 2002 2004 2006 2008 2010 2012

F1GURE 13. The distribution of the inflation forecast using example3.m.

50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450
Gibbs terations Gibbs iterations

B,]

50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450
Gibbs terations. Gibbs iterations

o

50 100 150 200 250 300 350 400 450
Gibbs terations.

FIGURE 14. Sequence of retained Gibbs draws for the AR(2) model with serial correlation using 500 iterations

the inverse Gamma distribution. After the burn-in stage, the code computes the forecast from this AR(2) model with
serial correlation. Line 82 projects forward the equation for the error term i.e. vyy; = pvey;—1 + ov™ where v* is a
standard normal shock. Line 83 calculates the projected value of inflation given vy ;. This is done for each retained
draw of the Gibbs sampler with the results (along with actual data) stored in the matrix outl (line 87). The resulting
distribution of the forecast is seen in 13.

3.7. Convergence of the Gibbs sampler. A question we have ignored so far is: How many draws of the
Gibbs sampling algorithm do we need before we can be confident that the draws from the conditional posterior
distributions have converged to the marginal posterior distribution? Generally researchers proceed in two steps

e Choose a minimum number of draws M and run the Gibbs sampler
e Check if the algorithm has converged (using the procedures introduced below). If there is insufficient
evidence for convergence, increase M and try again.

3. GIBBS SAMPLING FOR THE LINEAR REGRESSION MODEL 23

20

10 15 10 15
Gibbs terations. Gibbs iterations

B, P

0.1 08
0
0.6
-01
-0.2 0.4

0.2

20

10 15 10 15
Gibbs iterations Gibbs iterations

°

10 15
Gibbs terations.

FIGURE 15. Recursive means of the retained Gibbs draws for the AR(2) model with serial correlation
using 500 iterations

Sample Autocorrelation

Lag Lag

B

Sample Autocorrelation
°
2

Sample Autocorrelation
°
2

Lag Lag

Sample Autocorrelation

S SRS I U S L
15

10 20
Gibbs terations

FIGURE 16. Autocorrelation of the retained Gibbs draws for the AR(2) model with serial correlation
using 500 iterations

The simplest way to check convergence is to examine the sequence of retained draws. If the Gibbs sampler has
converged to the target distibution, then the retained draws should fluctuate randomly around a stationary mean
and not display any trend. This visual inspection is usually easier if one plots the recursive mean of the retained
draws. If the Gibbs sampler has converged, then the recursive mean should show little fluctuation. A related method
to examine convergence is plot the autocorrelation of the retained draws. If convergence has occurred, the sequence
of draws should display little autocorrelation (i.e. they should be fluctuating randomly around a stationary mean).

In order to illustrate these ideas, we plot the sequence of retained draws, the recursive means of those draws
and the autocorrelation functions of the retained draws for the parameters of the model examined in section 3.6. In
particular, we estimate the AR(2) model with serial correlation using 500 Gibbs iterations (using the file example3.m)
and retain all of these draws. Figures 14, 15 and 16 examine the convergence of the model. Figures 14 and 15 clearly
show that the Gibbs draws are not stationary with the recursive mean for «, By, B2 and p showing a large change

24 1. GIBBS SAMPLING FOR LINEAR REGRESSION MODELS

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Gibbs terations. Gibbs iterations

B, P

0.9
0.8
01 0.7
0.6
05
0.4

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 8OO 900 1000
Gibbs terations Gibbs iterations

°

100 200 300 400 500 600 700 800 900 1000
Gibbs terations.

FIGURE 17. Sequence of retained Gibbs draws for the AR(2) model with serial correlation using
25000 iterations

12 0.8
075
07
08 065
06
055

35 40 45 5 10 15 35 40 45

20 30 20 25 30
Gibbs iterations Gibbs iterations
B, P

0.85

5§ 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
Gibbs terations Gibbs iterations

o

5 10 15 20 25 30 35 40 45
Gibbs terations

FIGURE 18. Recursive means of retained Gibbs draws for the AR(2) model with serial correlation
using 25000 iterations

after 300 iterations (but o appears to have converged with the draws fluctuating around a stationary mean). This
also shows up in the autocorrelation functions, with the autocorrelation high for a, By, By and p. These figures can
be produced using the file example4.m. These results would indicate that a higher number of Gibbs iterations are
required. Figures 17, 18 and 19 plot the same objects when 25000 Gibbs iterations are used (with 24000 as the
number of burn-in iterations). The sequence of retained draws and the recursive means appear substantially more
stable. The autocorrelations for «, By, By and p decay much faster in figure 19.

These graphical methods to assess convergence are widely used in applied work. A more formal test of convergence
has been proposed by Geweke (1991). The intuition behind this test is related to the idea behind the recursive mean
plot: If the Gibbs sampler has converged then the mean over different sub-samples of the retained draws should be
similar. Geweke (1991) suggests the following procedure:

4. FURTHER READING 25

o o
>
o o
> ®

Sample Autocorrelation
2

o o

~
Y
[
[
He
He
He
He
He
He

°
a

o o
> ®
o o
> ®

Sample Autocorrelation
2

o o

~
[
[
[

H—e

o o o o
£ 5 &

Sample Autocorrelation
9

10
Gibbs iterations

FIGURE 19. Autocorrelation of retained Gibbs draws for the AR(2) model with serial correlation
using 25000 iterations

(1) Divide the retained Gibbs draws of the model parameters 6 into two subsamples N3 Ny where Geweke
(1991) recommends N1 = 0.1N, Ny = 0.5N where N denotes the total number of retained draws.

(2) Compute averages My = Zivzll Jf,—"'l and My = Zij\;Nﬁl o

(3) Compute the asymptotic variance SlT(O) and SQT(ZO) where S (w) is the spectral density at frequency .
Note that this estimate of the variance takes into account the possibility that the Gibbs sequence may be
autocorrelated. For a description of spectral analysis see Hamilton (1994) and Canova (2007).

(4) Then the test statistic

My — M,

2= e 50
]1V1 +]2V2

(3.25)

is asymptotically distributed as N (0,1). Large values of this test statistic indicate a significant difference
in the mean across the retained draws and suggests that one should increase the number of initial Gibbs
iterations (i.e. increase the number of burn-in draws).

Geweke (1991) suggests a related statistic to judge the efficiency of the Gibbs sampler and to gauge the total
number of Gibbs iterations to be used. The intuition behind this measure of relative numerical efficiency (RNE) is
as follows. Suppose one could take iid draws of 8; € {0,05....0x} directly from the posterior. Then the variance of
the posterior mean F (6;) = % >, 0i is given by

VAR(E (6:) — i%VARWQA%K%VAnggkmi%VARwN)
VAR (0;) /N

However, in practice one uses the Gibbs sampler to approximate draws from the posterior. These Gibbs draws are
likely to be autocorrelated and a measure of their variance which takes this into account is S (0) /N . Thus a measure
of the RNE is

VA/R\(@')
5(0)
where VA/T&) is the sample variance of the Gibbs draws 61,65....0y. If the Gibbs sampler has converged then

RNE = (3.26)

RNE should be close to 1 as the variance of the iid draws VAR (6;) should be similar to the measure of the variance
that takes any possible autocorrelation into account.
The file example5.m illustrates the calculation of the statistics in equation 3.25 and 3.26.

4. Further Reading

e An intuitive description of the Gibbs sampling algorithm for the linear regression model can be found in
Kim and Nelson (1999) Chapter 7. Gauss codes for the examples in Kim and Nelson (1999) are available
at http://econ.korea.ac.kr/~ cjkim/SSMARKOV .htm.

26 1. GIBBS SAMPLING FOR LINEAR REGRESSION MODELS

e A more formal treatment of the linear regression model from a Bayesian perspective can be found in Koop
(2003), Chapters 2, 3 and 4.

e The appendix in Zellner (1971) provides a detailed description of the Inverse Gamma and Gamma distrib-
utions. See Bauwens et al. (1999) for a detailed description of algorithms to draw from these distributions.

5. Appendix: Calculating the marginal likelihood for the linear regression model using the Gibbs
sampler.

Consider the following linear regression model
Y, = BX; + v, v,”N(0,0?)
The prior distributions are assumed to be
P(B)"N(Bo, %)
P (0?) "IG(Vy, Tp)
The posterior distribution of the model parameters ® = B, 02 is defined via the Bayes rule

oY) F(Y?(;)P (@)

(5.1)
where F (Y|®) = (27rcr2)7% exp (—5mx (Y — BX,) (V; — BXy)) is the likelihood function, P (®) is the joint prior
distribution while F'(Y") is the marginal likelihood that we want to compute. Chib (1995) suggests computing the
marginal likelihood by re-arranging equation 5.1. Note that in logs we can re-write equation 5.1 as

ImF(Y)=InF(Y|®)+InP(P)—InH (DY) (5.2)

Note that equation 5.2 can be evaluated at any value of the parameters ® to calculate In F' (Y'). In practice a
high density point ®* such as the posterior mean or posterior mode is used.

The first two terms on the right hand side of equation 9.3 are easy to evaluate at ®*. The first term is the log
likelihood function. The second term is the joint prior which is the product of a normal density for the coefficients
and an inverse Gamma density for the variance (see example below). Evaluating the third term In H (®*|Y") is more
complicated as the posterior distribution is generally not known in closed form. Chib (1995) shows how this term
can be evaluated using the output from the Gibbs sampling algorithm used to approximate the posterior distribution
for ®. Recall that H (®*|Y) = H (B*,UQ*) where have dropped the conditioning on y on the right hand side for
simplicity. The marginal, conditional decomposition of this distribution is

H (B*,0*) = H (B*|0**) x H (¢**) (5.3)

The first term H (B*|02*) is the conditional posterior distribution for the regression coeflicients. Recall that this a
normal distribution with mean and variance given by

-1
1 1

M* = (zol + ﬁXt’Xt> (zolBo + ﬁxgyt>
1 -1

vV o= <201+EX£XL‘)

and therefore can be easily evaluated at B* and o2*.

The second term in equation 5.3 H (¢**) can be evaluated using the weak law of large numbers (see Koop (2003)
Appendix B). That is

S
1
H (02*) ar ZH (02*|BS)
s=1

where B, denotes s = 1,2....5 draws of the Gibbs sampler. Note that the conditional distribution is simply the
Inverse Gamma distribution derived for section 2.2 above.
The marginal likelihood is then given by
ImF(Y)=InF(Y|®)+InP(®) —InH (B*|c**) —In H (¢**) (5.4)
As an example we consider the following linear regression model based on 100 artificial observations
yr = 1+ 0.5z + vy, VAR(v) = 0.2

where 2;"N(0,1). We assume a natural conjugate prior of the form P(B|o?)"N ((0),402 (L0)) and

0 0 1
P (02) “I1G(2.5,3).

The matlab code for this example is shown in figures 20 and 21. The code on Lines 5 to 9 generates the artificial
data. We set the priors on lines 11 to 14. On line 16 we calculate the marginal likelihood for this model analytically
using the formula on page 41 in Koop (2003). We can now compare this estimate with the estimate produced
using Chib’s method. The Gibbs sampler used to estimate the model is coded on lines 19 to 43. Line 46 calculates

5. APPENDIX: CALCULATING THE MARGINAL LIKELIHOOD FOR THE LINEAR REGRESSION MODEL USING THE GIBBS SAMPLERT

clear;

cle

addpath (' functions")

$generate artificial data

T=100;

X=[ones(T,1l) randn(T,1)];

btrue=[1;0.5];

sigmatrue=0.2;

9 Y=X*btrue+randn (T,1)*sqgrt (sigmatrue);

10 %$set priors

11 TO0=3;

12 D0=2.5;

13 BO=zeros(2,1);

14 Sigmal=eye(2)*(4);

15 %analytical computaticn of the marginal likelihood
16 mlika=mlikols(BO,Sigmal,T0,D0,Y,X);

17 disp('ARnalytical log Marginal Likelihood'};

18 disp(log(mlika));

19 sigmaz=1;

20 reps=15000; $total numbers of Gibbs iterations
21 burn=4000; $percent of burn-in iterations

22 outl=[];

23 out2=1[];

24 for i=l:reps

25 %Sample B conditional on sigma N(M*,V*)

26 M=inv (inv (Sigmal)+(1l/sigma2)* (X'*X)) * (inv (Sigma0) *BO+(1l/sigmal) *X"*Y) ;
27 V=1inv {(inv (Sigma0)+(1l/sigma2)=*(X"'*X));

28 B=M+(randn(l,2)*chol (V))"';

29 %$sample sigma2 conditicnal on B from IG(T1,D1);
30 %compute residuals

31 resids=¥-X*B;

32 %compute posterior df and scale matrix

33 T1=TO+T;

34 D1=DO+regids'*resids;

35 %draw from IG

36 zO=randn(T1l,1);

37 z0z0=z0"'*z0;

38 sigma2=D1/z0z0;

39 if i>burn

0 -1 @y U W N

40 outl=[outl;B"'];

41 out2=[out2; sigmaz];
42 end

43 end

44 %calculate the marginal likelihood using Chib's method

45 S$posterior mean

46 bstar=mean (outl);

47 sigmastar=mean (out2);

48 Hstar=mean(l./out2);

43 & Stepl evaluate the prior distributions at the posterior mean
50 %P (B)~N(BO,Sigma0) in logs

51 Pb=log (mvnpdf (bstar',B0,Sigmal));

52 %P (1/sigma2)~Gamma (DO, TO) in logs

53 PH=gampdfl(T0,D0,Hstar):;

54 %Step 2 evaluate the log likelihocd

55 loglik=—(T/2)*log (2*pi*sigmastar)—-0.5*%(((Y-X*bstar')'* (Y-
X*bstar'))/sigmastar):

56 %$step 3 evaluate the posterior density

57 $H(bstar, sigmastar)=H(bstar\sigmastar)*H(sigmastar)

58 %$step 3a H(bstar\sigmastar)~N{(M1,V1) in logs

F1GURE 20. Matlab code for calculating the marginal likelihood

the posterior mean of the coefficients, line 47 calculates the posterior mean of the variance while line 48 calculates
the posterior mean of 1/02. For computational convenience, when considering the prior In P (®) and the posterior
distribution In H (®|Y) in the expression for the marginal likelihood (see equation 5.2) we consider the precision 1/02
and use the Gamma distribution. This allows us to use built in matlab functions to evaluate the Gamma PDF.
On line 51, we evaluate the log of the prior distribution of the VAR coefficients P(B|o?) at the posterior mean.
Line 53 evaluates the Gamma posterior for the precision. The function gampdfl converts the two parameters of
the distribution: the degrees of freedom Ty and scale parameter Dy into the parameters A = Ty/2 and B = 2/Dy
as expected by the parameterisation of the Gamma distribution used by Matlab in its built in function gampdf.

28

1. GIBBS SAMPLING FOR LINEAR REGRESSION MODELS

59

Ml=inv (inv (Sigma0)+(1l/sigmastar)*(X'*X))* (inv (Sigmal)*BO+(1l/sigmastar) *X"'
*Y);

60 Vl=inv{inv(SigmaO)+(1l/sigmastar)* (X'*X));

6l Hl=log{mvnpdf (bstar',M1,V1));

62 %$step 3b evaluate H(sigmastar) using the Gibbs draws
G3 H2log=[];

64 for i=l:size(outl,l)

&5 bgibbg=outl (i, :)';

G6 res=Y-X*bgibbs;

a7 H2i=gampdfl (rows(res)+TO0, (res'*res)+D0,Hstar) ;

&8 H2log=[H2log;H2i];

69 end

70 %take exponential and mean in a way that prevents underflow
71 factor=max(H2log):

72 HZexp=exp (H2log-factor);

73 HZ2mean=log(mean (H2exp))+factor;

74 %calculate marginal likelihood

75 mlik=loglik+Pb+PH-Hl-H2mean;

76 disp('Chik log Marginal Likelihood');

77 disp(mlik);

Published with MATLAB® 7.9

FIcUure 21. Matlab code for calculating the marginal likelihood continued

Line 55 evaluates the log likelihood at the posterior mean. Lines 56 to 61 evaluate the term H (B*|02*) in the
factorisation of the posterior H (B*,1/0**) = H (B*|0®*) x H (1/0**). Lines 63 to 69 evaluate the term H (1/02*).
Each iteration in the loop evaluates H (1 Jo?* |Bj) . Note that this is simply the Gamma distribution with degrees of
freedom Ty + T and scale parameter Dy + vjv; where the residuals v, are calculated using each Gibbs draw of the
Ty and Dy denote the prior degrees of freedom and prior scale parameter respectively. Line

regression coeflicients B;
73 constructs H (1/0%*)
75 of the code.

~ %ijl H (1/0**|B;). The marginal likelihood is calculated using equation 5.2 on line

CHAPTER 2

Gibbs Sampling for Vector Autoregressions

This chapter introduces Bayesian simulation methods for Vector Autoregressions (VARs). The estimation of
these models typically involves a large number of parameters. As a consequence, estimates of objects of interest
such as impulse response functions and forecasts can become imprecise in large scale models. By incorporating prior
information into the estimation process, the estimates obtained using Bayesian methods are generally more precise
than those obtained using the standard classical approach. In addition, bayesian simulation methods such as Gibbs
sampling provide an efficient way not only to obtain point estimates but also to characterise the uncertainty around
those point estimates. Therefore we focus on estimation of VARs wvia Gibbs sampling in this chapter.

Note, however, that under certain prior distributions, analytical expressions exist for the marginal posterior
distribution of the VAR parameters. A more general treatment of Bayesian VARs can be found in Canova (2007)
amongst others. See http://apps.eui.eu/Personal/Canova/Courses.html for F.Canova’s BVAR code.

This chapter focusses on two key issues

e It states the conditional posterior distributions of the VAR parameters required for Gibbs sampling and
discussed the Gibbs sampling algorithm for VARs

e We go through the practical details of setting different type of priors for VAR parameters

e We focus on implementation of Gibbs sampling for VARs in Matlab.

e We discuss how to estimate structural VARs with sign restrictions using Matlab.

1. The Conditional posterior distribution of the VAR parameters and the Gibbs sampling algorithm
Consider the following VAR(p) model

Yo = c+BiYiy+ BoYio BpYi_, +u; (L1)
E(vjvs) = Xift=s
E(vivs) = 0ift+#s
E(vw) = 0

where Y; is a T' x N matrix of endogenous variables, ¢ denotes a constant term. The VAR can be written compactly
as
Y;g = XtB =+ (% (12)

with Xy = {¢;, Yie—1, Yir—2..., Yie—p }.Note that as each equation in the VAR has identical regressors, it can be re-
written as

y=InX)b+V (1.3)
where y = vec(Y;) and b = vec(B) and V = vec(vy).

Assume that the prior for the VAR coefficients b is normal and given by

p(b)"N (EO, H) (1.4)

where g is a (N x (N x P41)) x 1 vector which denotes the prior mean while H is a is a [N x (N x P +1)] x
[N x (N x P+ 1)] matrix where the diagonal elements denote the variance of the prior. We discuss different ways
of setting bo and H in detail below.

It can be shown that the posterior distribution of the VAR coefficients conditional on ¥ is normal (see Kadiyala
and Karlsson (1997)) . That is the conditional posterior for the coeflicients is given by H (b|X,Y;) "N (M*, V*) where

M* = (H' '+ 'eX/X,)" (H—léo +3lg Xt’XtB) (1.5)
Ve o= (H'+xlexx,)
where b is a (N x (N x P +1)) x 1 vector which denotes the OLS estimates of the VAR coefficients in vectorised

format b = vec ((Xt'Xt)f1 (Xt’Yt)) The format of the conditional posterior mean in equation 1.5 is very similar

to that discussed for the linear regression model (see section 2.1 in the previous chapter). That is the mean of the
conditional posterior distribution is a weighted average of the OLS estimator b and the prior by with the weights
given by the inverse of the variance of each (X171 ® X/X, is the inverse of b while H~1! is the inverse of the variance
of the prior).

29

30 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

The conjugate prior for the VAR covariance matrix is an inverse Wishart distribution with prior scale matrix S
and prior degrees of freedom «.
§(S)TW (5.0) (16)

DEFINITION 3. If X is a n X n positive definite matriz, it is distributed as an inverse Wishart with the following
n
density P (3) = k‘zl(‘ﬂisfl)/z exp (—0.5trS " H) where k™ = 2””/27r”("’1)/4HF[(U +1—1)/2], H is the scale
i=1
matriz and v denotes the degrees of freedom. See Zellner (1971) pp395 for more details.

Informally, one can think of the inverse Wishart distribution as a multivariate version of the inverse Gamma
distribution introduced in the context of the linear regression model in the previous chapter. Given the prior in
equation 1.6, the posterior for ¥ conditional on b is also inverse Wishart H (3[b,Y;) "IW (£,T + o) where T is the
sample size and

S =S8+ (Y; - X;B) (Y; - X;B) (1.7)

Note that B denotes the VAR coefficients reshaped into (N x P 4 1) by N matrix.

1.1. Gibbs sampling algorithm for the VAR model. The Gibbs sampling algorithm for the VAR model
consists of the following steps:

Step 1 Set priors for the VAR coefficients and the covariance matrix. As discussed above, the prior for the VAR
coefficients is normal and given by p(b)"N (130, H) The prior for the covariance matrix of the residuals X

is inverse Wishart and given by IW (S’, a) . Set a starting value for ¥ (e.g. the OLS estimate of X).
Step 2 Sample the VAR coefficients from its conditional posterior distribution H (b3, Y;) "N (M*,V*) where

* -1 -1 -1 —17 -1 7
oo = (HT T @ XX (H by + 2 ®X;th) (1.8)

v* —(H '+ 'ex/Xx,)" (1.9)
(NX(NxP+1))x(Nx(NxP+1))

Once M* and V* are calculated, the VAR coefficients are drawn from the normal distribution (see algorithm 1 in
Chapter 1)
bt = M* + b x (V)2 (1.10)
((NX(NxP+1))x1) ((NX(NxP+1))x1) (IX(NX(NxP+1))) (NX (N xP+1))x (N x(N x P+1))

Step 3 Draw X from its conditional distribution H (X|b, Y;) "IW (2_], T+ a) where ¥ = S+ (Y} — XtBl)l (Yt — XtBl)
where B! is the previous draw of the VAR coefficients reshaped into a matrix with dimensions (N x P+1)x N
so it is conformable with Xj;.

ALGORITEM 3. To draw a matriz S from the IW distribution with v degrees of freedom and scale parameter S,
draw a matriz Z with dimensions v x n, from the multivariate normal N(0,S™1). Then the draw from the inverse
Wishart distribution is given by the following transformation:

v -1

Step 3 (continued) With the parameters of inverse Wishart distribution in hand (£ = S + (¥; — XtBl)/ (Y — X;B') and
T + «) one can use algorithm 3 to draw ¥ from the inverse Wishart distribution.

epeat Steps 2 to 3 M times to obtain BL..B™ and ()(£)™. The last H values of B and ¥ from these iterations is used
to form the empirical distribution of these parameters. Note that the draws of the model parameters (after
the burn-in period) are typically used to calculate forecasts or impulse response functions and build the
distribution for these statistics of interest.

In general, the Gibbs sampling algorithm for VARs is very similar to that employed for the linear regression
model in the previous chapter. The key difference turns out to be the fact that setting up the prior in the VAR model
is a more structured process than the linear regression case.

We now turn to a few key prior distributions for VARs that have been proposed in the literature and the
implementation of the Gibbs sampling algorithm in Matlab. To discuss the form of the priors we will use the
following bi-variate VAR(2) model as an example:

Yt C1 bir b1z Yt—1 di1 dia Yt—2 U1
= 1.11
< Tt) (C2 > + < ba1 bao > < Tt—1) * (do1 dao Tt—2 + V2 ()

v Y1 Y2
h =Y =
where var(v > < S >

2. THE MINNESOTA PRIOR 31

2. The Minnesota prior

The Minnesota prior (named after its origins at the Federal Reserve Bank of Minnesota) incorporates the prior
belief that the endogenous variables included in the VAR follow a random walk process or an AR(1) process. In other
words, the mean of the Minnesota prior for the VAR coefficients in equation 1.11 implies the following form for the

VAR
(o)=o)+ () (o) (0 0) () () o

Equation 2.1 states that the Minnesota prior incorporates the belief that both y; and x; follow an AR(1) process or
a random walk if b); = b3, = 1. If y; and z; are stationary variables then it may be more realistic to incorporate
the prior that they follow an AR(1) process. For this example, the mean of the Minnesota prior distribution for the

VAR coefficients (i.e. by from p(b)"N (BO, H)) is given by the vector

(=al

[,

[=a
O ONOCO O O O OrFroc O

[\™]

where the first five rows correspond to the coefficients for the first equation and the second five rows correspond to the
coefficients for the second equation. The variance of the prior H is a set in a more structured manner (as compared
to the examples in chapter 1) and is given by the following relations for the VAR coefficients b;;

2
(ZATI) ifi = 4 (2.3)
2
(""“Z) ifi # j

Ujl/\g

(o1M4)? for the constant

where i refers to the dependent variable in the i** equation and j to the independent variables in that equation.
Therefore, if i = j then we are referring to the coefficients on the own lags of variable i. ¢; and o; are variances
of error terms from AR regressions estimated via OLS using the variables in the VAR. The ratio of o; and o, in
the formulas above controls for the possibility that variable ¢ and j may have different scales. Note that [is the lag
length. The \'s are parameters set by the researcher that control the tightness of the prior:

e)\; controls the standard deviation of the prior on own lags. As A\; — 0 by1,bao — b)), b9, respectively and
all other lags go to zero in our example VAR in equation 1.11.

e)\, controls the standard deviation of the prior on lags of variables other than the dependent variable i.e.
bi2, ba1 etc. As Ay — 0 b;5,d;; go to zero. With Ay = 1 there is no distinction between lags of the dependent
variable and other variables.

e)3 controls the degree to which coefficients on lags higher than 1 are likely to be zero. As A3 increases
coeflicients on higher lags are shrunk to zero more tightly.

e The prior variance on the constant is controlled by A4. As Ay — 0 the constant terms are shrunk to zero.

It is instructive to look at how the prior variance matrix looks for our example VAR(2) in equation 1.11. This is
shown below in equation 2.4

32 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

(6101)° 0 0 0 0 0 0 0 0 0

0 (A)? 0 0 0 0 0 0 0 0
2
0 0 (=222)° 0 0 0 0 0 0 0
0 0 0 (2)” 0 0 0 0 0 0
2
0 0 0 0 (=) o 0 0 0 0
H == 72 2
0 0 0 0 0 (02M\a) 0 0 0 0
2
0 0 0 0 0 0 (=) 0 0 0
0 0 0 0 0 0 0 (A)? 0 0
2

0 0 0 0 0 0 0 0 (z3) o
0 0 0 0 0 0 0 0 0 ALy’

(2.4)

The matrix H in equation 2.4 is a 10 x 10 matrix, because for this example we have 10 total coefficients in

the VAR model. The diagonal elements of the matrix H are the prior variances for each corresponding coefficient.

Consider the the first five elements on the main diagonal correspond to the first equation the VAR model and is
re-produced in equation 2.5.

(1h)? 0 0 0 0

0 (A)? 0 0 0

2
TIAIA
0 0 (=222)° 0 2 0 (2.5)
0 0 0 (2%) 0
2
0 0 0 (2222)

The first diagonal element (o4)\4)2 controls the prior on the constant term. The second element (/\1)2 controls the
prior on by; the coefficient on the first lag of y;. Note that this element comes from the first expression in equation

2.3 (l);—la)2 with the lag length [= 1 as we are dealing with the first lag. The third diagonal element controls the
prior on byo the coefficient on the first lag of z; in the equation for ;. Note that this element comes from the second

2
expression in equation 2.3 i.e. (%) with [= 1. The third and the fourth diagonal elements control the prior on
J

the coefficients dy; and dio respectively (and again come from the first and second expression in equation 2.3 with
l=2).

Under a strict interpretation of the Minnesota prior, the covariance matrix of the residuals of the VAR X is
assumed to be diagonal with the diagonal entries fixed using the error variances from AR regressions ¢;. Under
this assumption, the mean of the posterior distribution for the coefficients is available in closed form. For the exact
formula, see Kadiyala and Karlsson (1997) Table 1. However, it is common practice amongst some researchers to
incorporate the Minnesota prior into the Gibbs sampling framework and draw X from the inverse Wishart distribution.
We turn to the practical implementation of this algorithm next.

An important question concerns the values of the hyperparameters that control the priors. Canova (2007) pp
380 reports the following values for these parameters typically used in the literature.

A1o= 0.2
A = 0.5
A3 = lor2
N o= 10°

Some researchers set the value of these parameters by comparing forecast performance of the VAR, across a range of
values for these parameters. In addition, the marginal likelihood can be used to select the value of these hyperpa-
rameters. The appendix to this chapter shows how to use the procedure in Chib (1995) to calculate the marginal
likelihood for a VAR model.

2.1. Gibbs sampling and the Minnesota prior. Matlab code. We consider the estimation of a bi-variate
VAR(2) model using quarterly data on annual GDP growth and CPI inflation for the US from 1948Q2 to 2010Q4. We
employ a Minnesota prior which incorporates the belief that both variables follow a random walk. Note that while
annual CPI inflation may be non-stationary (and hence the random walk prior reasonable), annual GDP growth
is likely to be less persistent. Hence one may want to consider incorporating the belief that this variable follows
an AR(1) process in actual applications. Note that, we also incorporate a inverse Wishart prior for the covariance
matrix and hence depart from the strict form of this model where the covariance matrix is fixed and diagonal. The

2. THE MINNESOTA PRIOR 33

clear

addpath ('functions');

% a bi-variate VAR with a Minnesota Prior and Gikbs Sampling
$load data

data=xlsread('\data\datain.xls'); %data for US GDP growth and
inflation 1948gl 2010qg4

6 N=size(data,2);

7 L=2; gnumber of lags in the VAR

8 Y=data;

9 X=[ones(size(Y,1),1) lagO(data,l) lagO(data,2) 1;

10 Y=Y (3:end, :);

11 X=X (3:end, :);

12 T=rows (X);

13 $compute standard deviation of each series residual via an cls
regression

14 %to be used in setting the prior

15 %first variable

16 y=Y(:,1);

17 x=X(:,1:2);

18 b0=1inv (x"*x) * (x'*y);

19 sl=sqgrt({(y-x*b0)"'* (y-x*b0))/(rows(y)-2)); %std of residual standard
error

20 %second variable

21 y=Y{(:,2);

22 x=X(:,[1 31):

23 bO0=inv (x"*x) * (x"*y);

24 s2=sqrt ({(y-x*b0)"* (y-x*b0))/ (rows(y)-2));

25 %$specify parameters of the minnesota prior

A1 controls the standard deviation of the prior on own lags.

U= W N

26 lamdal=1;
27 lamdaz=1;

A, controls the standard deviation of the prior on lags of variables other than the dependent variable
28 lamda3=1;

A3 controls the degree to which coeflicients on lags higher than 1 are likely to be zero

29 lamda4—1, 1he prior variance on the constantis confrolled by A4

30 %specify the prior mean of the coefficients of the Two equations of
the VAR

31 B01=[0;1;0;0;0]
32 B02=[0;0;1;0;0]

I

v

;

;
; ;

(o)
by

0

-2
S
]
(=N =l -

o
e
[¥]

33 BO=[B01;B02]; \ 0 /

34 %Specify the prior variance of vec(B)

FicURE 1. Matlab code for example 1

model is estimated using the Gibbs sampling algorithm described in section 1.1. The code for this model is in the
file examplel.m in the subfolder chapter 2 under the folder code. The code is also shown in figures 1, 2 and 3. We
now go through this code line by line.

Line 5 of the code loads the data for the two variables from an excel file and lines 8 and 9 prepare the matrices
Y:, X:.Lines 16 to 24 compute o1 and o2 (to be used to form the Minnesota prior) using AR(1) regressions for each
variable. In this example we use the full sample to compute these regressions. Some researchers use a pre-sample (or
a training sample) to compute o1 and oo and then estimate the VAR on the remaining data points. The argument
for using a pre-sample is that the full sample should not really be used to set parameters that affect the prior.

34 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

35 H=zeros (10,10);

(612)! 0 0 0 0 0 0 0 0 0 \
0 () 0 0 0 0 0 0 0 0
o1kl \2
0 o (222) o 0 0 0 0 0 0
2
0 0 0 (4}) 0 0 0 0 0 0
243
A

[0} 0 0 0 — 0 [0} 0 0 0

H_ 692%
B 2
0 0 0 0 0 (o974) 0 0 0 0
2
0 0 0 0 0 e 0 0
0 0 0 0 0 0 0 (1)? 0 0
2
0 0 0 0 0 0 0 0 (ﬂfz) 0
61243
0 0 0 0 0 0 0 0 0 (L)2
\ »))

36 $for equation 1 of the VAR
37 H(1l,1)=(sl*lamda4)"2; %constant
38 H(2,2)=({lamdal)"2; $own lag
39 H(3,3)=((sl*lamdal*lamda2)/s2)"2; %$lag of other variable
40 H(4,4)=(lamdal/ (2"1lamda3))"2; $own second lag
41 H(5,5)=(({sl*lamdal*lamda?2)/ (s2* (271lamda3)))"2; %lag of other
variable

42 $for equation 2 of the VAR
43 H(6,6)=(s2*lamdad)"2; $constant

44 H(7,7)=((s2*lamdal*lamda2)/sl)"2; $lag of other variable

45 H(8,8)=(lamdal)"2; $own lag

46 H(9,9)=({s2*lamdal*lamda2)/ (sl*(2"lamda3)))”2; %lag of other
variable

47 H(10,10)=(lamdal/ (2"1lamda3))"2; $own second lag

48 %prior scale matrix for sigma the VAR covariance

49 S=eye(N}; S
50 %prior degrees of freedocm

51 alpha=N+1; @

52 %$starting values for the Gibbs sampling algorithm
53 Sigma=eye (N);
54 betaols=vec(inv (X'*X)*(X"*Y)):
55 Reps=10000;
56 burn=5000;
57 outl=[]; %$will store forecast of GDP growth
58 out2=[]; %will store forecast of inflation
59 i=1;
60 for j=1:Reps
61 $step 1 draw the VAR coefficients
M = (H+ 2 @Xx) T (b + 2 @ XX.B)
(NX(NxP+1))x1
62
M=inv (inv (H) +kron (inv (Sigma),X"*X)) * (inv (H) *BO+kron (inv (Sigma), X' *X) *bet
aols);
e - H'+3 1 @xx)™
(NX(NX P+1))X (N (N<P+1))
63 V=inv(inv (H)+kron(inv (Sigma) ,X'*X));

FIGURE 2. Matlab code for example 1 (continued)

Lines 27 to 29 specify the parameters A1,A2, A3,A4 that control the tightness of the prior and are used to build the
prior covariance. Line 33 specifies by the prior mean. As mentioned above in this example we simply assume a prior
mean of 1 for the coefficients on own first lags. In practice, this choice should depend on the stationarity properties of
the series. Line 35 forms the 10 x 10 prior variance matrix H. Lines 37 to 47 fill the diagonal elements of this matrix as
shown in equation 2.4. Line 49 specifies the prior scale matrix for the inverse Wishart distribution as an identity matrix
but specifies the prior degrees of freedom as the minimum possible N+1 (line 51) hence making this a non-informative
prior. Line 53 sets the starting value for ¥ as an identity matrix. We use 10,000 Gibbs replications discarding the
first 5000 as burn-in. Line 62 is the first step of the Gibbs sampler with the calculation of the mean of the conditional

2. THE MINNESOTA PRIOR 35

64 beta=M+ (randn (1,N* (N*L+1)) *chol (V))';

bl — M + Z) x v)1/2
((NX(NXP+L)X1) (NXVXPHL))X1) AXNANAPELD)) N (NP1 Y (N (NP 1))
65 %$draw sigma from the IW distribution

_ 1
66 e=Y-X*reshape (beta, N*L+1,N); ¥ - X:B

67 %$scale matrix

= = !

=8+ - X:BY) ;- X:B
68 scale=e'*e+S; (@ 8)(@ 8)
69 Sigma=IWPQ (T+alpha,inv (scale));
70 if j>burn

71 $forecast GDP growth and inflation for 3 vyears
72 vhat=zeros (14,2);

73 vhat (1:2, :)=Y (end-1:end, :):

74 for 1=3:14

75 vhat{i,:)=[1 yhat(i-1,:) yhat(i-

2,:)]1*reshape (beta,N*L+1,N)+randn (1,N)*chol (Sigma) ;
76 end

77 outl=[outl [Y(:,1);vhat(3:end,1)]];

78 out2=[out2 [Y(:,2);vhat(3:end,2)]];

79 end

80 end

81 TT=1948.75:0.25:2014;

82 subplot(l,2,1)

83 plot (TT,prctile(outl, [S0 10 20 30 70 80 901,2))

84 x1im([1995 2015])

85 title('GDP Growth'):

86 subplot(l,2,2)

87 plot (TT,prctile(out2, [50 10 20 30 70 80 90],2))

88 x1im([1995 2015])

89 legend('Median Forecast','l10th percentile', '20th percentile', '30th
percentile®, '70th percentile', '80th percentile','90th percentile');
90 title('Inflation');

Published with MATLAB® 7.9

FicUre 3. Matlab code: Example 1 continued

posterior distribution of the VAR coefficients M* = (H‘l +¥1® X{Xt)_l (H‘liyo +32 1@ Xt’th;)
(NX(NxP+1))x1
while line 63 compute the variance of this distribution as v =H'+¥'® X{Xt)fl. On

(NX(NxP+1))x (N x (N x P+1))
line 64 we draw the VAR coefficients from the normal distribution using M* and V*. Line 66 calculates the residuals
of the VAR. Line 68 calculates the posterior scale matrix . Line 69 draws the covariance matrix from the inverse
Wishart distribution where the function IWPQ uses the method in algorithm 3. Once past the burn-in period we
build up the predictive density and save the forecast for each variable. The quantiles of the predictive density are
shown in figure 4

36 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

GDP Growth Inflation
8 T T 7 T

Median Forecast
10th percentile
20th percentile
30th percentile
= 70th percentile
80th percentile
90th percentile

6 I I - I I
1995 2000 2005 2010 2015 1995 2000 2005 2010 2015

F1GURE 4. Forecast for annual GDP growth and inflation using a VAR with a Minnesota prior

3. The Normal inverse Wishart Prior

3.1. The natural conjugate prior. The normal inverse Wishart prior assumes a normal prior for the VAR
coefficients and a inverse Wishart prior for the covariance matrix. This is a conjugate prior for the VAR model. This
prior for the VAR parameters can be specified as follows

p(b[2) "N (60,E®H) (3.1)
p(X)IW (S, a) (3.2)

where by is specified exactly as in equation 2.1. The matrix H is a diagonal matrix where the diagonal elements
are defined as

(l):\(i:l) : for the coefficients on lags (3.3)
(AoAs)? for the constant (3.4)
So, for our example VAR(2), this matrix is given as
(Aoha)? 0 0 0 0
0 (%03—)2 0 0 0
a=| 0 o (a0 0 (35)
0 0 0 (Pem) B 2
0 0 0 0 ()

The matrix S is defined as a N x N diagonal matrix with diagonal elements given by

(%)

3. THE NORMAL INVERSE WISHART PRIOR 37

For our example VAR this matrix is given by

The parameters that make up the diagonal elements of H and S have the following interpretation:

e)\ controls the overall tightness of the prior on the covariance matrix.

e)\; controls the tightness of the prior on the coefficients on the first lag. As A\; — 0 the prior is imposed
more tightly.

e)3 controls the degree to which coefficients on lags higher than 1 are likely to be zero. As A3 increases
coefficients on higher lags are shrunk to zero more tightly.

e The prior variance on the constant is controlled by A4. As Ay — 0 the constant is shrunk to zero.

To consider the interpretation of this prior (i.e. equations 3.1 and 3.2), consider calculating the prior covariance
matrix for the coefficients. This will involve the following operation

S® H (3.8)

That is the matrix H or the prior variance of all the VAR coefficients is obtained by a kronecker product in 3.8.
Consider calculating this kronecker product in our bi-variate VAR example

(AoAs)? 0 0 0 0
, 0 (Ag—*)Q 0 0 0
() o . e 0 0 (2 0 0
0 (%) 0 0 0 (%)2 0

0 0 0 0 (%)2

This kronecker product involves each element of S being multiplied by the entire H. If one does one obtains equation
3.9

(e1)> 0 0 0 0 0 0 0 0 0

0 (A)? 0 0 0 0 0 0 0 0

2
0 0 (22) o 0 0 0 0 0 0
0 0 0 () o 0 0 0 0 0
2
0 0 0 o (=) o 0 0 0 0
H= 2) (3.9)
0 0 0 0 0 (02)) 0 0 0 0
2
0 0 0 0 0 0 (z2) o 0 0
0 0 0 0 0 0 0 (A)? 0 0
2
0 0 0 0 0 0 0 o (=) o
0 0 0 0 0 0 0 0 0 (A)°

Note that this is just the Minnesota prior variance with the parameter Ao = 1. Therefore the structure of the
natural conjugate prior implies that we treat lags of dependent variable and lags of other variables in each equation
of the VAR in exactly the same manner. This is in contrast to the Minnesota prior where the parameter Ao governs
the tightness of the prior on lags of variables other than the dependent variable.

Given the natural conjugate prior, analytical results exist for the posterior distribution for the coefficients and
the covariance matrix. Therefore one clear advantage of this set up over the Minnesota prior is that it allows the
derivation of these analytical results without the need for a fixed and diagonal error covariance matrix. The exact
formulas for the posteriors are listed in table 1 in Kadiyala and Karlsson (1997).

The Gibbs sampling algorithm for this model is identical to that described in section 2.1. As explained above
the only difference is that the variance of the prior distribution is set equalt to H as described in equation 3.9.

3.2. The independent Normal inverse Wishart prior. The restrictions inherent in the natural conjugate
prior may be restrictive in many practical circumstances. That is, in many practical applications one may want
to treat the coefficients of the lagged dependent variables differently from those of other variables. An example is
a situation where the researcher wants impose that some coefficients in a VAR equation are close to zero (e.g. to
impose money neutrality or small open economy type restrictions). This can be acheived via the independent Normal

38 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

inverse Wishart prior. As the name suggests, this prior involves setting the prior for the VAR coefficients and the
error covariance independently (unlike the natural conjugate prior)

p@)TV(%pH) (3.10)

p(2) IW (S, a) (3.11)
where the elements of 50, H and S are set by the researcher to suit the empirical question at hand. Under this
prior analytical expressions for the marginal posterior distributions are not available. Therefore, the Gibbs sampling
algorithm outlined in section 1.1 has to be used.

As an example, consider estimating the following VAR(2) model for the US,

Ry C1 bin b1z biz bus Ry
GB; C2 bar bz baz boy GBy_4
= 3.12
Uy c3 + b31 b3z b3z b3 U1 (3.12)
P ¢4 byr baz baz bas P
din dig diz dig R V1t
+ do1 doa doz dos GB;_» + Vat
d31 dsp dgz dsg Ui—2 U3¢
dyr dap dag dag P V4t
where
V1t
var 2t =3
U3t
V4t

and R; is the federal funds rate, GB; is the 10 year government bond yield, U; is the unemployment rate and P; is
annual CPI inflation. Suppose that one is interested in estimating the response of these variables to a decrease in
the government bond yield. This shock may proxy the impact of quantitative easing polices recently adopted. Note,
that given the recession in 2010/2011 it is reasonable to assume that the federal funds rate is unlikely to respond to
changes in other variables. The standard way to impose this restriction on the contemporaneous period is to identify
the yield shock using a Cholesky decomposition of ¥

S = AgA)

where Ay is a lower triangular matrix. Note, however, that one may also want impose the restriction that the Federal
Funds rate does not respond with a lag to changes in the other variables. Given that the Federal Funds rate is near
the zero lower bound during the crisis period this restriction can be justified.

The independent Normal Wishart prior offers a convenient way to incorporate these restrictions into the VAR
model. One can specify the prior mean for all coefficients equal to zero i.e. bp = O(nx (N xP+1))x1 and the covariance
of this prior H as a diagonal marix with diagonal elements equal to a very large number ezcept for the elements
corresponding to the coefficients bis,b13,b14 and di2, dy3,d14. The elements of H corresponding to these coefficients
are instead set to a very small number and the prior mean of zero is imposed very tightly for them. Therefore the
posterior estimates of byo, b13, b14 and d12, d13, d14 Will be very close to zero. We now turn to a matlab implementation
of this example using Gibbs sampling.

3.2.1. Gibbs sampling and the independent normal Wishart prior. We estimate the VAR model in equation 3.12
using data for the US over the period 2007m1 to 2010m12, the period associated with the financial crisis. We employ
a prior which sets the coefficients bys,b13,b14 and dy2,d13,d14 close to zero— i.e. the prior mean for these equals
zero and the prior variance is a very small number. Given the very short sample period, we also set a prior for the
remaining VAR coefficients. For these remaining coefficients, we assume that the prior mean for coefficients on own
first lags are equal to 0.95 and all others equal zero. The prior variance for these is set according to equation 3.9.
We set a prior independently for error covariance. We use a Gibbs sampling algorithm to approximate the posterior.
The matlab code (example2.m) can be seen in figures 5, 6 and 7.

Lines 16 to 34 of the code calculate o1, 02, 03, 04 the variances used to scale the prior variance for the VAR
coefficients other than b2, b13, b14 and dy2, d13, d14. Lines 36 to 38 specify the parameters that will control the variance
of the prior on these parameters. Lines 40 to 44 set the prior mean for the VAR coefficients. Under the prior the
VAR has the following form:

R, 0 095 0 0 0 Ry 1
e, | | o 0 095 0 0 GB, ,
U, = lo "] o o 095 0 U s
P 0 0 0 0.95 Py
0 0 0 O Rt 2 V1t
0 0 0 O GBt 2 Vot
oo oo U s vay
000 0 Py Vs

3. THE NORMAL INVERSE WISHART PRIOR 39

clear

addpath ('functions');

% a VAR for the US using the

$load data

data=xlsread('\data\datalUS.xls"'); %data for US GDP growth and
inflation 1948gl 2010qg4

6 N=size(data,2);

7 L=2; gnumber of lags in the VAR

8 Y=data;

9 X=[ones(size(Y,1),1) lagO(data,l) lagO(data,2) 1;

10 Y=Y (3:end, :);

11 X=X (3:end, :);

12 T=rows (X);

13 $compute standard deviation of each series residual via an cls
regression

14 %to be used in setting the prior

15 %first variable

16 y=Y(:,1);

17 x=X(:,1:2);

18 b0=1inv (x"*x) * (x'*y);

19 sl=sqgrt({(y-x*b0)"'* (y-x*b0))/(rows(y)-2)); %std of residual standard
error

20 %second variable

21 y=Y{(:,2);

22 x=X(:,[1 31):

23 bO0=inv (x"*x) * (x"*y);

24 s2=sqrt ({(y-x*b0)"* (y-x*b0))/ (rows(y)-2));

25 %third variable

26 v=Y(:,3);

27 x=X(:, [1 4]);

28 bO=inv (x"*x)* (x"*y);

29 s3=sqrt (((y-x*b0) "* (y-x*b0))/ (rows (v)-2));

30 %fourth variable

31 yv=Y(:,4);

32 x=X(:,[1 51);

33 bO0=inv (x"*x) * (x"*y);

34 sd=sqgrt ({(y-x*b0)"* (y-x*b0))/ (rows(y)-2));

35 %parameters to control the prior

36 lamdal=0.1; $tightness prior on the AR coefficients
37 lamda3=0.05; $tightness of prior on higher lags

38 lamda4=1; $%$tightness of prior on the constant term
39 %$specify the prior mean of the coefficients of the Two equations of

U= W N

the VAR
40 BO=zeros{(N*L+1),N);
R, 0 095 0 0 0 R4
GB, 0 0 095 0 0 GB,,
= +
U, 0 0 0 09 0 U,
P, 0 0 0 0 0095 Py
0000 Ren Vit
0000 GB;» Vay
+ +
0000 Us» Vit
0000 Pia Var

41 for i=1:N

FI1cURE 5. Matlab code for example 2

Lines 48 to 53 set the variance around the prior for bys, b1z, b14 and dis, d13, d14. Note that the variance is set to a
very small number implying that we incorporate the belief that these coefficients equal zero very strongly. Lines 56
to 88 set the prior variance for the remaining VAR coefficients according to equation 3.9. This is an ad hoc way of
incorporating prior information about these coefficients but is important given the small sample. Lines 90 and 92
set the prior for the error covariance as in example 1. Given these priors the Gibbs algorithm is exactly the same
as in the previous example. However, we incorporate one change usually adopted by researchers. On lines 108 to
115 we draw the VAR coefficients from its conditional posterior but ensure that the draw is stable. In other words
the function stability re-writes the VAR coefficient matrix in companion form and checks if the eigenvalues of this

40 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

42 BO (i+1,1i)=0.95;

43 end

44 BO=vec (BO) ;

45 $Specify the prior variance of vec(B)

46 H=eye (N* (N*L+1) ,N* (N*L+1)) ;

47 %$small for coefficients we want close to zero

18 H(3,3)=1e-g; fOrdn

49 H(4,4)—1e-9; [O7b13

50 H(5,5)—1e-0; [OFbis

51 H(7,7)-1le-g; [OFdi

52 H(8,8)=1e—9; TO7d1

53 H(9,9)=1e—9; [Ordu

54 %for others like the normal conjugate prior
55 %ist equation

56 H(L,1)—(sl*lamdad)"2;

57 H(2,2)=(lamdal) ~2;

58 H(6,6)=(lamdal/ (2*1lamda3))"2;
59 %$second eqguation

60 H(10,10)=(s2*lamdad)"2;

61 H(11,11)=((s2*lamdal)/sl)"2

62 H(12,12)=(lamdal)"2;

63 H(13,13)=((s2*lamdal)/s3)"

64 H(14,14)=((s2*lamdal)/s4)"

65 H(15,15):((SZ*lamdal)/(Sl*(ZAlamdaS)))AZ;
66 H(16,16)=(lamdal/(2"lamda3)) " 2;

67 H(17,17)=((s2*lamdal) / (s3*(2*1lamda3)))"2;
68 H(18,18)=((s2*lamdal)/ (s4*(2"1lamda3)))"2;
69 $third equation

70 H(19,18)=(s3*lamdad)"2;

71 H(20,20)=((s3*lamdal)/sl) "2

72 H(21,21)=((s3*lamdal)/s2)"2

73 H(22,22)=(lamdal)"2;

74 H(23,23)=((s3*lamdal)/s4)"

75 H(24,24):((sB*lamdal)/(sl*(ZAlamda3)))AZ;
76 H(25,25)=((s3*lamdal)/ (s2*(2*1lamda3)))"2;
7T H(26,26)=(lamdal/ (2"1lamda3))"2;

78 H(27,27)=((s3*lamdal)/ (sd*(2"1lamda3)))"2;
79 $fourth eguation

BO H(28,28)=(sd4*lamdad)"2;

Bl H(29,29)=((s4*lamdal)/sl)" 2

82 H(30,30)=((s4*lamdal)/s2)"2

B3 H(31,31)=((s4*lamdal)/s3)"2

84 H(32,32)=(lamdal)”2;

85 H(33,33)=((s4*lamdal)/ (sl*(2"lamda3)))"2
B6 H(34,34)=((sd4*lamdal)/ (s2*(2"1lamda3)))"2;
87 H(35,35)=((s4*lamdal)/ (s3*(2"lamda3)))"2
88 H(36,36)=(lamdal/(2"lamda3))"2;

B9 ¢prior scale matrix for sigma the VAR covariance
90 S=eye(N);

91 %$prior degrees of freedom

92 alpha=N+1;

93 $starting values for the Gibbs sampling algorithm
94 Sigma=eye (N) ;

95 betaols=vec(inv (X'*X)* (X'*Y));

96 Repsg=40000;

97 burn=30000;

FIGURE 6. example 2: Matlab code continued

matrix are less than or equal tol-i.e. that the VAR is stable (see Hamilton (1994) page 259). Once past the burn-in
stage line 123 calculates the structural impact matrix Ag as the Cholesky decomposition of the draw of ¥ and lines
124 to 129 calculate the impulse response to a negative shock in the Government bond yield using this Ag. We save
the impulse response functions for each remaining draw of the Gibbs sampler. Quantiles of the saved draws of the
impulse response are error bands for the impulse responses.

The resulting median impulse responses and the 68% error bands are shown in figure 8. Note that 68% error
bands are typically shown as the 90% or 95% bands can be misleading if the distribution of the impulse response
function is skewed due to non-linearity. The response of the Federal Funds rate to this shock is close to zero as

4. STEADY STATE PRIORS 41

98 outl=[]; %$will store IRF of R
99 out2=[]; %$will store IRF of GB
100 out3=[]; %$will store IRF of U
101 out4=[]; %$will store IRF of P
102 i=1;

103 for j=1:Reps

104 %$step 1 draw the VAR ccefficients
105

M=inv (inv (H) +kron(inv (Sigma), X" *X))* (inv (H) *BO+kron (inv (Sigma), X' *X) *bet
aocls);

106 V=inv (inv (H)+kron (inv (Sigma),X'"*X));
107 %check for stability of the VAR

108 check=-1;

109 while check<0

110 beta=M+(randn(1,N* (N*L+1))*chol(V))"';
111 CH=stability(beta,N,L);

112 if CH==

113 check=10;

114 end

115 end

116 %draw sigma from the IW distributicn
117 e=Y-X*reshape(beta,N*L+1,N);

118 %scale matrix

119 scale=e'"*e+S;

120 Sigma=IWPQ(T+alpha,inv(scale));

121 if J>burn

122 %impulse response using a cholesky decomposition
123 AO=chol (Sigma) ;

124 v=zeros (60,N) ;

125 v (L+1,2)=-1; %shock the government bondyield
126 vhat=zeros(60,N);

127 for i=3:60

128 vhat (i, :)=[0 yhat(i-1,:) vhat(i-
2,:)]1*reshape (beta,N*L+1,N)+v (i, :)*R0;

129 end

130 outl=[outl yhat(3:end,1)];

131 out2=[out2 vhat(3:end,2)];

132 out3=[out3 vhat(3:end,3)];

133 outéd=[outd yhat(3:end,4)];

134 end

135 end

136 subplot(2,2,1)

137 plot([prctile(outl, [50 16 B4]1,2) zeros(size(out3,1),1)1);
138 title('Response of the Federal Funds rate'):

139 axis tight

140 subplot(2,2,2)

141 plot([prctile(out2, [50 16 84],2) zeros(sizef(out3,1),1)]);
142 title('Response of the Government Bond Yield');

143 axis tight

144 subplot(z,2,3)

145 plot([prctile(out3, [50 16 84],2) =zeros(sizef{out3,1),1)]);
146 title('Response of the Unemployment Rate');

147 axis tight

148 subplot(2,2,4)

149 plot([prctile(outd, [50 16 84],2) zeros(size(out3,1l),1)]);
150 title('Response of Inflation'):

151 axis tight

152 legend('Median Response', 'Upper 84%','Lower 16%','Zero Line');

Published with MATLAB® 7.9

FIGURE 7. example2: Matlab code (continued)

implied by the Cholesky decomposition and the prior on byis, b1, b4 and dis, d13,d14. A 0.3% fall in the Government
bond yield lowers unemployment by 0.1% after 10 months (but the impact is quite uncertain as evident from the
wide error bands). The impact on inflation is much more imprecise with the zero line within the error bands for most
of the impulse horizon.

4. Steady State priors

In some circumstances it is useful to incorporate priors about the long run behaviour of the variables included
in the VAR. For example one may be interested in forecasting inflation using a VAR model. It can be argued that

42 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

x10™* Response of the Federal Funds rate Response of the Government Bond Yield
15F T T ——— T T T

0.5-

10 20 30 40 50 10 20 30 40 50
Response of the Unemployment Rate Response of Inflation
0 el 02k Median Response | |
- : ——— Upper 84%
N 7] Lower 16%
0.15F | N n
A B Zero Line
o1p | ~__ 1
L g | ~—
0.05 —
0l
-0.05 r/ _
-0.1 S
-
-0.15
-0.2
-0.25 L L L L L
10 20 30 40 50

Horizon/

FiGURE 8. Impulse response to a fall in the Government bond yield

inflation in the long run will be close to the target set by the central bank. This information is a potentially useful
input as a prior.

Note that while the priors introduced above allow the researcher to have an impact on the value of the constant
terms in the VAR, there is no direct way to affect the long run mean (note that forecasts converge to the long run
unconditional mean). Consider our example bi-variate VAR re-produced below

Yt _ C1 + b1 bio Yt—1 + di1 di2 Yt—2 + U1 ,VAR U1 -y (4-1)
Tt C2 ba1 bao Tt—1 do1 da2 Tt—2 V2 V2

a1
Co
state means for y; and z; denoted by 1y and p, however, is defined as (see Hamilton (1994) page 258)

()= (00 8) - (o) () () "

Villani (2009) proposes a prior distribution for the unconditional means p = {1, s} along with coefficients of
the VAR model. This requires one to re-write the model in terms of p = {, 15} rather than the constants ¢; and
co. This can be done in our example VAR by substituting for ¢; and ¢y in equation 4.1 using the values of these
constants from equation 4.2 to obtain

Yt _ 10 [bin b2\ [din di2 3
T 01 b1 bz do1 da2 Ho
bi1 b2 Yt—1 di1 dia Yt—2 U1
+< ba1 b2) < Tt—1 > + < d21 dao) (Tr—2 * V2

or more compactly in terms of lag operators as

The Minnesota and the Normal inverse Wishart priors place a prior on the constants . The long run or steady

B(L)(Z - p) = v (4.3)

1 0 b b din d
where Z; = {yi, z}, v = {v1,v2}and B (L) = < 0 1 > — < bi b;z >L— < d;i d;z >L2

4. STEADY STATE PRIORS 43

Villani (2009) proposes a normal prior for u
p (1) ~ N(po, Ep0) (4.4)

The priors for the autoregressive coeflicients and the error covariance are specified independently. For example,
one can specify the Minnesota prior for the autoregressive coefficients and an inverse Wishart prior for the error
covariance.

Note that there are three sets of parameters to be estimated in this VAR model: (1) The VAR coefficients, the
error covariance and the long run means p.Villani (2009) describes a Gibbs sampling algorithm to estimate the model
and we turn to this next.

4.1. Gibbs sampling algorithm. The Gibbs sampling algorithm for this model is an extension of the algorithm
described in section 1.1. Conditional on knowing p the reparametrised model is a just a standard VAR and standard
methods apply. The algorithm works in the following steps

Step 1 Set a normal prior for the VAR coefficients p(b)™ N (l;o, H) where b the (vectorised) VAR coefficients except

for the constant terms. The prior for the covariance matrix of the residuals ¥ is inverse Wishart and given
by IW (S, a) . The prior for the long run means is p (1) ~ N (g, X,,). Set a starting value for p. A starting
value can be set via OLS estimates of the VAR coefficients as

Hols = (I_ B>_1é

where B are the OLS estimates of the VAR coefficients in companion form and C denotes the OLS estimates
of the constant terms in a comformable matrix. For the bi-variate VAR, in equation 4.1 this looks as follows
-1

1 000 by by dy dis é
HoLs,1 _ 0100 321 622 Cz21 822 C2
IU‘OLS',Q - 00 1 0 - 1 0 0 0 0
00 0 1 0 1 0 0 0

Step 2 Sample the VAR coefficients from their conditonal distribution. Conditional on y, equation 4.3 implies that
the model is a VAR in the transformed (or de-meaned) variables Y;° = Z; — pu. The conditional posterior
distribution of the VAR coefficients is normal distribution H (b|%, u, Z7) "N (M*,V*) where

M= (H ST e XPX]) T (H e+ 27 @ XX D) 45
(Nx(NxP))x1 (H7 27 e XXT) ot @A (4.5)
v* —(H '+ Tex?x0)™ (4.6)

(NX(NXP))x(Nx(NxP))
where XP = [V;2,...,Y;?] and b= vec ((X?/X?)fl (X?’Yto)) . Note that the dimensions of M* and V* are different

relative to those shown in section 1.1 because X does not contain a constant term. Once M* and V* are calculated,
the VAR coefficients are drawn from the normal distribution as before.
Step 3 Draw X from its conditional distribution H (E|l_), 1, Zt*) w (f}, T+ a) where ¥ = S+ (Yto — XtOBl)I (Y,;O - X?Bl)
where B! is the previous draw of the VAR coefficients reshaped into a matrix with dimensions (N x P) x N
so it is conformable with X;.
Step 4 Draw p from its conditional distribution. Villani (2009) shows that the conditional distribution of y is given
as H (ub, %, Z;}) ~ N (u*,Q*) where
-1

Q= (3, +U (DDex U (4.7)
p =" (U'vec (S7'Y'D) 4+ %, 1) (4.8)
where D is a T x (P + 1) matrix D = [¢;, —¢;—1,... — ¢t—p] Where ¢; is the constant term (a 7T x 1) vector equal to
one). U is a matrix with the following structure
Iy
v=| B
Bp
For our two variable VAR U looks as follows
1 0
0 1
bir b2
U= 4.9
by bas (19)
din diz

44 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

1 clear

2 addpath ('functions');

3 % a bi-variate VAR with a Minnescta Prior and Gibbks Sampling

4 %$load data

5 data=xlsread('\data\datain.xls'); %data for US GDP growth and inflation
1948gl 2010g4

6 N=size(data,2);

7 L=2¢g gnumber of lags in the VAR

8 Y=data;

9 X=[lag0O(data,1) lagC(data,2) ones(rows(data),l)];

10 Y=Y (3:end, :);

11 X=X(3:end, :);

12 T=rows (X);

13 %compute standard deviation of each series residual via an ols
regression

14 %to be used in setting the prior

15 %first variable

16 y=Y(:,1);

17 x=[ones(T,1l) X(:,1)]
18 bO=inv (x'*x)*(x'*y);
19 sl=sgrt(((y=x*b0)"'*(
error

20 %second variable

21 v=Y(:,2);

22 x=[ones(T,1l) X(:,2)]
23 bO=inv (x'*x)* (x'*y);
24 g2=gqrt{ ((y-x*b0) '* (y-x*b0))/ (rows (y)-2));

25 %specify parameters of the minnesota prior

26 lamdal=1l; %controls the prior on own lags

27 lamdaZ2=1;

28 lamda3=1;

29 lamdad=1;

30 %specify the prior mean of the coefficients of the Two equations of
the VAR

31 BO1=[1;0;0;0];

32 B02=[0;1;0;0];

33 BO=[B0O1;B02];

34 %Specify the prior variance of vec(B)

35 H=zeros(8,8):

36 %for equation 1 of the VAR

;

v=x*b0))/ (rows (y)=2)); %std of residual standard

;

37 H(1,1)=(lamdal)"2; $own lag

38 H(2,2)={((sl*lamdal*lamda?2)/s2)"2; %lag of other variable

39 H(3,3)=(lamdal/ (2"1lamda3))"2; $own second lag

40 H(4,4)=((sl*lamdal*lamda2)/ (s2* (2"1lamda3)))"2; 3%lag of other variabkle
41 %for equation 2 of the VAR

42 H(5,5)=((s2*lamdal*lamda2)/s1)"2; %$lag of other variable

43 H(6,6)=(lamdal)"2; $own lag

44 H(7,7)=((s2*lamdal*lamda2)/ (sl* (2*lamda3)))*2; %lag of other variable
45 H(8,8)=(lamdal/ (2~1lamda3))"2; $own second lag

46 %sprior scale matrix for sigma the VAR covariance

47 S=eye(N);

48 3prior degrees of freedom

49 alpha=N+1;

50 %set priors for the long run mean which is a N by 1 vector

p(u) ~ N(o, Zy)

51 MO=[1 1]; %prior mean

52 V0=eye(N)*0.001; S%prior wvariance

53 %starting values via OLS

54 betaols=inv (X"*X)*(X'*Y);

55 F=[betaocls(l:N*L,:)';eye(N*(L-1),N*L)]; S%companion form

F1GURE 9. Matlab code for VAR with steady state priors

Finally Y = Z; — B1Zy—1 — ...Bp,Z;_,, where B; denotes the VAR coefficients on the i lag from the previous Gibbs
iteration.

Step 5 Repeat steps 2 to 4 M times to obtain B'..B™ and ()" ()™ and p'...u™ The last H values of B,
and ¥ from these iterations is used to form the empirical distribution of these parameters.

4.2. Gibbs sampling algorithm for the VAR with steady state priors. The matlab code. We estimate
the VAR with steady state priors using the same data used in the first example (quarterly data on annual GDP growth
and CPI inflation for the US from 1948Q2 to 2010Q4) and consider a long term forecast of these variables. The code

4. STEADY STATE PRIORS 45

56 C=zeros(rows(F),1);
57 C(1:N)=betaols (N*L+1,:)";

Hors 1 1000 by by di di é1
HoLs2 -~ 0100 by by dy dn &
0010 1 0 0 0 0
0001 0o 1 0 0 0
58 MU=inv (eye(rows(F))-F)*C; %ols estimate of the mean inv(I-B)C
59 e=Y-X*betaocls;
60 Sigma=(e'*e)/T;
61 Reps=10000;
62 burn=5000;
63 outl=[]; %will store forecast of GDP growth
64 out2=[]; %will store forecast of inflation
65 i=1;
66 for j=1:Reps
67 %demean the data
68 YO=data-repmat (MU(1:N)',rows (data),1): }? =Zi—u
69 X0=I[1;
70 for jj=1:1L
71 X0=[X0 lag0(YO0,33) 1:
72 end
73 YO0=Y0O(L+l:end,:);
74 XO0=X0(L+1l:end,:);
75 %step 1 draw the VAR coefficients
76 bols=vec (inv (X0'*X0)* (X0'*Y0));
M = H 3 XYY (H by + 27 @ XX D)
W=V P)Ix1
77
M=inv (inv (H) +kron (inv (Sigma),X0'*X0)) * (inv (H) *BO+kron (inv (Sigma) ,X0"*X0) *
bols);
o = XX
(N (N P) X (N (N% P))

78 V=inv (inv (H)+kron (inv (Sigma) ,X0"'*X0));
79 beta=M+(randn (1,N* (N*L))*chol (V))"';

80 betal=reshape (beta,N*L,N);

81 %draw sigma from the IW distribution
82 e=Y0-X0*betal;

83 %scale matrix

$_Q _ 1y _ 1
84 scale=e'*e+S; Z_S+(Y? X?B)(Y? XPB)

85 Sigma=IWPQ (T+alpha,inv (scale));

86 %$step 3 draw MU the long run mean conditional on beta and sigma ({(see
87 $Appendix A in Villani.
88

89 Y1=Y-X(:,1l:end-1)*betal; V= =By oyl
90 U=eye(N);

FIGURE 10. Matlab code for steady state VAR (continued)

for the model (example3.m) is presented in figures 9, 10, 11 and 12. The code is identical to the first matlab example
until line 50 where we set the prior for the long run means of the two variables. As an example we set the prior mean
equal to 1 for both p; and p, and a tight prior variance. Lines 54 to 58 estimate the VAR coefficients via OLS and
estimate a starting value for u; and p, as described in Step 1 of the Gibbs sampling algorithm above. Line 68 is
the first step of the Gibbs algorithm and computes the demeaned data Y, = Z; — u and uses this on line 77 and 78
to compute the mean and the variance of the conditional posterior distribution H (B|Z, 1, Zt*) and samples the VAR
coefficients from the normal distribution. Lines 81 to 85 draw X from the inverse Wishart distribution. Lines 89 to 100
draw p; and p, from the normal distribution. On line 89 the code creates the matrix Y = Z, — B1Zy_1 — ...BpZs—p.

46

Lines 90 to 96 create the matrix U =

2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

1 0
0 1
bll blZ
U=
bZl bZZ
dll dlZ
d21 dZZ
91 33=1:
92 for jx=1:1
93 betai=betal (jj:JJ+N-1,:);
94 U=[U;betai'];
95 Ji=33+N;
96 end

97 D=[cnes (T,1) -ones(T,L)];: D= [Q’_CFJ“"_CFP]
98 vstarl=inv (U'*kron (D'*D,inv (Sigma)) *U+inv (V0)) ;
= — -1
O - (5 + V@D ST . .
$posterior variance
99 mstarl=vstarl*(U'*vec (inv (Sigma) *Y1'*D)+inv (VO)*MO") ;
o * d -1 =il
pr=0 (U'vee(Z VD)+Z“ ‘UO) $posterior mean

100 MU=mstarl+(randn(l,N)*chol (vstarl))"'; %draw MU

101

102 if j>burn

103

104 $forecast GDP growth and inflation for 3 years

105 F=[betal (1:N*L, :) ';eye (N*({L-1),N*L)]; %companion form

106 mi=1[];
107 for i=1:L
108 mu= [mu;MU] ;

109 end
1000 bin b2 du din Ha 1
0100 B byy by dy dn Ha | e
0010 1 0 0 0 i 0
0001 0 1 0 0 L 0

110 C=(eye (rows (F))-F)*mu; %implied constant

111

112

113 vhat=zeros (44, 2);

114 yvhat (1:2,:)=Y(end-1:end,:);

115 for 1=3:44

116 yvhat (i, :)=C(1:N)'+[yhat(i-1,:) vyhat(i-

2, :)]*reshape (beta,N*L,N) +randn(1,N) *chol (Sigma) ;

117 end

118 outl=[outl [Y(:,1);yhat(3:end,1)]];

119 out2=[out2 [Y(:,2);vhat(3:end,2)]];

120 end

121 end

122 TT=1948.75:0.25:2021.5;

123 subplot(1l,2,1)

124 plot(TT, [mean (outl,2) prctile(outl, [50 10 20 30 70 8O 90]1,2)1)
125 x1im([1995 2022])

126 title('GDP Growth');

127 subpleot(l,2,2)

FIGURE 11. Matlab code for VAR with steady state priors (continued)

1 0

0 1

b iz . Line 97 creates the matrix D = [¢;, —¢t—1 ... — ¢4—p] . Lines
ba1 b2 ’ P
dyy dio
doy daa

98 and 99 compute the variance and mean of the conditional posterior distribution of y (see equation 4.7 and 4.8
)while line 100 draws g from the normal distribution. After the burn-in stage the VAR is used to do a forecast for

4. STEADY STATE PRIORS 47

128 plot(TT, [mean(out2,2) prctile(out2, [50 10 20 30 70 80 90],2)1)

129 x1im([1995 2022])

130 legend('Mean Forecast', 'Median Forecast', '10th percentile', '20th
percentile', '30th percentile', '70th percentile', '80th percentile', '90th
percentile');

131 title('Inflation');

Published with MATLAB® 7.9

F1GURE 12. Matlab code for VAR with Steady State priors.

40 quarters. It is convenient to parameterise the VAR in the usual form i.e as in equation 4.1. On line 110 the code
calculates the implied constants in the VAR using the fact that

1000 bi1 bz din dio e c1
0 1 0 0 | | bar bao dor dao po | _ | e
0 0 1 0 1 0 0 0 1y 0
0 0 0 1 0 1 0 0 Lo 0

and lines 113 to 117 calculate the forecast for each retained draw. The resulting forecast distribution in figure 13 is
centered around the long run mean close to 1 for both variables.

48 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

GDP Growth Inflation

gL
Mean Forecast
Median Forecast
10th percentile
20th percentile
30th percentile
70th percentile
80th percentile
90th percentile

v

20

L,

(AN A

-6 L L L L —4 I I
1995 2000 2005 2010 2015 2020 1995 2000 2005 2010 2015 2020

F1cURrE 13. Forecast distribution for the VAR with steady state priors.

5. Implementing priors using dummy observations

The computation of the mean of the conditional posterior distribution (see equation 1.5) requires the inversion of
(N x (N x (P+1))) x (N x (N x (P+1))) matrix (H'+Y7'® Xt’Xt)_l. For large VARs (N > 20) this matrix
has very large dimensions (e.g for N = 20 and P = 2 this is a 820 x 820 matrix). This can slow down the Gibbs
sampling algorithm considerably. This computational constraint can be thought of as one potential disadvantage of the
way we have incorporated the prior, i.e. via the covariance matrix H which has the dimensions (N x (N x (P +1))) x
(N x (N x(P+1))).

Note also that our method of implementing the prior makes it difficult to incorporate priors about combination
of coeflicients in each equation or across equations. For instance, if one is interested in a prior that incorporates
the belief that the sum of the coefficients on lags of the dependent variable in each equation sum to 1 (i.e. each
variable has a unit root) this is very difficult to implement using a prior covariance matrix. Priors on combinations
of coefficients across equations may arise from the implications of DSGE models (see Negro and Schorfheide (2004)).
Again these are difficult to implement using the standard approach.

An alternative approach to incorporating prior information into the VAR is via dummy observations or artificial
data. Informally speaking this involves generating artificial data from the model assumed under the prior and mixing
this with the actual data. The weight placed on the artificial data determines how tightly the prior is imposed.

5.1. The Normal Wishart (Natural Conjugate) prior using dummy observations. Consider artificial
data denoted Yp and Xp (we consider in detail below how to generate this data) such that

bo = (XpXp) (XpYp) (5.1)
S = (Yp—Xpby) (Yp — Xpbo)

where by = vec(bp). In other words a regression of Yp on Xp gives the prior mean for the VAR coefficients and sum
of squared residuals give the prior scale matrix for the error covariance matrix. The prior is of the normal inverse
Wishart form

p(BI)N (b, S @ (XpXp) ") (5.2)
p(2) IW(S,Tp ~ K)

where Tp is the length of the artificial data and K denotes the number of regressors in each equation.
Given this artificial data, the conditional posterior distributions for the VAR parameters are given by

5. IMPLEMENTING PRIORS USING DUMMY OBSERVATIONS 49

H (b|S,Y;) "N(vee(B*), S @ (X*X*)™) (5.3)
H (2[b,Y;) "IW(S*,T%)

where Y* = [YV;Yp], X* = [X; Xp] i.e. the actual VAR left and right hand side variables appended by the artificial
data and 7™ denotes the number of rows in Y* and

B* — (X*IX*>71 (X*/Y*)
S*=(Y*—X*b) (Y* — X*b)

Note that the conditional posterior distribution has a simple form and the variance of H (b3, Y};) only involves
the inversion of N x P + 1 matrix making a Gibbs sampler based on this formulation much more computationally
efficient in large models.

5.1.1. Creating the dummy observations for the Normal Wishart prior. The key question however is, where do
Yp and Xp come from? The artificial observations are formed by the researcher and are created using the following
hyper-parameters:

e 7 controls the overall tightness of the prior

e d controls the tightness of the prior on higher lags

e ¢ controls the tightness of the prior on constants

e 0; are standard deviation of error terms from OLS estimates of AR regression for each variable in the model

To discuss the creation of the dummy observations we are going to use the bi-variate VAR given below as an
example:

ye Y ey b1 b1 ye-1) dyr dia Y2\ (9 par(M) =x (5.4)
Tt C2 ba1 bag Tt—1 do1 dao Tt—2 V2 V2

Consider dummy observations that implement the prior on the coefficients on the first lag of y; and x;. The
artificial data (denoted by Yp 1 and Xp 1) is given by

You = ((1/6)0—1 (1/3)@) (5.5)

Xp1 = (8 (1/?01 (1/3)02) 8)

To see the intuition behind this formulation consider the VAR model using the artificial data

1 C2
by b
(1/7) 0y 0 _ (0 (/r)eo 0 0 0 b” b21 L m (5.6)
0 (1/7) o9 0 0 (1/7)oy 0 0 dm d” vy '
Yp1 Xp.1 11 21
d12 d22
B

Expanding the equation above gives the following
(1/7’)0‘1 0 _ (1/T)O'1b11 (1/T)0‘1b21 + V1 (5 7)
0 (1/7‘)0’2 (1/T)0’2b12 (1/T)0’2b22 (%) ’
Consider the first equation in the expression above (1/7) 01 = (1/7) o1b11 + v1 or by1= 1—%. Taking the expected

value of this gives E (b11)=1—F (Ta—vll) which equals 1 as F (v;) = 0. In other words, the dummy variables imply

2
a prior mean of 1 for by;. Similarly, the variance of by; is %Z(vl) Note that the implied prior mean and variance
1

for b7 is identical to the Natural conjugate prior discussed above. That is under the prior b1, "N (1, %) . As
1
7 — 0 the prior is imlemented more tightly.
Consider the second equation implied by expression 5.7: 0 = (1/7) 01b21 + vo or b= —Z—”f. This implies that
E (be1) = 0 and var (ba1) = % Thus ba1 "N (0, %) where the variance is of the same form as the
1 1

corresponding element in equation 3.9.

Thus, the artificial observations in 5.5 implement the Normal inverse Wishart prior for the coefficients on the
first lags of the two variables. We need to create artificial observations to implement the prior on the second lags.
These are given by the following matrices

0 0

e = (00) o)
0
0

0
Xpa = (0

50 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

Proceeding as in equation 5.7 one can show that these dummy variables imply a prior mean of 0 for the second lag

with the prior variance of the same form as in equation 3.9. For example, the prior variance associated with dq; is
2var(vy)
o22d -
The artificial observations that control the prior on the constants in the model are given by:

0 0
e = (30) o)
B 1/e 0 0 0 O
Xps = (l/c 000 o)
As ¢ — 0 the prior is imlemented more tightly. The dummy observations to implement the prior on the error
covariance matrix are given by

Ypu = <"01 0) (5.10)

02
0 00 0O
XD"‘_(ooooo)
with the magnitude of the diagonal elements of ¥ controlled by the scale of the diagonal elements of Yp 4 (i.e. larger

diagonal elements implement the prior belief that the variance of v; and vs is larger).
The prior is implemented by adding all these dummy observations to the actual data. That is

Y*=[Y;Yp1;Yp2; YD 3:Ypal, X* = [X;Xp1; Xp2; Xp 3 Xp 4l

With this appended data in hand, the conditional distributions in equation 5.3 can be used to implement the Gibbs
sampling algorithm. Note that, as discussed in Banbura et al. (2007), these dummy observations for a general N
variable VAR with P lags are given as

diag(x101..XNON)

ONx(P-1)xN %w OnpPx1
.............. OnNxnP Onx1
Yp = Xp = x 5.11
b diag (o1...0N) L (5.11)
.............. 01><Np C

where y; are the prior means for the coefficients on the first lags of the dependent variables (these can be different
from 1) and Jp = diag(1..P)

5.1.2. Creating dummy variables for the sum of coefficients prior. If the variables in the VAR have a unit root,
this information can be reflected via a prior that incorporates the belief that coefficients on lags of the dependent
variable sum to 1 (see Robertson and Tallman (1999)). This prior can be implemented in our example VAR via the
following dummy observations

_ (v O (0 vy O yu O
YD’5_< 0 WQ)’XD’5_(0 0 yus 0 yuy (5.12)

where p; is the sample mean of y; and py is the sample mean of x; possibly calculated using an intial sample of
data. Note that these dummy observations imply prior means of the form b;; + d;; = 1 where 4 = 1,2 and = controls
the tightness of the prior. As v — oo the prior is implemented more tightly. Banbura et al. (2007) show that these
dummy observations for a N variable VAR with P lags are given as

dia, ia
Yy = g(X1M)1\ XNNN)’XD — ((1,2..P)®d g(Axlul--»xNuN) Onx1) (5.13)
where A = 1/v and p,;,i = 1,.., N are sample means of each variable included in the VAR.

5.1.3. Creating dummy variables for the common stochastic trends prior. One can express the prior belief that
the variables in the VAR have a common stochastic trend via the following dummy observations

Ype = (Opy Opy)7XD,6 = (0 Opy Opg Opy Opy) (5.14)

These dummy observations imply, for example, that @, = ¢1 + ;011 + pobi2 + pydi1 + podio i.e. the mean of the
first variable is a combination of 1; and u,. Note as § — oo the prior is implemented more tightly and the series in
the VAR share a common stochastic trend.

5.1.4. Matlab code for implementing priors using dummy observations. Figures 14, 15 and 16 show the matlab
code for the bi-variate VAR(2) model using quarterly data on annual GDP growth and CPI inflation for the US from
1948Q2 to 2010Q4 (example4.m). Line 26 of the code calculates the sample means of the data to be used in setting
the dummy observations. Some researchers use a pre-sample to calculate these means and the standard deviations
0;. Lines 28 to 32 specify the parameters that control the prior. Lines 33 to 37 set the dummy observations for
the VAR coefficients on the first lags. Lines 38 to 42 set the dummy observations for the VAR coefficients on the
second lag. Lines 43 to 47 specify the dummy observations for the prior on the constant. Lines 48 to 53 specify

5. IMPLEMENTING PRIORS USING DUMMY OBSERVATIONS 51

clear

addpath ('functions');

% a bi-variate VAR with dummy variable implementation of pricrs
$load data

data=xlsread('\data\datain.xls'); %data for US GDP growth and
inflation 1948gl 2010qg4

6 N=size(data,2);

7 L=2; gnumber of lags in the VAR

8 Y=data;

9 X=[ones(size(Y,1),1) lagO(data,l) lagO(data,2) 1;

10 Y=Y (3:end, :);

11 X=X (3:end, :);

12 T=rows (X);

13 $compute standard deviation of each series residual via an cls
regression

14 %to be used in setting the prior

15 %first variable

16 y=Y(:,1);

17 x=[ones (T,1) X(:,2)]
18 b0=1inv (x"*x) * (x'*y);
19 sl=sqgrt (((y-x*b0)"*(
error

20 %second variable

21 y=Y{(:,2);

22 x=[ones(T,1) X(:,3)]
23 bO0=inv (x"*x) * (x"*y);
24 s2=sqrt ({(y—-x*b0)"*(
25 %mean of the data

it = 1,.. N are sample means of each variable included in the VAR

U= W N

v

y-x*b0))/ (rows(y)-2)); %std of residual standard

7

y=x*p0))/ (rows (y)-2));

26 mu=mean (Y) ;
27 %$specify parameters of the minnesota prior
28 tau=0.1; %controls pricr on own first lags

7 controls the overall tightness of the prior

29 d=1; Sdceay feor hicker logs d controls the tightness of the prior on higher lags
30 lamdac=1; %prior for the constant

controls the tightness of the prior on constants

31 lamda=1; $sum of coefficients unit roots

Asy — o the prior is implemented more tightly

I delis=ip Seelniesrsiien weies as§ — o the prior is implemented more tightly

(I/)ey 0
YbJ =
0 (1/7.')02
0 (1/ 0 00
Xp1 = (I7)oy

0 0 (L), 00

33 %specify dummy observations for first lag
34 ydl=[(1l/tau)*sl 0;

0 (1/tau)*s2];
36 xd1=[0 (1/tau)*sl 0 O O;

0 0 {1/tau)*s2 0 0];

FiGURE 14. Normal Wishart prior using dummy observations

the dummy observations for the unit root prior. Lines 56 to 57 set out the dummy observations for the common
stochastic trends prior. Lines 59 to 64 specify the dummy observations for the prior on the covariance matrix.
Lines 68 and 69 mix the actual observations with the dummy data creating Y* = [Y;Yp]|, X* = [X; Xp]. Line 72
computes the mean of the conditional posterior distribution of the VAR coefficients B* = (X*' X*)™' (X*'Y*). Line
83 calculates the variance of this posterior distribution ¥® (X*' X *)71 and line 85 draws the VAR coeflicients from the
normal distribution with this mean and variance. Line 88 calculates the scale matrix for the inverse Wishart density
S* = (Y* — X*B*) (Y* — X*B*) and line 89 draws the covariance matrix from the inverse Wishart distribution.
Once past the burn-in stage the code forecasts the two variables in the VAR and builds up the predictive density.

52 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

00
YD,Z =

00

000 (I/0)e2? 0
Xpa = (1/z)e

000 0 (L)

38 %specify dummies for second lag
39 yd2=[0 ;

40 0 1

41 xd2=[0 0 O (1/tau)*sl*2*d O0;
a2 00 O 0 (1l/tau)=*sz*2”d 1:

0
0

YDJ

/e 00 00

Ap3
1/e 0 0 00

43 %specify priors for the constants
44 yd3=[0 O;

45 0 0]
46 xd3=[1/lamdac 0 0 O O;
17 1/lamdac 0 O O 0];
v 0 0y 0 v O
Yps = Xps =
0 yus 0 0 yuo 0 yua

48 %specify sum of coefficient dummies
49 ydi=[lamda*mu(l) O;

50 0 lamda*mu(2)];

51

52 xd4=[0 lamda*mu(l) O lamda*mu (1) O;

53 0 0 lamda*mu (2) 0 lamda*mu(2)];

Ype = (oy Gy),Xp,s = (O Gy Gy Oy Gy)

55 $specify common stochastic trend dummies
56 vyd5=[delta*mu(l) delta*mu(2)];
57 xdb=[delta delta*mu(l) delta*mu(2) delta*mu({l) delta*mu(2)]:;

010
YDA =

0 a2

00000
XbA =

00000

58

59 %gpecify dummy variables for covariance matrix
60 ydé=[s1 0;

61 0 s2];

62

F1GURE 15. Normal Wishart prior using dummy observations continued

6. Applicationl: Structural VARs and sign restrictions

Structural VAR models offer a simple and flexible framework for analysing several questions of interest. Once
structural shocks are identified using an appropriate identification scheme, impulse response analysis, variance de-
composition and historical decomposition offer powerful tools. For a detailed explanation of structural VARs see
Hamilton (1994) or Canova (2007). In this section we focus on how structural analysis fits in the Gibbs sampling
framework established in the chapter.

As shown in the matlab example in section 3.2.1, one can estimate structural VARs by calculating the structural
impact matrix Ay (where ¥ = A{Ap) for each retained Gibbs draw and use this to compute impulse response

6. APPLICATIONI1: STRUCTURAL VARS AND SIGN RESTRICTIONS 53

63 =xde=[0 0 0 0 0O;

64 0 0 00 0];

65 %$all dummy observations

66 yd=[ydl;yd2; yd3;ydd;yds;yde];
67 xd=[xdl;xd2;xd3;xd4;xd5; xdé6] ;
68 Ystar=[Y:yd]; ¥ = [Y;YD]JX* = [AX:XD]

69 Xstar=[X;xd];

70 Tstar=rows (Xstar);

71 %compute posterior mean

72 betahat=inv(Xstar'*Xstar)* (Xstar'*¥star);
73 S$compute inital value of sigma

74 e=Ystar—-Xstar*betahat;

75 sigma=(e"*e)/Tstar;

76 REPS=2000;

77 BURN=1000;

78 %gibbs algorithm

79 outl=[];

80 out2=[]:

81 for i=1:REPS

82 M=vec (betahat); vec(B*)
! 174 \—1

83 V=kron(sigma,inv(Xstar'*Xstar)); re (X X)
54 $draw beta
85 beta=M+ (randn (1,N* (N*L+1))*chol(V))"';
86 $draw sigma
87 e=Ystar-Xstar*reshape (beta, N*L+1,N) ;

* * * Dk N ¢y * %
88 scale=e'*e; St =T -XB (I - XB)
89 sigma=iwpqg(TIstar,inv (scale));
90
91 if i>BURN;
92 %$forecast
93 vhat=zeros(14,2):
94 vhat (1:2,:)=Y(end-1l:end, :);
95 for 1=3:14
96 vhat{i,:)=[1 vhat(i-1,:) yhat(i-
2,:)]1*reshape (beta,N*L+1,N)+randn (1,N)*chol (sigma) ;
97 end

98 outl=[outl [Y(:,1):;vhat(3:end,1}]];

99 out2=[out2 [Y(:,2);vhat(3:end,2)]1;

100 end

101 end

102

103 TT=1948.75:0.25:2014;

104 subplot(l,2,1)

105 plot(TT,prctile(outl, [50 10 20 30 70 80 901,2))

106 x1im([1995 20151])

107 title("GDP Growth');

108 subplot(l,2,2)

109 plot(TT,prctile(out2, [50 10 20 30 70 80 901,2))

110 x1im([1995 2015])

111 legend('Median Forecast','10th percentile', '20th percentile', '30th
percentile®, '70th percentile', '80th percentile','90th percentile');
112 title('Inflation');

Published with MATLAB® 7.9

FI1GURE 16. Normal Wishart prior using dummy observations continued

functions, variance decompositions and historical decompositions. The Gibbs sampling framework is convenient
because it allows one to build a distribution for these objects (i.e. impulse response functions, variance decompositions
and historical decompositions) and thus characterise uncertainty about these estimates.

Strictly speaking, this indirect method of estimating structural VARs—i.e. calculating Ay using a Gibbs draw
of ¥ (and not sampling Ay directly) provides the posterior distribution of Ay only if the structural VAR is exactly
identified (for e.g. when Ay is calculated using a Cholesky decomposition as in section 3.2.1) . In the case of over
identification one needs to estimate the posterior of Ay directly (see Sims and Zha (1998)). We will consider such
an example in Chapter 4.

54 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

Recent applications of structural VARs have used sign restrictions to identify structural shocks (for a critical
survey see Fry and Pagan (2007)). Despite the issues raised in Sims and Zha (1998), sign restrictions are implemented
using an indirect algorithm. In other words for each retained draw of ¥ one calculates an Ay matrix which results
in impulse responses to a shock of interest with signs that are consistent with theory. For example to identify a
monetary policy shock one may want an Ay matrix that leads to a response of output and inflation that is negative
and a response of the policy interest rate that is positive for a few periods after the shock.

Ramirez et al. (2010) provide an efficient algorithm to find an Ay matrix consistent with impulse responses of
a certain sign consistent with theory. We review this algorithm by considering the following VAR(1) model as an
example

Y, c1 bi1 bz bis Y1 Vg
P =1 co |+ | bar baa bos P |+ va (6.1)
Ry c3 b31 b3z b33 Ry U3¢
V1t
where var | vy | = 3,Y; is output growth, P; is inflation and R; is the interest rate. The aim is to calculate
U3t

the impulse response to a monetary policy shock. The monetary policy shock is assumed to be one that decreases Y;
and P, and increases R; in the period of the shock. As described above, the Gibbs sampling algorithm to estimate
the parameters of the VAR model cycles through two steps, sampling successively from H (b|%,Y;) and H (2|, Y;) .
Once past the burn-in stage the following steps are used calculate the required Ay matrix:

Step 1 Draw a N x N matrix K from the standard normal distribution

Step 2 Calculate the matrix @ from the QR decomposition of K. Note that) is orthonormal i.e. Q'Q = I.

Step 3 Calculate the Cholesky decomposition of the current draw of 3 = fl{)flo

Step 4 Calculate the candidate Ay matrix as Ay = QAy. Note that because Q’Q = I this implies that ApAg
will still equal . By calculating the product QA we alter the elements of Ay but not the property that
Y= 1216;10. The candidate Ag matrix in our 3 variable VAR example will have the following form

a11 aiz2 @13
Ay = a1 a2 G23
azi1 asz2 ass

The third row of this matrix corresponds with the interest rate shock. We need to check if ag; < 0 and
azz2 < 0 and agz > 0. If this is the case a contemporaneous increase in R; will lead to a fall in Y; and
P; as the elements(as1 a3z as33) correspond to the current period impulse response of Y;, P; and R;
respectively. If az; < 0 and azs < 0 and a3 > 0 we stop and use this Ay matrix to compute impulse
responses and other objects of interest. If the restriction is not satisfied we go to step 1 and try with an
new K matrix.

Step 5 Repeat steps 1 to 4 for every retained Gibbs draw.

6.1. A Structural VAR with sign restrictions in matlab. We estimate a large scale VAR model for the
US using quarterly data from 1971Q1 to 2010Q4 (example5.m). The VAR model includes the following variables (in
this order): (1) Federal Funds Rate (2) Annual GDP growth (3) Annual CPI Inflation (4) Annual real consumption
growth (5) Unemployment rate (6) change in private investment (7) net exports (8) annual growth in M2 (9) 10 year
government bond yield (10) annual growth in stock prices (11) annual growth in the yen dollar exchange rate. We
identify a monetary policy shock by assuming that a monetary contraction has the following contemporaneous effects
Variable Sign restriction
Federal Funds Rate +
Annual GDP growth -
Annual CPI Inflation -
Annual Real Consumption Growth | -
Unemployment rate +
Annual Investment Growth -
Annual Money Growth -
The Matlab code for this example is shown in figures 17, 18 and 19. Line 37 of the code builds the dummy
observations for the normal wishart prior for the VAR using equations 5.11 and the sum of coefficients prior using
equation 5.13 via the function create dummies.m in function folder. Lines 49 to 55 sample from the conditional
posterior distributions as in the previous example. Once past the burn-in stage, on line 61 we draw a N x N matrix
from the standard normal distribution. Line 62 takes the QR decomposition of K and obtaines the matrix . Line
63 calculates the Cholesky decomposition of ¥ while line 64 calculates the candidate Ay matrix as Ag = Q[lo. Lines
66 to 72 check if the sign restrictions are satisfied by checking the elements of the first row of the Ay matrix (the row
that corresponds the interest rate). Lines 77 to 83 check if the sign restrictions are satisfied with the sign reversed.
If they are, we multiply the entire first row of the Ay matrix by -1. The code keeps on drawing K and calculating
candidate Ag = Qflo matrices until an Ay matrix is found that satisfies the sign restrictions. Once an Ay matrix is

® o U W N

6. APPLICATIONI1: STRUCTURAL VARS AND SIGN RESTRICTIONS 55

clear

addpath ('functions');

REPS=5000;

BURN=3000;

[data,names]=xlsread ("\data\usdatal.xls'); %load US data
N=cols(data);

L=2; %lag length of the VAR

Y=data;

$take lags

10 X=1[1];

11 for j=1:L

12 X=[X lag0O(data,j) 1:

13 end

14 X=[X ones(rows(X),1)];

15 Y=Y (L+l:end, :);

16 X=X (L+1l:end, :);

17 T=rows (X);

18 %priors for VAR coefficients

19 lamdaP=1; %This controls the tightness of the priors on the first

20 tauP=10*lamdaP; % this controls the tightness of the priors on sum
of coefficients
21 epsilonP=1; % this controls tightness of the prior on the constant

22 muP=mean(Y)"';

2

23 sigmaP=1[];
24 deltaP=[];
25 for i1=1:N

26 yvtemp=Y(:,1);

27 xtemp=[1lagl (ytemp, 1) ones(rows(ytemp),1)];
28 ytemp=vytemp (2:end, :) ;

29 xtemp=xtemp (2:end,) ;

30 btemp=xtemp\ytenp;

31 etemp=ytemp-xtemp*btemnp;

32 stemp=etemp' *etemp/rows (ytemp) ;

33 deltaP=[deltaP;btemp(1l)];

34 sigmaP=[sigmaP; stemp] ;

35 end

36 %$dummy data to implement priors see
http://ideas.repec.org/p/echb/ecbwps/20080966.html

This function (create dummies) builds the dummy observations using:

/ diag(y10 1. ¥ now) \
T

0 Jp@diag(c1..0n) 0
N (P-1 %N - 7 VYNPxl

YD _ || =ceceocsoccass ,XD _ ONXNP ONXI

O

A A

diag(y 1y y wkwr) 1,2..P)®di
Yy = Zbiean) e (L2 P)@diag (i i) Onnt

37 [yd,xd] = create dummies(lamdaP,tauP,deltaP,epsilonP,L,muP,sigmaP,N);
38 %yd and xd are the dummy data. Rppend this to actual data

39 YO=[Y;vyd];

40 X0=[X;xd];

41 $conditional mean of the VAR coefficients

42 mstar=vec(X0\Y0); %ols on the appended data

43 xx=X0"*X0;

found that satisfies the
and the impulse response functions for each retained Gibbs draw are saved. The file example6.m has exactly the
same code but makes the algorithm to find the Ay matrix more efficient by searching all rows of candidate 4y = QA,
matrix for the one consistent with the policy shock—i.e. with the signs as in the table above. Once this is found we
insert this row into the first row of the candidate Ay matrix. Note that that this re-shuffling of rows does not alter the
property that ¥ = AjAy. Note also that the Ay matrix is not unique. That is, one could find Ay matrices that satisfy
the sign restrictions but
Ap matrices that satisfy the sign restrictions for each Gibbs draw and then retaining the Ag matrix that is closest to

FIGURE 17. A Structural VAR with sign restrictions: Matlab Code

sign restrictions, this is used to calculate the impulse response to a monetary policy shock

have elements of different magnitude. Some researchers deal with this issue by generating M

56 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

44 ixx=xx\eye(cols(xx)); %inv(X0'X0) to be used later in the Gibbs
sampling algorithm

45 sigma=eye(N); %starting value for sigma

16 out=zeros (REPS-BURN, 36, N) ;

47 §9=1;

48 for i=1:REFS

49 vstar=kron(sigma, ixx) ;

50 beta=mstar+ (randn (1, N* (N*L+1)) *chol (vstar))"';

51

52 %draw covariance

53 e=Y0-X0*reshape (beta,N*L+1,N) ;

54 scale=e'*e;

55 sigma=iwpqg(T+rows (yd),inv (scale));

56

57 if i>=BURN

58 $impose sign restrictions

59 chck=-1;

60 while chck<O

&1 Kerandn (v,ny; DAWaNxN matrix X from the standard normal distribution
62 Q=getQR (K);

Calculate the matrix Q fiom the QR decomposition of K. Note that O is orthonormalie. Q'Q = 1.
63 AOhat=chol (sigma) ;

Calculate the Cholesky decomposition of the current draw of T = A4

G4 AQhatl=(Q*AOhat) ; $candidate draw

Calculate the candidate 4, matrix as 4o = Q4. Note that because Q'Q = I this implies that 4 oo will still equal =

65 $check signs

66 el=A0hatl (1, l)>O $Response of R

67 e2=A0hatl(1,2)< %Response of Y

68 e3=A0hatl(1,3)< $Response of Inflation
69 e4=A0hatl(1,4)<0; S%Response of consumption
70 eb=A0hatl1(1,5)>0; $Response of U

71 e6=A0hatl(1,6)<0; $Response of investment
72 e7=A0hatl(1,8)<0; %response of money

73 if el+e2+e3+ed+eb+eb+el=——

74 chck=10;

75 elsz

76 $check Signs but reverse them

77 el=-A0hatl (1,1)> %Response of R

78 eZz—AOhatl(l,Z) %Response of Y

79 e3=-A0hatl (1,3)< $Response of Inflation
80 ed=-A0hatl (1,4)< $Responsgse of consumption
81 eb=-A0hatl (1,5)> %Response of U

82 e6=-A0hatl (1,6)< $Response of investment
83 e7:—AOhat1(1,8)<O, $response of money

654 if el+e2+e3+ed+eb+ebtel=="7

g5 Alhatl(1,1:N)=-AOhatl(l,1:N);

86 check=10;

87 end

g8 end

89 end

90

91 vhat=zeros(36,
92 vhat=zeros (36,
93 vhat(3,1)=1; %
94 for §=3:36

N) i
N) ;
shock to the Federal Funds rate

95 vhat(j,:)=[vhat(j-1,:) vhat{3-2,:)
0] *reshape (beta, N*L+1,N) +vhat (j, :) *AChatl;
96 end

FIGURE 18. A structural VAR with sign restrictions (continued)

the mean or median of these M matrices. This imples that one restricts the distribution of the selected Ag matrices
via a (arbitrary) rule. The file example7.m does this for our example by generating 100 Ay matrices for each retained
Gibbs draw and using the Ay matrix closest to the median to compute the impulse response functions. Figure 20
shows the estimated impulse response functions computed using example7.m

7. Application 2: Conditional forecasting using VARs and Gibbs sampling

In many cases (relevant to central bank applications) forecasts of macroeconomic variables that are conditioned
on fixed paths for other variables is required. For example, one may wish to forecast credit and asset prices assuming

7. APPLICATION 2: CONDITIONAL FORECASTING USING VARS AND GIBBS SAMPLING 57

97 out(jj,:,:)=yhat;
98 33=33+1;

99 end

100

101 end

Published with MATLAB® 7.9

FIGURE 19. A structural VAR with sign restrictions: Matlab code (continued)

that inflation and GDP growth follow future paths fixed at the official central bank forecast. Waggoner and Zha
(1999) provide a convenient framework to calculate not only the conditional forecasts but also the forecast distribution

using a Gibbs sampling algorithm.
To see their approach consider a simple VAR(1) model

Y; = c+ BY;_1 + Aoe (71)

58 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

FederalFunds Rate GDP Growth CPl Inflation

0.4 — 0.2
~ 0.1
020\ / 0
-0.1
-0.2

|

5 10 15 20 25 30

Net Exports M2 10 year Government Bond Yield
— - — 03 7
o T 01 — -
— 0.2 ~
0 /
2 k 01 01 ﬁ
] 0
0 -0.2 -~
— 3] P 7 —01 B
- . - __—
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30

Stock Price Growth Yen Dollar Rate

FIGURE 20. Impulse response to a monetary policy shock using sign restrictions

where Y; denotes a T' x N matrix of endogenoeus variables, €; are the uncorrelated structural shocks and AgAj =%
where 3 denotes the variance of the reduced form VAR esiduals. Iterating equation 7.1 forward K times we obtain

K K
Yigk =c¢Y B+ BYi 1+ Ay Blek (7:2)
j=0 Jj=0

Equation 7.2 shows that the K period ahead forecast Y;1x can be decomposed into components with and without
structural shocks. The key point to note is that if a restriction is placed on the future path of the J* variable in
Y;, this implies restrictions on the future shocks to the other variables in the system. This can easily be seen by
re-arranging equation 7.2
K K
)/H_K—CZB] — BiY, ZAOZB]EH_K_j (7.3)
j=0 j=0

If some of the variables in Y;; i are constrained to follow a fixed path, this implies restrictions on the future
innovations on the RHS of equation 7.3. Waggoner and Zha (1999) express these constraints on future innovations as

Re=r (7.4)

where 7 is a (M x k) x 1 vector where M are the number of constrained variables and k denotes the number of
periods the constraint is applied. The elements of the vector r are the path for the constrained variables minus the
unconditional forecast of the constrained variables. R is a matrix with dimensions (M x k) x (N x k). The elements
of this matrix are the impulse responses of the constrained variables to the structural shocks e at horizon 1, 2...k.
The (N x k) x 1 vector € contains the constrained future shocks. We give a detailed example showing the structure
of these matrices below.

Doan et al. (1983) show that a least square solution for the constrained innovations in equation 7.4 is given as

¢=R(RR) 'r (7.5)

With these constrained shocks & in hand, the conditional forecasts can be calculated by substituting these in
equation7.2.

7. APPLICATION 2: CONDITIONAL FORECASTING USING VARS AND GIBBS SAMPLING 59

7.1. Calculating conditional forecasts. To see the details of this calculation, consider the following VAR
model with two endogenous variables

()=(a)+ (3 B)) (a .)(2) -

In addition denote zF. as the impulse response of the j* variable at horizon i to the k** structural shock where

i,j

k = 1,2. Consider forecasting Y; three periods in the future using the estimated VAR in equation 7.6. However we
)gt+1 1

impose the condition that [X, o = 1], i.e. variable X is fixed at 1 over the forecast horizon. In order to
Xt-‘r?; 1

calculate the forecast for Y; under this condition, the first step involves using equation 7.5 to calculate the restricted
structural shocks. Using equation 7.5 requires building the matrices R and r. We now describe the structure of these
matrices for our example. First note that the restricted structural shocks (to be calculated) are stacked as

E1t41
E2t41
{i:lt-‘rZ (77)
E2t42
E1t+3
E2t+3

o>
I

The matrix of impulse responses R is built to be compatible with & (see equation 7.4). In this example, it has the
following structure

1 2
i S S

R = 3%72 2:%72 Z]i’2 Z§’2 (1) g (78)
232 %32 R22 *22 12 21,2

)

The matrix R is made of the response of the constrained variable 2 (i.e. X) to the two structural shocks. The
first row of the matrix has the response of X to 1 and &5 at horizon 1. Note that this row corresponds to the
first two elements in é— it links the constrained shocks 1 period ahead to their responses. The second row of R has
this impulse response at horizon 2 (first two elements) and then at horizon 1 (third and fourth element). This row
corresponds to the forecast two periods ahead and links the structural shocks at horizon 1 and 2 to their respective
impulse responses. A similar interpretation applies to the subsequent rows of this matrix.

The matrix r is given as

1-):(t+1
T = 1-—)gt+2 (79)
1— Xy

where Xtﬂ- denotes the unconditional forecast of X. Once these matrices are constructed, the restricted structural
shocks are calculated as & = R'(R'R)~'r. These are then used calculate the conditional forecast by substituting them
in equation 7.6 and iterating forward.

In figures 21 and 22 we show the matlab code for this simple example of calculating a conditional forecast (the
matlab file is example8.m). We estimate a VAR(2) model for US GDP growth and inflation and use the estimated
VAR to forecast GDP growth 3 periods ahead assuming inflation remains fixed at 1% over the forecast horizon.Lines
18 to 21 of the code estimate the VAR coefficients and error covariance via OLS and calculate Ay as the Choleski
decomposition of the error covariance matrix. As shown in Waggoner and Zha (1999) the choice of identifying
restrictions (i.e. the structure of Ay) does not affect the conditional forecast which depends on the reduced form
VAR. Therefore it is convenient to use the Choleski decomposition to calculate Ag for this application. Lines 25 to
28 estimate the impulse response functions zf .. Line 33 to 39 constructs the unconditional forecast by simulating
the estimated VAR model for three periods. Lines 41 to 43 construct the R matrix as specified in equation 7.8.
Line 45 constructs the r» matrix. With these in hand, the restricted future shocks are calculated on line 50. The
conditional forecast is calculated by simulating the VAR using these restricted shocks 50 to 59 of the code with the
matlab variable yhat2 holding the conditional forecast.

7.2. Calculating the distribution of the conditional forecast. The main contribution of Waggoner and
Zha (1999) is to provide a Gibbs sampling algorithm to construct the distribution of the conditional forecast and
thus allow a straigth forward construction of fan charts whn some forecasts are subject to constraints. In particular,
Waggoner and Zha (1999) show that the distribution of the restricted future shocks ¢ is normal with mean M and
variance V' where

M R(R'R)"'r (7.10)

V. = I-R(RR)'R

The Gibbs sampling algorithm to generate the forecast distribution proceeds in the following steps
(1) Initialise the VAR coefficients and the Ag matrix.

60

2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

1 clear

2 addpath('functions');

3 data=xlsread('\data\datain.x1s'); %data for US GDP growth and inflation
1948q1 2010qg4

N=cols (data) ;

5 horizon=3;

6 path=[1;1;1]; %constrained values for X

7

8

i

L=2; %lag length of the VAR
Y=data;

¢ stake lags

10 X=1[1;

11 for §=1:L

12 X=[X lag0(data,j) 1;

13 end

14 X=[X ones(rows(X),1)]:

15 Y=Y (L+l:end, :);

16 X=X(L+l:end,:);

17 T=rows (X);

18 B=X\Y; %ols estimate

19 res=Y-X*B;

20 sigma={res'*res)/T;

21 AO=chol (sigma) ;

22 %calculate impulse responses to be used to construct R

23 S=zeros(1l,N);

24 S(1)=1; %shock to first eqg

k
25 Zl=irfsim(B,N,L,A0,S, horizon+L); ZU
26 S=zeros(l,N);
27 S(2)=1; %shock to 2nd eq
2
28 z2=irfsim(B,N,L,A0,S,horizon+L); ¥
29 %calculate unconditional forecast to be used to construct r
30 yhatl=zerocs (horizon+L,N);
31 vhatl(l:L,:)=Y(end-L+l:end, :);
32 for i=L+l:horizon+L

33 z=[];
34 for j=1:L
35 x=[x vhatl (i-J,:)1;
36 end
37 vhatl (i, :)=[x 1]*B;
38 end
39 vhatl=yhatl (L+l:end, :):
1 2
Z1, 721, 00 0 0
— 1 2 1 2

R=| m, 73, 215 21, 0 0

1 2 1 2 1 2
Z3y Z3n Z33 %33 Z12 Z12

40 %construct the R matrix
41 R=[21(1,2) Z2(1,2y O 0O O O

42 zl(2,2) z2(2,2) zl(l,2) Z2(1,2) 0 O;
43 z21(3,2) 22(3,2) Z1(2,2) Z2(2,2) Z1(1,2) Z2(1,2)];
44 %construct the r matrix
171&41
r= 1-X:»
I*AQH

45 r=path-yhatl (:,2);
46 %compute the restricted structural shocks

FI1GURE 21. Matlab code for computing the conditional forecast

(2) Form the matrices R and r. Draw the restricted structural shocks from the N(M, V) distribution where M
and V are calculated as in equation 7.10. This draw of structural shocks is used to calculate the conditional
forecast ?Hk.

(3) Construct the appended dataset Y;* = [Vi; Yiyx]. This the actual data for the VAR model with the forecasts
added to it. The conditional posterior of the VAR coefficients and covariance matrix is construced using
Y, and new values of the coeflicients and covariance matrix are drawn. The Ay matrix can be updated as
the Cholesky decomposition of the new draw of the covariance matrix. Note that by using Y;* we ensure

7. APPLICATION 2: CONDITIONAL FORECASTING USING VARS AND GIBBS SAMPLING 61

A pleplpy-l
47 ehat=R"*pinv (R*R")*r; E=RER)r
48 ehat=reshape (ehat,N,horizon)';
49 Scompute the conditional forecast

50 yhat2=zeros(horizon+L,N) ;

51 vhat2(1:L,:)=Y (end-L+l:end, :);
52 for i=L+l:horizon+L

53 x=[1;

54 for j=1:L

55 x=[x vhat2(i-3,:)];

56 end

57 vhat2 (i, :)=[x 1] *B+ehat (i-L,:)*A0;
58 end

59 vhat2=yhat2(L+l:end, :);

60

6l

Published with MATIAB® 7.9

FIGURE 22. Matlab code for computing the conditional forecast (continued)

that the draws of the VAR parameters take into account the restrictions Re = r. This procedure therefore
accounts for parameter uncertainty and the restrictions imposed on the forecasts by the researcher.

(4) Goto step 2 and repeat M times. The last R draws of Y34 can be used to construct the distribution of the
forecast.

In order to demonstrate this algorithm we continue our Matlab example above and calculate the distribution of
the GDP growth forecast, leaving the inflation forecast restricted at 1%.

The Matlab code is shown in figures 23 and 24. Note that this is a continuation of the code in the previous example
from line 60. We use 5000 Gibbs iterations and discard the first 3000 as burn in. Line 70 of the code constructs the

62 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

60 $Gibbs sampling algorithm

61 REPS=5000;

62 BURN=3000;

63 outl=[]; %$will hold forecast for GDP

64 out2=[]; %will hold forecast for inflation

65 yhatg=vyhat2; %initialise conditional forecast
66 sig=sigma; %$initialise error covariance

67 for igibbs=1:REPS

69 %step 1 DRAW VAR parameters
€3 .

70 datag=[data;vhatgl; %appended data Iy = Yl

71 YSTAR=datag;

Tz %take lags

73 XSTAR=[];

74 for j=1:L

75 XSTAR=[XSTAR lagO(datag,j) 1:

76 end

77 XSTAR=[XSTAR ones (rows (XSTAR),1)];

78 YSTAR=YSTAR(L+1l:end,:);

79 XSTAR=XSTAR(L+1l:end,:);

80 T=rows (XSTAR) ;

81 %conditional mean

82 M=vec (XSTAR\YSTAR) ;

83 %conditional variance

84 V=kron(sig,inv (XSTAR'*XSTAR));

85 bg=M+(randn(1l,N* (N*L+1))*chol(V))"';

86 bgl=reshape(bg, N*L+1,N) ;

87 %$draw sigma from the IW distributicn

88 e=YSTAR-XSTAR*bgl;

89 scale=e'*e;

90 sig=IWPQ(T,inv(scale));

91 %$A0 matrix

92 AOg=chol (sig);

93 %$step 2 Construct conditional forecast

94 %$impulse responses

95 S=zeros(l,N);

86 S(1)=1; %shock to first eq

97 zl=irfsim(kgl,N,L,RA0q,S,horizon+L) ;

98 S=zeros(l,N);

99 S(2)=1; %shock to 2nd eqg

100 Z2=irfsim(bgl,N,L,AO0q,S,horizon+L);

101 %calculate unconditional forecast to be used to construct r

102 yhatl=zercs (horizon+L,N) ;

103 yhatl(1l:L,:)=Y(end-L+l:end, :);

104 for i=L+l:horizon+L

105 x=[];

106 for j=1:L

107 x=[x vhatl(i-j,:)];
108 end

109 vhatl (i, :)=[x 1]*bgl;
110 end

111 vyhatl=vyhatl (L+l:end, :);

112 %construct the R matrix

113 R=[Z1(1,2) Z2(1,2) O O O O

114 zl(2,2) z2(2,2) 7Z1(1,2) Z2(1,2) O O;

115 Z1(¢3,2) 22(3,2) Zl(2,2) 22(2,2) 21(1,2) 22(1,2)];

116 %construct the r matrix

117 r=path-vhatl(:,2);

118 %compute the mean of the distribution of restricted structural
shocks

F1GURE 23. Calculating the distribution of the conditional forecast via Gibbs sampling

appended dataset and lines 82 to 90 use this appended data to draw the VAR coefficients and covariance matrix from
their conditional distributions. The impulse responses and unconditional forecasts based on this draw of the VAR
coefficients and the new Ay matrix are used to construct the R matrix and the r vector on lines 113 to 117. Lines
119 to 122 construct the mean and variance of the restricted structural shocks M and V. On line 124 we draw the
structural shocks from the N (M, V) distrbution and lines 126 to 136 use these to construct the conditional forecast.
Once past the burn-in stage the conditional forecasts are saved in the matrices outl and out2.

Running the code produces figure 25. The left panel of the figure shows the forecast distribution for GDP growth.
The right panel shows the forecast for inflation which is restricted at 1% over the forecast horizon.

7. APPLICATION 2: CONDITIONAL FORECASTING USING VARS AND GIBBS SAMPLING 63

y / ¢ pf oy -1
119 MBAR=R'*pinv (R*R')*r; M= R@ER™r
120 %compute the variance of the distribution of restricted structural
shocks
121 VBAR=R"*pinv (R*R")*R;

> ! -1
122 VBAR=eye (cols (VBAR))-VBAR; V=I-R@ER)R
123 %$draw structural shocks from the N(MBAR,VBAR) distribution
124 edraw=MBAR+ (randn({l, rows (MBAR)) *real (sgrtm(VBAR))) ';
125 edraw=reshape (edraw,N,horizon)"';
126 %conditional forecast using new draw of shocks
127 yhatg=zerocs (horizon+L,N) ;
128 vyhatg(l:L,:)=Y(end-L+l:end, :);
129 for i=L+l:horizon+L

130 w=[1¢g

131 for j=1:L

132 x=[x yvhatg(i-j,:)];

133 end

134 vhatg (i, :)=[x 1] *bgl+edraw(i-L, :)*A0g;
135 end

136 vhatg=vhatg(L+l:end, :);
137 if igibbs>BURN

138 outl=[outl; [Y(:,1);vhatg(:,1)]"];
139 out2=[out2; [Y(:,2);yhatg(:,2)]"'];
140 end

141 end

142

143 TT=1948.75:0.25:2011+(.75);

144 subplot(l,2,1)

145 plot(TT,prctile(outl, [50 10 20 30 70 80 90],1))

146 x1im([1995 max (TT)+0.25])

147 title("GDP Growth'");

148 subplot(l,2,2)

149 plot(TT,pretile (out2, [50 10 20 30 70 80 90]1,1))

150 x1im([1995 max (TT)+0.25])

151 legend({'Median Forecast','10th percentile','20th percentile','30th
percentile®, '70th percentile', '80th percentile','90th percentile');
152 title("Inflation®);

Published with MATLAB® 7.9

FIGURE 24. Calculating the distribution of the conditional forecast via Gibbs sampling (continued)

7.3. Extensions and other issues. The example above places restrictions on both structural shocks €; and
€2 to produce the conditional forecast. In some applications it may be preferable to produce the conditional forecast
by placing restrictions only on a subset of shocks. For instances one may wish to restrict £; only in our application.
This can be done easily by modifying the R matrix as follows:

A, 0 0 0 0
R=| 25 0 2z, 0 0
1
1,

1

0
0 (7.11)
239 0 235 0 2y 0

64 2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

GDP Growth Inflation
8 T T 6 T T

Median Forecast
10th percentile

—— 20th percentile
———— 30th percentile
70th percentile
80th percentile
90th percentile

L L L L L L L L L L L L L
2
1996 1998 2000 2002 2004 2006 2008 2010 2012 1996 1998 2000 2002 2004 2006 2008 2010 2012

FicUurg 25. Conditional forecast for US GDP growth

Waggoner and Zha (1999) also discuss a simple method for imposing ‘soft conditions’ on forecasts— i.e. restricting
the forecasts for some variables to lie within a range rather than the ‘hard condition’ we examine in the example
above. Robertson et al. (2005) introduce an alternative method to impose ‘soft conditions’.

8. Further Reading

A comprehensive general treatment of Bayesian VARs can be found in Canova (2007) Chapter 10.

e An excellent intuitive explanation of priors and conditional forecasting can be found in Robertson and
Tallman (1999).

e A heavily cited article discussing different prior distributions for VARs and methods for calculating posterior
distributions is Kadiyala and Karlsson (1997).

e Banbura et al. (2007) is an illuminating example of implementing the natural conjugate prior via dummy
observations.

e The appendix of Zellner (1971) provides an excellent description of the Inverse Wishart density.

9. Appendix: The marginal likelihood for a VAR model via Gibbs sampling

We can easily apply the method in Chib (1995) to calculate the marginal likelihood for a VAR model. This can
then be used to select prior tightness (see for example Carriero et al. (2010)) or to choose the lag length and compare

different models.
Consider the following VAR model

J
Yi=c+ Y bjYij+v, VAR(v) =¥ (9.1)
j=1

9. APPENDIX: THE MARGINAL LIKELIHOOD FOR A VAR MODEL VIA GIBBS SAMPLING 65

The prior for the VAR coefficients B = {c,b;} is P(B) N(b, H) and for the covariance matrix P(X) IW (S,). The
posterior distribution of the model parameters ® = B, ¥ is defined via the Bayes rule
F (Y|®) x P (D)
F(Y)

where n F (Y[|®) = =S¥ In27 + L1In S~ - 0.5 ST (w27)) is the likelihood function with N representing the
number of endogenous variables, P (®) is the joint prior distribution while F'(Y") is the marginal likelihood that we
want to compute. Chib (1995) suggests computing the marginal likelihood by re-arranging equation 9.2. Note that
in logs we can re-write equation 9.2 as

ImF(Y)=InF(Y|®)+InP(®)—InH(P|Y) (9.3)

Note that equation 9.3 can be evaluated at any value of the parameters ® to calculate In F'(Y). In practice a
high density point ®* such as the posterior mean or posterior mode is used.

The likelihood function is easy to evaluate. In order to evaluate the priors, the pdf of the normal density and the
inverse Wishart is needed. The latter is given in definition 3 above.

Following Chib (1995) the posterior density H (®*|Y) = H (B*,X*|Y)can be factored as

H(B*,X*|Y) = H(B*|S*,Y) x H (S*]Y) (9.4)

The first term on the RHS of equation 9.4 can be evaluated easily as this is simply the conditional posterior distribution
of the VAR coefficients—i.e. a normal distribution with a known mean and covariance matrix.

H(B*[S*,Y)"N(M,V)
Moo= (H ST e XX (H e+ S e XUXb)

H(3Y) = (9.2)

Vo= (H'+x'exx,)"
The second term on the on the RHS of equation 9.4 can be evaluated by noting that

J
H(Z'Y) ~ %ZH(E’WBJ-,Y) (9.5)

where B; represent j = 1...J draws of the VAR coefficients from the Gibbs sampler used to estimate the VAR model.
Note that H (X*|B;,Y) is the inverse Wishart distribution with scale matrix ¥ = S + v;v; and degrees of freedom
T + o where the residuals v; are calculated using the draws B;.

Figures 26 and 27 show the matlab code for estimating the marginal likelihood in a simple BVAR with a natural
conjugate prior implemented via dummy observations. On line 44 we calculate the marginal likelihood analytically for
comparison with Chib’s estimate. Analytical computation is possible with the natural conjugate prior (see Bauwens
et al. (1999)), while Chib’s estimator can be used more generally. Lines 46 to 67 estimate the VAR model using Gibbs
sampling with the posterior means calculated on lines 69 and 70. Lines 73 to 76 calculate the prior moments which
are used to evaluate the prior densities on lines 79 and 81. Line 83 evaluates the log likelihood function for the VAR
model. Line 86 evaluates the term H(B*|X*,Y). Lines 88 to 99 evaluate the term H (X*|Y) ~ & Z}]:l H (X*|B;,Y).
These components are used to calculate the marginal likelihood on line 102.

66

c
(o)
a

B

[
N
L
9y

e N e R RV R N

20
lag
21
coe

35
36
37
htt
38
39
40
41
42
43
44
45
46
47
48

2. GIBBS SAMPLING FOR VECTOR AUTOREGRESSIONS

lear
lc
ddpath ('functions');

REPS=15000;

URN=10000;

data,names]=xlsread('\data\usdatal.xls"); %load US data
=cols (data);

=2; %lag length of the VAR

=data;

%take lags

X=[]:

for j=1:L

X=[X lag0(data,j) 1:

end

X=[X ones(rows(X),1)]:

Y=Y (L+l:end, :);

X=X (L+1l:end, :);

T=rows (X) ;

$priors for VAR coefficients

lamdaP=1; %This contrecls the tightness of the priors on the first

tauP=0; % this controls the tightness of the priors on sum of
fficients 0 means not applied
epsilonP=1; % this controls tightness of the prior on the constant
muP=mean(Y)"';
sigmaP=[];
deltaP=1[];
for i=1:N
ytemp=Y(:,1);
xtemp=[lagl (ytemp,1l) ones(rows (ytemp),1)];
vtemp=vytemp (2:end,) ;
xtemp=xtemp (2:end, :);
btemp=xtemp\ytemp;
etemp=ytemp-xtemp*btenp;
stemp=etenp ' *etemp/rows (ytenp) ;
deltabP=[deltaP;btemp (1)];
sigmaP=[sigmaP; stemp] ;
end
$durmmy data to implement priors see
p://ideas.repec.org/p/ech/ecbwps/20080966.html
[yd,xd] = create dummies(lamdaP,tauP,deltaF,epsilonP,L,muP, sigmaP,N);
$yd and xd are the dummy data. Append this te actual data
YO=[Y;yd];
X0=[X;xd];

$compute the marginal likelihood analytically for comparison
templ=mlikvarl (Y,X,yd,xd);

$conditional mean of the VAR coefficients

mstar=vec(X0\Y0); %ocls on the appended data

Xx=X0"*X0;

ixx=xx\eye (cols(xx)); %inv(X0'X0) to be used later in the Gibbs

sampling algorithm

49
50
51
52

sigma=eye(N); %starting value for sigma
outl=zercs (REPS-BURN, N* (N*L+1),1);
out2=zercs (REPS-BURN, N, N) ;
Ji=1;
for i=1:REPS
vstar=kron (sigma, ixx) ;
beta=mstar+ (randn (1, N* (N*L+1)) *chol (vstar))"';

$draw covariance

FI1GURE 26. Marginal Likelihood for a VAR model

9. APPENDIX: THE MARGINAL LIKELIHOOD FOR A VAR MODEL VIA GIBBS SAMPLING

58 e=Y0-X0*reshape (beta, N*L+1,N) ;
59 scale=e'*e;

60 sigma=iwpg(T+rows (vd),inv (scale)) ;
6l

62 if 1>=BURN

63 outl (i3, :, :)=beta;

64 out2 (i3, : =sigma;

65 33=33+1;

66 end

a7 end

68

69 betam=squeeze (mean(outl,1l)):

70 sigmam=squeeze (mean (cut2,1));

71

72 $evaluate priors

73 bO=vec (xd\yd) ;

74 b0l=reshape (b0, N*L+1,N) ;
75 e0=yd-xd*b01;

76 S=e0'"*e0;

77

78 $evaluate log prior distribution for VAR coefficients
79 bp=nultivariatenormal (betam',b0, kron (S,pinv (xd'*xd)));
80 $evaluate log prior for VAR covariance

81 sp= invwishpdf (sigmam, S, size (yd,1l)-size(xd, 2));

82 $evaluate log likelihood

83 lik=loglik (reshape (betam, N*L+1,N), sigmam, Y, X) ;
84 $evaluate H(Bstar\sigmastar);

85 vstarl=kron (sigmam, ixx) ;

15} Hl=multivariatenormal (betam',mstar,vstarl);

87 $evaluate H(sigmastar\beta[]])

88 H2i=[]:

89 for j=l:size(outl,l)

S0 betaj=outl (j,:);

91 e=Y0-X0*reshape (beta]j,N*L+1,N) ;

92 scale=e'*e;

93 H2i= [H21;invwishpdf (sigmam, scale,size(Y0,1))];

84 end

35 $take mean taking care of possible underflow/overflow with exp
9¢ factor=max (H21i);

97 H2=exp (H2i-factor);
98 H2m=mean (H2) ;
99 H2nm=1log (H2m)+factor;

101 fmarginal 1lik
102 mlik=11ik+bp+sp-H1-H2m;

104 disp({'Analytical log Marginal Likelihood")
105 disp(templ);

107 disp({'Chib log Marginal Likelihood')
108 disp{mlik);

Published with MATLAB® 7.9

FIGURE 27. Marginal Likelihood for a VAR model (continued)

CHAPTER 3

Gibbs Sampling for state space models

1. Introduction

State space models have become a key tool for research and analysis in central banks. In particular, they can be
used to detect structural changes in time series relationships and to extract unobserved components from data (such
as the trend in a time series). The state space formulation is also used when calculating the likelihood function for
DSGE models.

The classic approach to state space modelling can be computationally inefficient in large scale models as it is
based on maximising the likelihood function with respect to all parameters. In contrast, Gibbs sampling proceeds
by drawing from conditional distributions which implies dealing with smaller components of the model. In addition,
Gibbs sampling provides an approximation to the marginal posterior distribution of the state variable and therefore
directly provides a measure of uncertainty associated with the estimate of the state variable. The use of prior
information also helps along the dimensions of the model where the data is less informative.

This chapter discusses the Gibbs sampling algorithm for state space models and provides examples of implement-
ing the algorithm in Matlab.

2. Examples of state space models

In general, a state space model consists of the following two equations

Y, = HB, + Az + e; Observation Equation (2.1)

B; =p+ FB;_1 + v Transition Equation (2.2)

Consider first the components of the observation equation 2.1. Here Y; is observed data, H denotes either the
right hand side variables or a coefficient matrix depending on the model as discussed below. [, is the unobserved
component or the state variable. z; denotes exogenous variables with coefficient A. The observation equation,
therefore, connects observed data to the unobserved state variable.

Consider the transition equation 2.2. This equation describes the dynamics of the state variable. Note that the
order of the AR process in equation 2.2 is restricted to be 1. This condition is not restrictive in a practical sense as
any AR(p) process can always be re-written in first order companion form. This is described in the examples below.

Finally, note that we make the following assumptions about the error terms e; and v, :

VAR (e;) = R, VAR (v;) = Q,COV (es,v:) =0 (2.3)

As an example of a state space model consider a time-varying parameter regression: Y; = ¢; + By X + e;, where
the coefficients ¢; and B; are assumed to evolve as random walks. In state-space form this model can be expressed
as:

By
YVi=(1 HXt)(gt) + e; Observation Equation (2.4)
8, By .
(;tt) _ (ét;jl) + (z;z > Transition Equation (2.5)
where VAR (e;) = R, VAR (v;) = Q,COV (et,v4) = 0. Note that: (a) In this model 4 = 0 and F = ((1) (1))

by assumption and (b) the matrix H in the observation equation represents the right hand side variables of the
time-varying regression.

As a second example of a state space model, consider decomposing a series Y; into two unobserved components,
ie. Vi = Cy + 7. We assume that: (1) the trend component 7; follows random walk: 7, = 74_1 + ve; and (2) the
cyclical component C; follows an AR(2) process with a constant: i.e. Cy = ¢+ p;Ci—1 + poCi—o + v1;. In state space
form this model can be expressed as:

By
H Ct
i=(1 1 0) Tt Observation Equation (2.6)
Ci1

69

70 3. GIBBS SAMPLING FOR STATE SPACE MODELS

By I F Bi_1 V¢
Cy c pr 0 py Ci1 V1t
Tt = 0 | + 0 1 0 Ti—1 + | v Transition Equation (2.7)
Ciq 0 1 0 0 Ci_o 0
V1t Qi1 Q2 O
where var | wvo =Q = Q12 (22 0 |. Consider the observation equation for this model. Here the
0 0 0 0
Cy
matrix H is a coefficient matrix which links the state variables Tt to Y;. Note that the observation equation
Ci1

has no error term as we assume that Y; decomposes exactly into the two components.
The left hand side of the transition equation has the state vector at time ¢ i.e. 8,. The right hand side contains
Ci
the state vector lagged one period i.e. 8,_1 = | Ti—1 . The fact that the state vector contains C;_; implies that
Ci—2
B,_1 contains Cy_o. This gives us a way to incorporate the AR(2) process for C; into the transition equation. In
general, if the state variable follows an AR(p) process, this implies adding p — 1 lags of that state-variable into the
state vector [3,.
The first row of the matrix F' contains the AR coefficients for C; with the constant in the corresponding row of
. The second row forms the random walk process for ;. Note that the last row of F' contains a 1 (element (1,1))
to link Cy_; on the left hand side and C;_; on the right hand side and represents an identity. As a consequence, the
last row of v; equals zero with corresponding zeros in the Q matrix.
As a final example of a state space model, consider a dynamic factor model for a panel of series Y;; where
t = 1,2..T represents time and ¢ = 1, 2...N represents the cross-section. Each series in the panel is assumed to depend
on a common component F; i.e. Y;; = B;F;_1 + e;;.We assume that the common unobserved component F; follows
an AR(2) process: F; = ¢+ p1Fi—1+ pyFi—2 + v¢. This model has the following state-space representation:

H et
Yit Bl 0 B €1t
Ya || B O ki +| Observation Equation (2.8)
.) F,
Yni By O ENt
By 7 F Bi_1 vt
F [c P1 Po Fi 4 V1t . .
< P) = (0) + < 10 Fry + 0 Transition Equation (2.9)
Ry 0 O 0
where VAR(e;) = R = 8 R(Q)’2 0 8 and VAR(v) = Q = (Q(l)’l 8 > As in the unobserved

0 0 0 RwnnN
component model, the matrix H contains the coeflicients linking the data Y;; to the state variables 3,. The first lag of
F} appears in the state vector because of our assumption that F; follows an AR(2) process. The transition equation
of the system incorporates the AR(2) dynamics for the state variable in companion form with appropriate structures
for the p, F' and @ matrices.
See Kim and Nelson (1999) Chapter 2 for further examples of state space models.

3. The Gibbs sampling algorithm for state space models
It is instructive to consider the unknown parameters of our state space system:

ye=HpB, + Azs +e;, VAR(e:) = R (3.1)

Be=n+FB_y+v, VAR(v) = Q (3:2)

In the observation equation the unknown parameters consist of the elements of H that are not fixed or given
as data (for e.g. the coefficients B; in equation 2.8), the elements of A and the non-zero elements of the covariance
matrix R. In the transition equation, the parameters to be estimated are the non-zero and free elements of u, F' and
Q.In addition, the state variable 8, is unknown and needs to be estimated.

A Gibbs sampling algorithm for this problem can be discerned by considering the hypothetical case where the
state variable /3, is known and observed. If this is the case, then the observation and the transition equations collapse
to linear regressions with the conditional posterior distribution of coefficients and variances exactly as in Chapter 1.
For example if the common factor F} in equations 2.8 and 2.9 is known, these equations become a series of linear
regressions. Equation 2.8 is then simply N linear regressions while equation 2.9 is an AR(2) model. The conditional

3. THE GIBBS SAMPLING ALGORITHM FOR STATE SPACE MODELS 71

distributions of the parameters in this case are known from Chapter 1. This observation indicates the following
general Gibbs algorithm for the state space model in equations 3.1 and 3.2.

Step 1 Conditional on f3,, sample H and R from their posterior distributions.

Step 2 Conditional on 3, sample u, F' and @ from their posterior distributions.

Step 3 Conditional on the parameters of the state space: H, R, u, F' and @ sample the state variable 5, from its
conditional posterior distribution.

Step 4 Repeat steps 1 to 3 until convergence is detected.

As emphasised above, steps 1 to 3 are standard and involve linear regressions and/or VARs with known conditional
posteriors. The new step required for the state space model is step 3 where we sample B, from its conditional posterior
distribution. We turn to a description of the conditional posterior distribution for g, next.

3.1. The conditional distribution of the state variable. We follow Kim and Nelson (1999) chapter 8 closely
in this description. Let 8 = [y, B9, -...07] i.e. the time series of 8 from time 1,2..7. Similarly, let Y = [Y7,.....Y7].

Recall that we are interested in deriving the conditional posterior distribution H (BT|H ,Q, R, F, p, Y/T) i.e. the joint
posterior for 81,85,07. As shown by Carter and Kohn (1994), it is convenient to consider a factorisation of the

joint density H BTD}T . Note, we drop the conditioning arguments for simplicity in what follows below.

e can factor B.|Yr) into the fo owing conditional distributions
W f H (57]Y- he foll d 1 distrib
H (BTD}T) =H (5T|5~/T) x H (BTAWTJ}T) (3.3)

Note that the right hand side of 3.3 splits H (BTD}T) into the product of the marginal distribution of the state

variable at time T and the distribution of the vector BT—l = By, By, ..., conditioned on B,. We can expand
the term H (BTAWTJN/T) as H (BTAWTJ}T) = H (BT71|;BT,YT) x H (BT,QWT,BTA,}}T) where B o =
[ﬁ17627 ~--~BT_2] . Thus:

H (By|Vr) = H (Br[Vr) x H (By_1|Br. ¥r) x H (Br_olz. Br_1. V1) (3.4)
Continuing in this vein and expanding H (BT,2| B Bt Y/T) —H (ﬁT,2|, B Bt Y/T) X
H (Br_slBr 811, Br—, Vr)
H (Brl¥r) = H (81¥r) x H (B7_1|Br, Y1) x H (Br_slBz, Br_1, V1) % H (Br_sl8r, Br_y. s, Vr)
Expanding further —
H(BrlVr) = H(BglVr) x H (B 1|Br,Yr) x H (Br_slBr.Br_1¥r) (35)
XH (Br_slB1. Br-1,8r-2:r) Xeooll (BlBr, By, Br_as B, Vi)

As shown in Kim and Nelson (1999) (page 191) expression 3.5 can be simplified by considering the fact that S
follows a first order AR or Markov process. Because of this Markov property, given Yr and Sp_;, in the term

H (BT_2\7 B, Br_1, YT), B contains no additional information for 8;_5. This term can therefore be re-written as

H (,BT_2\,6T_1, Y/T). Similarly H (ﬁT_ng, Br—1 Br—ss Y/T) can be re-written as H (,BT_3|,6T_2, Y/T).

A similar argument applies to the data vector Y7. For example, in the term H ,BT_2|BT_1,§~/T>, Yr_o =
[Y1,.....Y7_5] contains all the required information for 8_, (given S5_;). Therefore, this term can be re-written as
H (BTJ\BTA, ?T_g). Similarly, the term H (BT%\BTJ, ffT) can be re-written as H (BT,3|BT,2, ?T_g) .

Given these simplifications we can re-write expression 3.5 as

H (BTD}T) = H (5T|Y/T) x H (ﬂT71|BTv}7T—1> x H (BT72|BT717Y/T—2> x H (5T73‘5T72aYT—3) (3.6)
. H (B1|62,}71)
or more compactly
T_
i (Bulir) = (6:172)] # (BulBean o) @1
t=1

The conditional distribution of the state variable is given by expression 3.7.

72 3. GIBBS SAMPLING FOR STATE SPACE MODELS
Assuming that the disturbances of the state space model e; and v; are normally distributed:
H (87|Yr) "N By, Prin) (3.8)
H (ﬁt|Bt+1’i/t> “NBije,p,, 0 Prts,s)

where the notation B” ; denotes an estimate of § at time i given information upto time j. The two components on
the right hand side of expression 3.7 are normal distributions. However, to draw from these distributions, we need
to calculate their respective means and variances. To see this calculation we consider each component in turn.

3.1.1. The mean and variance of H (BT|}7T) We can compute the mean 6T|T and the variance Prjr using the

Kalman filter. The Kalman filter is a recursive algorithm which provides with an estimate of the state variable at
each time period, given information up to that time period—i.e. it provides an estimate of ﬂt‘t and its variance Pj;.
To estimate the state variable, the Kalman filter requires knowledge of the parameters of the state space H, R, u, F’
and). These are available in our Gibbs sampling framework from the previous draw of the Gibbs sampler.

The Kalman filter consists of the following equations which are evaluated recursively through time starting from
an initial value ,6’0‘0 and Py|o-

ﬂt\tfl = M+Fﬁt71\t71 (3.9)
Py = FP_jp 1 F'+Q
Mje—1 = Ye—HBy 1 — Az
fig—1 = HPyH' +R
Bue = Byp—r + Ky
Py = Pyo1— KHPy)

where K = Pt\t—lH/ftTir Running these equations from ¢ = 1,2...T" delivers Spp and Prjr at the end of the
recursion.

Consider the intuition behind each equation of the Kalman filter. The first and the second equation are referred
to as the prediction equations. The first equation B, ; = p+ Fﬂt_l‘t_l simply predicts the value of the state
variable one period ahead using the transition equation of the model. This equation can be easily derived by taking
the expected value of the transition equation i.e. E (,u +FB,_,+ vt|)7t_1) = p+FB; 44— where Y; = {Y;, 2 }. This
follows by noting that E(v¢|Y;—1) = 0 and E (8;_1|Yi-1) = B4_14—1- The second equation is simply the estimated
variance of the state variable given information at time ¢ — 1 and can be derived by taking the variance of 3, (i.e.
calculating [ﬁt —F (ﬁffl |Yt,1)]). The prediction equations of the Kalman filter threfore produce an estimate of the
state variable simply based on the parameters of the transition equation. Note that the observed data Y; is not involved
upto this point. The third equation of the Kalman filter calculates the prediction error 1, = Y: — HfBy;_1 — Az,
The fourth equation calculates the variance of the prediction error fy,_; = HP,;_1H' + R. This equation can be

derived by calculating E (Yt — HBypyy — Azt)z

The final two equations of the Kalman filter are referred to as the updating equations. These equations update
the initial estimates 8,,_; and Pj;—; using the information contained in the prediction error n,,_,. Note that
K = Py, H' ftTth (referred to as the Kalman gain) can be thought of as the weight attached to prediction error.

The updating equations can be derived by considering the formula for updating a linear projection.
As shown in Hamilton (1994) page 99 this formula is given as

P (Y3]Ys, Y1) = P (Ys|Yy) + HapHy,' |[Yo — P (Ya]Y)) (3.10)

In equation 3.10 we consider the hypothetical case where we have three variables Y7 Y5 and Y3. Originally we
were forecasting Y3 based on Y7 i.e. the term P (Y3]Y7) and we want to update this projection using the variable Ys.
According to equation 3.10 the updated projection is the sum of P (Y3]Y7) and the error in predicting Yo where the
projection of Y5 is based on Y;. The weight attached to this prediction error is H32H521 where H;; is the covariance
between Y; Y;. Consider first the intuition behind the prediction error Y5 — P (Y2]Y7). If the information contained in
Y1 and Y5 is very similar, it is likely that p (Y2]Y7) and Y2 will be similar and hence the extra unanticipated information
contained in Y5 will be limited. The weight attached to this extra information H32H2_21 can be interpreted as the
regression coefficient between Y3 and Ys. A larger value of this coefficient implies that the information contained in
Y, receives a larger weight when updating the forecast P (Ys|Y7).

In our application, if we let Y3 =3,, Yo =Y; and Y] = 2, Y1 —

5t\t = 51&\:&71 +E [(Bt - 6t|t71) (Y;k - Yt\t—l)/} X (3.11)

-1
E [(Yt = Yije1) (Ve - Yt|t—1)/} X Mt

3. THE GIBBS SAMPLING ALGORITHM FOR STATE SPACE MODELS 73

where Y;;_1 = Hﬁt‘t,l + Az;. Note that the term E [(Yt — Yt|t,1) (Yt — Yt|t,1)/} is simply the forecast error variance
ftjt—1. Also note that Y; — Yy, = (HB; + Azt +e;) — (H/Bt‘t_l + Azt> =H (ﬂt - ﬂt‘t_l) + e¢. Thus

B3 50) 0 =Y] =B [(5 -0 (3 (3=))

B[50 (1 (3 50))] = Pt

Substituting these in equation 3.11 produces the updating equation 3, = B;;_1+K1mn;;_;. A similar derivation can be
used to obtain the final updating equation P;; as shown in Hamilton (1994) page 380. Finally note that the likelihood
function is given as a by product of the Kalman filter recursions as —1 37/ In 27" | frje—1]— % S n;\t—lftTtl—lntlt—l'

For a stationary transition equation, the initial values for the Kalman filter recursions 60‘0 and Py are given
as the unconditional mean and variance. That is By = (Ix — F)~'y and vec(Pypo) = (I = F ® F) ' vec(Q). If
the transition equation of the system is non-stationary (for e.g. if the state variable follows a random walk) the
unconditional moments do not exist. In this case 8y, can be set arbitrarily. Py is then set as a diagonal matrix
with large diagonal entries reflecting uncertainty around this initial guess.

To recap, we evaluate the equations of the Kalman filter given in 3.9 for periods ¢ = 1...7. The final recursion

delivers BT‘T and Prjp the mean and variance of H (,BTD}T) .

3.1.2. The mean and variance of H (Bt|ﬁt+1,)NQ) . The mean and variance of the conditional distribution H (Bt|ﬁt+1, f’t)
can also be derived using the Kalman filter updating equations. As discussed in Kim and Nelson (1999) page 192,
deriving the mean j;; 5 can be thought of as updating S (the kalman filter estimate of the state variable) for
information contained in 3, which we treat as observed (for e.g. at time T'— 1, 8, is given using a draw from

H (,BTD}T) which we discussed above) Note that this task fits into the framework of the updating equations discussed

in the previous section as we are updating an estimate using new information. In other words, the updating equations
of the Kalman filter apply with parameters and the prediction error chosen to match our problem.
For the purpose of this derivation we can consider a state space system with the observation equation:

Biy1r =n+FB + v (3.12)
This implies that the prediction error is given by 0y, ;, = f;y1 — pu+ F3;);. The forecast error variance is given
by ft*+1| . = FP F' +Q. Note also that for this observation equation, the matrix that relates the state variable 3, to

the observed data §,,, is H* = F. With these definitions in hand we can simply use the updating equations of the
Kalman filter. That is

Buit.s,y = Bue + K (5t+1 — Bt Fﬂﬂt) (3.13)

Pt|t,,6’t+1 = Pt‘t - K*H*Pﬂt (314)

where the gain matrix is K* = Pt‘tH*’ft*_;ll‘t.

Equations 3.13 and 3.14 are evaluated backwards in time starting from period T'— 1 and iterating backwards to
period 1. This recursion consists of the following steps:

Step 1 Run the Kalman filter from ¢ = 1..T" to obtain the mean [p and the variance Prjr of the distribution
H (BTDN/T) . Also save By and Py for t = 1...T. Draw [from the normal distribution with mean BT‘T
and the variance Prj7. Denote this draw by BT

Step 2 At time T'—1, use 3.13 to calculate S7_yj7_1,3, = Br_1j7—1 + K~ (BT —p+ FﬁT,qul) where Br_yp_y
is the Kalman filter estimate of the state variable (from step 1) at time 7'— 1. Use equation 3.14 to calculate
Pytp,,,- Draw Sp_; from the normal distribution with mean Sp_yp_; 5, and variance Py g,

Step 3 Repeat step 2 fort =T — 2,7 — 3,...1.

This backward recursion (The Carter and Kohn algorithm) delivers a draw of B; = [3;,8s,....07] from its
conditional posterior distribution.

A minor modification to this algorithm is required if the matrix @ is singular (see the example of the state space
model given in equation 2.6). In this case we evaluate equations 3.13 and 3.14 using F instead of F, Q) instead of
@ and [i instead of u where F', Q, Ji correspond to the non-singular block of Q. In the example given in equation 2.6

P _ (P 0 po A [Qi1 Q12
above o = (0),F-(0 1 0 > and Q = (Qs Qoo)
3.2. The Gibbs sampling algorithm. We can now re-state the Gibbs alogrithm for the state space model in
equations 3.1 and 3.2.

Step 1 Conditional on 3., sample H and R from their posterior distributions.
Step 2 Conditional on ,, sample p, F' and @) from their posterior distributions.

74 3. GIBBS SAMPLING FOR STATE SPACE MODELS

Step 3 Conditional on the parameters of the state space: H, R, u, F' and () sample the state variable 3, from its
conditional posterior distribution. That is, run the Kalman filter to obtain 8, and Fy for ¢ = 1...T" and
draw . Use equations 3.13 and 3.14 to draw S, By,07_1-

Step 4 Repeat steps 1 to 3 until convergence is detected.

Implementing this Gibbs sampling algorithm therefore requires programming the Kalman filter and equations
3.13 and 3.14 in matlab. The remainder of this chapter describes this task with the help of several examples.

4. The Kalman filter in Matlab

To discuss the implementation of the Kalman filter in Matlab we will consider the following time varying parameter
model as an example

Y = Xi8,+wu (4.1)
By = p+FBi_1+e

VAR(v) = R

VAR(e;) = Q

where Y; is a T' X 1 matrix containing the dependent variable, X; is a T' x 1 matrix containg the regressor with
time-varying coefficient 3,. For the moment we assume that the parameters of this state space model p, F, R and @
are known and we are interested in estimating the time-varying coeflicient 3, the state variable.

Figures 1 and 2 show the matlab code for the Kalman filter equations (Examplel.m). Lines 7 to 20 of the file
generate artificial data for Y; (see equation 4.1) assuming that 4 =0, F =1,Q = 0.001, R = 0.01. Line 21 starts the
Kalman filter by setting up the initial conditions for the state variable J3,. Line 22 assumes that S, = 0 and line 23
sets pojo the variance of the initial state equal to 1. The Kalman filter starts with Bt—llt—l = Bo|0 and P;_1;;_1 = Py)o
(lines 27 and 28) and then iterates through the sample (loop starts on line 29). Line 32 is the first equation of
the prediction step of the Kalman filter 8,,_; = p+ F8;_y;_;. Line 33 calculates the variance of 8, _, using the
equation Py;_; = F'P_1;_1 F' + Q. Line 34 calculates the fitted value of Y; for that time period as Xtﬁﬂt_l and the
next line calculates the prediction error for that time period 7,y = Y; — X¢3,_,. Line 36 calculates the variance
of the prediction error f;—1 = X;P;;—1X{ + R. Line 38 starts the updating step of the Kalman filter by calculating
the Kalman gain K; = P, X{ ftTtal. Line 39 updates the the estimate of the state variable based on information
contained in the prediction error Sy, = By, + K1y, where this information is weighted by the Kalman gain.
The final equation of the Kalman filter (line 40) updates the variance of the state variable Py, = Pyjy—1 — Kt Xtpyje—1

Figure 3 shows the estimates of 3, obtained using the Kalman filter. These closely match the assumed true value

of 3,.
5. The Carter and Kohn algorithm in Matlab
Recall that that the conditional distribution of the state variable B, = [8, B4,87] is

() = 7 (52.2) T # (51) 61

As discussed above, this implies that

ﬁTNN(BT\TapﬂT) (5.2)
Bt|ﬂt+1~N(ﬁt\t,ﬁt+l ’ Pt|t,,6t+1)

As described above, the mean and variance in BT~N(ﬂT|T, Pryp) is delivered by the Kalman filter at time ¢t = T'.
The computation of the mean and variance in N(/Btlt)ﬂt+1’Pt‘t76t+1) requires the updating equations 3.13 and 3.14.
Written in full these are:

Biit.prny = B + Py F' (Fpy F' + Q)_l (5t+1 ol Fﬁﬂt) (5.3)

Py, = P — Pt\tF/ (Fpt\tF/ + Q) ' FPy, (5.4)
These are computed going backwards in time from period ¢ — 1 to 1. We now turn to the implementation of the
algorithm in Matlab
Figures 4 and 5 show the matlab code for the Carter and Kohn algorithm for artificial data on the state space
model shown in equation 4.1) assuming that 4 = 0, F = 1, = 0.001, R = 0.01 (See example2.m). As alluded to
above, the algorithm works in two steps. As a first step we run the Kalman filter to obtain Sy, pr|r. Lines 21 to
44 of the code are the Kalman filter equations and are identical to the example above. Note that the matrix ptt saves
py|¢ for each time period.!The matrix beta_ tt saves By for each time period. Line 47 specifies an empty matrix to
hold the draw of 3,. Line 48 specifies a T' x 1 vector from the N (0,1) distribution to be used below. Line 51 draws

IThis is set up as a three dimensional matrix where the first dimension is time and the second two dimensions are the rows and
columns of the covariance matrix py 4. In this example this matrix has dimension 500 x 1 x 1.

5. THE CARTER AND KOHN ALGORITHM IN MATLAB 75

clear

$generate data for a state space model
$Y=Beta [t] *X+el

$Beta [t]=mu+F*Beta[t-1]+e2

$var (el)=R
Svar (e2)=0Q

oy U= W N =

Yy =X+ v
Pi=p+FP +e
VAR(v:) = R
VAR(er) = Q

7 £=500;

8 0=0.001;

9 R=0.01;

10 F=1; %these are fixed
11 mu=0; Sthese are fixed
12 el=randn(t,l)*sqrt(R);
13 e2=randn(t,1l)*sgrt(Q);
14 Reta=zeros(t,1);

15 Y=zeros(t,1l);

16 X=randn (t,1);

17 for j=2:t

18 Beta(]j,:)=Beta(j-1,:)+e2(]j,:);
19 Y(J)=X(j,:)*Beta(],:) " "+el(J):
20 end

Start of the Kalman filter
21 %%Step 1 Set up matrices for the Kalman Filter

22 betalO=zeros(1l,1):; $state variable b[0/0] ﬁom

23 p00=1; $variance of state variable p[0/0] Povo
24 beta tt=[]; $will hold the filtered state variable
25 ptt=zeros(t,1,1); % will hold its variance

26 %initialise the state variable

27 betall=betal; B

28 pll—poo; Priwl

29 for i=1:t Locp from pericd 1 to end cf sample
30 x=X(1);

31 $Prediction

32 betalO=mu+betall*F'; ﬁ,‘,,l = -“+Fﬁr71\r—1

_ '
33 plO=F*pll*F'+Q; P = Ipipa M+ 0
34 yhat=(x*(betall)')"'; XGBW4
35 eta=Y(i,:)-vhat; M-t = Vo= XiBgy

!
36 feta=(x*pl0O*x')+R; ft\tfl :let\Iler"'R

37 %$updating

K, = Pt\r—l)(;f;\;lfl

38 K=(plO*x')*inv(feta): Kalman gain

39 betall—(betal0'+Kreta')'; Bur = Byy + K

FIGURE 1. The Kalman filter in Matlab

from H (BT, ffT) where the mean of this distribution is Sy and the variance is Pz where both these quantities

are delivered by the kalman filter and saved as the last row of beta tt and ptt respectively. Line 53 starts the second
step of the Carter and Kohn algorithm and begins a loop going backwards from period T-1 tol. Line 55 computes

the mean of H (ﬁtwtﬂ, f’t) using the expression S, 5, = By + Poe P (FP, F' + Q)—l (5t+1 — - Fﬁﬂt)- Note
that the term 3,,, is the draw of 3, one period in the future. Line 56 calculates the variance of H (Bt\ﬁtﬂ,f@)

using the expression Pyip,., = Py — Py F' (Fpt|tF’ + Q)_1 FP;;.Line 57 draws the state variable from a normal
distribution using this mean and variance.

3. GIBBS SAMPLING FOR STATE SPACE MODELS

40 pll=plO-K* {x*pl0); Pie = Pro1 — KelXipria
41 ptt(i,:,:)=pll;

42 keta tt=[beta tt;betall];

43 end

46 axis tight
47 legend('estimated \beta [t]', 'true \beta [t]");

Published with MATLAB® 7.9

FIGURE 2. The Kalman filter in Matlab continued

Figure 6 plots the result of running this code and shows the draw for 3,.

6. THE GIBBS SAMPLING ALGORITHM FOR A VAR WITH TIME-VARYING PARAMETERS 77

estimated Bt

o
S
T

true [3t

FIGURE 3. Estimates of 3, from the Kalman filter

6. The Gibbs sampling algorithm for a VAR with time-varying parameters

We now consider our first example that illustrates the Carter and Kohn algorithm. Following Cogley and Sargent
(2002), we consider the following VAR model with time-varying coefficients

P

i = a+Y BiYij+u,VAR(y) =R (6.1)
j=1

Bt = {CtaBl,t--"BP,t}

Bt = N+F/6t_1+etaVAR(et):Q

Note that most empirical applications of this model assume that 4 = 0 and F = 1 and we are going to implement
this assumption in our code below. The Gibbs sampling algorithm for this model can be discerned by noticing that if
the time-varying coefficients /3, are known, the conditional posterior distribution of R is inverse Wishart. Similarly,
conditional on S, the distribution of @ is inverse Wishart. Conditional on R and @ and with ¢ = 0 and F' = 1 the
model in 6.1 is a linear Gaussian state space model. The conditional posterior of 5, is normal and the mean and
the variance can be derived via the Carter Kohn algorithm. Therefore the Gibbs sampling algorithm consists of the
following steps

Step 1 Set a prior for R and) and starting values for the Kalman filter. The prior for) is inverse Wishart
p(Q) ~ IW(Qo,Tp). Note that this prior is quite crucial as it influences the amount of time-variation
allowed for in the VAR model. In other words, a large value for the scale matrix @y would imply more
fluctuation in B,. This prior is typically set using a training sample. The first T observations of the
sample are used to estimate a standard fixed coefficient VAR via OLS such that 8, = (X, Xo:) ™" (X§,Yor)
with a coefficient covariance matrix given by pojo = 3o ® (X(’)tXOt)_1 where Xor = {Yoi—1,...Yoi—p, 1},
Yo = (Yor—Xot80) (Yot —XotBq)

; and the subscript 0 denotes the fact that this is the training sample. The scale
matrix Qg is set equal to pgjg x Tp x 7 where 7 is a scaling factor chosen by the researcher. Some studies
set 7 = 3.5107% i.e. a small number to reflect the fact that the training sample in typically short and the
resulting estimates of pgp maybe imprecise. Note that one can control the apriori amount of time-variation
in the model by varying 7. The prior degrees of freedom are set equal to Ty. The prior for R is inverse
Wishart with scale parameter Ry and degrees of freedom vg,. The initial state is set equal to Byq = vec(
Bo)" and the intial state covariance is given by Pyjo. We set a starting value for R and Q.

3. GIBBS SAMPLING FOR STATE SPACE MODELS

clear

$generate data for a state space model
$Y=Beta [t] *X+el

$Beta [t]=mu+F*Beta[t-1]+e2

$var (el)=R

gvar (e2)=0Q

t=500;

0=0.001;

9 R=0.01;

10 F=1; $these are fixed

11 mu=0; %these are fixed

12 el=randn(t,1l)*sgrt(R):;

13 e2=randn(t,1l)*sqgrt(Q):;

14 Beta=zeros(t,l);

15 Y=zeros(t,1);

16 X=randn (t,1);

17 for j=2:t

18 Beta(]j,:)=Beta(j-1,:)+e2(J,:);

19 Y(3)=X(3,:)*Beta(],:) "+el(J);

20 end

21 %%Step 1 Set up matrices for the Kalman Filter
22 betalO=zeros(1,1): $state variable b[0/0]

® o U W N

23 p00=1; $variance of state variable p[0/0]
24 beta tt=[]; $will hold the filtered state variable
25 ptt=zeros(t,1,1); $ will hold its variance

26 %initialise the state variable
27 betall=betal;

28 pll=p00;

29 for i=1:t

30 X=X (1) ;

31 $Prediction

32 betallO=mut+betall*F";

33 plO=F*pll*F'+Q;

34 vhat=(x*{betall)')"';

35 eta=Y(i,:)-yhat;

36 feta=(x*pl0*x')+R;

37 %updating

38 K=(plO*x")*inv(feta);

39 betall=(betall'+K*eta')";
40 pll=pl0-K* (x*pl0);

41 ptt(i,:,:)=pll;

42 beta tt=[beta tt;betall];
43 end

45 % Carter and Kohn Backward recursion to calculate the mean and
variance of the distributicn of the state

46 svector

47 beta2 = zeros(t,1l); $this will hold the draw of the state variable
48 wa=randn(t,1);

49 i=t; $period T

50 pO00=squeeze(ptt(i,:,:)); Prr

Prr—

51 beta2(i,:)=beta tt(i:i,:)+(wa(i:i,:)*chol(p00)); Br-N(Bra-prr)
52 %periods T-1..to 1

53 for i=t-1:-1:1

54 pt=squeeze(ptt(i,:,:));

F1cURE 4. The Carter and Kohn algorithm in Matlab

Step 2 Sample Bt conditional on R and @ from its conditional posterior distribution H (BT|R, Q, Y/}) where BT =

[vec(B,)', vee(By),vec(By)] and Yy = [Y1,....Y7]. This is done via the Carter and Kohn algorithm as
described in the example above. We describe the Matlab implementation in the next section.
Step 3 Sample) from its conditional posterior distribution. Conditional on /3, the posterior of () is inverse Wishart

- - 1 -
with scale matrix (ﬂtl — Btl_l) (ﬂtl — Btl_1> + Qo and degrees of freedom T 4T where T' denotes the length

of the estimation sample and 3, is the previous draw of the state variable j3,. Notice that once the state
variable is drawn from its distribution we treat it like data. It is therefore easy to extend this step to sample

Step 4.

Step 5.

6. THE GIBBS SAMPLING ALGORITHM FOR A VAR WITH TIME-VARYING PARAMETERS 79

55 bm=beta tt(i:i,:)+ (pt*F'*inv (F*pt*F'+Q) * (beta2 (i+1:1i+1, :)-mu-
-1
beta tt(i,:)*F')")"; Prug., = Pu +pva'(sz\rF' + Q) (B — = FPBus)
56 pm=pt-pt*F'*inv (F*pt*F'+Q) *F*pt;
-1
Dot By = Pre —me'(Fme' +Q) Fpns

57 beta2(i:i,:)=bm+ (wa(i:i, :)*chol (pm));
BB NN(/))N,B w12 PALB oy)
58 end

59 plot([beta tt beta2 Beta])

60 axis tight

61 legend('Kalman filter estimated ‘beta {t}','Draw from
H(\beta {t})','true \beta {t}');

Published with MATLAB® 7.9

FIGURE 5. The Carter and Kohn algorithm in Matlab (continued)

p, F which are just the intercept and AR coefficients in an AR regression for each individual coefficient in
B, (the conditional distributions for linear regression models are described in chapter 1)

~1
Sample R from its conditional posterior distribution. Conditional on the draw S, the posterior of R is
!/
inverse Wishart with scale matrix (Yt - (ct1 + Zle le-’tY},j)> (Y} - (ctl + Zle B}’th,j)) + Ry and
degrees of freedom T + vp,.

Repeat steps 2 to 4 M times and use the last L draws for inference. Note that unlike fixed coefficient VAR
models, this state space model requires a large number of draws for convergence (e.g. M > 100, 000).

80 3. GIBBS SAMPLING FOR STATE SPACE MODELS

Kalman filter estimated Bt

0.4

Draw from H(Bt)

|
©
w
T

|
o
N
T

FIGURE 6. A draw from the conditional posterior distribution of 3, using the Carter and Kohn algorithm

6.1. Matlab code for the time-varying parameter VAR. We consider a time-varying VAR model with
two lags using US data on GDP growth, CPI inflation and the Federal Funds rate over the period 1954Q3 to 2010Q2
(Example3.m). We use the time-varying VAR model to compute the impulse response to a monetary policy shock
at each point in time and see if the response of the US economy to this shock has changed over this period. The
code for this model can be seen in figures 7, 8, 9 and 10. Line 13 of the code sets the training sample equal to
the first 40 observations of the sample and line 16 calculates a fixed coefficient VAR, using this training sample to
obtain 3, and pg|o. In calculating Qo on line 21 we set 7 = 3.5107%. Lines 25 and 26 set a starting value for R
and @. Lines 29 and 30 remove the training sample from the data—the model is estimated on the remaining sample.
Lines 38 to 88 sample the time-varying coefficients conditional on R and) using the Carter and Kohn algorithm.
The code for this is exactly the same as in the previous example with some monor differences. First, note that the
VAR is expressed as Y: = (Iy ® X;)vec(B,;) + v, for each time period ¢ = 1....T. This is convenient as it allows
us to write the transition equation in terms of vec(f,) i.e. the VAR coefficients in vectorised form at each point in
time. Therefore, on line 47 x is set equal to (Iy ® X;) . The second practical differences arises in the backward
recursion on lines 64 to 87. In particular (following earlier papers) we draw (5 = [vec(8,)’, vec(B,), ...vec(By)'] for

H (BT|R, Q, f@) but ensure that the VAR is stable at each point in time. If the stability condition fails for one time

period, the entire matrix By = [vec(B,),vec(By), ...vec(By)] is discarded and the algorithm tries again. With the
draw of S, in hand line 89 calculates the residuals of the transition equation e;. Line 90 calculates the scale matrix

- N 1. N
(52 - 62_1) (52 - 62_1) + Qo and line 91 draws @ from the inverse Wishart distribution. Line 94 draws the VAR

error covariance R from the inverse Wishart distribution. Note that we use a flat prior for R in this example. One
past the burn-in stage we save the draws for S, R and (). We use the saved draws to compute the impulse response
to a monetary policy shock and use sign restrictions to identify a monetary policy shock (lines 106 to 180). We
assume that a monetary policy shock is one that increases interest rates, decreases inflation and output growth. The
results for the time-varying impulse response are shown in 11. The 3-D surface charts show the impulse response
horizon on the Y-axis and the time-series on the X-axis. These results show little evidence of significant variation in
the impulse response functions across time for this dataset.

7. THE GIBBS SAMPLING ALGORITHM FOR A FACTOR AUGMENTED VAR 81

clear

addpath ('functions');

% a TVP-VAR with dlog(GDP) dlog(CPI) and R for the US 1962 2004
$load data

data=xlsread('\data\usdata.x1s"')/100;

N=gize(data,2);

I=2g gnumber of lags in the VAR

Y=data;

9 X=[lagO(Y¥,1) lag0(Y,2) ocnes(size(Y,1),1) 1:

10 Y=Y (3:end, :);

11 X=X (3:end, :);

12 %$step 1 set starting values and pricrs using a pre-sample of 10 years
13 T0=40;

14 y0=Y(1:T0, :);

15 x0=X(1:T0, :);

=
16 b0=x0\y0; Bo = (Xi);Xor) (XI);YOr)
17 e0=y0-x0*b0;
18 sigmaO=(e0'*e0)/T0;

® o U W N

d -1
19 VO=kron (sigma0, inv (x0'*x0)) ; Povo = ZOQ@(XBbeJ
20 %$priors for the variance of the transition equation
21 Q0=v0*T0*3.50-04; PowXToxT
transition equation error

$prior for the variance of the

22 PO0O=VO; Powo % variance of the intial state vector
variance of state variable p[t-1/t-1]

!
23 betal=vec(b0) '; ﬁom = vec(ﬁo) % intial state vector $state
variable b[t-1/t-1]
24 %initialise
25 Q=00;
26 R=sigmal;
27 %$remove intial Sample
28 Y=Y (TO+1l:end, :);
29 X=X (TO+1l:end, :);
30 T=rows (X);
31 %$Gibbs sampling algorithm Step 2
32 reps=110000;
33 burn=109000;

34 mm=1;
35 for m=1l:reps
36 m

37 %%Step 2a Set up matrices for the Kalman Filter
38 ns=cols (betal)

39 F=eye(ns); fixed

40 mu=0; fixed

41 beta tt=[]: $will hold the filtered state variable
42 ptt=zeros(T,ns,ns); $ will hold its variance

43 betall=betal;

44 pll1=P00;

45 % $%%%%%%%%%%Step 2b run Kalman Filter

46 for i=1:T

47 x=kron(eye (N),X(i,:)); (v ®X1)

48 $Prediction

49 betalO=mutbetall*F"; Byt = p+ Ffiim

!
50 plO=F*pll*F'+Q; Pre-1 =Fp171\!71F +Q

FIGURE 7. Matlab code for a time-varying VAR

7. The Gibbs sampling algorithm for a Factor Augmented VAR

Our second example is based on the Factor augmented VAR model introduced in Bernanke et al. (2005). The
FAVAR model can be written compactly as

Xit = by +7FFR +viy (7.1)
P
Zt = Ct—|—ZBth_j +€t
j=1
Z, = {F, FFR,}
VAR(Ui7t) = R, VAR(et) = Q

82 3. GIBBS SAMPLING FOR STATE SPACE MODELS

51 yhat=(x*({betall)")"; Aﬂﬁﬂkl
52 eta=Y(i,:)-yhat; Mhe-1 = Ylin:Bt\ifl
+
53 feta=(x*pl0*x')+R; fre1 = XipaeaXi + R
54 %updating

K= pp X of5)
55 K (plO*x')*inv(feta); ~~1 Diel o

= B T Ko
56 betall=(betal0'+K*eta')'; Bt = P N1

57 pll=plO-K* (x*pl0); Pra = Pre-1 — KelXipp
58 ptt(i,:,:)=pll;

59 beta tt=[beta tt;betall];

60 end

61 %%%3%%%%%%%%end
Filter?%%%%%%%%%%%%%%%2%%%%%3%%%%%%22%%%2%%%3%%%%%%%%%%%%%5%%
62 %$step 2c Backward recursion to calculate the mean an
distribution of the state

63 %vector

64 chck==-1;

65 while chck<0 while loop to ensure VAR stable at each point in time

66 beta2 = zeros(T,ns); $this will hold the draw of the state variable
67 wa=randn{T,ns);

68 error=zeros(T,N);

69 roots=zeros(T,1);

70 1=T; $period t

71 p00=sgueeze(ptt(i,:,:));

(o

variance of the

72 betaZ(i,:)=beta tt(i:i,:)+(wa(i:i,:)*chol(p00)); Br-N(Bre: pre)
$draw for beta in period t from N(beta tt,ptt)

73 error{(i,:)=Y(i,:)-X(i,:)*reshape(beta2(i:i,:),N*L+1,N); S%var
residuals calculate var residuals in the same loop for convenience

74 roots(i)=stability(beta2(i,:)',N,L); checking stability at ith time
period roots(i)=1 if stability violated

75 %periods t-1..to .1

76 for i=T-1:-1:1

77 pt=squeeze(ptt(i,:,:));

78 bm=beta tt(i:i,:)+(pt*F'*inv (F*pt*F'+Q) * (beta2 (i+1:1+1,:) -

peta tt(i,))y 1; Prusa = Bt PaF FpuF +)7 (Bua — 1= FBy)
B -1
79 pr—pt-pt*F'*inv (Frpt*F'1Q)*Fipt; LPMBm — Py — P (Fpad" + Q)7 Fpuy

80 beta2(i:i,:)=bm+(wa(i:i, :)*chol (pm)); BBt ~N(Bisg s Pr.8)
81 error(i,:)=Y(i,:)-X(i,:)*reshape(beta2(i:i,:),N*L+1,N);

82 roots(i)=stability(betaz2(i,:)',N,L);

83 end

84 if sum(roots)==

85 chck=1;

86 end

87 end

88 % step 3 sample Q from the IW distribution

1_ Rl
89 errorg=diff (beta2); B ﬁFl
S S N o S I Y1
90 scaleQ=(errorg' *errorg) +00; (ﬁ’ ﬁkl) (ﬁ’ ﬁkl>-+g%

91 0—iwpQ (T+TO, inv (scaleq)) : Sample Q from its conditional posterior distribution

92 %$stepd sample R from the IW distribution

FIGURE 8. Matlab code for a time-varying VAR (continued)

where X; ; is a T x M matrix containing a panel of macroeconomic and financial variables. F'F'R; denotes the Federal
Funds rate and F; are the unobserved factors which summarise the information in the data X; ;. The first equation is
the observation equation of the model, while the second equation is the transition equation. Bernanke et al. (2005)
consider a shock to the interest rate in the transition equation and calculate the impulse response of each variable in
Xi7t.

It is instructive to consider the state-space representation of the FAVAR model in more detail. We assume in this
example that the lag length in the transition equation equals 2 and there are 3 unobserved factors F;, = {Fi4, Fo Fi. }.

7. THE GIBBS SAMPLING ALGORITHM FOR A FACTOR AUGMENTED VAR

93 scaleR=(error'*error);

(Y, _ (c} 5 BJ{,Y,,J-))' (Y, _ (c} ~¥ B}),Y,,j)) +R,

94 R=iwpQ (T, inv (scaleR});

Sample R from its conditional posterior distribution

95 if m>burn

96
a7
98
99
100
101
102
103
104
105
106
107

$save output from Gibbs sampler
outl (mm, 1:T, :)=betaZ;
out2(mm, 1:N,1:N)=R;
out3({mm, 1 :N* (N*L+1),1:N* (N*L+1))=0Q;
mm=mm+1 ;
end
end
$save results
save tvp.mat outl out2 out3
$compute irf to a policy shock using sign restrictions
horz=40;% impulse respconse horizon
irfmat=zeros (size(outl, 1), T,horz,N); %empty matrix to save impulse

response to a policy shock

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
lie
147
148
149

for i=l:size(outl,1);

sigma=squeeze (cut2(i,:,:));

$sign restrictions
check=-1;
while chck<O
K=randn (N, N) ;
QQ=getQR(K);
Alhat=chol (sigma) ;
AQOhatl=(QQ*A0hat); %candidate draw
for m=1:N
$check signs in each row
el=A0hatl (m, 1)<0; $Response of Y
e2=A0hatl (m,2)<0; %Response of P
e3=A0hatl (m, 3)>0; %Response of R

if el+e2+e3==

MP=AOhatl (m, :) ;

chck=10;
else

$check signs but reverse them
el=-A0hatl(m,1)<0; %$Response of Y
e2=-A0hatl (m, 2)<0; %Response of P
e3=-A0hatl (m,3)>0; %Response of R

if el+e2+e3==
MP=-A0hatl (m, :);
check=10;
end
end
end
end
$re-shuffle rows of AOhatl and insert MP in the first row
AO0x=[]; %will hold rows of AOhatl not equal to MP

for m=1:N
ee=sum (abs (AOhatl (m, :))==abs (MP));
if ee==
AOx=[A0x;AChatl{m,:)];
end
end

AOnew=[A0x;MP]; %A0 matrix to be used for impulse response
shock=[0 0 17;
for j=l:size(outl,2)

FIGURE 9. Matlab code for a time-varying VAR (continued)

Consider the observation equation of the model

X
FFR;
Xt

bu . biz ™
ba1

bar byus Y

|
OO OO OO O OO
SO OO OO O Oo0o
(=il NN NNl
OO OO OO O OO

V1t
Va2t
U3t

UNt

83

(7.2)

84 3. GIBBS SAMPLING FOR STATE SPACE MODELS

150 btemp=squeeze (cutl (i,3,:));

151 btemp=reshape (btemp, N*L+1,N) ;

152 zz=irfsim (btemp, N,L,AOnew, shock,horz+L) ;
153 zz=zz./repmat (zz(1l,3),horz,N);

154 irfmat(i,j,:,:)=zz;

155 end

156 end

157 TT=1964.75:0.25:2010.5;

158 HH=0:horz-=1;

159 irfl=squeeze(median{irfmat(:,:,:,1),1));
160 irf2=squeeze (median{irfmat(:,:,:,2),1));
161 irf3=squeeze (median(irfmat(:,:,:,3),1));
162 figure(l)

163 subplot(2,2,1);

164 mesh(TT,HH,irfl")

165 ylabel ("Impulse Horizon');

166 xlabel ("Time');

167 axis tight

168 title("GDP growth');

169 subplot(2,2,2);

170 mesh(TT,HH,irf2")

171 ylabel ("Impulse Horizon');

172 xlabel ("Time');

173 axis tight

174 title('Inflation'):;

175 subplott2,2,3);

176 mesh (TT,HH,irf3")

177 ylabel ("Impulse Horizon');

178 xlabel ("Time');

179 axis tight

180 title('Federal Funds Rate'):

Published with MATLAB® 7.9

FIGURE 10. Matlab code for a time-varying VAR, (continued)

The left hand side of the observation equation 7.2 contains the dataset X;; with the Funds rate as the last variable
(thus Xit = {X@t,FFRt}) . X is related to the three factors via the factor loadings b;; where ¢ = 1...M and
j=1,2,3. X;, is related to the Federal Funds rate via the coefficients +y,. Bernanke et al. (2005) assume that ~y, are
non-zero only for fast moving financial variables. FF'R; appears in the state vector 5, (even though it is observed)
as we want it to be part of the transition equation. Therefore the last row of the coefficient matrix H describes the
identity F'F R, = FFR;. The state vector contains the first lag of all state variables as we want two lags in the VAR

7. THE GIBBS SAMPLING ALGORITHM FOR A FACTOR AUGMENTED VAR 85

S0P growth Inflation

00 O b b

Y T e R

20 2000 20 2000

15980

. 1980
Impulse Harizan 0 Time Impulse Harizan 0 Time

Federal Funds Rate

—_

coooo
b e 0 00 == B

Impulse Harizan a Time

FiGure 11. Time-varying impulse responses to a monetary policy shock

that forms the transition equation. Note also that

Ry 0 O 0 0
0 Ry O 0 0
VAR(w)=R=| 0 0 0 0 (7.3)
0 0 0 Ry O
0 0 0 0 0
The transition equation of the model is
Fyy U1 Ay A Az Ay Ais Ais Air Asg Fii 1 el
Fy U2 Aoy Agp Axz Agy Aps Axg Agr Agg oy €2t
Fzy u3 Az1 Azp Azz Azs Azs Asze Asr Asg F3 4 €3t
FFR; | ow | Ay Ay Ayz Ay Ays Ay Ay Agg FFR; | e (7.4)
Fiiq 0 1 0 0 0 0 0 0 0 Fii_o 0)
Foi_q 0 0 1 0 0 0 0 0 0 Foi_o 0
F3_q 0 0 0 1 0 0 0 0 0 F34_o 0
FFR; 4 0 0 0 0 1 0 0 0 0 FFR; o 0
By 12 F Be_1 et

Note that this is simply a VAR(2) in Fi4, For, F5; and FFR; written in first order companion form to make
consistent with the usual form of a transition equation (i.e. the transition equation needs to be in AR(1) form). Note

that:
Qi1 Q12 Qi3 Qua
Q12 Qa2 Q23 Q2
Q13 Q23 Q33 Q34
Q11 Q21 Q23 Quu
0 0 0 0
0 0 0 0
0 0 0 0 0 0 0 O
where the zeros result from the fact that the last 4 equations in the transition equation describe identities. Therefore
the matrix @ is singular in this FAVAR model. This implies that the Carter and Kohn recursion has to be generalised
slightly to take this singularity into account as discussed above. This modification implies that we use p*, F*, Q*, 57,

(7.5)

S OO OO OO
OO OO O OO
OO OO O oo
OO OO O OO

86

3. GIBBS SAMPLING FOR STATE SPACE MODELS

in equations 3.13 and 3.14 where p*, F*,Q*, 37, denote the first jv rows of u, F, Q,5,, . In our example jv = 4 as
the top 4 x 4 block of @ is non-singular and we draw three factors (the F'F'R; equation in the observation equation
is an identity).

The Gibbs sampling algorithm can be discerned by imagining the situation where the factors F; are observed.
Give the factors, the observation equation is just M linear regressions of the form X;; = b;; Fj; + v, F'F R, + v; 4 and
the conditional distributions studies in Chapter 1 apply immediately to sample b;; and ~; (i.e. the elements of H)
and R. Similarly, given the factors, the transition equation is simply a VAR model. The conditional distributions in
Chapter 2 can be used to sample u, F' and Q. Finally, given a draw for H, R,u, F' and @ the model can be cast into
the state-space form shown in equations 7.2 and 7.4. Then the Carter and Kohn algorithm can be used to draw F;
from its conditional distribution. The Gibbs sampling algorithm consists of the following steps

Step 1

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Set priors and starting values. The prior for the factor loadings is normal. Let H; = {b;;,7;}. Then
p(H;) ~ N(H;0,Xp,). The prior for the diagonal elements of R is inverse Gamma and given by p (R;;) ~
IG (Riio, Vro). The prior for the VAR parameters u, F' and @ can be set using any of the priors for VARs
considered in the previous chapter. For example, one may consider setting an independent Normal inverse
Wishart prior. Collecting the VAR coefficients in the matrix B and the non-zero elements of () in the matrix
) this prior can be represented as p (B) ~ N(By, Xp) and p (Q) ~ IW (2, Vo). The Kalman filter requires
Fiy
Fyy
F34
FFR;
Fri
Fotq
Fs 1
FFRy 4
estimate of F;, Fo; and F3; to set 50|0- The principal component estimate also provides a good starting
value for the factors F; = Fy;, Fo; and F3¢. One can arbitrarily set R; = 1 and €2 to an identity matrix to
start the algorithm.
Conditional on the factors F; and R;; sample the factor loadings H; = {b;;,v,} from their conditional
distributions. For each variable in X;; the factor loadings have a normal conditional posterior (as described
in Chapter 1) H (H;|F;, Ri;) ~ N(H}, V)

1
R;;

the initial value of the state vector 8, = . One can use principal components to get an initial

-1
1
Zt/Zt) (Eﬁin'o + FzéXit>

(2

H = (2;{} +

-1
V= (zHi + R%Zt/zt>
where Zy = {Fi¢, Fot,F5:, FF R} if the ith series X;; is a fast moving data series which has a contempora-
neous relationship with the Federal Funds rate (e.g. stock prices) and Z; = {Fyy, Fo,F5:} if the ith series
Xt is a slow moving data series which has no contemporaneous relationship with the Federal Funds rate
(e.g. GDP). Note that as Fyy, Fot,F3; and H; are both estimated the model is unidentified. Bernanke et al.
(2005) suggest fixing the top 3 x 3 block of b;; to an identity matrix and the top 3 x 1 block of v; to zero
for identification. See Bernanke et al. (2005) for more details on this issue.
Conditional on the factors F; and the factor loadings H; = {b;;,v;} sample the variance of the er-
ror terms of the observation equation R;; from the inverse Gamma distribution with scale parameter
(X — ZtHi)/ (Xit — Z¢H;) + Rj;0 with degrees of freedom T + Vgo where T is the length of the estimation
sample.
Conditional on the factors F; and the error covariance matrix €2, the posterior for the VAR coefficients B
(recall B = {u, F'} the coefficients in the transition equation of the model) is normal (see Chapter 2) and
given as H (B|F;, Q) ~ N(B*, D*) where By, ¥p

B = (£ +a'e X;X})fl (Eglvec(Bo) +07 ' X{X}vec(B))

D* = (S5l +0lexx,)”
where Xy = {F;_1,FFR;_1,F;_o, FFR; 5,1} and B is the OLS estimate of B.
Conditional on the factors F; and the VAR coefficients B the error covariance) has a inverse Wishart
posterior with scale matrix (Yt — X'tB)/ (Yt — X’tB) + Qo and degrees of freedom T+Vj.

Given H;, R, B and €2 the model can be cast into state-space form and then the factors F; are sampled via
the Carter and Kohn algorithm.

Step 7 Repeat steps 2 to 6 M times and use the last L values for inference

7.1.

Matlab code for the FAVAR model. We estimate a FAVAR model using UK data over the period

1970Q1 to 2006Q1. We use 40 Macroeconomic and financial time series along with the Bank of England policy rate
to estimate the model and consider the impact of a monetary policy shock.

7. THE GIBBS SAMPLING ALGORITHM FOR A FACTOR AUGMENTED VAR 87

clear

addpath ('functions');

[data0 junk]=xlsread('\data\datain.xls');

[junk names]=xlsread('\data\names.xls');
$names=names(1l,2:end);
index=xlsread('\data\index.x1s");

dindex=index(:,1); %dindex=1 for series that are log differenced
dindex=3 differencing without logs

8 index=index(:,2); %index=1 for 'fast moving' series
9 $first difference the data where appropriate

10 data=[];

11 for i=l:cols(datal};

~l oy U W N

12 if dindex (i)==

13 dat=log (datal(:,1));
14 dat=diff (dat)*100;

15 elseif dindex(i)==

16 dat=diff (dataO(:,1));
17 else

18 dat=datal(2:end, i) ;
19 end

20 data=[data dat];

21 end

22 %standardise the data

23 data=standardise (data);

24 %load policy rate and standardize it

25 z=xlsread('\data\baserate.xls');

26 z=z (2:end);

27 z=standardise(z):

28 KK=3; $nunber of factors

29 L=2; %number of lags in the VAR

30 N=KK+1; %number of Variables in var K factors plus the interest rate
31 NN=cols(data);% size of the panel

32 T=rows (data)

33 %step 1 of the algorithm set starting values and priors

34 %get an intial guess for the factor via principal components
35 pmat=extract (data,KK);

36 betalO=[pmat(l,:) =z (1) zeros(1l,N)]; lgow) $state vector S[t-1/t-1]
37 ns=cols(betal);

38 PO0=eye(ns); $P[t-1/t-1] P00

One can arbitrarily set R; = 1 and Q to an identity matrix to start the algorithm

39 rmat=ones(NN,1); %arbitrary starting value for the variance of the
idiosyneratic component

40 Sigma=eye (N); S%arbitrary starting value for the variance of VAR
errors

41 $flat prior for the factor loadings,variances and VAR

42 reps=5000;

43 burn=4000;

44 mm=1;

45 for m=l:reps;

46 %gibbs sampling

47 %step 2 sample factor loadings

48 fload=1[];

49 floadr=[];

50 error=[];

51 for i=1:NN

52 y=data(:,1);

53 if index (i)==0

FIGURE 12. Code for the FAVAR model

The Matlab code for this example (example4.m) can be seen in figures 12, 13, 14, 15, 16 and 17.

Lines 3 and 4 load the T' x M panel of UK data and the variable names (M = 40). Line 6 reads a variable called
index. The first column is a M x 1 vector which equals 1 if the corresponding data series in the panel has to be first
differenced. The second column is a M x 1 vector which equals 1 if the corresponding data series is a fast-moving
variable (like an asset price) and will have a contemporaneous relationship with the policy interest rate i.e. y; # 0
for this variable. Lines 10 to 23 transform the data to stationarity and standardises it. Lines 25 to 27 read the bank
rate and standardises it. Line 35 extracts three principal components from the dataset to use as starting values for
the three factors in this example. Line 36 defines 3y, =[pmat(1,:) z(1) zeros(1,N)]. Notice that there are 8 state

88 3. GIBBS SAMPLING FOR STATE SPACE MODELS

Zi = {F11, Fou,F3}

54 x=pmat;

55 else

5@ x—[pmat z]; Zt = {Flr,F2t7F3t,FFRt}
57 end

58 M=inv (x"*x) * (" *y) ;

Hf = (z;; + RL“Z,’Z,)f1 (Z;{{H,-o + RI—“Z,’X,-,) with a flat prior

V= (Z;} 4+ RLZLZ,)f1 with a flat prior

59 V=rmat (i) *inv (x"*x);

60 ¥draw

61 ff=M+ (randn (1,cols(x))*cholx(V))"';
62

63 ¥save

64 if index (i)==0;

65 fload=[fload; ff'];

66 floadr=[floadr;0];

e7 else

68 fload=[fload;ff(l:end-1)"'];
69 floadr=[floadr;ff (end)];

70 end

71 error=[error y-x*ff];

72 end

73 %$for identification top K by K block of fload is identity

74 fload(1l:KK,1l:KK)=eye(KK);

75 %for identification top K by 1 block of Floadr is zero

76 floadr (24:24+KK-1,1)=zeros (KK, 1) ;

77 %$step 3 sample variance of the idiosyncratic components from inverse
78 %gamma

sample the variance of the error terms of the observation equation Ry from the inverse Gamma distribution with scale parameter
(Xt — Z.H) (Xie — ZoHy) + Rio with degrees of freedom T+ Vg where 7is the length of the estimation sample.

79 rmat=[];

80 for i=1:NN

81 rmati= IG(0,0,error{(:,i)):
82 rmat=[rmat rmati];
83 end

84 S$step 4 gample VAR coefficients

85 Y=[pmat z];

86 X=[lag0(Y,1l) lag0(¥,2) ones(rows(Y),1)];:

87 Y=Y (2:end, :);

88 X=X (2:end, :);

89 M=vec (inv (X'*X)*(X"*Y)); %conditicnal mean

B* = (35 + Q1 @ M) (Bl vec(By) + O ® XX vec(B)) witha flat prior
90 V=kron (Sigma,inv (X'*X)); %conditional variance

D* = (35 + Q! @ XiX,) " witha flat prior

91 chck=-1; $make sure VAR is stationary

92 while chck<0

93 beta=M+(randn (1,N* (N*L+1))*cholx(V))"'; %$draw for VAR coefficients
94 S=stability(beta,N,L);

95 if S==

96 chck=10;

97 end

98 end

99 betal=reshape (beta,N*L+1,N) ;

100 errorsv=Y=X*betal;

Conditional on the factors # and the VAR coeflicients B the error covariance 2 has a inverse Wishart posterior with scale matrix
(Y —X,E)'(Y, — X;B) + Q) and degrees of freedom 7+

FIGURE 13. Code for the FAVAR model (continued)

variables: 3 factors, the interest rate and the first lags of these 4 state variables and thus S|y is 1 X 8. Line 38 sets
Pojo as a 8 x 8 identity matrix. We arbitrarily set R;; = 1 and {2 = I to start the algorithm on lines 39 and 40. Note
that following Bernanke et al. (2005) we will not use prior distributions for the regression or VAR coefficients which
will imply that the conditional posteriors collapse to OLS formulae.

Lines 48 to 72 sample the factor loadings. The code loops through the 40 data series and selects each as the
dependent variable (line 52) to be regressed on the factors only for slow moving series (line 54) or the factors and
the policy interest rate for fast moving series (line 56). Line 58 calculates the mean of the conditional posterior

7. THE GIBBS SAMPLING ALGORITHM FOR A FACTOR AUGMENTED VAR 89

101 %$sample VAR covariance

102 scale=errorsv'*errorsv;

103 Sigma=iwpQ (T, inv (scale));

104 %$step 5 prepare matrices for the state space
105 %$Y=H*factors+e

106 $factors=MU+F*Factors(-1)+v

107 %e~N(0,R)

108 %v~N(0,0Q)

109 %$matrix of factor loadings

/bn.b13]/10000\

by .. 0000
0000
0000
0000
0000
0000
ban bas var 0 0 0 0
000

\ 1 0

H
110 H=zeros (NN, (KK+1)*L);
111 H(l:rows(fload),l:KK+1l)=[fload floadr];
112 H(rows(floadr)+1,KEK+1)=1;
113 %matrix R

R, 0 0 0 O
0 R, 0 0 O
VAR()=R=| 0 0 0
0 0 Rar O
0 o 0 0

114 R=diag([rmat 0]);
115 %vector MU

()

Uz

N

116 MU= [betal (end, :)'";zeros (N* (L-1),1)]1"';
117 %matrix F

FIGURE 14. Code for the FAVAR model (continued)

distribution of the factor loadings without the priors
H; = (2/2,)" (Z;Xu)

and line 59 calculates the variance of this distribution (without the prior information).

1 —1
Vit = (R—iizézt>

The coefficients b;; are stored in the matrix fload and the coefficients <y, in floadr. Lines 74 and 76 impose the
identification conditions and fix the top 3 x 3 block of fload to an identity matrix and top 3 x 1 block of floadr to 0.

90 3. GIBBS SAMPLING FOR STATE SPACE MODELS

(4 An A Ay s A A A)
Aot A Az As Ass Az Ay Az
Ast Az Asz Az Ass Ass Az Ass
An Ay Asz Au Ass Aas Asr Asg

S =S o
S S OO
S o o <

\ ¢ /
118 Fz[betal(l:N*f):)';eye(N*(L—l),N*L)];
119 %matrix Q

(" On Qn Ou Qu 0
Q1o On On On
Qi On P Ou
QO Ou On Qu
0 0
0 0
0 0
0 0

120 Q=zeros(rows (F),rows(F));
121 Q(1:N,1:N)=Sigma;
122 %$Carter and Kohn algorithm to draw the factor

VAR(e;) = O =

(=R I 2 — =R R R)
oS O O O O o o O

S O o O O o o O

0
0
0
0 0 0
0 0 0
0 0 0
0 0 0

/

123 beta tt=[]; $will hold the filtered state variable
124 ptt=zeros(T,ns,ns): $ will hold its variance

125 % %%%%%%%%%%%Step 6a run Kalman Filter

126 i=1;

127 %=H; This is no longer data but a matrix of coefficients
128 %Predictiecn

129 betalO=MU+betalO*F";

130 plO=F*POO*F'+Q;

131 yhat=(x*(betall)")";

132 eta=[data(i,:) z(i,:)]-yhat;

X
X
X3

X

\ FFR)
133 feta= (x*plO*x')+R; %

134 Supdating

135 K=(plO*x'")*inv (feta);

136 betall=(betall'+K*eta')"';

FIGURE 15. Code for the FAVAR model (continued)

Lines 79 to 83 sample R;; from the inverse Gamma distribution (using the function IG in the functions folder) with
prior degrees of freedom and the prior scale matrix set to 0 (hence using information from the data only). Lines 85
and 86 set up the left hand side and the right hand side variables for the VAR model using the factors (pmat) and the
policy rate. Lines 89 and 90 calculate the mean and variance of the conditional distribution of the VAR coefficients
(without prior information these are just OLS). Line 93 draws the VAR coefficients ensuring stability. Lines 102 and
103 draw the covariance matrix 2 from the inverse Wishart distribution. We now have a draw for all parameters
of the state space representation so we build the matrices necessary to cast the FAVAR into the state space form.
Lines 110 to 112 build the matrix H seen in equation 7.2. Line 114 builds the covariance matrix of the error term

7. THE GIBBS SAMPLING ALGORITHM FOR A FACTOR AUGMENTED VAR 91

137 pll=pl0-K*(x*pl0);
138 betafttz[betaftt;betall];

139 ptt(i,:,:)=pll;
140 for i=2:T
141 %Prediction

142 betallO=MU+betall*F";
143 plO=F*pll*F'+Q;
144 vyhat=(x*(betald)")";
145 eta=[data(i,:) =z(i,:)]-vhat;
146 feta=(x*pl0*x')+R;
147 %updating
148 K=(plO*x')*inv (feta);
149 betall=(betall'+K*eta')"';
150 pll=pl0-K* (x*pl0);
151 ptt(i,:, :)=pll;
152 beta tt=[beta tt;betall];
153 end -
154 % Backward recursion to calculate the mean and variance of the
distribution of the state
155 %vector
156 beta2 = zeros(T,ns); $this will hold the draw of the state
variable
157 jv=1:N; jvl=1:KK;%index of state variables to extract
158 wa=randn(T,ns);
]7*

159 f=F(jv,:);

42*
160 g=Q(Jv,Jv);

*
161 mu=MU(Jv); ;l
lez 1i=T; $period t

163 pO0=squeeze (ptt(i,jvl,jvl)); beta2(i,:)=beta tt(i,:);

164 beta2(i,jvl)=beta tt(i:i,jvi)+(wa(i:i,jvl)*cholx (p00})); sdraw for
beta in period t fromiN(beta tt,ptt)

165 %periods t-1..to .1 N

166 for i=T-1:-1:1

167 pt=sqgueeze(ptt(i,:,:));

Bue + PrF' (FpuF' + QY1 (Be1 — = F)

168 bm=beta tt(i:i,:)+(pt*f"*inv (f*pt*f'+q)*(beta2(i+l:1+1,jv)-mu-
beta tt(i,:)*f")")";

Py ~PuF (FPuF+Q) ' FPy

169 pr=pt-pt*f'*inv (f*pt*f'+qg)*f*pt; beta2(i,:)=bm;

170 keta2(i:i,jvl)=bmn(jvl)+(wa(iz:i,jvl)*cholx(pm(jvl,ivl)));

171 end

172 pmat=bketa2(:,1:3); %update the factors

173 if m>burn

174 $compute impulse response
175 AO=cholx (Sigma);
176 vhat=zeros (36,N) ;

177 vhat=zeros(36,N);
178 vhat(3,1:N)=[0 0 0 1];
179 for 1=3:36

180 vhat(i,:)=[yhat(i-1,:) vhat(i-2,:)
1]1* [betal (1:N*L, :);zeros(1,N)]+vhat(i,:)*A0;
181 end

182 vhatl=yhat*H(:,1:KK+1)'; %impulse response for the panel
183 irfmat (mm,1:36,1:NN+1)=(yhatl);

184 mm=ram+1;

185 end

FIGURE 16. Code for the FAVAR model (continued)

R. Line 116 builds the matrix p seen in equation 7.4. Line 118 builds the matrix F, while line 120 builds the matrix
. With the matrices of the state space representation in hand we start the Carter and Kohn algorithm by running
the Kalman filter from lines 123 to 153. Note a minor difference to the previous example is that the observation
equation now does not have a regressor on the right hand side. Hence on line 127 x is set equal to the matrix H.
Line 156 starts the backward recursion. Recall that the last 5 state variables represent identities and @ is singular.
Therefore we will only work with the first 3 rows (and columns for covariance matrices) of p, F,Q and Bji1. Lines
159 to 161 create p*, F™*,Q*. Lines 168 and 169 are the modified Carter and Kohn updating equations. Line 172 sets
the factors pmat equal to the last draw using the Carter and Kohn algorithm and we return to the first step of the

92 3. GIBBS SAMPLING FOR STATE SPACE MODELS

186

187 end

188 irf=prctile(irfmat, [50 16 84],1);
189 figure(l)

190 j=1

191 for i=l:size(irf,3)

192 subplot(4,10,7)

193 plotxl(squeeze(irf(:,:,1))");

194 title(strcat('\fontsize{8}', names(i)))
195 j=3+1

196 axis tight

197 end

Published with MATLAB® 7.9

FIGURE 17. Code for the FAVAR model (continued)

Gibbs sampler. Once past the burn-in period we calculate an impulse response of the factors to a shock to the bank
rate in the transition equation using a Cholesky decomposition of the covariance matrix to form the A0 matrix. Line
182 uses the observation equation of the model to calculate the impulse response of all the underlying data series.
The estimated impulse responses are shown in 18.

8. GIBBS SAMPLING

FOR A MIXED FREQUENCY VAR

Transport
Consumption Goyt fsﬁ%umptlon gq@fﬁjctmn Exports Imports Capital Manulacturmg storage & communication Total Output
0.01 0.02 0 — 0.05
z 0.05 0 0 0
0 -0.02
1 0 -0.02 ~0.05 ~0.05 0
~0.01 0 ~0.04 -0.04 -0.05
0 ~0.06 -0.06 -0.1 -0.1 ~0.05
-0.02 -1 -5 0.08 ot
0.05 -0.08 -0. _0_15 -0.15
0 20 0 20 0 20 0 20 0 20 0 20 0o 20 0 20 0 20
Electricity,
Distribution, All Manuf of Manuf coke/petroleum Manuf of chemicals RPI All items

gas,
water supply:

RPI
Total Non-Food other than seasonal Food

93

hotels & catering production industries food, drink & tobacco prod & man-made fibres Total Production RPI Total Food
N 0.1
0 [
0 0.05 0.06 0 0 0.15
0 0.04 0.02 0.05 0.1 0.1
- - -0.05
0.05 0.02 0.04 0.02 ~0.05 0 0.05
-0.05 . 0
o1 0 0.06 o1 0
-0.1 _ -0.04 . : -0.05 -0.05
0.02 0.08 0.1
’ -0.1
0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20
CPI GDP Deflator Wages RPIX RPI M4 Total MA Households M4 PNFCs M4 OFCs MO
0 0 0
01 0 015 002
) 0.05 -0.05 0
0.05 01 -0.05 -0.05 -0.05 0
0 0.05 -0.1
0 -0.05 01 -0.02 -0.02
0 -0.1 '
~0.05 -0.05 0.05 -0.15 |
: -0 -0.04
) -0.1) 02 -0.15 -0.15 -0.04
0 20 0 20 0 20 0 20 0 20 0 0 20 0 20 0 20
M4 Lending M4L Households M4L PNFCs House Prices Dividend Yield PE Ratio FTSE ALL Share Index pounds/dollar pounds/euro pounds/yen
0 0 0 0 = 0.06 0.08
0.02
~0.05 0.04 0.08 0.02 0.06 0.02
-0.05 -0.05 . _ X 0
01 0.02 Z gi 0 V— 0.04 0
-0.1 - -0.02 -0.02
-0.1 01 -0.2 0 0.02 ~0.02 0.02
-0.04 -0.04
-0.15 -0.02 0 ~0.04 0
-0.15 -0.3 - -0.06 -0.06
0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20

F1GURE 18. Impulse response of UK Macroeconomic series to a monetary policy shock using a
FAVAR model.

8. Gibbs Sampling for a Mixed Frequency VAR

Suppose that a researcher wants to estimate a VAR model using two variables: (1) Y; a quarterly series and (2)
X: a monthly series. The data matrix Z; might look as follows:

na Xi
na Xs
Y; X3
na Xy
Zy = na Xs
Ys Xe
Yr Xr

In other words, if one were to consider the VAR at monthly frequency then Y; has missing observations in two months
of every quarter. However, we can treat these missing observations as unobserved monthly observations on Y; and
re-write the model as a state space model (see Schorfheide and Song (2015)).

94 3. GIBBS SAMPLING FOR STATE SPACE MODELS

The observation equation for this model is defined as follows

0 Xi
}96 §§ :<1(/)3 (1) 1(/)3;8 1(/)3 8))Efll for t = 3,6,9... (8.1)
Yy Xp By

Yt

This equation states that when an observation for Y; is available (in period 3, 6, 9 etc), the quarterly observed data
is an average of the unobserved monthly data. For example, the equation implies that Y3 = 1/ 3V, +1 / 3V, 1+1 / 3Y;_s
where Y; denotes the unobserved monthly data on Y;. This can be changed to reflect other assumptions. For example
it can be assumed that the observed data is the sum of monthly observations by changing 1/3 to 1. As X; is observed
at the monthly frequency the second row of the H matrix specifies an identity.

When an observation for Y; is unavailable, the observation equation changes to:

0 Xi
0 X2 %

Y:
Vs Xs Xtt
0 X4 -

(0 0 0 0 0 O Y1 e _

0 X5 = (01000 0) X, | + (0) fort=1,2,4... (8.2)
Y6 X6 H)A/

t—2
_ . X2

By

Yr Xr

Yt
where var(e;) is large. When observations Y; are missing, the first row of H is zero. The variance of e; is set to a large
number. Recall from the description of the update step of the Kalman filter that this assumption effectively means
that missing observations on Y; are ignored when calculating the updated estimate of Y;. Therefore, the observation
equation for this model changes over time depending on whether observations on Y; are missing.
The transition equation stays fixed over time and is defined as

f/t C1 by by b3 by bs bs Yt—l V1,t
Xi co di dy d3 ds ds dg X1 V2t
Vi | | o 1 0 0 0 0 0 Vi, 0
X, |=lo [Tl o 1 0 0 0 o X, | 7] o (8:3)
Y, 0 00 1 0 0 0 Y, 0
Xi o 0 o 0 O 1 0 o0 X 3 0

lBt H F Bt*l Ut

Qi Q2 0 0 0 0

Qiz2 Q2 0 0 0 0

where var(v) = Q = 8 8 8 8 8 8
0 0 0 0 0 O

0 0 0 0 0 O
If Y; was observed, then the model collapses to a BVAR. This observation provides the intuition behind the Gibbs
algorithm for this model. The algorithm consists of the following steps:

(1) Set priors and starting values. The prior for the VAR parameters p, F and @ can be set using any
of the priors for VARs considered in the previous chapter. For example, one may consider setting an
independent Normal inverse Wishart prior. Collecting the VAR coefficients in the matrix B and the non-

zero elements of @) in the matrix Q = (81; 8;;) this prior can be represented as p (B) ~ N(By, Xp)
Y:
X
and p (Q) ~ IW (Qo, Vo). The Kalman filter requires the initial value of the state vector 5, = ;?;11
Yo

Xi—2

9. FURTHER READING 95

An initial estimate of Y; can be obtained by using a simple interpolation method. For example, using
repeated observations to fill in the months with missing data.

(2) Conditional on Y; and the error covariance matrix €, the posterior for the VAR coefficients B (recall
B = {u, F} the coefficients in the transition equation of the model) in vectorised form is normal (see

Chapter 2) and given as H (B|§>t, Q) ~ N(B*, D*) where By, Xp
B* = (S53'+97'e X;X})fl (Eglvec(Bo) +0'® X{X}vec(B))
D* = (S5 4+ 'eXX,)
where X, = {Y;_1, X;_1,Yi_2, X;_2,Yi_3, X;_3, 1} and B is the OLS estimate of B using ¥; = {V;, X;}, X;.
3. Conditional on Y; and the VAR coefficients B the error covariance has a inverse Wishart posterior with
scale matrix ()_/t —)_(tB)/ (Yt —)_(tB) + Q¢ and degrees of freedom T + Vj.

(3) Finally, given a draw of the VAR parameters, the state variable Y; is drawn using the Carter and Kohn
algorithm. As in the previous example, the backward recursion needs a modification to account for the fact
that @ is singular. This modification implies that we use p*, F*, Q*, 87, in equations 3.13 and 3.14 where
w*, F*,Q%, Br,, denote the first jo rows of u, F,Q, B;,,. In our example jv = 2 as the top 2 x 2 block of Q
is non-singular.

(4) Repeat steps 2 to 4 until convergence

The code for the mixed frequency VAR is provided in figures 19 to 21. This code is based on artificial data
generated for two variables at the monthly frequency. Lines 20 to 26, average the observations of the first variable to
produce a quarterly series Y;. The point of the example is to test if the mixed frequency VAR (that uses quarterly
data for the first variable Y; and monthly data X; for the second variable) outlined above can be used to recover the
original monthly series. Lines 36 and 37 form an initial estimate of Y; using repeated observations. Note that the
lag length is set to 3. This is the minimum lag length allowed by the structure of the observation equation. Lines
58 to 79 set the priors for the VAR model via artificial or dummy observations (see Chapter 2). Lines 83 to 87 set
the initial state and its covariance to be used in the Kalman filter. The Gibbs sampler begins on line 90. The first
step of the sampling algorithm is coded on lines 92 to 103 which draws the VAR coefficients. The VAR covariance
is drawn on lines 105 to 107 from the inverse Wishart distribution. The final step of the algorithm using the Carter
Kohn algorithm begins on line 109 with the Kalman filter. The matrices of the transition equation of the state space
system are created on lines 110 to 112. Within the Kalman filter on line 121, we check if Y; is missing and set the H
matrix and the variance of error term e; accordingly. The backward recursion is on lines 154 to 176. Note that once
Y, is drawn the data for the VAR is updated on lines 178 to 182.

Figure 22 shows that the posterior estimates of Y, are close to the underlying true data.

9. Further reading

Kim and Nelson (1999) chapter 3 is an excellent intuitive introduction to state space models.

Hamilton (1994) chapter provides a more formal derivation of the Kalman filter.

Kim and Nelson (1999) chapter 8 provides a detailed description of Gibbs sampling for state space models.
Code and a monograph by Gary Koop:

https://sites.google.com/site/garykoop/home/computer-code-2.

3. GIBBS SAMPLING FOR STATE SPACE MODELS

mytemp
1 clear;
2 addpath('functions")
3 %generate artificial data
4 nobs=996; %996 months 332 quarters
5 btrue=[0.95 0.1;
6 0.1 0.95;
7 -0.1 0;
8 0 -0.1;
9 -0.05 0y
10 0 -0.05;
11 0 01:
12
13 sigmatrue=[2 1;
14 1 2];
15
16 datatrue=zeros (nobs,2);
17 for j=4:nobs
18 datatrue(j,:)=[datatrue(j-1,:) datatrue(j-2,:) datatrue(j-3,:)
1]*btrue+randn{l, 2)*chol (sigmatrue) ;
19 end

20 %assume first variable is subject to temporal aggregation
21 dataQ=zeros(nobs/3,1); %quarterly data Y

22 3i=1;

23 for j=1:3:nobs

24 tmp=datatrue(j:3+2,1);
25 dataQ (j]j, :)=mean (tmp) ;
26 Ji=33+1;

27 end

28 dataM=datatrue(:,2); 2monthly data X

29 Zarrange data

30 %put missing observations

31 dataN=[nan(rows(dataQ),2) dataQ(:z,1)]; %puts NANs for missing obs
32 datalN=vecr (datall) ;

33 datal0=[zeros(rows(dataQ),2) dataQ(:,1) 1; %same as above but zeros for missing
34 datalO=vecr (datal) ;

35 2initial value of data just repeated observations
36 dataX=repmat (dataQ(:,1),1,3);

37 dataX=vecr (dataX); %

38 data=[dataX dataM];

39 dataid=[dataN dataM]:

40 dataidO=[data0 dataM]:;

41 mid=isnan(dataid); %id for missing obs

42 N=cols(data);

43 REPS=11000;

44 BURN=10500;

45 L=3; &lags

46 Y=data;

47 X=prepare(data,L); %X=[Y(-1),Y(-2)...constant]
48 Y=Y (L+l:end,:):

19 X=X (L+l:end,:);

50 dataidO=dataid0(L+l:end,:);

51 dataM=dataM(Lt+l:end,:);

52 T=rows(X);

53 2initial values for VAR coefficients

54 b0=X\Y; %ols

55 e0=Y-X*b0;

56 sigma=eye (N);

57 %priors for VAR coefficients {(Banbura et.al)
58 lamdaP = 1;

mytemp.html[10/06/2017 18:28:51]

FicUure 19. Code for mixed frequency VAR

9. FURTHER READING

mytemp

59 tauP = 10*lamdaP;
60 epsilonP= 1;

61 muP=mean (Y)";
62 sigmaP=[];

63 deltabP=[]:

od e0=[];

65 for i=1:N

66 ytemp=Y{:,1);

67 xtemp=[lag0l (ytemp,1l) ones(rows{ytemp),1)];

68 vtemp=ytenp (2:end, =) ;

69 xtemp=xtemp (2:end, :);

70 btemp=xtemp\ytemp;

71 etemp=ytemp-xtemp*btemp;

72 stemp=etenp '*etemp/rows (ytemp) ;

73 if abs(btemp(l))>1

74 btemp(1)=1;

75 end

76 deltaP=[deltaP;btemp(1l)];

77 sigmaP=[sigmaP;stemp] ;

78 e0=[e0 etemp];

79 end

80 %dummy data to implement priors see http://ideas.repec.org/p/ech/echwps/20080966.html

81 [yd,xd] = create dummies(lamdaP,tauP,deltaP,epsilonP, L, muP, sigmal,N);

82 %Initial values for the Kalman filter B0/0O

83 betal=[]; Yt

84 for j=0:L-1 X

85 betal=[betald Y(L-j,:z)]1;)

86 end = Yi

87 PO0=eye(cols(betald))*0.1; $P[0/0] t X

88 % Gibbs sampler Y
Yia

89 gibbsl=1;
90 for gibbs=1:REPS Xia

91 %step 1 Draw VAR coefficients

92 X0=[X:;xd]; %add dummy obs

93 YO0=[Y;yd];

94 mstar=vec (X0\Y0) ;

95 vstar=kron(sigma,invpd (X0'*X0));

96 chck=-1; &)

97 while chck<0 H B\Y Q
98 varcoef=mstar+(randn(1,N* (N*L+1))*chol (vstar))'; %draw but keep stable Ij

99 ee=stability(varcoef,N,L);

100 if ee==0;

101 elagl=Ilg 7 ¢ by by by B Bs B o Vig
102 end X L4 dy dy dy dy ds dg R Vg
103 emal) P 0 1 00000 Fn 0
104 %step 2 Draw VAR covariance X 0 o w 010000 X i o
105 resids=Y0-X0*reshape(varcoef, N*L+1,N); i a 10100 a P q
106 scaleS=(resids'*resids);

107 sigma=iwpQ (T, invpd(scaleS)); idraw for inverse Wisha fxq ? voowiuwu fﬁ u
108 %step 3 Carter Kohn algorithm to draw monthly data ' & @ @ 03 q " !
109 ns=cols (P00); On Cw 0000

110 [F,MUx]=comp(varcoef,N,L,1); %companion form for coefficients 0 0 0000

111 Q=zeros(ns,ns); &= 0O 0 0000

112 Q(1:N,1:N)=sigma; %companion form for covariance 0 0D 0000

113 $Carter and Kohn algorithm to draw the factor 0 0 0000

114 beta tt=zeros(T,ns); 2will hold the filtered state wvariable

115 ptt=zeros(T,ns,ns);: %2 will hold its wvariance

116 % 233%23%322%3%Step 6a run Kalman Filter
117 betall=betal;
118 pl1=p00;

mytemp.html[10/06/2017 18:28:51]

F1GURE 20. Code for the mixed frequency VAR

98

mytemp

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
for
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

3. GIBBS SAMPLING FOR STATE SPACE MODELS

for i=1:T

nanid=mid(i,1); %checks if data on Y i1s missing 9 5

if nanid==1 %missing o X .
H=[0 0 0 0 0O 0; s M

X
010 0 0 0];7 o X 000000 £y X
05 | + fort=1,24
ol1o0000 K)
L 2
X

rr=zeros (1,N);
rr(l)=1el0; %big variance so missing data ignored
R=diagtrr); He e

else %valid observation for first variable every 3rd month

H=[1/3 0 1/3 0 1/3 0;
010 0 0 0]; o 2
0 X, 5
%X :_’
rr=zeros (1,N); 0 X o
R=diag(rr); 0 X -(IUB ? 1: E lf Ej ;:" fort=36,9
B X " B
K
-
end @ 5
x=H;

gPrediction
betalO=MUx+betall*F"';
plO=F*pll*F'+0Q;
yvhat=(x* (betal0) ") ";
eta=dataidO (i, :)—-yhat;
feta=(x*plO*x"')+R;
updating
K=(plO*x")*invpd(feta);
betall=(betall"+tK*eta') ";
pll=pl0-K* (x*pl0);
ptt(i,:,:)=pll;

beta_tt(i,:)=betall;

end

% Backward recursion to calculate the mean and variance of the distribution of the state
$vector

beta2 = zeros(T,ns); %this will hold the draw of the state variable

bm2=beta2;

jv=1:2; %index of non singular block

jvl=[1 3 5]; %state variables to draw, 3, 5 are lagged states

wa=randn (T,ns) ;

i=T; &period t

p00=squeeze (ptt (i, jvl,jvl)):

beta2 (i, :)=beta tt(i,:);

beta2 (i, jvl)=mvnrnd(beta tt{i:i,jvl),p00,1);8beta tt(i:1,jvi)+(wa(i:i,jvl)*cholxz(p00)); Sdraw

beta in pericd t from N(beta tt,ptt)

q=Q(3v,Jv);

mu=MUx (jv); ‘L[* F* Q*
3 > »

£=F (v, :)7

g$periods t-1..to .1
for i=T-1:-1:1

pt=squeeze (ptt(i,:,:));

bm=beta tt(i:i,:)+(pt*f'*invpd (f*pt*f'+q)* (beta2 (i+1:i+1,Jjv)-mu-beta tt(i,:)*£f")")";
pu=pt—pt* £ *invpd (f*pt*£'+q) *f¥pt;

beta2(i,:)=bm;

beta2(i:i,jvl)=mvnrnd (bm(jvl),pm(jvl,jvl),1): gbm (jvl) +(wa(i:i,jvl)*cholx (pm(jvl,jvl))):
bm2 (1, :)=bm;

end

out=betal2(:,1); %draw of monthly data

datax=[out dataM]:

mytemp.html[10/06/2017 18:28:51]

F1GURrE 21. Code for the mixed frequency VAR.

9. FURTHER READING

15 T T T T T

True Data

Posterior Median

0 100 200 300 400 500

FIGURE 22. Posterior

600 70O 8OO

estimate of V;

900

1000

99

CHAPTER 4

Gibbs Sampling for Markov switching models

The recent financial crisis has again highlighted the fact that relationships between economic variables may be
subject to sudden shifts. The time-varying parameter model introduced in the previous chapter offers one method
for dealing with such structural change. However, TVP models may be ill suited to deal with this problem if the
structural change is abrupt. This chapter discusses the estimation of Markov switching models that are well equipped
to deal with abrupt regime shifts. As in the case of state-space models, a Gibbs sampling approach to estimation offers
a powerful method to estimate these models. The material in this chapter draws heavily on material in Hamilton
(1994) and Kim and Nelson (1999).

1. Switching regressions

Before considering Markov switching regressions, recall that a basic regression with dummy variables (or a
switching regression) is defined as:

Yy = ax4bg, +vt,vt~N(0,025t) (1.1)
bs, = bo(1—S) + 0015
oy, = og(1—5) 4018

where S; for t = 1,2,...T denotes a dummy variable that indicates when a structural (or regime) shift takes place.
If S; is known then this just a linear regression and methods introduced in Chapter 1 apply. We are interested in
a situation where S; is unknown — i.e. the researcher has to estimate when the regime change occurred and the
associated regression parameters in each regime. It is instructive to consider how the likelihood function of the model
can be obtained. The likelihood function at time ¢ in this case is defined as

1
F@ellia) =Y FlSe =i, Ii1) x f (S =il 1) (12)

i=0
where I; denotes information at time ¢. Here the first term on the RHS is the likelihood conditional on the

value of S;. The second term is the probability of being in the regime. Thus for regime ¢ = 1 this equals:
1 7(yt7$tb1)/(yt71tbl)/>
2

ex
\/2mo? b (207

Pr[S; = 1]. Therefore the likelihood function can be written as

Likelihood probability
1 — (ys — x¢bo)" (ye — by’
f (yt|lt—1) — - exp ((yt t 0) 2(yt t 0)) Pr [St — O] (13)
2rog 205
1 — (yt — xtbl)/ (ye — $tb1)/)
+ ex Pr[S;=1
27TO’% p(20_% [t]

The log likelihood of the model is Zthl In f (y¢|It—1). The key thing to note about equation 1.3 is that it represents
a weighted average of the likelihood conditional on each regime with weights given by the probability of being in that
regime at a given time. Thus to calculate the likelihood function one needs to calculate the term Pr [S; = i] for each
t. As S; is unobserved, this problem is similar to the estimation of an unobserved state variable dealt with in the
previous chapter. In other words, a filtering algorithm (like the Kalman filter) is required. But before considering
this approach, one needs to define the ‘transition equation’ for S;. It is this choice which leads to the definition of
Markov switching models.

2. Markov Switching regressions

The Markov switching (MS) regression with two regimes labelled 0 and 1 is defined as
Yi = xtbs, + v, v N(O, 0%3)
bSt = bo(l—St)—l-blSt
0%, = oy(1=5)+0iS

101

102 4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

We assume that S; is unobserved (but takes on two values 0 and 1) and follows a first order Markov chain. In other
words, Sy depends on S;_; with associated probabilities given by

Pr[S; =0|S;-1 =01 = poo
PrS; =1[S;-1=0] = po1 =1-poo
Pr[S:=1|S:-1 =1 = pn
Pr(S;=0[S;-1=1] = po=1-pn

Thus p;; refers to the probability that the current regime is j given that the regime in the previous period was i.
Values for pgp, p11 close to 1 imply that once in one of these regimes, the process is highly likely to remain in the same
regime for some time — i.e. the regimes are persistent. These transition probabilties can be conveniently summarised

in a transition probability matrix
p— [Poo Pio
Por P11

Note that the columns of this matrix sum to 1. Of course the model can be extended to allow for M regimes. For
example in the case of three regimes S; can be equal to 0,1 or 2 with transition probability matrix:

Poo Pio P20
P=1 por p11 p2
Po2 P12 P22

A filtering algorithm to calculate the probability terms Pr[S; = i|I;] is described in Hamilton (1994). Denote this
M x 1 vector of probabilities as &, where the subscript denotes the estimate at time ¢ given information at that
time period ¢. The Hamilton filter proceeds in two steps which are applied at each point in the sample t =1,2,...,T.
Assume that an intial value §,_;|,_ is available. The following steps are applied time ¢:

(1) Prediction Step: The state variable is predicted one period forward
ft|t—1 = Pft—1|t—1 (2.1)

where P is the matrix of transition probabilites. Note that £, ;_; is an estimate of f (S; = i|l;—1). In other

Pr[S; = 0|1;—_4])

Pr [St = 1‘It—1}

(2) Update Step: Update the predicted estimate with information in the data at time ¢, i.e. estimate §t|t =
f(Se|Iy).Note that f(S¢|It) = f(St|It—1,y:). This can be obtained via formula

e = F(Sil L, y0) = Mi(ytlst =6 01) 0 F (S =il (2.2)

S F@ilSi =i L1) @ f (S =ilIi-1)

=0

words, in the two regime case it is a 2 x 1 vector §;,_; = <

where ® denotes element by element multiplication. In the two regime case, the numerator of equation
\/217“73 exp (7(1"7“170)/2(7"7“1’0)/) x Pr[S; = 0|1;4]

205

\/21 ~ exp (7(1"7“171)/2(7"7“1’1)/) x Pr[S; = 1|1;_4]
770'1

2.2 is simply the vector: . This vector denotes the

207
joint density f (St,y¢|Iz—1). Notice that the denominator of of equation 2.2 sums across the M regimes and
the weighted average is the marginal density f (y:|I:t—1) or the likelihood function. Thus equation 2.2 is
simply a division of a joint density by the marginal to obtain the conditional distribution. &, is the input
on the RHS of equation 2.1 in the next time period.
To start the filter, the initial value £,y can be calculated as the unconditional probability

50'0 =TT = (AIA)_lA/E

where A = In = P and F = Oarxa
Lixm 1

Applying these two steps provides the likelihood function of the model f (y:|l;—1) and &y¢ OF F(Se|Ti—1,y;) for
t=1,2,.. T . These latter probabilities will be used in the Gibbs sampling algorithm for estimating this model.

3. A Gibbs sampling algorithm for MS models

Consider the two regime MS regression introduced above

yr = x4bg, +vt,vt~N(0,025t) (3.1)
bSt = bo(l — St) + b1S;
oy, = og(1—5) 4018

where S; follows a first order Markov chain with transition probability matrix . The model has four sets of unknowns:
the M = 2 coeflicients bg,, the M = 2 variances 02&, the elements of P and the state variable S; = [Sy....57]. A
Gibbs algorithm thus samples from the following conditional posterior distributions:

3. A GIBBS SAMPLING ALGORITHM FOR MS MODELS 103

1) Conditional on P, O'%t and S; sample bs, from its conditional posterior distribution.

)
2) Conditional on P,bg, and S, sample O'%t from its conditional posterior distribution.
)

(
(;
(3) Conditional on 0%, ,bs, and S; sample P from its conditional posterior distribution.
(4) Conditional on 0% ,bg, and P sample S, from its conditional posterior distribution.

With a value of S; in hand, the model collapses to a set of linear regressions on subsamples:

- 2
Yot = boxor+vos,vo: N(0,07)

Y1t = bixis+vis,v1 N(0,07)

where yo.¢, o+ and 1+, 21, represent the data selected when S't =0 and S't = 1 respectively.

With a normal prior for by and b1, the conditional posterior in step 1 is also normal and is simply the posterior
for the linear regression model conditional on knowing the error variance (see equation 2.10). The only difference is
that given S; two regressions apply, one in each sub-sample. Similarly, with an Inverse Gamma prior for o2 and o3,
the conditional posterior in step 2 is also Inverse Gamma, i.e. the posterior for the error variance of a regression with
known coefficients (see equation 2.16).

Therefore the first two steps of the algorithm are standard. Steps 3 and 4 require new concepts. We turn to
these next.

3.1. The conditional posterior for P. A conjugate prior for each column of P is the Dirichlet distribution.
With M regimes, this distribution depends on M parameters «; fori = 1,2,..M. The PDF is: f (z1,..,Zp—1, @1, -, Qr)
oc TIM 2%~ with @) given implicitly by 1— Zfﬁ;l x;. The mean of the distribution is given as % while the variance
ai(G—oy)

~ M .
can be calculated as Zaz—7y where & = Doinq e

Poo P10
DPor P11
p(poo) ~D (apo, ap1) and p(p11) “D (i1, @10) where D(.) represents the Dirichlet distribution. Suppose that we
choose agg = 15 and ag; = 1. This implies that the mean of the prior for pyg equals 0.94, while the variance is 0.003.
Therefore, this prior would represent the strong belief that regime 0 is quite persistent.

Combining this prior with the likelihood results in a conditional posterior which is also Dirichlet

Consider the case of two regimes with P = () Then an example of the Dirichlet prior might be

H (P]|St) “D (ajl + i1, X2 + 1525+ QM + an) (32)

where j = 1,2,..M refers to the column numbers of the transition probability matrix. Thus, in the two regime
example H (poo|S) "D (o + 100, @01 + 1) and H (p11]S) "D (a1 + 1y, a0 +110) -

The parameter 7;; refers to the number of times regime j is followed by regime 7. This can be counted using the
draw of S;. Given this state variable, this conditional posterior does not depend on the data or the other parameters
in the model.

Random numbers can be drawn from the Dirichlet distribution using the following algorithm:

ALGORITHM 4. To draw from a M dimensional Dirichlet distribution f (x1,..,xp—1, 01, .., anr), first draw yy, ..., ym
from the Gamma distribution with shape parameter aq,..,an. Then the quantity ZMi " provides a draw from the
i=1Yi

Dirichlet distribution.

3.2. The conditional posterior of S,. This conditional posterior can be derived using the same method
used to derive the Carter and Kohn recursion for state-space models (see Kim and Nelson (1999)). We want to

derive the conditional distribution H (S’t\ogt, bs,, P, fft) where S, = [Si....87] and the data is denoted by the matrix

Y/t = [y17$17 ...7y1,$1].
This distribution can be simplified in the following way. First note that H (S}\fft) =H (Sl, Ss, ...STDN/T) where

we suppress conditioning on model parameters to make the notation simpler. The joint density H (Sl, Ss, ...ST|)7T)
can be factored as

However, given the Markov property of S, only Siy1 and Y, are relevant for S;.
For example, the term H (Sl|5’2, ey ST_1, 87, f/T> can be simplified to H (51|SQ, 571) because given Ss, Y; the data

104

4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

and the state variable at other time periods do not contain any additional information about S7. This implies that
the last line can be written as

H (5T|?T) H (ST_1|ST, ?T_l) H (ST_2|ST_1, YT_Q) H (sl|52, 171)
T—1

= # (Sel¥r) [T # (811801, ¥2)

=1

~+

Therefore, the conditional posterior for the state variable is given by:

H ($l0%, bs,, P.Y:) = H (7|7 Tff H ($i]Su41. 1) (3.3)
t=1

The key task is to sample Sp from this density. As in the case of state-space models in the previous chapter this
sampling proceeds in two steps:

(1)

Drawing from H (ST|)7T): Run the Hamilton filter to obtain the probability &, or f(S¢|lt—1,:) for

t = 1,2,.. T. At time T, one can draw St from the discrete distribution H (STDN/T) using §T|T as the

probability associated with each value St takes. In the two regime case, one calculates Pr (ST = O|Y’T) =
F(ST=0[I+—1,y+) ~ —_ NV _ _

ST f(ST:illlt—17yt) and draws «~U(0,1). If u > Pr (ST = ()|YT>, then Sp =1, else S = 0.

Drawing from H (St|St+1,)~/}>. Note that H (St|5t+1,}7t) =

H(St7St+1|Y/t)
H(St+1|Yt) ’
factored into a ‘conditional’ and ‘marginal’: H (St, St+1|)7t) =H (St+1|5t,f/t) H (St|§~’t> Note that as all

The numerator can again be

information about the states contained in fft is present in Sy, Y; can be removed from the first term on the
RHS: H (St,St+1|§~/}> = H (S¢41|S:) H (S’Aﬁ) Therefore
H (Si11]0) H (Si]7:)
H (Stﬂ\f/t)
o H(Sis1|S) H (stm)

H (S840, V7)) =

As discussed in Kim and Nelson (1999), H (Si41|S;) is just the transition probability while H (St|}7t) refers

to the ‘filter’ probability &, = f(Si|l;—1,y:). Drawing from H (Si41]S:) H (Sﬂf”}) proceeds backwards
in time starting from T — 1 and going back to period 1. Consider the two regime case. Recall that
P = (oo P1o) and denote the two elements of f(S¢|I;—1,y:) as Pr[S; =0|I;] and Pr[S; = 1|I;]. If

Po1 P11
St41 = 0, then at time ¢ one calculates

Pr |:St = 0|St+1 = O,th:I = Poo X Pr [St = 0|It]

P1o X Pr [St = 1|It]

Pr [St = 1|4 = 075?;]

PT[St:O‘St+1:07Y/t]
1_o Pr[Si=i|S111=0,Y;]
St = 0. The same procedure is repeated if Sy;1 = 1 using:

and compares to u~U(0,1). If w is greater or equal to than quantity S; = 1 otherwise

Pr |:St = 0|St+1 = 1,%] = Po1 X Pr [St = 0|It]

Pr |:St = 1|St+1 = 1,?}] = P11 X Pr [St = 1|It]

This is repeated for T —1,T — 2, ..., 1 to deliver a draw from the conditional posterior of S;.

3.2.1. Label switching. The labels attached to each regime (for e.g. regime 0 and 1 in the 2 regime model) can
switch during this algorithm. This is because the value of the likelihood is unaffected by switching the labels of the
regime. Therefore, without some identifying restrictions, the marginal posteriors obtained from this algorithm can
be be multi-modal. A simple way to proceed is to assume that one regime is associated with a higher (lower) value
of a particular parameter. For example, one can assume that o3 > % and use rejection sampling to ensure that the
saved draws are consistent with this condition.

4. THE HAMILTON FILTER IN MATLAB 105

mytemp file:///C:/Users/tew271/Dropbox (QMUL-SEF)/xdrive/CCBS/Bayesia...

clear;
addpath ("functions');
$generate artificial data from MS Model
T=500;
B1=0.2;
B2=0.9;
Cl=1;
C2=-1;
51=3;
52=1;
P=[0.95 0.05;0.05 0.95];

strue=zeros (T, 2);

@ 1m0 e W N e

e e
w N e o

strue(l,1)=1; %initial state

-
=

strue=sims (strue,P); %generate state variable

-
&

e=randn(T,1);

;

-
>

Y=zeros(T,1

H

)
)

-
i

X=zeros(T,1
for i=2:T;
X(i,:)=Y(1i-1,:);
1f strue(i,1l)==
Y(i)=[X(i,:) 11*[Bl Cl]'+e(i)*sqgrt(51);
else
Y(i)=[X(i,:) 11*[B2 C2]"+e(i)*sqgrt(52);

ST S T N N R N R N R e
G W N O o @
[0l
sl
Q.

o

=]

[o

26 3%%%%22%%%%8%%%%Run Hamilton Filter®2%%22%2%522%2%%
27 gunconditional probabilities
28 A = [(eye(2)-P);ones(1,2)];
29 EN=[0;071]; o~
30 ettll= pinv (A" A)FATEN; GO\0 = T = (A,A)_IA,E
31 iS1=1/51; B
32 is2=1/52;
33 1ik=0;
34 filter=zeros(T,2);
35 for j=1:T
36 enl=Y(j)-[X(J,:) 1]*[Bl C1]';
37 em2=Y (j)-[X(j,:) 1]*[B2 C2]';
38 netal=(1/sqrt(S1))*exp(-0.5*% (eml*iSl*eml")) ;2F (Y\5=0)
39 netaZ=(1/sqrt (S2))*exp(-0.5*% (em2*iS2%em2")) ; 3F (Y\5=1)
40 $%%Prediction Step%iis - -
41 ettl0=P*ettll; gl‘l‘*l = Pgl‘*l -1
42 33%3Update Step?®is
43 ettll=ettl0.* [netal;netal]; %joint density F(Y,5)
44 fit=sum(ettll); %Marginal density F(Y)
45 ettllz(ettll)/fit;k. %2conditional density F(S\Y) the weights of the likelihood
16 filter(j,l:Z):ettlfﬂi 2save filter probability ett
47 lik=likt+log(fit); .\‘%save log likelihood
.
46 SWdS=id 1)OAS=id1)
49 end M1

E SiS=il,)OASFIT)

=0

Published with MATLAB® R2015b

1of 1 30/05/2017 16:39

FIGURE 1. The Hamilton filter in Matlab

4. The Hamilton filter in Matlab

Implementing this Gibbs sampler in Matlab requires the researcher to be familiar with coding the Hamilton filter
and the backward recursion discussed above in Matlab. In this section, we start with the Hamilton filter (see figure
1 and examplel.m). Lines 4 to 25 generate artificial data from a simple 2 regime MS model

yr = Cg, + Bs, + e, e; N(0, U%t) (4.1)

where S; follows a first order Markov Chain. Line 28 creates the initial state £y, = (A’ A)"YA’E. The prediction
step of the algorithm is on line 41. The conditional densities calculated on lines 38 and 39 are used in line 43 to

106 4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

mytemp Page 1 of 2

clear;
addpath{'functions");
$generate artificial data from MS Model
T=500;
B1=0.2;
B2=0.9;

Cl=1;

C2=-1;

51=3;

52=1;

P=[0.95 0.05;0.05 0.95];

strue=zeros (T, 2);

@ om0 W N e

e e e o
[N =

strue(l,1)=1; %initial state

-
=

strue=simS (strue,P); %generate state variable

-
&

e=randn(T,1);

-
[N

Y=zeros(T,1};
E=zeros(T,1);
for i=2:T;
K(i,:)=Y(i-1,:);
if strue(i,1l)==1
Y(1)=[X(i,:) 11*[B1l Cl]'+e(i)*sqrt(s1);
else
Y(1)=[X(i,:) 11*[B2 C2]'+e(i)*sqrt(s2);

S S N S
G W N P O O o -
[}
=]
o

@

=]

[o

26 $%%%333333%%%%%%Run Hamilton Filter®2322%888%323%8%3%%%

27 unconditional probabilities

28 A = [(eye(2)-P);ones(1,2)];

29 EN=[0;0;1];

30 ettll= pinv (A'*A)*A"YEN;

31 is1=1/s1;

32 152=1/52;

33 1ik=0;

34 filter=zeros(T,2);

35 for 3=1:T

36 eml=Y(j)-[X(j,=) 11*[Bl C1]1';

37 em2=Y (j)-[X(J,z) 1]1*[B2 C2]";

38 netal=(1/sqgrt(S1))*exp(-0.5* (eml*iS1*eml ")) ;2F (Y\3=1)
39 netaZ2=(1/sqrt (S2)) *exp(-0.5* (em2*1S2%em2")) ;8F (Y\5=2)
40 $%%Prediction Step$%32d

41 ettl0=P*ettll;

42 33%%Update Step?®is

43 ettll=ettlQ.* [netal;netal]; %joint density F(Y,S)

44 fit=sum(ettll); Marginal density F(Y)

45 ettll=(ettll)/fit; $conditional density F(S\Y) the weights of the likel
ihood

16 filter(j,1:2)=ettll’; $save filter probability ett
47 lik=lik+log(fit); $save log likelihood

18

49 end

50 $%%%22239Backward Recursion to draw S2%%2%%%

51

52 S=zeros (T,1);

53 $time T

54 pl=filter(T,1);

file:///C:/Users/tew271/Dropbox%20(QMUL-SEF)/ xdrive/CCBS/Bayesian/COURSE/... 31/05/2017
FIGURE 2. Backward recursion in Matlab

obtain f (y¢|S: =4, lt—1) ® f (St = i|l:—1) (see equation 2.2). Line 44 sums this object across regimes and finally the
updated estimates &), are obtained on line 45. Note that the output from line 45 is used as input in the RHS of the
prediction equation (line 41) in the next time period. Also note that in this demonstration, the filter is run using the
true values of the model parameters. This will change when we run the full Gibbs algorithm below.

5. The backward recursion to draw S't in Matlab

The code for the backward recursion to draw S; is shown in figures 2 and 3. Up to line 50, this example is identical
to the one shown in figure 1 (see example2.m). Once the hamilton filter has been run and the probabilties §,, saved

5. THE BACKWARD RECURSION TO DRAW S, IN MATLAB 107
mytemp Page 2 of 2
55 p2=filter(T,2); .ﬂsr=01-1fﬂ

56 p=pl/ (pl+p2): Pr(ST = 0|YT) = By
57 u=rand(1,1): o SSr=lm1y)

58 S(T,1)=(uw>=p); -
oo ST gy > Pr(Sy = 0[Fr), then S7 = 1, else S7 = 0.
60 for t=T-1:-1:1

61 if S(t+l)==0

62 p00=p(1,1)*filter(t,1); Pr[S; = 0|Sy = 0, Y,] = poo X Pr[S; = 0\[;]
63 p01=p(1,2)*filter(t,2); Pr[Ss = 1|Sm = 0,Y:] = p1o x Pr[S; = 1\[;]
61 elseif §(t+1)==1

65 p00=P(2,1)*filter(t,1); PI[St = O|Sm1 = 1,Y.] = por x Pr[S; = 0\[¢]
66 pPO1=P(2,2)*filter (t,2); PH[S, = 1St = 1,71] = pu1 x Pe[Si = 1]

67 end

68 u=rand(1,1):

69 p=p00/ (p00+p01) ; Pr[S=0/S.1=7.7:] . i

70 if u<p —————forj=00rj=1
71 S(t)=0; Zi:O Pr[S=iSy15/.Y:]

72 else

73 S(t)=17

74 end

75 end

Published with MATLAB® R2015b

file:///C:/Users/tew271/Dropbox%20(QMUL-SEF)/ xdrive/CCBS/Bayesian/COURSE/... 31/05/2017

FIGURE 3. Backward recursion in Matlab

in the matrix filter we are ready to proceed with the backward recursion. Lines 54 to 58 deal with time period T.
Line 56 calculates Pr (ST = O|YT) and line 58 draws from a discrete distribution with probabilities Pr (ST = O|}7T)

and Pr (ST = 1\}7T). Line 60 begins the loop that begins in period T-1 and goes back to period 1. Lines 61 to 63

deal with the scenario when Sy = 0 and calculate H (S¢41|S:) H (SAYQ) (lines 62,63). Lines 64 to 67 carry out the
same calculation when S;;; = 1. Finally, S; is drawn from this distribution on lines 69 to 73.

108 4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

mytemp

clear;
addpath (' functions’);
%generate artificial data
T=5007;

Bl1=0.2;

B2=0.9;

Cl=1;

C2==1p

9 51=3;

10 52=1;

11 P=[0.95 0.05;0.05 0.95];
12 strue=zeros(T,2):;

13 strue(l,1)=1;

14 strue=simsS (strue,P);

15 e=randn(T,1);

16 Y=zeros(T,1l);

17 X=zeros(T,1);

18 for i=2:T;

@ - oy O N

19 X(i,:)=Y(i-1,:);

20 if strue(i,l)==1

21 Y(i)=[X{i,:) 1]*[B1l Cl]'+e(i)*sqrt(sl):
22 else

23 Y{(i)=[xX(i,:) 1]*[B2 C2]'+e(i)*sqrt(s2);
24 end

25 end

26 %data

27 y=Y;

28 ®=[X ones(T,1)];
29 %specify starting values

30 phil=[0.5;1]1; 2regime 1 coefficients
31 phi2=[0.8;-1]: $regime 2 coefficients
32 sigl=3; $regime 1 variance

33 sig2=1; $regime 2 variance

34 p=0.95;

35 q=0.95;

36 pmat=[p 1-g:1-p ql:

37 ncrit=10; %each regime should have ncrit obs
38 %set Priors

39 %coefficients

10 BO=zeros(2,1); %prior mean

41 SigmaO=eye(2); %prior variance
42 ¥variances

43 d0=0.1; %prior scale

14 v0=1; Sprior df

15 %transition probabilities

46 u00=25; %p00~D(ul0,uol)

47 u01=5;

48 ull=25; %pll~D(ull,ul0)

49 ul0=5;

50 outl=[]; %save coefficients
51 out2=[]; %save wvariances

52 out3=[]; %save 3

53 outd=[]; %save p

54 REPS5=10000;

55 BURN=5000;

56 igibbs=1;

57 count=1;

58 while count<REPS-BURN
59 %step 1: sample S[t]

mytemnp.html[01/06/2017 17:09:54]

FIGURE 4. Gibbs sampler for an MS model.

6. Gibbs Sampler for the MS model in Matlab

We now describe the code for the full Gibbs algorithm to estimate the basic Markov switching model used in the
two examples above (see equation 4.1) . The code for this model is shown in figures 4to 6. Lines 4 to 25 generate
artificial data from the MS model. Lines 30 to 36 set starting values for the parameters. These might be obtained by
first maximising the likelihood of the MS model and use these estimates to initialise the Gibbs sampler. Lines 40 to
44 set the priors for the coefficients and the error variances. The same prior is used in both regimes (normal for the
coefficients, inverse Gamma for variances). Lines 46 to 49 set the dirichlet prior for pgg and p1;. The chosen values
of the parameters, 25 and 5 imply a prior mean of 0.83 and variance of 0.16. Lines 59 to 118 implement the first
step of the sampler. As described above, this involves running the Hamilton filter (lines 62 to 83) and a backward
recursion to draw S; (lines 87 to 118). The while loop around these lines ensures that both regimes have at least

6. GIBBS SAMPLER FOR THE MS MODEL IN MATLAB 109

mytemp

60 $%%%2222238%%%%%Run Hamilton Filter%22228888%2228%%%

61 gunconditional probabilities

62 A = [(eye(2)-pmat);ones(1,2)];

63 EN=[070;1]~

64 ettll= pinv(A'*R)*A'*EN;

65 i81=1/sigl;

66 i52=1/sig2;

67 1ik=0;

68 filter=zeros (T, 2):

69 for j=1:T

70 emnl=Y (j)-[X(j,:) 1]*phil;

71 emn2=Y (j)-[X(j,:) 1]l*phi2;

72 netal=(1/sqrt (sigl))*exp(-0.5* (eml*iSl*eml"));3F (Y\5=0)
73 neta2=(1/sqrt (sig2))*exp(-0.5*% (em2*iS2*em2 ")) ; 8F (Y\3=1)
74 $%%Prediction Step%%%d

75 ettl0=pmat*ettll;

76 3338Update Step¥isd

77 ettll=ettl0.* [netal;neta2]; %joint density F(Y,S)

78 fit=sum(ettll); $Marginal density F(Y)

79 ettll=(ettll)/fit; $conditional density F(S\Y) the weights of the likelihood
80 filter(j,l:2)=ettll"; %save filter probability ett
81 lik=lik+log(fit); $save log likelihood

82

83 end

84

85

86

87 check=-1; Ensure that each regime has

88 while check<0 pcrit observations

89 2backward recursion to sample from H(S[tI\S[t+1],v)

90 S=zeros (T, 1);

91 $time T

92 pl=filter(T,1);
93 p2=filter(T,2);
94 p=pl/ (pl+p2);
95 u=rand(1,1);
96 S(T,l)=(u>=p);

97
98 for t=T-1:-1:1
99 if S(t+l)==

100 pOO0=pmat (1,1)*filter(t,1);
101 pOl=pmat *filter(t,2);

)

(1,2)

102 elseif S(t+l)=
103 pO00=pmat (2,1)*filter(t,1):
104 pOl=pmat(2,2)*filter(t,2);

105 end

106 u=rand (1,1);

107 p=p00/ (p00+p01} ;
108 if u<p

109 S(t)=0;
110 else

111 S(t)=1;
112 end

113 end

114

115 if sum(S==0)>=ncrit&& sum(S==1)>=ncrit
116 check=1;
117 end

118 end

119

mytemnp.html[01/06/2017 17:09:54]

FIGURE 5. Gibbs Sampler for an MS model

ncrit=10 observations. Lines 123 to 133 draw the transition probabilties. The function switchg requires as input, S,

Moo To1

Mo T
times regime j is followed by regime i. The function drchrnd produces a draw from the dirichlet distribution using

algorithm 4. Given St, the remaining steps are straightforward: The sample is split into observations where S, =0
and where S; = 1. The regression coefficients and error variances are drawn from the normal and inverse Gamma
conditional posteriors separately in each of the sub-samples.

Figure 7 shows the estimated marginal posterior distributions using 10,000 iterations and a burn-in of 5000. The
true values are shown as vertical lines. This run of the Sampler approximates the true values fairly well. As shown

in the bottom panel, the estimate of Pr[S; = 1] obtained as 555 Z"OOO [S(D = 1] where [{S’t(j) = 1] is a dummy

and the two values taken by this variable. It returns a 2 x 2 matrix <) where 7;; refers to the number of

variable that equals 1 if S, = 1 and 0 otherwise for the jth draw tracks the realisation of this regime closely.

110 4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

mytemp
120
121 &step 2 sample the transition matrix P
122
123 tranmat=switchg(S+1, [1;2]); %calculate the number of regime switches
124 NOO=tranmat (1,1); 8S5(t-1)=0 S5(t)=0
125 NOl=tranmat (1,2); %S (t-1)=0 S(t)=1
126 NlO=tranmat (2,1); 8S(t-1)=1 S(t)=0
127 Nll=tranmat (2,2); %S(t-1)=1 S(t)=1
128 %draw from the dirichlet density
129 pO=drchrnd ([NOO+u00;NO01+u01]) ;
130 p=p0(1,1); 2p00
131 plO=drchrnd ([N10+ul0;N11+ull]) ;
132 gq=p0(2,1); %pll
133 pmat=[p 1-g;1-p gl; %transition prob matrix
134
135 2step 3 sample beta
136 %2 Select data in regime 1
137 id=find (5==0) ;
138 1=y (id); . 1o
139 ilziiidi) (Zol + ;TX;XI) (ZolBo + ;—IX,Y,)
140 M=inv (inv (Sigmal)+(1/sigl)* (x1"*x1))* (inv (Sigmal) *BO+(1/sigl)*=x1'*y1);
141 V=inv (inv (Sigmal)+(1/sigl)* (x1"*x1})); - 1 =il
142 phil=M+(randn(l,2)*chol(V))"; (ZOI + ;?ASAG)
143 gSelect data in regime 2
144 id=find(5==1);
145 y2=y (id) ;
146 ®2=x(id, :);
147 M=inv (inv (Sigmal)+(1/sig2)* (22'*x2))* (inv (Sigmal) *BO+(1/5ig2)*x2"*y2);
148 V=inv (inv (Sigma0)+(1/sig2)* (x2"*x2));
149 phi2=M+(randn(1,2)*chol(V))";
150
151
152 2step 4 sample sigma
153
154 gresiduals regime 1
155 el=yl-x1*phil;
156 Tl=v0+rows (el); Ti=To+T
157 Dl=d0+el'*el; 0, = 0, + (¥, - BLY,)'(¥, - BLY,)
158 draw from IG
159 zO0=randn(T1,1);
160 z0z0=z0"*z0;
161 sigl=D1/z0z0;
162 fresiduals regime 2
163 e2=y2-x2*phi2;
le4d T2=v0+rows (e2) ;
165 D2=d0+e2"+e2;
166 gdraw from IG
167 zO0=randn(T2,1) ;
168 z0z0=z0"*z0;
169 51g2=D2/z0z0;
170
171
172
173 %save and impose regime identification
174 if igibbs>BURN
175 chck=phil(2,1)>phi2(2,1); %constant bigger in regime 1
176 if chck
177 outl=[outl; ([phil' phi2'])]1:
178 out2=[out2; ([sigl sig2 1)1;
179 out3=[out3;s'];
180 outd=[outd;[p gll;:

mytemnp.html[01/06/2017 17:09:54]
FIGURE 6. Gibbs sampler for an MS model

7. Extensions

In this section, we consider several extensions of the basic MS model described above.

7.1. Markov switching VAR. We consider the following MSVAR model
P
Yo = oyt BsYiptu
p=1
v:"N(0,Qg,)
where S; follows a first order Markov chain with M regimes and transition matrix P. Only minor changes are required
in the Gibbs sampling algorithm described above:

7. EXTENSIONS 111

Coefficient regime 1 Coefficient regime 2
T T T T T . T

0.84 0.86 0.88 09 0.92 0.94 0.96 0.98 0.82 0.84 0.86 0.88 09 0.92 0.94 0.96
Probability of Regime 1
! T T T T T T T I

50 100 150 200 250 300 350 400 450 500

FIGURE 7. Output from 10,000 iterations of the Gibbs Sampler for the MS model

(1) Conditional posterior of S;. When running the Hamilton filter, the conditional likelihood for observation ¢
changes to f (y|S; =i, ;1) = 295 det (Qgtl)o's exp (—0.5 (Y; — thSt)/ Qgtl (Y; — thSt)) where X de-
notes the lags and the intercept while b is the matrix of coefficients including B and the intercepts ¢ in one
NP +1x N matrix (see equation 2.2). There is no change in the backward recursion or the draw of the
transition probabilties.

(2) Conditional posterior of the VAR parameters. Given S;, the VAR parameters are drawn in each regime
by simply using the conditional posterior distributions discussed in Chapter 2. In particular, given a
Normal prior for the VAR coefficients p(bg,) N (Z;O,H) and a inverse Wishart prior for the error co-

variance p(Qs,) /W (S,a) the conditional posterior in each regime is Normal for the VAR coefficients
H (bs,|Qs,, P, S:,Y:) "N (M;t, Vs*t) and inverse Wishart for Qg, : H (Qg,|bs,, P, St,Y:) "IW (Qst,T—i— a).
Note that:

* — — -1 —17 — 7
ME o= (H '+ 05 ® X5 Xs,) (H o + Q5 @ thXstbst) (7.1)
Ve = (H'+Q5 X5 Xs,)"
where I;St is the OLS estimate in regime S; = ¢ and Xg, denotes X selected when S, = i. In addition

_ NN . _
Qgs, = (Yst - Xs, bst) (Yst - Xg, bst) +.5 . Note that this draw can also be implemented if the priors on

the VAR parameters are implemented via dummy observations. As discussed in Chapter 2, the conditional
posteriors are simpler in this case.

The code for this algorithm is shown in figures 8 to 11. First note that lines 95 and 96 uses the multivariate
normal density as mentioned above. The second change is on line 160 onwards. Once the sample is divided into the
two regimes, the VAR parameters are drawn separately. Note that in this code, the prior on the VAR parameters is
implemented via dummy observations. The conditional posteriors have a simpler form in this case (see Chapter 2).

7.2. AR model with switching mean and variance. Consider the following two regime MS model

Yt — Hs; =P (yt,l - Ms;_l) + e, €t~N(0,0?qt) (7.2)

where S; = 0,1 denotes the state variable with transition probability matrix P* = (]1; 0o g 10 > Note that unlike
01 P11

the simple MS model considered above, a lag of the state variable S} ; appears on the RHS. Therefore, in order to
calculate the likelihood function using the procedure described in equation 1.3, one needs to be able to track both
Sy and S} ;. As described in Hamilton (1994), this easily achieved by defining a new state variable S; that takes on

112

mytemp

@ -1 o0 N

G T 0 e e e R R R MR R W W W W W W W W W W N NN RN NN R R R e e 2o
W Do WP O WO]GO E WP O WSO EE W RO WL Do U O WD e 0N O

4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

clear;
addpath (' functions");
%generate artificial data
T=500;
N=2; %2 variables in VAR
I=1; & 1 Lag
B1=[0.2 -0.1 -1; 0.5 -0.1 -11;
B2=[0.5 0.1 17 0.7 0.1 117
51=[3 -0.5;-0.5 3];

52=[1 0.1;0.1 11;

P=[0.95 0.0570.05 0.95];
strue=zeros (T, 2);
strue(l,1)=1;

strue=simS (strue,P);
e=randn(T,N};
Y=zeros(T,N):;
X=zeros(T,N*L+1);

for i=2:T;

X(i,:)=[v(i-1,:) 1]:
if strue(i,l)==1
Y(i,:)=X(i,:)*Bl"+e(i,:)*chol(S1):
else
Y{(i,:)=X(i,:)*B2"+te(i,:)*chol(52);
end

end

2data

v=Y;

x=X;

gspecify starting values

maxtrys=1000; gnumber of trys for stable draw
phiols=x\y;

phil=vec (phiols); $regime 1 coefficients
phi2=vec (phiols); $regime 2 coefficients
phil0=phil;

phi20=phi2;

sigl=eye (N)*3; $regime 1 variance
sig2=eye(N); $regime 2 variance
p=0.95;

q=0.95;

pmat=[p 1-q;1-p q];
ncrit=10; %each regime should have ncrit obs
%set Priors
% VAR coefficients and variance priors via dummy observations
lamdaP = 10;
tauP = 10*lamdaP;
epsilonP= 1/10000;
muP=mean(y)";
sigmaP=[];
deltaP=[];
e0=[1;
for i=1:N
yremp=y(:, i):
xtemp=[lag0 (ytemp,1) ones(rows{ytemp),1)]:
vtemp=ytenp (2:end, =) ;
xtemp=xtemp (2:end, :);
btemp=xtemp\ytemp;
etemp=ytemp-xtemp*btemp;
stemp=etenp'*etemp/rows (ytemp) ;
if abs(btemp(l))>1

mytemp.html[03/06/2017 16:23:05]

values 1,2, 3,4

F1GURE 8. Gibbs Sampler for a Markov Switching VAR

Sy = 1ifS;=0and Sy ;=0
S; = 2ifSf=1and S} ;=0
S; = 3ifS;=0and S} ;=1
Sy = 4ifS;=1and S; ;=1

7. EXTENSIONS

mytemp
60 btemp(1)=1;
61 end
62 deltaP=[deltaP;btemp(1l)];
63 sigmaP=[sigmaP;stemp] ;
6l e0=[e0 etemp];
65 end
66 3dummy data to implement priors see http://ideas.repec.org/p/ecb/ecbwps/20080966.html
67 [yd,xd] = create dummies(lamdaP,tauP,deltaP,epsilonP, L, muP,sigmaP,N);

68 %transition probabilities
69 u00=25; %p00~D(ull,u22)

70 u01=5;

71 ull=25; %pll~D(u22,u2l)

72 ul0=5;

73 outl=[]; %save coefficients
74 out2=[]:; %save variances

75 out3=[]: %save 3

76 outd=[]; %save p

77 REPS=10000;

78 BURN=5000;

79 igibbs=1;

80 count=l;

81 while count<REPS-BURN
82 gstep 1: sample S[t]

83 23%32%22%2%2%%28%%Run Hamilton Filter%%22%2%8%2822%3%

84 2unconditional probabilities

85 A = [(eye(2)-pmat);ones(1,2)];

86 EN=[0;0;1];

87 ettll= pinv{(A'*A)*A'+EN;

88 iSl=inv(sigl):

89 is2=inv{sig2);

90 1ik=0;

91 filter=zeros(T,2);

92 for j=1:T

93 eml=y(j,:)-x(j,:)*reshape (phil,N*L+1,N);

94 em2=y(j,:)-x(j,:)*reshape (phi2, N*L+1,N);

95 netal=(1l/sqrt (det (sigl)))*exp(-0.5* (eml*iS1l*eml ")) ; 8F (Y\5=0)
96 neta2=(1/sqrt (det (sig2)))*exp(-0.5* (em2*152%*em2 ")) ; 3F (Y\S=1)
97 $%2%Prediction Step%2%% 205 det(ng)Dsexp(—O.S(K —Xrbs,)’Q},‘(Yr —Xibs))
98 ettlO=pmat*ettll;

99 $338Update Step?isd

100 ettll=ettl0.*[netal;neta2]; %joint density F(Y,S)

101 fit=sumiettll); $Marginal density F(Y)

102 ettll=(ettll)/fit; %2conditional density F(S\Y) the weights of the likelihood
103 filter(j,1l:2)=ettll"; %save filter probability ett

104 lik=1lik+log (fit); gsave log likelihood

105

106 end

107

108

109

110 check=-1;
111 while check<0

112 2backward recursion to sample from H(S[tI\S[t+1],y)
113 S=zeros(T,1):

114 $time T

115 pl=filter(T,1);

116 p2=filter(T,2);
117 p=pl/ (pl+p2)
118 u=rand(1,1);
119 S(T,l)=tu>=p};

mytemp.html[03/06/2017 16:23:05]

FI1GURE 9. Gibbs Sampler for a Markov Switching VAR

The transition probability matrix for the new state variable is given as:

P11 P21 P31 P41
P = P12 P22 P32 P42
P13 P23 P33 P43
P14 P24 P34 Paa

po 0 poo O

por 0 por O
0 pwo 0 pio
0 pu 0 pu

114

mytemp

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
1865
156
157
158
159
160
161
162
163
le4
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

for t=T-1:-1:1
if S(t+1)==0

p00=pmat (1,1)*filter(t,1);

pOl=pmat (1,2)*filter (t,2);

elseif S(t+1)==

pO0=pmat (2,1)*filter(t,1);

pOl=pmat (2,2)*filter (t,2);
end

u=rand (1,1);
p=p00/ (p00+p01);

if u<p
5(t)=0;

else
S(t)=1;

end

end

if sum(S==0)>=ncrit && sum(S==1)>=ncrit

check=1;
end

end

%step 2 sample the transition matrix P

tranmat=switchg (S+1
NOO=tranmat (1,1); %
NOl=tranmat (1,2); %
NlO=tranmat (2,1)

Nll=tranmat (2,2); %

;3

%calculate the number of regime switches

5(t)=0
5(t)=1
5 (t)=0
S(t)=1

2draw from the dirichlet density
pO=drchrnd ([NOO+u00;NO1+u01]);

p=p0(1,1); %p0o0

pO=drchrnd ([N10+ulO;N11+ull]);

g=p0(2,1); %pll

pmat=[p 1-q:1-p ql;

%step 3 sample parameters

% VAR parameters in regime 0

id=find (5==0) ;
Yl=y(id, :):
X1=x(id, :);
YO=[Y1l;yd];
X0=[X1;xd];

2transition prob matrix

¥* = [X¥pl X" = [XXp]

$conditional mean of the VAR coefficients

mstarl=vec (X0\YO0) ;
xx=X0"+X0;

%ols on the appended data

ixxl=xx\eye (cols (xx)) ; N(vec(B*), 2 Y CX“X*)_1)

[phil,PROBLEM1l] = getcoef(mstarl,sigl,ixxl,maxtrys,N,L);

if PROBLEM1
phil=phi0l;
else
phi0l=phil;
end

%draw covariance

e=Y0-X0*reshape (phil, N*L+1,N);

scale=e'*e;

s5igl=1iwpQ (rows (Y0} ,inv (scale)) ;

mytemnp.html[03/06/2017 16:23:05]

IS, T)

¢draw VAR coefficients

F1GURE 10. Gibbs Sampler for a Markov Switching VAR

This matrix implies, for example that Pr[S; = 1]|S;_; = 2] = 0.

Given that when S; = 2 the regime is defined as
S =1and S} ; =0 and when S; = 1 the regime is defined as S; = 0 and S;_; = 0, regime 2 cannot be followed by
regime 1 as it would imply a contradiction. We describe the Gibbs algorithm for this 4 regime model below. Note that
as the lags in this model increase, the number of (artificial) regimes increase. Similarly, if S} follows M > 2 regimes,
then the re-parameterised model is more complex. While estimation becomes more computationally intensive, the
algorithm described below still applies.

Gibbs sampling algorithm. The algorithm involves sampling from the following conditional posterior distributions:

(1) Sample from H (St|ust,a?9t,P, p). As before, this involves the following two steps:

7. EXTENSIONS 115

mytemp
181 % VAR parameters in regime 1
182 id=find(s==1);
183 v2=y (id,:);
184 X2=x(id, :):
185 YO=[YZ2; yd],
186 X0=[X2;xd];
187 $conditional mean of the VAR coefficients

188 mstar2=vec (X0\Y0); %ols on the appended data
189 xx=K0"+X0;

190 ixx2=xx\eye (cols (xx));

191 [phi2,PRGBLEM2] = getcoef(mstar2,sig2,ixx2,maxtrys,N,L);
192 if PROBLEM2

193 phi2=phio?2;

194 else

195 phi02=phi2;

196 end

197

198 $draw covariance

199 e=Y0-X0*reshape (phi2, N*L+1,N) ;

200 scale=e'*e;

201 s5ig2=iwpQ (rows (Y0}, inv (scale));

202

203

204 isave and impose regime identification

205 if igibbs>BURN

208 chck=log(det (sigl))>log(det(sig2)); %Total bigger in regime 0
207 if chck

208 outl{count,:)=[phil' phi2'];

209 out2(count,:,:)=[sigl =sig2 1:

210 out3=[out3;5"];

211 outd=[outd;[p qll;

212 count=count+1;

213 end

214

215 end

216 igibbs=igibbs+l;

217 disp(sprintf (" Replication %s , %s Saved Draws %s. ',
218 numZstr{igibbs), num2str (count}));
219 end

220

221 figure(l)

222 temp=mean (out3,1};

223 plot (temp, 'c', 'LineWidth',2);

224 hold on

225 plot(strue(:,2),'k", "LineWidth", 2)
226 title('Probability of Regime 1');
227 legend('Estimate', "True')

228 axis tight

229 figure(2)

230 tmp=[vec(B1l");vec(B2')1;

231 for j=l:rows(tmp);

232 subplot (6,2,]) 7

233 hist(outl(:,73))

234 vline (tmp(J));

235 title(strcat('Coefficient: ', num2str(j)));
236 end

Pubiished with MATLAB® R2015b

mytemnp.html[03/06/2017 16:23:05]

F1GURE 11. Gibbs Sampler for a Markov Switching VAR

(a) Run the Hamilton filter to obtain {,,. Note that the conditional likelihoods f (y:|S;) in the update
step are given by:

FlulS =1) = ;WS exp (*((yt*uo)*(yhruo)Qlé(yt*uo) (yuruo)p)'>
FwelSe =2) = 21 — oxp (*((yt*m)*(ytfruo)Qll((yﬁm) (m—r%)ﬂ)')
F]S =3) = \/#_og exp (7((yt7!“0)7(yt*17u’1)22’-[§(yt7“’0) (ytfrul)p)'>
FylS, =4) = \/#_afeXp (*((yt*m)*(ywrul)Qll((yt*m) (ytfrul)p)'>

Apart from this change, the remaining steps of the filter are unchanged.

4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

(b) Draw from H (S’t\ogt,bgt,p, P,ﬁ) =H (ST|}7T) ﬁlH (St|5t+1,3~/})
t=1

i) At time T, one can draw Sp from the discrete distribution H (S¢|Yr using as the probabil-
T|T
ity associated with each value St takes. In the four regime case, one calculates Pr (ST = 1|5~/T> =

24’0(?@;{2;{’?’;)%) and draws v U(0,1). If u < Pr (ST = 1\?}), then St = 1. Otherwise cal-
i=1 =t[lt—1,Yt

- Sr=2|Is1. B -

culate Pr (ST = 2|YT) = =t (L2t — and draw w”U(0,1). Tf u < Pr (ST = 2|YT), then
_ ; Y, — f(ST=3|I¢—1,y¢) ~

St = 2. Otherwise calculate Pr (ST = 3|YT) = i fT(ST:i\Iltfl,yt) and draw « U(0,1). If

u < Pr (ST = 3|}7T>, then St = 3 else ST = 4.
(ii) For t =T — 1,T — 2,...,1 draw from H (S;41|S:) H (St|§~/t) < H (S¢41]S:) H (StD;}) As before

this is carried by the following procedure.
If S;11 = 1, then one calculates Pr [St =1|S¢41 =1, f’t] ,Pr [St = 2|51 =1, f’t] ,Pr [St = 3|51 =1, f’t]
and Pr |:St = 4|St+1 = 1, i/t:| .

For e.g. Pr [St =1|S¢41 = 1,}7,5] = p11 X Pr[S; = 1|I;] and Pr [St =4|St41 = l,fft} = p4g X
Pr[S: =1|].

With these probabilities in hand the draw of S; from this discrete distribution is exactly as in
step (i) above. If S;11 = 2,3 or 4, the same process is repeated with probabilties

Pr [St = 1|Sp1 = 4, f/t} ,Pr [st = 9|5, = j,Yt] ,Pr [St = 3|Si11 = 4, f/t} and Pr [St =4Sy = j,f@}
for j=2,3,4. With the draw of S, in hand, the original state variable S; = [S}, S5, ..., S%] can

be constructed as 1 — (I [5} = 1} +1 [S't = SD where I[.] is an indicator function that equals

1 if the argument is true. Note that by carrying out the addition I [S’t = 1] + 1 [S’t = 3}

we are ‘integrating’ over the two possible values for S’Z_l given that S't* = 0. Calculating

1-— (I [St = 1} + 1 [S’t = 3]) ensures that the first regime has the label 0.

(2) Sample from H (P|St, Ks, s U%t , p). Given S’f, the draw for the elements of P* is as described in section 3.1.
Then the matrix P can then be constructed easily using equation 7.3.
(3) Sample from H (p\St, ﬂst,U%t,P). Define the following time-varying parameters

p = J[St:1}u0+1{§t:2]u1+1{§t:3}u0+1{§t:4]u1

ey = 1[5;:1}u0+1[§t:2]u0+1[S*t:g]uﬁl[ét:ax]m

o = I[S=1)oo+1[S=2o1+1[S=3]o0+1|3=4]m
Then the AR(1) model can be written as

Yl = pyi_q +er, e N(0,1)

where
o _ Yt T« Yt—1 — M1

Y Y-
t o4 » Jt—1 o4

This transformed regression has fixed coefficients an error term with a variance of 1. Given an normal prior
for p, the conditional posterior is simply the one for a linear regression with a known error variance (see
Chapter 1).

(4) Sample from H (pg,|p, St,0%,, P). Re-write the AR(1) model as

Yt —PYr—1 _ Ho (I {S: ~ O} (1- p)) + H (I [St* - 1} a- p)) +er,6. N(0,1)

Ot Ot Ot

This simply a linear regression of % on 2 dummy variables. As in step 3, with a normal prior for

t
o, f41, the posterior of regression with a known error variance applies.
(5) Sample from H (0%, |15, , p, St, P) . We assume an inverse Gamma, prior for 03, 07: T~ (%, %) We calculate

the residuals e; =y —pe — p (yt — ut_l). These residuals can be split into the two regimes given by S't* and

. . o (7 go+el? eld)
the draw for o2 and 0% is made seperately from inverse Gamma distributions: I'~* <£'§QT1, W%e and

7. EXTENSIONS 117

mytemp

1 clear;

2 addpath('functions");

3 %generate artificial data
4 T=500;

5 B1=0.25;

6 B2=0.9;

7 MUL1=3;

8 MU2=-1;

9 51=1;

10 52=2;

11 P0=[0.98 0.02;0.02 0.98];
12 P=matf(P0,2,1);

13 strue=zeros(T,4);

14 strue(l,1)=1;

15 strue=simS (strue,P);

16 e=randn(T,1);

17 Y=zeros(T,1);

18 X=zeros(T,1);

19 for i=2:T;

20 X(i,:)=Y(i-1,:);

21 if strue(i,l)==

22 Y(i)=(xX{i,:)-MU1)*Bl+MUl+e(i)*sqgrt(S1);
23 elseif strue(i,2)==1

24 Y(i)=(X{1i,:)-MI1)*Bl+MU2+e (1) *sqrt (52);
25 elseif strue(i,3)==

26 Y(i)=(X{i,:)-MU2)*Bl+MUl+e (i)*sqgrt(S1);
27 else

28 Y(i)=(X(i,:)-MU2)*Bl+MU2+e (i)*sqrt (52);
29

30 end

31 end

32 y=Y;

33 x=X;

34 %specify starting values
35 phi=0.5; %AR coefficient

36 mul=1; fmean regime 0

37 mu2=0.1; %mean regime 1

38 sigl=l; gregime 0 variance
39 sig2=1; $regime 1 variance
10 p=0.95;

11 g=0.95;

42 pmat0=[p 1l-g;l-p ql;

43 pmat=matf (pmat0,2,1); %matf (P*,number of states, number of lagged states)
44 ncrit=10; %min number of obs in each regime
15 %set Priors

46 3AR coefficients

47 BO=zeros(l,1); %prior mean

18 sSigmal=eye(l); &prior variance

49 2Zmean

50 MO=zeros(2,1);

51 SigmaOM=eye(2)*10;

52 %variances

53 d0=0.1;

54 v0=1;

55 2transition probabilities

56 u00=25; %p00~D(ull,uz22)

57 u0l1=5;

58 ull=25; %pll~D(u22,u2l)

59 ul0=5;

mytemp.html[05/06/2017 15:38:21]

F1cure 12. Code for AR model with Markov Switching mean.

[PRRESTNEY ;) . S
-t Lt ﬁet% where e,[sz] denotes the residual selected in regime i, while T} denotes the number of

observations in regime i.

Figures 12 to 15 present the Matlab code for this model (example5.m). This example is based on artificial data
generated on lines 4 to 31. Lines 34 to 59 set priors and starting values. The Hamilton filter can be seen on lines 72
to 98. Note the 4 conditional likelihoods that enter the update step on line 93. The backward recursion is coded on
lines 101 to 178. As discussed above, as the model has four regimes, minor changes are required to the way the state
variable is drawn. These are highlighted in the figure. Line 185 constructs the original state variable and lines 189
Poo P10

to 199 draw the transition probability matrix P* = (
Po1 P11

). The function matf (based on James Hamilton’s

118 4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

mytemp
60 outl=[]; %save coefficients
61 out2=[]; %save variances
62 out3=[]; %save S
63 outd=[]; %save p

64 REPS=10000;

65 BURN=5000;

66 igibbs=1;

67 count=1;

68 while count<REPS-BURN

69 %step 1: sample S[t]

70 % run hamilton filter

71 %unconditional probabilities
72 A = [(eye(4)-pmat);ones(1l,4)];
73 EN=[0;0;0;0;1];

74 ettll= pinv (A'*R)*A'FEN;

75 isigl=1/sigl;

76 isig2=1/sig2;

77 isig3=1/sigl;

78 isigl=1/sig2;

79 1ik=0;

80 filter=zeros(T,4);

81 for j=1:T

82 eml=(y(j)-mul)-(x(J,:)-mul)*phi;

83 em2=(y(j)-mu2)-(x(j,:)-mul)*phi;

84 em3=(y(j)-mul)-(x(j,:)-mu2)*phi; fols = 1) = ew(-(()rm) ()rl—/-‘a)z)u()-ua)—()rl))

85 emd=(y(j)-mu2)-(x(j,:)-mu2)*phi; ¢)

86 neta1:(l/5qrt(51gl))*exp(-0.5*% (eml*lslgl*eml ")) sSF(Y\NS=1) Sorls = 2) = ;cxp(w)
qrt(sigl))*exp(-0.5* (em3*izig3*em3 ")) ;8F (VY 5=3) =i %0t

89 neta4—(l/5qrt(51g2))*eXp(0.5* (emd*isigd*emd ")) ;3F (Y\5=4) Sls = 4) = 1!am(<mpuoﬂuJu)u)uﬂmwf)

90 $%%Prediction Step%%%?® a0t R

91 ettlOo=pmat*ettll;

92 §%%%Update Step%2:d

93 ettll=ettl0.*[netal;neta2;netal;netal]; 2joint density F(Y,S)

94 fit=sum(ettll); $Marginal density F(Y)

95 ettll=(ettll)/fit; %gconditional density F(S\Y) the weights of the likelihood

96 filter(j,l:4)=ettll’; ¢save filter probability ett

97 lik=lik+log (fit);

98 end

99 check=-1;
100 while check<0

101 8backward recursion to sample from H(S[t]\S[t+1],y)
102 S=zeros(T,1):
103 $time T

104 pl=filter(T,1)
105 p2=filter(T,2);
106 p3=filter (T, 3)
107 pld=filter (T, 4);
108 p=pl/ (pl+p2+p3+pil) ;
109 u=rand(1,1);

;

In e four rezime case, one calenlaesPr(Sr = 177) = rd draws u~U(0,1). If u € Pr(Sr = 1|Fr), then 57 = 1. Otherwie caleolate

S5

110 temp=(u>=p) ; Pe(Sr=2Fr) - - 3 draw - U(0.1) Iug) (57 = 2¥r), then 57 = 2. Otherwise cakuhe Pr(Sr - 3¥7) = and deaw u~U(0,1).If
111 if temp== ugPr(Sr= 3¥r), henSr = 3alse Sy =4

112 S(T)=1:

113 else

114 p=p2/ {(p2+p3+pt);

115 u=rand(1,1);

116 temp=(u>=p) ;

117 if temp==0

118 S(T)=2;

119 else

mytemp.html[05/06/2017 15:38:21]

F1cure 13. Code for AR model with Markov Switching mean.

po O poo O
poir 0 po1 O
0 pwo 0 po

0 pu 0 pn
lagged states. Lines 203 to 210 draw the AR coefficient, while 1, and p; are drawn on lines 213 to 219. Lines 221

onwards split the residual series into the two regimes and draws o2 and o%.

code), constructs P = from P*. Its arguments are P*, number of regimes and number of

7.3. Markov switching model with time varying transition probabilties. In the MS models considered
so far, the transition probabilties are fixed. Following Filardo and Gordon (1998) amongst others, this assumption
can be relaxed and the transition probabilities can be made functions of exogenous regressors. Consider the two

7. EXTENSIONS

mytemp
120 P=p3/ (p3+pd);
121 u=rand (1,1);
122 temp=(u>=p) ;
123 if (temp==0)
124 8 (TH=33
125 else
126 S(Ty=4;
127 end
128 end
129 end
130
131 time t-1 to 1
132 for t=T-1:-1:1
133 if S(t+l)==
134 pl=pmat(1,1)*filter(t,
135 p2=pmat (1,2)*filter (t,
136 p3=pmat(1l,3)*filter(t,
137 pl=pmat(1l,4)*filter(t,
138 elseif S(t+l)==
139 pl=pmat(2,1)*filter(t,
140 p2=pmat(2,2)*filter (t,
141 p3=pmat(2,3)*filter(t,
142 pl=pmat(2,4)*filter(t,
143 elseif S(t+l)==
144 pl=pmat (3,1)*filter(t,
145 p2=pmat(3,2)*filter(t,
146 p3=pmat(3,3)*filter(t,
147 pd=pmat(3,4)*filter(t,
148 elseif S(t+l)==
149 pl=pmat (4,1)*filter (t,
150 p2=pmat (4,2)*filter(t,
151 p3=pmat(4,3)*filter(t,
152 pid=pmat (4,4)*filter(t,
153 end
154
155 %sample regime numbers
156 p=pl/ (pl+p2+p3+pd) ;
157 u=rand(1,1);
158 temp=(u>=p) ;
159 if temp==
160 S(ty=1;
16l else
162 p=p2/ {(p2+p3+pt);
163 u=rand(1,1);
164 temp=(u>=p) ;
165 if temp==0
166 S(ty=2;
167 else
168 p=p3/ (p3+pd);
169 u=rand(1,1);
170 temp=(u>=p) ;
171 if temp==0
172 S(t)=3;
173 else
174 S(t)=
175 end
176 end
177 end
178 end
179
180 if sum(((S==1)+(5==3))==

mytemp.html[05/06/2017 15:38:21]

)>=ncrit && sum(((S==2)+(S==4))==

) >=ncrit

119

Ficure 14. Code for AR model with Markov Switching mean.

regime MS model:

The transition probabilties are now given by P, = <

Yo = xbs, + v, v N(0,0%,)
bs, = bo(1—5)+ 015
a?gt = 0(2)(1 -5+ UfSt
poo (2¢) p1o (2t)
DPo1 (Zt) P11 (Zt)

(7.4)

) where z; denotes a set of regressors.

The evolution of the state variable S; can be described using a Probit model

}D (é% == 0)

Sy <0
Sy =

+ Azp—1 4+ 1 Se—1 + ug, u N(0, 1)

120 4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

mytemp
181 check=15
182 end
183 end

184 &construct State variable with two regimes
185 3star=1-((S==1)+(8==3)):; %equals 0 for regime 1, 1 for regime 2
186 S; = [S1.5%,...,57] canbe constructed as 1 — (I[S: = 1] +1[S: = 3])

187 %step 2 sample the transition matrix P

188 %calculate the number of regime switches

189 tranmat=switchg(Sstar+l, [1;2]);

190 NOO=tranmat (1,1); %S(t-1)=0 S(t)=0

1194l NOlSEranmaic (1892058 a 5 (=) = O ST(i) = 1

192 N1O=tranmat (2,1); %S (t-1)=1 S{t)=0

193 Nll=tranmat(2,2); &5(t-1)=1 5{t)=1

194 2draw from the dirichlet density

195 pO=drchrnd ([NOO+u00;NO1+u01]);

196 p=p0(1,1); %p00

197 pO=drchrnd ([N10+ulO;N11+ull]); Po O pyp O

198 aq=p0(2,1); %pll .0 0 _ _ _ .
109 N e *‘g e ";‘ e pe=I[8 = Vo +I[8 = 2 Jus + I[85 = 3 Juo + I[85 = 4 s
200 pmat=matf (pmat0,2,1) ; 5 w0 oo pet =I5 = 1ue +I[5 = 2 Juo +I[50 = 3 Jus + 1[5 =4 Juy
201 o P 7 7
202 gstep 3 sample AR coefficient cl',-f[-s. - l]ao -“T[S' -2]‘7: +}[S‘I-3]UD+I[8‘X-4JU;
203 mutE= (S == muil (S == 28R M2 S (S == 3) fimunil F (S == AN em 2

204 mutlag=(5==1).*mul+(5==2) .*mul+ (S==3).*muZ+ (S==4) .*mu2;

205 sigall=(S==1).*sigl+t(5==2).*sig2+(S==3).*sigl+(S==4).*sig2;

208 ystar={y-mut)./sqrt(sigall); V: - Yk

207 rstar={x-mutlag)./sqrt (sigall); ! 91

208 V=inv (inv (Sigmal) + (xstar"*xstar)); }i4 = 452;?51

209 M=V* (inv (Sigma0)*BO+xstar'*ystar);

210 phi=M+(randn(1l,1)*chol(V))"';

211 FYe=P¥r-1

212 2draw mu G—I

213 ystar=(y-x*phi)./sqrt (sigall);

2L xstar=([(Sstar==0).* (1-phi) (Sstar==1).*(l-phi)])./repmat(sqrt(sigall),1,2);

215 V=inv (inv (SigmaOM) + (xstar "*xstar)); - -~

216 M-+ (inv (SigmaOM) MO+rstar ystar); IO (f[s;=o](1_,;)) U1 {j[s;=1](1_p)}
217 mu=M+ {randn(1,2)*chol (V))'; 'F

218 mul=mu (1) ; Or C:

219 muZ=mu(2) ;

220

224, gregime 1

222 resid={y-mut)- (x-mutlag)*phi; et — yr — !.lt — PO;I — ur_l)
9.8 el=resid(Sstar==0):

224 ez=resid(Sstar==1);

225

226

227 gstep 4 sample sigma

22,31

229 gregime 1

230

231 Tl=v0+rows (el) ;

232 D1=d0+el'*el;

238 2draw from IG

23 zO0=randn(T1,1);

235 z0z0=z0"*z0;

236 sigl=D1/z0z0;
237 gregime 2

238
238) T2=v0+rows (e2) ;
240 D2=d0+e2'*e2;

mytemp.html[05/06/2017 15:38:21]

FiGure 15. AR model with Markov switching mean.

where S} is an unobserved latent variable. Given the normality of u; the transition probabilties can be calculating
using the normal CDF.

Pr[S; =0|S:—1 =0 =Prus < —y9 — Aze—1 — 71 5¢-1]
Recall that S;—; = 0 and denote the normal CDF by & (.) :
Pr(S; = 0[S;—1 = 0] = @ (=79 — Az-1)
Similarly
Pr[S: =1|Si—1 =1 = Prlus > —v9— Azt—1 — y1S¢-1]
1= (=7 — Azt-1 — 71 5t-1)

7. EXTENSIONS 121

The Gibbs sampling algorithm for this model thus involves extra steps to draw S; and the coefficients I' = [, A, v4].
There are only minor modifications to the remaining steps of the algorithm. The algorithm samples from the following
conditional posterior distributions:
(1) Sample from H (S;|bs,,0%,,T,S;). The only modification required to this step is the fact that there is a
different transition probability matrix at each point in time. This needs to be taken into account while
running the Hamilton filter—the prediction step is now given as

§t\t71 = Pt§t71|t71

Similarly, the backward recursion using H (S¢11]S:) H (St|)7t) is modified as H (S¢4+1|St) = Piy1 is different
fort =T —1,T—2,..1.

(2) Sample from H (S |bs,, 02&7 I, S;). Following Albert and Chib (1993), S; can be sampled from the following
truncated normal distributions for ¢t = 1,2,...,T

S:~NLT(TI’L,1) 1fSt = 1
S;’”NRT(m,l) lfSt = 0

where N7 (m, 1) is the N(m, 1) distribution left truncated at zero, while Nrr (m, 1) is the N(m,1) distri-
bution right truncated at zero. Note that m = vy + Azp—1 + v15¢—1.

(3) Sample from H (T[S}, bs,, 0%, S;). Given S} the probability equation is a simple linear regression with a
known error variance:

St =10+ Az—1 +715-1 +ug, u N(0, 1)
Given a normal prior N(T'g, Xr) the conditional posterior is also Normal N (M, V)
Vo= (3it+zz)"
M = V(2T + 25;)

where Z; = [1, z;-1, St—1].
(4) Sample from H (bst |St, 02&, r, SZ) No changes are required in this step (see section 6).
(5) Sample from H (02& bs,, St, T, SZ) No changes are required in this step (see section 6).

Figures 16 to 19 show the Matlab code for this model. As before, we generate artificial data from this model
(lines 4 to 40). Lines 62 and 63 set a normal prior for the coefficients of the probability equation I'. The Gibbs
sampler starts on line 75. While drawing the state variable, the Hamilton filter is run on lines 81 to 106. Note on
lines 91 and 92 that the transition probability matrix changes at each point in time. Lines 110 to 143 show the
code for the backward recursion. Note on lines 122 and 123 the transition probabilties are not fixed over time. The
next step in the Gibbs sampler is the draw of S} from truncated normal distributions. This is done on lines 149 to
161. Lines 163 to 164 calculate the transition probabilties using the normal CDF. Lines 167 to 171 draw I' from its
conditional posterior distribution. The remaining code draws from the conditional posterior of bg, and U%t.

7.4. A regression with Markov switching coefficients and a structural break in the variance. As a
final extension we consider the following model:

Yt = .’Etbst +'Ut;vt~N(0;U%/t) (75)
bs, = bo(1—5,)+biSs
o, = op(l—Vy) +o1V,

where S; and V; follow two independent Markov chains with transition probabilties
P - (Poo P10)
Po1 P11

o goo O
@ = (QOl 1)

This model has two new features. First, switching in the coefficients and the variance occurs independently — we
do not make the assumption that all parameters undergo regime shifts at the same time. Second, following Chib
(1998), the matrix @ is restricted to impose one change point or break for the variance. We assume that V3 = 0.
With Pr[V; = 1|V;_1 = 1] = 1, once the process switches to regime 1, that regime persists for ever. That is, with
Pr[V; = 0|V;—1 = 1] = 0, there is no possibility of a switch from regime 1 to regime 0.

The Gibbs sampling algorithm for this model samples from the following conditional posterior distributions:

(1) Sample from H (St|P, Q, Vi, bs,, U%/t). As the variance switches independently, it has to be treated differently
in the Hamilton filter when compared to the basic model. In particular, at each point in time, the conditional

4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

mytemp
1 clear;
2 addpath('functions");
3 %generate artificial data from a MSTVTP model
4 T=500;
5 B1=0.2;
6 B2=0.9;
7 Cl=1;
8 C2=-1;
9 51=3;
10 52=1;
11 GAMMAO=-1;
12 GAMMAl=1;
13 LAMBDAO=10;
14 strue=zeros(T,1);
15 strue(l,1)=1;
16 Z=getar(0.9,T);%randn(T,1);
17 e=randn(T,1);
18 Y=zeros(T,1);
19 X=zeros(T,1):
20 SSTAR=zeros (T,1):
21 ptrue=zeros(T,1):
22 gtrue=zeros(T,1);
23 for i=2:T;
24 X(i,:)=Y(i-1,z:);
25 SSTAR (i, :)=GAMMAO+Z (1, :) *LAMBDAO+GAMMAl*strue (i-1,1)+randn(1,1);
26 if SSTAR(1,:)>=0
27 strue(i,1)=1;
28
29 end
30 %transition probabilities
31 ptrue (i)=normcdf ((-GAMMAO-Z (i, :) *LAMBDAO)) ;
32 gtrue (i)=1-normecdf ((-GAMMAO-Z (i, :)* LAMBDAO-GAMMAL)) ;
33
34
35 if strue(i,1)==0
36 Y(i)=[X{i,:) 1]*[B1l Cl]'+e(i)*sqgrt(sl);
37 else
38 Y(i)=[X(i,:) 1]*[B2 C2]'+e(i)*sqrt(52);
39 end
40 end
41 2data
42 y=v;
13 x=[X ones(T,1)]:
14 z=Z;
45 %specify starting values
46 phil=[0.5;11; gregime 1 coefficients
47 phi2=[0.8;-1]7 gregime 2 coefficients
18 sigl=3; Sregime 1 variance
19 sig2=1; $regime 2 variance
50 gamma=[-1 0 1]'; 2coefficients of prob equation
51 pp=repmat (0.95,T,1);
52 gg=repmat (0.95,T,1);
53 ncrit=10; %each regime should have ncrit obs
54 %szet Priors

55 Zcoefficients

56 BO=zeros(2,1); %$prior mean

57 Sigmal=eye(2); %prior wvariance
58 &variances

59 d0=0.1; %prior scale

mytemp.html[08/06/2017 13:05:45]

FIGURE 16. MS model with time-varying transition probabilities.

likelihoods are given by:

f (yelSe =0) = \/m exp (et rutal')
0) B
fWelSe=1) = —(ge—zeb)' (ye—weby)’ ifV, = 0
s = 1) = o o
f (yt|St = 0) = \/_ Xp (('l/t—J?tb;) ’Jt—wtbo))
2o 01) -
f(y |S = 1) = . (—(yt—xtln) (yi—x4b1)) lf‘/t = 1
e \/____ exXp 20%

As we condition on V; this change is simple to implement. There is no change in the backward recursion
used to draw S;.

7. EXTENSIONS 123

mytemp

60 v0=1; gprior df

61 gtransition probabilities

62 GAMMAOO=zeros(3,1); %priocr mean coefficients of probability equation
63 SGAMMAO=eye (3).*1000;

64 outl=[]; 3%save coefficients
65 out2=[]; %save variances

66 out3=[]; %save S

67 outd=[]; %save p00

68 outb=[]; %save pll

69 oute=[]; %save gamma

70 out7=[]; %save sstar

71 REPS=20000;

72 BURN=15000;

73 igibbs=1;

74 count=1;

75 while count<REPS-BURN

76

77

78 %step 1: sample S[t]

79 $%%%%3%%%%22%2%%%Run Hamilton Filter%%%2222222888%8%%2

80 sunconditional probabilities

81 pmat=[pp(1) 1-qq(l);

82 l-pp(1) qq(1)];

83 A = [(eye(2)-pmat);:ones(1,2)];

84 EN=[0;0;1]1;

85 ettll= pinv(A'*A)*A'*EN;

86 isl=1/sigl;

87 i82=1/sig2;

88 1ik=0;

89 filter=zeros(T,2):

90 for j=1:T

91 pmat=[pp(j) 1l-gqg(j); 28TVP transition prob

92 1-pp(3) aq(3)]:

93 enl=y (j)-x(j,:)*phil;

94 em2=y (j)-x(J,:)*phi2;

95 netal=(1l/sqrt(sigl))*exp(—0.5* (eml*iSl*eml ")) ;&F (¥Y\S=0)
96 neta2=(1/sqrt(sig2))*exp(—0.5*% (em2*iS2*em2 ")) ; &F (¥Y\5=1)
97 $%2Prediction Step%%%%

98 ettlO=pmat*ettll; P

99 $%%%Update Step%isd §I|I]. rgr].|I_
100 ettll=ettl0.* [netal;netal] %$joint density F(Y,S)

101 fit=sumiettll); gMarglnal density F(Y)

102 ettll=(ettll)/fit; %2conditional density F(S\Y) the weights of the likelihood
103 filter(j,1l:2)=ettll"; %save filter probability ett
104 lik=1lik+log (fit); gsave log likelihood

105

106 end

107

108

109

110 check=-1;
111 while check<0

112 2backward recursion to sample from H(S[tI\S[t+1],y)
113 S=zeros(T,1):

114 $time T

115 pl=filter(T,1);

116 p2=filter(T,2);
117 p=pl/ (pl+p2)
118 u=rand(1,1);
119 S(T,l)=tu>=p};

mytemp.html[08/06/2017 13:05:45]

FIGURE 17. MS model with time varying transition probabilties

(2) Sample from H (V;|P,Q, S, bst70v) As in step 1, the conditional likelihoods in the Hamilton filter need
to take into account the fact that the regression coefﬁ01ents switch independently. Hence the conditional
likelihoods are:

fy|Vi=0)= \/#—G% exp ((“t_wtbgléut—wtbo)) o
fwlVi=1)= \/#—G% exp (_(yt_ztbglf(yt—wtbo)/) £
J eV =0) = \/#_ag exp ((y‘_”’tb;)géyf—dtbl)’) I
J Vi =1) = \/#—U? exp ((y‘_”’tb;)gl(yf—dtbl)) t =

124 4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

mytemp
120
121 for t=T-1:-1:1
122 pmat=[pp (t+1) 1l-gg(t+l}; 2TVP transition prob
123 1-pp(t+l) qgg(t+l)];

ii pooiimzét(zl)ljjiilter(t,l),: H(SI+1 ‘SI) — PI+1

126 pOl=pmat *filter(t,2);

(1,2)
127 elseif S(t+l)==1
128 p00=pmat (2,1)*filter(t,1);
129 pOl=pmat(2,2)*filter(t,2);

130 end

131 u=rand (1,1);

132 p=p00/ (p00+p01) ;
133 if u<p

134 S(ty=0;
135 else

136 S(ty=1;

137 end

138 end

139

140 if sum(S==0)>=ncrit && sum(S==1)>=ncrit

141 check=1;

142 end

143 end

144

145

146 2step 2 sample the transition Probabilties
147

148 ¥step 2a Sample sstar

149 sstar=zeros(T,1);

150 Slag=lag0(S,1);

151 Slag(l)=Slag(2):;

152 zall=[cnes(T,1) z Slag];
153 mm:zall*gamma,

154 for t=1:T

iz if S(t)==1 S;NNLT(m 1) lfSt =

157 sstar(t)= normlt_ rnd(mm(t),) ;%draw from left truncated normal N (mm,1)

158 elseif S(t)==0; ,S(vg “’NRT(m 1) fS;=0

159 sstar(t)= normrt_rnd (mm 1,0); Ddraw from rlght truncated normal N (mm, 1)

160 end

161 end

162 $step 2 b Calculate pp,dq _ _ _

163 pp=normcdf (-zall(:,l:end-1)*gamma(l:end-1)); Pr[S-t - 0|St—1 - 0] - (I)(_yo - 3"Zt—l)

164 qgq=l-normcdf (-zall(:,l:end-1)*gamma(l:end-1)-gamma (end)) ;

122 2step 2c Sample gamma Pr[S! = 1|St_1 = 1] = Pr[ut = Yo~ ;{zr_l B YIS)‘—I]
167 yy=sstar; =1- ':D(_')"D _ er—l - ¥y St—l)

168 xx=zall;
169 V=inv (inv (SGAMMAO) + (xx"*xx)) ; _1 | A
170 M:\/*(inv(SGAl‘@’[AO)*GAl\@/LAOOJrXX'*yy)V =] (Er -+ Z;thl

171 gamma=M+ (randn (1,3)*chol (V)) "

172

173 gstep 3 sample beta M: V(Zfl rl:l + E;S;)
174 2 Select data in regime 1

175 id=find (5==0) ;

176 yl=y(id);

177 xl=x(id,:);

178 M=inv (inv (Sigmal)+(1/sigl)* (x1"*x1))* (inv(Sigmal)*B0+(1/5igl)*xl"*y1l);
179 V=inv (inv (Sigmal)+(1/sigl)* (x1"*x1));

180 phil=M+(randn(l,2)*chol (V))":

mytemp.html[08/06/2017 13:05:45]

FiGURE 18. MS model with time-varying transition probabilties.

We also assume that &;; = ((1) > There is no change to be made in the backward recursion.

(3) H (P|Vt, Q, S, bSmU%/t)- Given a Dirichlet prior, the columns of P are drawn as in section 3.1.
(4) H (Q\Vt, P, Sy, bSuU%/t)- Given a Dirichlet prior, the first columns of @ is drawn as in section 3.1.
(5) H (bs,|Q, V4, P, Sy, 0%,). Define 0, = I[V; =00, + I [V; = 1] 01 and write the regression as

Y _ ﬂbst + e, e N(0,1)
t O-t

Given Sy, a regression with unit error variance applies when S; = 0 and S; = 1 and bg, is drawn easily from
its (Normal) conditional posterior.

8. FURTHER READING 125

mytemp
181 2Select data in regime 2
182 id=find(S==1);
183 y2=y (id) ;
184 x2=x(id, :);
185 M=inv (inv (Sigmal)+(1/sig2)* (22'*x2))* (inv(Sigmal)*BO+(1/sig2)*x2"*y2);
186 V=inv (inv (Sigma0)+(1/sig2)* (x2"*x2));
187 phi2=M+(randn(l,2)*chol(V))"';
188
189
190 2step 4 sample sigma
191
192 gresiduals regime 1
193 el=yl-xl*phil;
194 Tl=v0+rows (el) ;
195 Dl=d0+el"*el;
196 gdraw from IG
197 zO0=randn(T1,1);
198 z0z0=z0"*z0;
199 5igl=D1/z0z0;
200 Sresiduals regime 2
201 ez2=y2-x2*phi2;
202 T2=v0+rows (e2) ;
203 D2=d0+e2"*e2;
204 %draw from IG
205 zO0=randn(T2,1) ;
206 z0z0=z0"*z0;
207 51g2=D2/z0z0;
208
209
210
211 %save and impose regime identification
212 if igibbs>BURN
213 chck=phil(2,1)>phi2(2,1); %constant bigger in regime 1
214 if chck
215 outl=[outl; ([phil' phi2'])];
216 out2=[out2; ([sigl sig2 1)]:
217 out3=[out3;5'];
218 outd=[outld;pp']l:
219 outS=[out5;qq'];
220 out6=[out6;gamma'];
221 out7=[out?;sstar’];
222 count=count+1;
223 end
224
225 end
226 igibbs=igibbs+1;
227 disp(sprintf (' Replication %s , %s Saved Draws 2s. ',
228 numZstr(igibbs), num2str(count))):
229 end
230

231 figure(1)

232 subplot(8,2,1);

233 hist(outl(:,1),50);

234 vline(Bl)

235 title('Coefficient regime 17');
236 axis tight

237 subplot(8,2,2):

238 hist(outl(:,3),50);

239 title('Coefficient regime 2");
240 vline(B2)

mytemp.html[08/06/2017 13:05:45]

FI1GURE 19. MS model with time-varying transition probabilties.

(6) H (0%, lbs,,Q,V;, P, S;). Define the residual as e, = I[S; = 0] [ys — @4bs,] + I[St = 1] [ys — 24bs,]. This
residual is split in to the two variance regimes using V; with U%/t drawn from the inverse Gamma distribution.
The code for this example is shown in figures 20 to 24. Key lines to note are lines 87 to 153 where S; is drawn
with the change in the conditional likelihoods in the Hamilton filter on lines 93 to 103. V; is drawn on lines 158 to
226. The Hamilton filter is modified on lines 170 to 177. The transition probabilties are drawn on lines 232 to 254.
To draw the regression coefficients o is created on line 258. The sample is then split using S; and bg, is drawn in
the two sub-samples (lines 261 to 274). The residuals are calculated on lines 278. The remaining code draws the
variances a%,t when V; = 0 and V; = 1 using these residuals.

8. Further reading
e A classic paper on the Bayesian approach to MS models: Chib (1996).

4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

mytemp

clear;

addpath (' functions’);

%generate artificial data

T=5007;

Bl1=0.2;

B2=0.9;

Cl=1;

C2==1p

$1=10;

52=1;

P=[0.95 0.0570.05 0.95];

Q=[0.97 0;0.03 1];

strue=zeros (T, 2);

strue(l,1)=1;

strue=simS (strue,P);

vtrue=zeros (T, 2);

vtrue(1l,1)=1;

check=-1;

while check<0

vtrue=sims (vtrue,Q);

if sum{vtrue(:,1))>20
check=1;

@ - oy O N

N R S R e e e =t}
WP o wo-de e W N o

end

N
=

end

]
o1

e=randn(T,1);

]
o

Y=zeros (T,1):
X=zeros(T,1)-
for i=2:T;
X(i,:)=Y(i-1,:);
if strue(i,l)==1
if vtrue(i,1l)==
Y{i)=[Xti,:) 11*[Bl CI]'+e(i)*sqrt(s1);
elseif vtrue(i,2)==1

WoWw oW W W NN
G w2 O v @ -]

Y(i)=[X{1i,:) 1]*[Bl Cl]'+e(i)*sqrt(S2);
end

wow
-1 @

elseif strue(i,2)==

if vtrue(i,l)==

Y(i)=[X(i,:) 1]*[B2 C2]'+e(i)*sqrt(Sl);
elseif vtrue(i,2)==1

Y{i)=[xti,:) 11*[B2 C2]'+e(i)*sqrt(52);
end

= = W W
WP o v o

end

=
=

end

gdata

v=Y;

x=[X ones(T,1)]1;

gspecify starting values

phil=[0.5;1]; Sregime 1 coefficients
phi2=[0.8;-1];: iregime 2 coefficients

[I R N
= o w o o o

s5igl=3; $regime 1 variance
sige=1; $regime 2 variance
p=0.95;

g=0.95;

px=0.98;

pmat=[p 1-q;1-p q];

gqmat=[px 0; 1l-px 1];

VV=zeros (T,1);

ncrit=5; %each regime should have ncrit obs

GGG NGORG]
TR e T I O N |

myternp.html[09/06/2017 11:06:22]

FicURE 20. Independent switching and structural breaks

e Recent applications by Chris Sims and co-authors: Sims et al. (2008).
e Notes by James Hamilton: http://econweb.ucsd.edu/~ jhamilto/Econ226 4 slides.pdf

8. FURTHER READING

mytemp
60 %set Priors
61 3coefficients
62 BO=zeros(2,1); %prior mean
63 Sigmal=eye(2); $prior variance
64 %variances
65 d0=0.1; %prior scale
66 v0=1; $prior df
67 %transition probabilities
68 u00=25; %p00~D(ull,u22)
69 u0l=5;
70 ull=25; %pll~D(u22,u2l)
71 ul0=5;
72 v00=25; %q00~D(v00,v01)
73 v01=5;
74 outl=[]; %save coefficients
75 out2=[]; %save variances
76 out3d=[]; %save 3
77 outd=[]; %save p
78 outb5=[]; %save VV
79 REPS=10000;
80 BURN=5000;
81 igibbs=1;
82 count=1;
83 while count<REPS-BURN
84 %step 1: sample S[t]
85 3%%%2333333%%%%%%Run Hamilton Filter%3?
86 %unconditional probabilities
87 A = [(eye(2)-pmat);ones(1,2)];
88 =[0;0;1];
89 ettll= pinv(A"*A)*A'*EN;
90
91 1ik=0;
92 filter=zeros(T,2);
93 for j=1:T
94 if VW(j)==0
95 i151=1/sigl;
96 i52=1/sigl;
97 dsigl=sqgrt (sigl);
98 dsig2=sqgrt (sigl):
99 else
100 i51=1/sig2;
101 is2=1/sig2;
102 dsigl=sqrt (sig2);
103 dsig2=sqrt (sig2):
104 end
105 eml=y(j)-x(j,:)*phil;
106 em2=y (j)-x(j,:)*phi2;
107 netal= (l/dslgl)
108
109 %2%%Prediction Step?22%
110 ettlO=pmat*ettll;
111 2%%%Update Step?izd
112 ettll=ettl0.*[netal;netal2];
113 fit=sumiettll);
114 ettll=(ettll)/fit;
115 filter(j,l:2)=ettll";
116 lik=lik+log (fit);
117
118 end
119

S, = 0) = L ¢ —(pxsb) ¢ ~Xio)
SyiS: = 0) =
7 =
j(y;\S: - 1) — 1 exp —(pr ml)(yrnbl)

J(ydéﬂ

I
L=}
&
I
o
-é

ity =1
(pxab) (b))
2

SiS:

Il
—
N

Il

Sz
Aree(n)
1 (¢ xsb) (rxidg)’)

(===t)

ZUD
of
201
ot

exp(-0.5% (eml*1iS1l*eml ™)) ; 8F (Y\5=0)

neta2=(1/dsig2) *exp(-0.5% (em2*iS2*¥em2")) ; ¢F (¥\5=1)

myternp.html[09/06/2017 11:06:22]

$joint density F(Y,S)
$Marginal density F(Y)
2conditional density F(S\Y) the weights of the likelihood
$save filter probability ett
$save log likelihood

FicURE 21. Independent switching and structural breaks

127

4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

mytemp

120

121

122 check=-1;

123 while check<0

124 tbackward recursion to sample from H(S[tI\S[t+1l],y)
125 S=zeros(T,1);

126 2time T

127 pl=filter(T,1):

128 p2=filter(T,2);

129 p=pl/ (pl+p2);

130 u=rand(1,1);
131 S{T,1)=(u>=p);
132

133 for t=T-1:-1:1

134 if S(t+l)==

135 p0O0=pmat (1,1)*filter(t,1);
136 pOl=pmat(1,2)*filter(t,2);
137 elseif S(t+l)==

138 pO0=pmat (2,1)*filter(t,1);
139 pOl=pmat(2,2)*filter(t,2);
140 end

141 u=rand (1,1);

142 p=p00/ (p00+p01) ;

143 if u<p

144 5(t)=0;

145 else

146 S(t)=1;

147 end

148 end

149

150 if sum(S==0)>=ncrit && sum(S==1)>=ncrit
151 check=1;

152 end

153 end

154

155

156

157

158 %step 1: sample V[t]

159 9%%%2%%8%228%2%%%%Run Hamilton Filter®8%2%2%892822%3%

.

160 $unconditional probabilities

16l ettll= [1;0]; %start in regime 0 by assumption

162 i51=1/sigl;

163 is2=1/sig2; 5 —

le4 dsigl=sqrt (sigl); 1\1 -

165 dsig2=sqrt (sig2):

166

167

168 filterx=zeros(T,2);

169 filterx(l,:)=ettll";

170 for j=2:T —(rxeb0) Fexibo)
171 if S(§)==0 SV = 0) = J;TSEXP(%)
172 ph%1x=ph%l; . —(prabo) Grxibo
173 phi2x=phil; SV =1) = = EXP(T)
174 else forot '

175 philx=phi2; " B
176 phiZx=phi2; SV = 0) = — CXP(T)
177 end JE;; JD i
178 foli=1)= ;exp(;u”x’b') gexdy))
179 amil=y (3) == (4 , 2) *phdizs Jno? 201

180 em2=y (J)-x(3j,:) *phi2x;

myternp.html[09/06/2017 11:06:22]

FIicURE 22. Independent switching and structural breaks

8. FURTHER READING

mytemp
181 netal=(1/dsigl)*exp(—-0.5* (eml*iSl*eml ")) ; 2F (Y\5=0)
182 neta2=(1/dsig2)*exp(-0.5*% (em2*i52%em2")) ; ¢F (Y\5=1)
183 $%%Prediction Step2%%s
184 ettlO=qgmat*ettll;
185 22%%Update Step®isd
186 ettll=ettl0.*[netal;neta?]; %joint density F(Y,S)
187 fit=sumi{ettll); $Marginal density F(Y)
188 ettll=(ettll)/fit; $conditional density F(S\Y) the weights of the likelihood
189 filterx(j,l:2)=ettll"'; $save filter probability ett
190
191 end
192
193
194
195

196 checkx=-1;
197 while checkx<0

108 $backward recursion to sample from H(S[t]\S[t+1],y)
199 VV=zeros (T, 1);

200 gtime T

201 pl=filterx(T,1);

202 p2=filterx(T,2);

203 p=pl/ (pl+p2)

204 u=rand(1,1);

205 VV(T, 1)=(u>=p);

206 iter t=l=1s5=151

207 if VV(t+1l)==0

208 pO00=qmat (1,1)*filterx(t,1);
209 pOl=gmat (1,2)*filterx(t,2);
210 elseif VV(t+l)==

211 pO00=gmat (2,1)*filterx(t,1);
212 pOl=gmat (2,2)*filterx(t,2);
213 end

214 u=rand (1,1):

215 p=p00/ (p00+p01) ;

216 if u<p

217 VV(£)=0;
218 else

219 Vv (t)=1;

220 end

221 end

222

223 1if sum(VV==0)>=ncrit && sum(VV==1)>=ncrit
224 checkxz=1;

225 end

226 end

227

228

229

230 %step 3 sample the transition matrix P
231

232 tranmat=switchg (S+1, [1;2]); %calculate the number of regime switches
233 NOO=tranmat (1,1); &5(t-1)=0 S(t)=0
234 NOl=tranmat(l,2); &S(t-1)=0 S(t)=1
235 NlO=tranmat (2,1); %S(t-1)=1 S(t)=0
236 Nll=tranmat(2,2); %s(t-1)=1 S(t)=1
237 gdraw from the dirichlet density

238 pO=drchrnd ([NOO+u00;N01+u01]) ;

239 p=p0(1,1); %p00

240 pO=drchrnd ([N10+ul0;N11+ull]);

myternp.html[09/06/2017 11:06:22]

FicURE 23. Independent switching and structural breaks

130

mytemp

241
242
243
244
245
246
247
248
249
250
251
252
2538
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

4. GIBBS SAMPLING FOR MARKOV SWITCHING MODELS

g=p0(2,1); =pll
pmat=[p 1-g;1-p ql; %transition prob matrix

2step 4 sample the transition matrix Q
2]1); %calculate the number of regime switches

1)=0 V({t)=0
1)=0 v(t)=1

tranmatx=switchg (VV+1, [
NOOx=tranmat (1,1); 8V (t-
NOlx=tranmat (1,2):; 2V (t-
2draw from the dirichlet density
pO=drchrnd ([NOOx+v00;NO1x+v01]) ;
px=p0(1,1); 2p00

gmat=[px 0;1-px 1]; %transition prob matrix

2step 3 sample beta

Scalculate time series of sigmalt]

sigmat=(VV==0) . *sigl+ (VV==1) .*=ig2; — [—] [J—]
sigmatl=sigmat (S==0) ; O-? - I VI - 0 O-D +I VI - 1 0-1
sigmat2=sigmat (S==1);

% Select data in regime 1

id=find (S==0) ; t x
yl=y(id)./sqrt (sigmatl); %remove heteroscedasticity i_!' = U_ib'gf + er, el"“"MO, 1)
x1l=x(id, :) ./ (repmat (sqrt (sigmatl),1,2));

M=inv (inv (Sigmal)+ (x1"*x1))* (inv (Sigmal0)*BO+x1"*y1l);

V=inv (inv (Sigmal)+(xl'*x1));

phil=M+(randn(1l,2)*chol(V))";

2Select data in regime 2

id=find(5==1);

y2=y (id) ./sqrt (sigmat2);

®2=x(id, :) ./ (repmat (sqrt (sigmat2),1,2));

M=inv (inv (Sigmal)+(x2"*x2))* (inv (Sigmal)*B0+x2"*y2);

V=inv (inv (Sigmal)+(x2'*x2));

phi2=M+(randn(1l,2)*chol(V))";

2step 4 sample sigma
residuals=(y-x*phil) .* (S==0)+ (y-x*phi2) .* (S==1);
gresiduals regime 1
el=residuals (VV==0) ;
Tl=v0+rows (el) ;
Dl=d0+el'"*el;

2draw from IG
z0=randn(T1,1);
z0z0=z0"*z0;
5igl=D1/z0z0;
iresiduals regime 2
ez=residuals (VV==1) ;
T2=v0+trows (e2) ;
D2=d0+e2'*e2;

gdraw from IG
z0=randn(T2,1) ;
z0z0=z0"*z0;
51g2=D2/z0z0;

%save and impose regime identification

if igibbs>BURN
chck=phil(2,1)>phi2(2,1); %constant bigger in regime 1
if chck

myternp.html[09/06/2017 11:06:22]

FIiGURE 24. Independent switching and structural breaks.

Part 2

The Metropolis Hastings algorithm

CHAPTER 5

An introduction to the the Metropolis Hastings Algorithm

1. Introduction

The Gibbs sampling algorithm relies on the availability of conditional distributions to be operational. In many
cases (of practical relevance) conditional distributions are not available in closed form. An important example of
such a situation is the estimation of Dynamic Stochastic General Equilibrium (DSGE) models where the conditional
distribution of different parameter blocks is unavailable. In such cases an algorithm more general than the Gibbs
sampler is required to approximate the posterior distribution. The Metropolis Hastings algorithm offers such an
alternative. This chapter introduces this algorithm and discusses its implementation in Matlab for a number of
important cases. The algorithm is applied to DSGE models in the next chapter.

2. The Metropolis Hastings algorithm

In this section we describe the Metropolis Hastings (MH) algorithm in a general setting. We follow that with a
number of specific examples and Matlab code in the subsequent sections.

Suppose that we are interested in drawing samples from the following distribution (this is referred to as the target
density below)

7 (D) (2.1)
where @ is a K x 1 vector which represents a set of parameters. 7 (®) could be a posterior distribution where direct
sampling is not possible and the Gibbs sampler is not operational as conditional distributions of different blocks of
the parameters ® are unknown. However, given a value for ® = ®* we are able to evaluate the density at ®* i.e.
calculate 7 (®*).

In this situation the MH algorithm can be used to take draws from 7 (®) using the following steps
Step 1 Specify a candidate density q (<I>G+1|<I>G) where G indexes the draw of the parameters ®. One must be able
to draw samples from this density. We discuss the exact specification of ¢ (<I>G+1|<I>G) below.
Step 2 Draw a candidate value of the parameters ®“*!from the candidate density ¢ (<I>G+1|<I>G) .
Step 3 Compute the probability of accepting ®“*! (denoted by «) using the expression

o = min (W (297) /q (B77|0€) , 1) (2.2)

™ (2F) /q (®F]PGTT)

The numerator of this expression is the target density evaluated at the new draw of the parameters 7 (<I>G+1)
divided by the candidate density evaluated at the new draw of the parameters ¢ (@GH\(I)G) . The denomi-
nator is the same expression evaluated at the previous draw of the parameters.

Step 4 If the acceptance probability « is large enough retain the new draw ®“+1, otherwise retain the old draw
®%. How do we decide if « is large enough in practice? We draw a number v from the standard uniform
distribution. If u < a. accept ®E*! otherwise keep ®¢ .1

Step 5 Repeat steps 2 to 4 M times and base inference on the last L draws. In other words, the empirical
distribution using the last L draws is an approximation to target density. We discuss convergence of the
MH algorithm below.

Note that one can think of the Gibbs sampler as a special case of the MH algorithm—i.e. a situation where the
candidate density q (<I>G+1\<I>G) coincides with the target density and the acceptance probability assigned to every
draw equals 1.

3. The Random Walk Metropolis Hastings Algorithm

The random walk MH algorithm offers a simple way of specifying the candidate density ¢ (<I>G+1|<I>G) and is
therefore widely used in applied work. As the name suggests, the random walk MH algorithm specifies the candidate
generating density as a random walk

P = 9% 1 ¢ (3.1)

I This essentially means that we accept the draw with probability « if this experiment is repeated many times. For e.g if o = 0.1,
and if we 1000 replications we should expect 100 of the 1000 draws to have u < «

133

134 5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

where e ~ N (0,X) is a K x 1 vector. Note that e; = ®“+! — ®% is normally distributed. As the normal distribution
is symmetric, the density p (29! — &) equals p (#“ — #“F1). In other words, ¢ (P®Y) = ¢ (®9|®“F1) under
this random walk candidate density and the formula for the acceptance probability in equation 2.2 simplifies to

a = min (M, 1) (3.2)

7 (PF)

The random walk MH algorithm, therefore, works in the following steps:

Step 1 Specify a starting value for the parameters ® denoted by ®° and fix ¥ the variance of shock to the random
walk candidate generating density.

Step 2 Draw a new value for the parameters &New

using
(I)New _ (DOld te (33)

where ®9¢ = ®9 for the first draw
Step 3 Compute the acceptance probability

a = min (M, 1) (3.4)

7 (POI)

If a > u « U(0,1), then retain @V and set ®°!¢ = &N otherwise retain ¢/,
Step 4 Repeat steps 2 and 3 M times and use the last L draws for inference.

Note that 3 the variance of e; is set by the researcher. A higher value for ¥ could mean a lower rate of acceptances
across the MH iterations (i.e. the acceptance rate is defined as the number of accepted MH draws divided by the
total number of MH draws) but would mean that the algorithm explores a larger parameter space. In contrast, a
lower value for 3 would mean a larger acceptance rate with the algorithm considering a smaller number of possible
parameter values. The general recommendation is to choose ¥ such that the acceptance rate is between 20% to 40%.
We consider the choice of ¥ in detail in the examples described below.?

3.1. Estimating a non-linear regression via the random walk MH algorithm. As an example, consider
the estimation of the following non-linear regression model

Vi = By (XP?) 4 v, v ~ N(0,0%) (3.5)

and for the moment assume no prior information is used in estimating Bi, B, and o2 so the posterior distribution
coincides with the likelihood function. Our aim is to draw samples from the marginal posterior distribution of the
parameters. As the model is non linear, the results on the conditional distributions of the regression coefficients
shown in Chapter 1 do not apply and the MH algorithm is needed. We proceed in the following steps:

Step 1 Set starting values for ® = {Bjy, By, 0?}. These starting values could be set, for e.g, by estimating a log
linearised version of equation 3.5 via OLS. The variance of the candidate generating density X can be set
as the OLS coefficient covariance matrix) times a scaling factor A i.e & = Q x A.Note that { provides a
rough guess of how volatile each parameter is. The scaling factor lets the researcher control the acceptance
rate (a higher value for A would mean a lower acceptance rate). Note that in this simple model the choice
of starting values may not be very important and the algorithm would probably converge rapidly to the
posterior. However, in the more complicated (and realistic) models considered below this choice can be
quite important.

Step 2 Draw a new set of parameters from the random walk candidate density

oNew — @9l 4 ¢ (3.6)

(I:,New

Step 3 Compute the acceptance probability o = min 7;((1)70,(1)), 1) . Note that the target density = (.) is the likeli-

hood function in this example. The log likelihood function for this regression model is given by

/
In L (Y| ®) = —% In 27 — %02 ~05 (Yt el (Xth)))o_Q(n i (Xt&» (3.7)

Therefore the acceptance probability is simply the likelihood ratio
a =min (exp (In L (¥;|@N") — In L (Y;|29'%)) , 1) (3.8)
where In L (Yt|<I>N€w) is the log likelihood evaluated at the new draw of Bi, By, 02 and In L (Yt\@Old) is the log

likelihood at the old draw. If o < u ~ U(0, 1) we retain the new draw and set ®9'¢ = pNew,

Step 4 Repeat steps 2 and 3 M times. The last L draws of By, By, 02 provide an approximation to the marginal
posterior distributions.

3. THE RANDOM WALK METROPOLIS HASTINGS ALGORITHM 135

clear

$generate artificial data

T=100;

sigma=1;

bl=4;

b2=2;

e=randn (T,1)*sgrt (sigma);
X=rand(T,1l);

9 Y=bl.*(X."b2)+e;

10 %$step 1 set starting values

11 Gammaold=[0;0;0.1]7;

12 %$step 2 set SIGMA matrix via OLS estimation
13 yols=Y;

14 xols=[cones(T,1l) X];

15 bols=inv(xols'*xols)*(xols'*yols);
16 eols=yols-xocls*bols;

® o U W N

17 sols=((ecls'*eols)/T);
18 vols=sols*inv (xols'*xols);
19 P=eye(3); $this is the variance of the metropolis

hastings random walk based partly on OLS estimates

20 P(1,1)=(vols(1l,1));
21 P(2,2)=(vols(2,2));
22 P(3,3)=0.1;

23 K=0.1;

24 P=K*P; Z=0x2

25 REPS=5000;

26 true=repmat([bl b2 sigma],REPS,1);

27 % step 3 metropolis Hastings algorithm
28 out=[]:

29 naccept=0;

30 for J=1:REPS

31 %step 3a draw new Gamma
New _ Old
32 Gammanew=Gammaold+ (randn (1, 3) *chol (P)) '; @ = @
33 $step 3b evaluate posterior at new draw
34 Bl=Gammanew (1) ; B2=Gammanew (2) ; sigma2=Gammanew (3) ;
35 if sigma2<0
36 posteriorNEW=-1000000;
37 else
38 B=[Bl1;B2];
By v i)
Y—B1[x; Y—B (X}
R (TG
o
39 1ik=—(T/2)*log (2* (22/7))—(T/2) *sigma2-0.5* (((Y-Bl.=*(X. B2))'* (Y-
Bl.*(X.”B2)))/sigma2); %likelihood function
40 posteriorNEW=1ik; %posterior at the new draw
41 end
42 $step 3c evaluate posterior at old draw
43 Bl=Gammaold (1) ;B2=Gammaold (2); sigma2=Gammacld(3) ;
44 B=[Bl;B2];
45 lik=—(T/2)*log (2% (22/7))—(T/2) *sigma2-0.5* (((Y-B1l.*(X."B2))'* (Y-
Bl.*(X.”B2)))/sigma2); %likelihood function
46 posteriorOLD=1ik; %posterior at the old draw
47
43 $step 3d compute acceptance probability
49 accept=min([exp (posteriorNEW-posteriorOLD);1]1); gmin (accept,l1)
a = min(exp(nZ{F \D™*) — WL(FAD)), 1)
50
51 u=rand(l,1); %$random number from the uniform dist

F1GURE 1. Matlab code for examplel

Figures 1 and 2 show the matlab code for this example (examplel.m). Lines 3 to 9 generate artificial data for the
non-linear regression model assuming that B, = 4, B, = 2, 02 = 1. Line 11 sets the starting Vglues for these parameters
ot 0 0
arbitrarily. Lines 20 to 22 set the variance of the random walk candidate density as > = 0 oB 0 xscaling
0 0 0.1
factor where ot and 052 are OLS estimates of the variance of B; and Bs. Line 29 sets the variable naccept which
will count the number of accepted draws. Hence the acceptance rate is naccept/REPS. Line 30 starts the loop for the

2See Chib and Ramamurthy (2010) for a more efficient version of the basic algorithm described above.

136 5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

53 if u<accept

54 Gamma ol d=Garmmanew; $accept draw Ifor > u we set @Old = q)NeW
55 naccept=naccept+l; %count number of acceptances

56 end

57 out=[out; Gammaold'];

59 end

60

61l plot([out true])

62 xlabel ("Metropolis Hastings Draws');

63 legend('B 1','B 2',"\sigma”{2}"',"True B 1',"'True B 2','True
\sigma~{2}");

Published with MATLAB® 7.9

FIGURE 2. Matlab code for examplel (continued)

MH algorithm. Line 32 draws the new value of the parameters from the random walk candidate density. Note that
there is nothing intrinsic in this step that stops the new value of ¢ from being less than zero. Therefore lines 35 to
37 set the value of the log likelihood to a very small number if a negative o2 is drawn thus ensuring that this draw
is not going to be accepted. Alternatively one can set the acceptance probability to 0 when a negative value for o2
is drawn. Lines 44 to 46 calculate the log likelihood at the old draw. Line 49 calculates the acceptance probability.
Line 53 checks if the acceptance probability is bigger than u a number from the standard uniform distribution. If
this is the case we retain the new draw of the parameters.Figure 3 shows all the draws of the model parameters. The
algorithm is close to the true values of these parameters after a few hundred draws.

4

N

3. THE RANDOM WALK METROPOLIS HASTINGS ALGORITHM

u Mh MIMH‘ H‘ﬂ Mm

V
TN d“ﬁ mM[InMMLIH 4

lm ‘ m ‘ ’h

1 lif ! r l\ Wwy

“H ‘in l

flil

M W“...M nh " Wulu M W

”\” 0 w

137

i +*" L ol i w H i
e

m” ”MWHM MW ““ '!\‘ V(NIWTMWWW lwmﬂv r‘““le W‘\l’m'llﬁﬁw ”||lrw%lw"\”wmwm \l““ M !MWV‘”“I' V\"N ‘\U”m‘ WM J I'H!"'ng

-

‘W%’W’“‘WM o "Mmu wv L '””‘N ﬁ

0 5000 10000 15000

Metropolis Hastings Draws

FIGURE 3. Draws of By, By, 0? using the MH algorithm in example 1

3.2. Estimating a non-linear regression via the random walk MH algorithm (incorporating prior
distributions). We consider the same non-linear regression model examined in the previous section but now incor-
porate prior distribution for the regression parameters. We assume that the regression coefficients B = {Bj, By}
have a normal prior p (B) ~ N(By,%g). For convenience, we set a prior for the precision, the reciprocal of the
variance. The Gamma prior p (1 / 02) with a prior scale parameter "70 and degrees of freedom VTO The random walk
MH algorithm now consists of the following steps:

algorithm is needed. We proceed in the following steps:

Step 1 Set the parameters of the prior distributions p (B) and p (1/0?) . Set starting values for ® = {By, By, o2}.
Finally set the variance of the candidate generating density 3.
Step 2 Draw a new set of parameters from the random walk candidate density

q)New _ (I)Old te

(3.9)

Step 3 Compute the acceptance probability o = min (m,

1> . Note that the target density = (.) is the pos-

terior demsity in this example as we have prior distributions for our parameters. Recall from chapter 1
that the Bayes law states that he posterior distribution is proportional to the likelihood times the prior.
Therefore we need to evaluate the likelihood and the prior distributions at the drawn value of the parameters
and multiply them together. The log likelihood function for this regression model is given by

T [(B () (i (x))

lnL(Yt|<I>):fgln27rf 5 . = (3.10)
The prior density for the regression coefficients is just a normal density given by
P(B) = (2m) 52|50 exp [~0.5 (B — By) £ (B — By)] (3.11)

Note that this is evaluated at the new draw of the regression coefficients. If the new draw is very far from the prior
mean By and the prior is tight (the diagonal elements of ¥y are small) then P (B) will evaluate to a small number.

138 5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

Similarly, the log prior density for 1/0? is a Gamma distribution with a density function given by
Vo

1= —0
2\ __ * 0
where C* = () and T'(.) denotes the Gamma function. The log posterior is given by
r(2)(%

o

Vo
2

=

InH (®[Y;) cc In L (Y;|®) + In P (B) + In P (1/5?)
Therefore the acceptance probability is simply the likelihood ratio
o =min (exp (In H (#N*|Y;) — In H (#°'v3)) , 1) (3.13)
where In H ((I>N€1”|Yt) is the log posterior evaluated at the new draw of Bi, Bs, 02 and In H (@Old|Yt) is the log

posterior evaluated at the old draw. If a < u ~ U(0,1) we retain the new draw and set ®°!4 = gNew,

Step 4 Repeat steps 2 and 3 M times. The last L draws of By, By, 0 provide an approximation to the marginal
posterior distributions.

Figures 4 and 5 show the code for this example (example2.m). Relative to the previous example there are only
two changes. First on lines 12 to 15 we set the parameters of the prior distributions for B and 1/02. Second, line 45
evaluates the log prior density for B at the new draw. Similarly, line 46 evaluates the log prior density for 1/0? at
the new draw. The log posterior at the new draw is calculated on line 47. Lines 50 to 55 calculate the log posterior
at the old draw of the parameters. The remaining code is identical to the previous example.

3. THE RANDOM WALK METROPOLIS HASTINGS ALGORITHM

clear

$generate artificial data

T=100;

sigma=1;

bl=4;

b2=2;

e=randn (T,1)*sgrt(sigma);

X=rand(T,1);

Y=bl.*(X."b2) +e;

10 %step 1 set starting values and priors
11 Gammaold=[0;0;0.17;

12 bO=zeros(2,1);

13 sigmal=eye (2)*100; %P (b)~N(b0, sigma0l)

W gy U1 00N

14 s0=1;

15 v0=5; $p (1/sigma)~Gamma (s0, vO)

16 %step 2 set SIGMA matrix via OLS estimation
17 yols=Y;

18 xols=[ones(T,1l) X];
19 bols=inv(xols'*xols)* (xols'*yols);
20 eols=yols-xols*bols;

21 sols=((ecls'"*ecls)/T);
22 vols=sols*inv(xcls'*xols);
23 P=eye(3); $this is the variance of the metropolis

hastings random walk based partly on OLS estimates
24 P(1,1)=(vols(1l,1));

25 P(2,2)=(vols(2,2));

26 P(3,3)=0.1;

27 K=0.2;

28 P=K*P;

29 REPS=15000;

30 true=repmat([bl b2 sigma],REPS,1);

31 % step 3 metropolis Hastings algorithm
32 out=[];

33 naccept=0;

34 for j=1:REPS

35 $step 3a draw new Gamma

36 Gammanew=Gammacld+ (randn (1, 3)*chol (P))"';

37 $step 3b evaluate posterior at new draw

38 Bl=Gammanew (1) ; B2=Gammanew (2) ; sigma2=Gammanew (3) ;

39 if sigma2<0

40 posteriorNEW=-1000000;

41 else

42 B=[B1;B2];

43 resid=Y-Bl.* (X."B2);

44 1ik=-(T/2)*1log (2*pi*sigma2)-0.5*(((resid)'* (resgid))/sigma2);

%$likelihood function

P(B) = (22) ¥*[Z,| "+ expl=0.5(B - By)'Z3' (B- By)]

45 normalprior=log (mvnpdf (B,b0, sigmal)); %evaluate prior for Bl
and B2
To -

P(Q/c?)=CrL7 exp(Lg)

o 20
46 gammaprior=gampdfl (v0, s0,1/sigma2); %evaluate prior for 1/sigma
47 posteriorNEW=1lik+normalprior+gammaprior; %posterior at the new
draw
48 end
49 $step 3c evaluate posterior at old draw
50 Bl=Gammaold (1) ; B2=Gammacld(2);sigma2=Gammaold (3) ;
51 B=[B1;B2];
52 resid=Y-Bl.* (X."B2);

FICURE 4. Matlab code for example 2

140 5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

53

lik=—(T/2)*log (2*pi*sigma2)-0.5*(((resid)'* (resid))/sigma2);

%likelihood function

end

normalprior=1log (mvnpdf (B,b0, sigmal)); %evaluate prior for Bl

gammaprior=gampdfl (v0, s0,1/sigma2); %$evaluate prior for 1/sigma
posteriorOLD=11ik+normalprior+gammaprior; %$posterior at the old

$step 3d compute acceptance probability
accept=min{ [exp (posteriorNEW-posteriorOLD);1]); $min (accept, 1)

u=rand(l,1); %random number from the uniform dist

if u<accept
Gammaol d=Ganmmanew; $accept draw
naccept=naccept+l; %count number of acceptances
end
out=[out; Gammaold'];

plot([out true])

xlabel ('Metropolis Hastings Draws');
legend('Bil','Bf2','\sigmaA{2}','True B 1','True B 2','True
\sigma”~{2}");

Published with MATLAB® 7.9

FIGURE 5. Matlab code for example 2 (continued)

3. THE RANDOM WALK METROPOLIS HASTINGS ALGORITHM 141

3.3. The random walk MH algorithm for a state space model. In this section we consider the estimation
of a regression with time-varying parameters using the MH algorithm. Note that Gibbs sampling is feasible for this
model. Our reason for using the MH algorithm is related to the fact the steps involved in dealing with this model
are very similar to those required when estimating a DSGE model. In particular, the choice of starting values is no
longer trivial.

The model we consider has the following state space representation

yo = o+ by + v, v N(O, R) (3.14)
M Fo0 Ct—1 €1t

()= (% n)(an)+(a)

e . 0 Q 0

(2) ()%)

The random walk MH algorithm for this model works exactly as before. At each iteration we calculate the log
posterior for the model at the old and the new draw of the parameters ® = {, 119, F1, Fo, R, Q1,Q2}. Calculation of
the posterior involves evaluating the prior distributions and the log likelihood of the model. Note that the likelihood
function of this state space model is evaluated using the Kalman filter. As discussed in Hamilton (1994) (page 385)
if the shocks to the state space model (v, e1¢, ea¢) are distributed normally, then the density of the data f (y¢|z:) is
given as

/N
T
N
I

_ —-1/2 _
I (yi|ze) = (2m) 1/2 }ft|t—1‘ / X exp (_O'5n;|t—1ft\t1—1nt\t—1) (3.15)
for t = 1....T with the log likelihood of the model given by

T
In f (y:|®) = Zlnf(yt|$t) (3.16)
t=1

Here 7,;_, is the prediction error from the prediction step of the Kalman filter and f;—1 is the variance of the
prediction error (see Chapter 3).

Figures 6 and 7 show a matlab function (likelihoodTVP.m) which uses the Kalman filter to calculate the likelihood
for this model and will be used in the main code discussed below. Line 4 checks if the variances (stored as the last
three elements of theta) are positive and Fjand Fy do not sum to a number greater than 1 (this is a rough way to

check for stability). Lines 5 to 7 form the matrix (};1 FO) while lines 8 to 10 form the matrix Z 1). Line
2 2

Q1 0

0 Q2

20 to 39 are as described in Chapter 3. Line 40 uses the prediction error and the variance of the prediction error to

calculate f (yi|z;) = (27r)71/2 |ft|t_1|71/2 X exp (_0'5n;|t—1ftTt17177t\t*1> . Line 42 adds this for each observation (if

there are no numerical problems). Line 47 returns the negative of the likelihood function (we are going to minimise
this below).
The MH algorithm for this model is given by the following steps:

13 specifies the matrix R while lines 14 to 16 specify the matrix) . The Kalman filter recursions on lines

Step 1 Set priors for the coefficients and variances of the state space model. We assume that pq, pq, F1, F5 have a
normal prior while the reciprocal of R, @1, Q2 have a Gamma prior.

Step 2 Set a starting value for the parameters ® = {u, 1o, F1, Fo, R, Q1,Q2} and the variance of the shock to
the random walk candidate generating density. We set the starting value for ® as the estimate ®M~ by
numerically maximising the log posterior. The mode of the posterior provides a reasonable point to the start
the MH algorithm and implies that fewer iterations may be required for the algorithm to converge.*The
estimate of the covariance of @M% can be used to set the variance of the random walk candidate density.
Note that the covariance of ®M’ is given by the inverse of the hessian of the log posterior with respect to
the model parameters. Denoting this estimated variance by (), the variance of the shock to the candidate
generating density is set as ¥ = €2 x A where) is a scaling factor chosen by the researchers such that the
acceptance rate is between 20% and 40%.

Step 3 Draw a new set of parameters from the random walk candidate density

pNew — Old | ¢ (3.17)

T New
Step 4 Compute the acceptance probability o = min (n(iOld) , 1) . As in the previous example the target density is
the posterior distribution. The log of the posterior distribution is calculated as the sum of the log likelihood
and the sum of the log priors. As described above, the log likelihood is calculated by using the Kalman
filter. If & > u ~ U(0,1) then we keep @V otherwise we retain the old draw.

3Note also that if the posterior is multi-modal (which may be the case for complicated models) the numerical maximum will be a
rough approximation to the posterior mode.

142 5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

function [out,beta tt]l=likelihoodTVP(theta,v,x)

$extract parameters of the state space

out=1000000000;

if sum(theta(5:end)<0)==0 && sum{abs(theta(l:2))>1)==0 only calculate

F+F, <1

=W N

likelihood 1f variances are positive and
5 F=zeros(2,2);

F, 0
0 F

6 F(l,1l)=theta(l);
7 F(2,2)=theta(2);
8 mu=zeros(l,2);

Hi
Ho

9 mu(l,1l)=theta(3);
10 mu(l,2)=theta(4);
11

12

13 r=(theta(b));

0 O

14 Q=zeros(2,2);
15 Q(1,1)=(theta(6));
16 Q(2,2)=(theta(7));
17 t=rows(Vy):

T
InfA®) = D Infyrx:)

18 1ik=0; will hold t=1
19 3filter

20 betalO=zeros(1,2):;

21 p00=eye(2):

22 beta tt=[];

23 ptt=zeros(t,2,2);

24 betall=betal;

25 pll=p00;

26 for i=1:t

27 H=x(i, :):
283 $Prediction

29 betalO=mu+betall*F"';

30 plO=F*pll*F'+Q;

31 yvhat=(H*(betall)")":

32 eta=y(i,:)-yhat;

33 feta=(H*plO*H')+r;

34 %updating

35 K=(plO*H')*inv(feta);

36 betall=(betall'+K*eta')"';
37 pll=pl0-K* (H*pl0);

38 beta tt=[beta tt;betall];
3% ptt(i,:,:)=pll;

FI1GURE 6. The log likelihood for the time-varying parameter model in Matlab

Step 5 Repeat steps 3 and 4 M times. The last L draws of ® provide an approximation to the marginal posterior
distributions.

Figures 8, 9 and 10 show the code for the MH algorithm for this model. Line 2 of the code adds the optimization
software csminwel written by Chris Sims and freely available at http://sims.princeton.edu/yftp/optimize/mfiles/.
This matlab function minimises a user supplied function. Lines 5 to 23 create artificial data for the state space
model assuming that p; = 0.1, 4y = —0.1, F1 = 0.95,F5 = 0.95, R = 2,Q; = 0.1,Q2 = 0.1. Lines 25 to 36 set the
parameters for the prior distributions. Lines 37 to 39 maximise the log posterior of the model using csminwel. Line
39 called csminwel using the code:

3. THE RANDOM WALK METROPOLIS HASTINGS ALGORITHM 143

i) = (271')71/2|fz\t—1|71/2 X exp(_o-Sni\t—lf;\}—lnt\tfl) P —

40 1iki=-0.5*log(2*pi)-0.5*1log (det(feta))+ (-0.5* (eta)*inv (feta)* (eta'));
41 if isreal(liki) & (l-isinf(liki))

42 1ik=1ik+1iki;

43 else

44 1ik=11k-10; if log f(y\x) cannot be computed set it equal to -10
45 end

46 end

47 out=-1ik; return the negative of the likelihood function

48 if isnan(out) || l-isreal(out) || isinf (out)

49 out=1000000000; if log lik cannot be computed return a large
number

50 end

51 end

Published with MATLAB® 7.9

FIGURE 7. The log likelihood for the time-varying parameter model in Matlab (continued)

[FF,AA gh hess,itct,fcount,retcodeh] =

csminwel(‘posterior’,theta0,eye(length(theta0))*.1,[],1e-15,1000,y,x,F0,VF0,MU0,VMUO0,R0,VR0,Q0,VQO0);

The inputs to the function are (1) the name of the function that calculates the log posterior. This is called
posterior.m in our example. Note that this example evaluates the log likelihood using likelihoodTVP.m. The function
then evaluates the log prior for each parameter. The sum of these is the log joint prior. The sum of the log joint prior
and the log likelihood is the log posterior. Note that posterior.m returns the negative of the log posterior. Therefore
csminwel minimises the minimum of the negative log posterior which is equivalent to maximising the log posterior.
(2) the initial values of the model parameters theta0. (3) the initial hessian matrix which can be left as default. (4) a

144

5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

clear

addpath (sim function to minimize -logl written by C

rying paramteer 1

Q=eye(N,N)*0.1;
9 R=2;

10 F(1,1)=0.95;
11 F(2,2)=0.95;
12 e=randn(T,2);
andn (T, 1);
14 x=[randn(T,1) ones(T,1)];
15 y=zeros(T,1);

16 b=zeros(T,2);

17 MU=[0.1 -0.1];

18 for :T

19 b(j,:)=MU+b(j-1,:) *F'+e(]j, :) *chol (Q) ;

20 v(3,0)=x(3,:) % (3,) "+v (],) *sqre (R) ;

21 end

22

23 TRUE=[diag (F);MU';R;diag(Q)];

24 gx**xkkxkkxxstep 1 set pri r each parameter

25 % F~N(F0,VF0)
26 Fl=ones(2,1);
27 VEO=eye (2)*2;

hris Sims

28 %MU~N (MUO, VMUO) ;
29 MUO=zeros(2,1);
30 VMUO=eye (2);

31 $R~IG(RO,VRC

Name of function that
calculates posterior

VRO=1;

Initial
hessian
(leave as
default)

34 %Q(i,1)~IG(QO,V

o 2 in e model imum lilkelihood
38 thetaO=ones(7,1).*0.1;
39 [FF,AA,gh,hess,itct, fcount, retcodeh] = csminwel ('posterior', thetal,eye(length

15,1000, v, x,F0,VFO0,MUO, VMUO, RO, VRO, Q0, VQO) ;

m;

40 grEExEIE R LIRSSk STy 2 tor for the met tihgs
41 K=0.4; %scaling fa

42 P=(chol (hess*K)); %compute variance of the random walk

43 Gammaold=AA; posterior mode estimates

44 REPS=50000; Starting
45 BURN=30000; values

46 naccept=0;

zeros (REPS-BURN, 7) ;

out2=zeros (REPS-BURN, 1) ;

49 scompute p ior at old w

slihood at old draw

= -1*1ik

(theta0))*.1,[]1,1e-

!

Tolerance for
convergence

FIGURE 8. Matlab code for the TVP model

5d lik=likelihoodTVP (Gammaocld,y, x);

52 gevaluate prior set of paramete
53 F=Gammaold(1:2);

54 MU=Gammaold (3:4);

55 R=Gammaold (5);

56 Q=Gammaold(6:7) ;

57

58 $prior F

5% (det (VFO0))-log(2*pi)/2-((F-F0) '*inv (VEF0) * (F-F0)) ;

60 MU

61

62

63 Rprior=1log(2) - gammaln(VRO/2) + (VR0O/2)*log(VRO*R0*2/2) - ((VRO+1)
64 <

65

66

67 Qprior=Qprior+(log(2) - gammaln(VQ0/2) + (VQO/2)*log(VQ0*Q0°2/2) - (
68 end

69

70 $joint p is the sum of the

71 priorold=Fprior+MUprior+Rprior+Qprior;

72 posteriorOLD=-1lik+priorold;posterior at old draw

73 J3=1;

74 for j REPS

75 2 1 draw new Gamma

76 Gammanew=Gammaold+ (randn (1, 7)*P)';

77

78 step 2 check variances positive and elements of F sum to less than 1
79 check=sum (Gammanew (5:end)<0) && sum(Gammanew(1:2)>1);

80 if check

81 posteriorNEW=-1000000;

82 zlgz

83 fcompute -1 kelihood at new draw

84 lik=1ikelihoodTVP (Gammanew,y, x);

85 F=Gammanew (1:2) ;

86 MU=Gammanew (3:4) ;

87 ammanew (5) ;

88 ammanew (6:7) ;

89

90 ior for F

91 ior=-log (det (VF0))-log(2*pi) /2~ ((F-F0) ' *inv (VF0) * (F-F0));

9z ior MU

93 MUprior=-log (det (VMU0))-log (2*pi) /2~ ((MU-MUOQ) ' *inv (VMUO) * (MU-MUO)) ;
94 or R

95 Rprior=log(2) - gammaln(VRO/2) + (VRO/2)*log(VRO*R0*2/2) - ((VRO+1)
96 i or Q

97

98

99 Qprior=Qprior+(log(2) - gammaln(VQ0/2) + (VQO/2)*log(VQ0*Q0°2/2) - (
100 end

101

102 $joint prior is the sum of these

(VQO+1)/2) *log(Q(i)"2)

(VQO+1) /2)*log(Q(i)*2)

/2)*log(R"2) - VRO*RO"2/(2*(R)"2);

= VQO*Q0"2/(2*(Q(i))"2)):

/2)*log(R"2) - VRO*RO"2/(2*(R)"2);

= VQO*Q0"2/(2*(Q(1))"2)):

F1GURE 9. Matlab code for the TVP model (continued)

3. THE RANDOM WALK METROPOLIS HASTINGS ALGORITHM 145

103

104 priornew=Fprior+MUpricr+Rprior+Qprior;
105 posteriorNEW=-1ik+priornew;

106 end

107

108

109 accept=min ([exp(posteriorNEW-posteriorOLD);1]}; $min (accept, 1)
110

111 u=rand(1,1); %random number from the uniform dist
112

113 if u<accept

114 Gammaocld=Gammanew;

115 posteriorOLD=posterio ; e e

116 naccept=naccept+1; Int number

117 end

118

119

120 ARATE=naccept/j; acceptance rate

121

122

123

124

125

126

127

128 if §>BURN

129 outl (

1) =Gammaold';

130 out2(jj,:)=posteriorOLD;
131 Ji=73+1;
132 end

133 end
134 subplot(3,3,1)
135 plot([outl(:,1
13E il T | ")
137 subplot(3,3,2)
138 plot([outl(:,2
2}")
3)
63
1}
4)

) repmat (TRUE (1), size(outl,1),1)]);

) repmat (TRUE (2),size(outl,1),1)]);

139 title('F {2}');
140 subplot(3,3,3
141 plot([outl(
142 title('\mu |
143 subplot (3,3,
144 plot([outl(
145 title('\m
146 subplot (2
147 plot{[out
148 title('R');
149 subplot(3,3,6);
150 plot([outl(:,6) repmat(TRUE(6),size(outl,1),1)]);
)8
)

)

repmat (TRUE (3), size(outl,1),1)]);

repmat (TRUE (4), size(outl,1),1)]);

repmat (TRUE (5), size(outl,1),1)]):

151 title('q {1}');
152 subplot(3,3,7);
153 plot ([outl(:,7) repmat(TRUE(7),size(outl,1),1)1);
154 title('Q {2}');

FIGUrE 10. Matlab code for TVP model continued

function for calculating analytical derivitives. If this is unavailable then we enter an empty matrix [] as done above.
(5) The tolerance level to stop the iterative procedure. This should be left as default. (6) The maximum number of
iterations set to a 1000 in the example above. All the remaining arguments (y,x,F0,VF0,MU0,VMUO,R0,VR0,Q0,VQ0)
are passed directly to the function posterior.m and are inputs for that function. The function returns (1) FF the
value of the function at the minimum. (2) AA the value of the parameters at the minimum and (3) hess the inverse
hessian of the function being minimised

Line 42 of the code sets the variance of the random walk candidate generating density as a scalar times the
parameter variance obtained from the optimisation using csminwel. Line 43 sets the initial value of the parameters
as the posterior mode estimates.

Line 51 calculates the log likelihood at the initial value of the parameters. Lines 59 to 68 evaluate the log prior
distributions for the parameters of the state space model. Line 69 calculates the log joint prior as the sum of these
prior distributions. Line 70 calculates the log posterior as the sum of the log likelihood and the log joint prior.

Line 74 draws the new value of the parameters from the random walk candidate generating density. Line 82
calculates the log likelihood at the new draw (assuming that the drawn variances are positive and the elements of F
sum to less than 1). Lines 83 to 100 evaluate the log joint prior at the new draw and line 101 calculates the posterior.
Line 109 calculates the acceptance probability. If this is bigger than a number from the standard uniform distribution
then the new draw of the parameters is accepted. In this case Line 115 also sets posteriorOLD to posteriorNEW- it
automatically updates the value of the posterior at the old draw eliminating the need to compute the posterior at
the old draw at every iteration (as we have done in the examples above).

Line 120 computes the acceptance rate (the ratio of the number of accepted draws and the total draws). Once
past the burn-in stage we save the draws of the model parameters. Figure 11 shows the retained draws of the
parameters along with the true values.

3.4. The random walk MH algorithm used in a Threshold VAR model. In this section, we consider
how the MH algorithm is used in the estimation of a Threshold VAR model (TVAR). The TVAR is defined as

P
Y, = a+Y BV j+v, VAR(w) = if S, <Y*
j=1

P
Y, = e+ BoViuj+ve, VAR(w) = Qy if S > Y™

j=1

where Y; is a matrix of endogenous variables, S; = Yj;_4 (i.e. a lag of one of the endogenous variables) is the
threshold variable and Y* is the threshold level. Note that if Y* and d are known, then the TVAR is simply two

146

5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

/ x10*
MH draws

FIGURE 11. MH draws for the TVP model

VAR models defined over the appropriate data samples using S; < Y* and S; > Y*. This observation allows us to
devise a Gibbs algorithm (with a MH step). In what follows below we assume the delay parameter d to be known.
See Chen and Lee (1995) for the extension of the algorithm to the case where d is estimated.

Step 1

Step 2

Step 3

Step 4

Set Priors. In the application below, we assume p (Y*) "N(Y*, oy~). We set a natural conjugate prior for
the VAR parameters in both regimes using dummy observations. See the prior used in section 6. Set an
initial value for Y*. One way to do this is to use the mean or median of ¥; ;_g4.

Seperate the data into two regimes. The first regime includes all observations such that S; < Y*. Call this
sample Y7 ;. The second regime includes all observations such that S; > Y*. Call this sample Y5 ;.

Sample the VAR parameters b; = {¢;, 5,;} and ; in each regime ¢ = 1,2. Let X denote the right hand side
variables of the VAR. The conditional distribution is exactly as defined in chapter 2 above and is given by

H (bi], Y3, Y*) "N (vee(BY), 4 @ (X' X)) (3.18)
H (Qi|bi, Yy, , Y™) TIW (S, T)
where
Bf = (X/'X)) " (X['yi)
S = (yi — X;70) (y; — X;bi)
where yf = [V;4; Yp] and X = [X, 4; Xp] with Yp, Xp the dummy observations that define the prior for

the left and the right hand side of the VAR respectively.
Use a MH step to sample Y*. Draw a new value of the threshold from the random walk

Y=Y, +ee N0

Then compute the acceptance probability
F (Y150 20 V) P (Vi)

L new new
F(Y1]bi, i, Y14 P (Yora)
where F (Y|b;, Q;,Y.%..,) is the likelihood of the VAR computed as the product of the likelihoods in the two
regimes. The log likelihood in each regime (ignoring constants) is

<Z) lo |Q_1|05ZT:{(Y- - Xuhi) 07 (Vi - X b)]
9 g |34 . 2 it i,t0i i it i,t04

with b; equivalent to b; reshaped to be conformable with Xit. Then draw v U(0,1). If u < o accept Y7,
else retain Y,j,. The scale ¥ can be tuned to ensure an acceptance rate between 20% and 40%.

As an example we consider a TVAR where Y contains US data on GDP growth, CPI inflation, a short term
interest rate and a financial conditions index (FCI) calculated by the Chicago Fed. The threshold variable is assumed
to be the second lag of FCI and examine the impulse response of the variables to a unit increase in FCI (a deterioration

3. THE RANDOM WALK METROPOLIS HASTINGS ALGORITHM 147

mytemp

clear
addpath ("

3 threshold variable is the column number tarvar in data

$scaling parameter for RW Metropolis algorithm

horizon

X=[X ones(rows(X),1)1;
wreshold variable
g0(¥(z, tarvar), tard); Ystar is threshold variable
[L,tard(1)])+lzend,:);
[L,tard(1)])+lzend,:);
26 Ystar=Ystar (max([L,tard(1)])+l:end,:);
tarmean=mean (Ystar); %mean of the prior on the threshold is the mean value of the threshold
variable

28 tarvariance=10;

29 ¢ Additional prior
30 lamdaP = 1;
31 tauP = 10*lamdaP;

32 epsilonP= 1/10000;
33 muP=mean(Y)';
34 sigmaP=(];

35 deltaP=[];

36 e0=[1;

37 for i=1:N

38 ytemp=Y(:,i);

39 xtemp=[lag0 (ytemp,1) ones(rows(ytemp),1)];
10 ytemp=ytemp(2:end,:);

11 xtemp=xtemp(2:end, :);

42 btemp=xtemp\ytemp;

13 emp=ytemp-xtemp*btemp;

a4 p=etemp ' *etemp/rows (ytemp) ;
45 if abs(btemp(1l))>1

16 btemp (1)=1;

a7 end

48 deltaP=[

19 signaP=[sigma

50 e0=[e0 etemp];

51 end

52 $dummy data to implement priors see http://ideas.rep

53 [yd,xd] = create dumnmies(lamdaP,tauP,deltaP,epsilonP,L,muP,signaP,N);
54 T=rows (Y);

55 3

56

57

58

mytemp.html[15/07/2014 13:49:15]

FIGURE 12. Matlab code for TVAR model

of financial conditions) in the two regimes. The matlab code is in the file named thresholdvarNFCIL.m and displayed
in figures 12, 13 and 14. In this example the prior p (Y*) "N(Y*, oy~) is set by using the mean of NFCI as Y* and
oy~ = 10 (line 28). Lines 30 to 53 set the natural conjugate prior for the VAR parameters. Lines 80 to 87 seperate
the sample into two regimes. Lines 89 to 128 draw the VAR coefficients and covariance in each regime. The MH step
to draw the threshold variable starts on line 134 with a draw from the random walk candidate density. Then the log
posterior In (F (Y'|b;, ;,Y,"..,) p (Y,r..,)) is computed on line 136 while In (F (Y|b;,Q;,Y,;,) p(Y,);,;)) is computed on

line 137. The acceptance probability is computed on line 138.

5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

mytemp

59 sigmal=eye(N);
60 sigmaZ=eye(N);
61 betad=vec (KO\YO0);

62 betall=betal;

63 betal2=betal;

64 tar=tarmean; %initial value of t.
65 tarold=tar;

66 naccept=0;

rting value for sigma

threshold

71 sgibbs algorithm
72 qgibbs=1;

73 for igibbs=1:REPS

74

75

76

77

78

79 ig erate into two regimes

80 el=Ystar<=tar;

81 e2=Ystar>tar;

82

83 Y1=Y(el,:);

84 X1=X(el,:);

85

86 ¥2=Y(e2,:);

87 X2=X(e2,:);

88

89 $step 2 Sample ents and variance 1
90

91 Y0=[Y1;yd];

92 X0=[X1;xd];

93 %con nal mean of the VAR coefficients
94 mstarl=vec(X0\Y0); %ols on the appended data
95 zx=X0'+X0;

96 imxl=zx\eye(cols (xx));

97 [betal,PROBLEM1] = getcoef(mstarl,sigmal,izxl,MaxTrys,N,L };
98 if PROBLEML

99 betal=betall;

100 else

101 beta0l=betal;

102 end

103

104 $draw covariance

105 ©=Y0-X0*reshape (betal ,N*L+1,N) ;

106 scale=e'*e;

107 sigmal=iwpQ(rows(Y0),inv(scale));

108

109

110 $step 3 Sample Coefficients and variance in regime 2
111

112 ¥0=[¥2;yd] ;

113 X0=[X2;xd] ;

114 ditional mean of the VAR co

115 mstar2=vec(XO\Y0); 3%ols on the a
116 xx=X0'*X0;
117 ixx2=xx\eye (cols

(xx));
118 [beta2, PROBLEMZ]

= getcoef(mstar2,sigma2,ixx2,MaxTrys,N,L);

mytemp.html[15/07/2014 13:49:15]

FIGURE 13. Matlab code for TVAR model

mytemp

119
120
121
122
123
124
125
126
127
128
129

160
161
162

164
165
166
167
168

3. THE RANDOM WALK METROPOLIS HASTINGS

if PROBLEMZ
beta2=betal2;
else
betal2=beta2;
end

covarian
0-X0*reshape (beta2, N*L+1,N) ;
scale:

e

sigma2=iwpQ (rows (Y0),inv (scale));

$step 4 Sample Threshold via a Random Walk Metropolis Step

tarnew=tarold+randn(l,1)*sqrt (tarscale); Candidate draw

ALGORITHM

getvarpost.m computes log posterior used for acceptance probability

postnew=getvarpost (Y,X,betal,beta2, sigmal, sigma2, L, tarnew, tarmean, tarvariance, Ystar,ncrit) ;
postold=getvarpost (Y,X,betal,beta2, sigmal, sigma2, L, tarold, tarmean, tarvariance, Ystar,ncrit) ;

accept=exp (postnew-postold) ;
u=rand(1,1);
if u<accept
tarold=tarnew;
naccept=naccept+1;
end
tar=tarold;
arate=naccept/igibbs;
if igibbs>100 && igibbs<1100
if arate<0.2
tarscale=tarscale*0.99;
elseif arate>0.1
tarscale=tarscale*1.01;
end
end

s of %s acc %s

disp(sprintf(® I - ST, ...
nunZstr(igibbs), numZstr(REPS),numZstr(arate)));

if igibbs>BURN
2imp
20

lse response
hol (sigmal) ;
A02=chol (sigma2);
irfl=irfsim(reshape (betal,N*L+1,N),N,L,A01, [0 0 0 1],HORZ):
irf2=irfsim(reshape (beta2, N*L+1,N),N,L,A02, [0 0 0 1],HORZ);
irfl=irfl./irf1(1,4)

irf2=irf2./irf2(1,4)

$save results

irfmatl(jgibbs, :

irfnat2(jgibbs, :
smat (:,jgibbs)=e2;
Jgibbs=3gibbs+l;

figure(1)

mytemp.html[15/07/2014 13:49:15]

FIGURE 14. Matlab code for TVAR model

149

5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

Probabilty of Regime 2
T

T T T = T T
% v A/\[/\/\
L 1 L
, \ \ \ P R S L , L/ . . , | ,
1975 1980 1985 1930 1935 2000 2008 2010 1975 1980 1988 1930 1995 2000 2005 2010
Regime 1 Regime 2

]

Interest rate

FIGURE 15. Results from the TVAR model for the US

The top right panel of figure 15 plots the estimated threshold and the threshold variable and shows that regime 2
persisted in the 1980s, the early 1990s and then during the recent recession. There is some evidence that the negative
impact of an FCI shock on GDP growth is larger in regime 2.

3.5.

The random walk MH algorithm used in a STVAR model. A related model is the smooth transition

(ST)VAR given by:

where G (v,Y*,S;) =

P
Yt = (I_G(erY*aSt)) 61+Zﬁ1,j5/t—j +
j=1
P
G(f%Y*vSt) C2+Z,627th—j +Ut;
j=1
var (v;) =

m. Here Y; is a matrix of endogenous variables, Sy = Y; ;4 (i.e. a lag of one

of the endogenous variables) is the threshold variable and Y* is the threshold level and v > 0 is the smoothness
parameter that determines the smoothness of the regime shifts. The Gibbs algorithm proceeds in the following steps
(see Lopes and Salazar (2006))

(1)

(2)

Set Priors. We assume p (Y*) "N(Y*,0y~). We assume a Gamma prior for v : p(7) T (yg,v0) - We set a
natural conjugate prior for the VAR parameters B; = {c;, 3, ;} for i = 1,2. in both regimes using dummy
observations. See the prior used in section 6. Set an initial value for Y*. One way to do this is to use the
mean or median of Y; ;4.

Sample from H (By|Ba,Q,7,Y™*). Write the VAR model as

P P
Vi GOy S0 (et Y B Ve, | =G Y" 80 2+ Y BosViy |+
j=1 j=1
or B B
Y, = B1 Xy + v
where YV; = Y; — G (7,Y*, S}) (02 + Zle ﬁQJYt_J’)
and Xy = {G (7, Y*,5),G (7, Y*, ;) (Yi—1) ., G (7, Y*,S;) (Y;—;)}. This is a standard VAR model and
the conditional posterior is as described for the coefficients of the Threshold VAR above:
H (B1|B2,,7,Y") "N(vec(B]),Q2 ® (X;”X;‘)_l) (3.19)

where X; = [X;; Xp| with Yp, Xp the dummy observations that define the prior for the left and the right
hand side of the VAR respectively.
Sample from H (Bg|B1,Q,7v,Y™*).

We proceed exactly as in step 2 by defining ¥; = Y; — (1 — G (7, Y*,S;)) (01 + Zle 51’th,j))

3. THE RANDOM WALK METROPOLIS HASTINGS ALGORITHM 151

(4) Sample from H (B, B1,€,7,Y™). As in the previous example this conditional posterior is ITW(S*,T™)
where S* = (y; — B1X}) (y: — B1X}) with y; = [Y;; Y.
(5) Sample from H (v,Y™*| By, Ba,)). We use a random walk MH step to sample = = v, Y*. Draw a new value
from Zmev = =l 4 ¢ ¢”N(0,%). The acceptance probability is
F V1B, 0, 200) (=)
where F' (Y|B;, 2, E"¢") is the likelihood of the VAR:

T
T —1 !/ —1
(5) log [~ - 0.5; [(ve)" Q7" (vy)]
where v; are the VAR residuals. Then draw u U(0,1). If u < o accept Y,
can be tuned to ensure an acceptance rate between 20% and 40%.
(6) Repeat 2 to 5 until convergence.

else retain Y;,. The scale X

The code for this model is shown in figures 16 to 18. Here we use artificial data generated from a STVAR to
test this algorithm. The Gibbs sampler begins on line 88. The transition function G (v, Y™*,S;) = m is
evaluated on line 94. The VAR coefficients in the two regimes are drawn on lines 101 to 127 and VAR error covariance
is drawn 129 to 131. The MH step to draw = = ,Y ™ begins on line 137 with a draw from the candidate density.
Lines 139 to 140 calculate the posterior at the new and old draw of = using the function getvarpostx. Finally the
acceptance probability is calculated on line 142.

3.6. The random walk metropolis algorithm for structural VAR model. Consider an SVAR model
Yy = BX; + v

where X; = {¢,Y;_1,Yi_0,...,Y;_p} and var (v)) = Q = A=A~ Here A~ is the contemporaneous impact matrix.
In Chapter 2, we proceeded via Gibbs sampling where the draws of 2 were used to calculate the contemporaneous
impact matrix. As discussed in Sims and Zha (1999), when the model is over identified (the number of distinct
elements in exceed the number of free parameters in A~1), this naive approach of obtaining A indirectly from the
draws of €2 may fail to provide a good approximation of the posterior of A. Instead, the correct approach is to
sample from the posterior of A directly. Sims and Zha (1999) shows that the posterior distribution is given as:

H(A) det (A)T X exp (—O.5tmce (AS(B)A')) (3.20)

A A / A A
where S(B) = (Y} — BXt) (Yt — BXt) with B the OLS estimates of the VAR coefficients. Conditional on A the
distribution of B is normal and (assuming a flat prior) given by:
H(B|A)"N(vec(B), 2 ® (X, X;) ")

Therefore an MCMC algorithm can proceed via sampling from H(A) and H(B|A). As H(A) is an unknown density,
we use a random walk MH step to sample from it. The steps are as follows:

(1) Maximise log H(A) with respect to « the free elements of A to obtain the estimates at the posterior mode
oML and the covariance VME.

(2) Draw from P (A): Draw a candidate draw ™ = a°4 4 ¢, e N (0, (VML)l/2 x ¢). Compute the acceptance

% and accept the draw if a > U(0, 1).

(3) Draw from H(B|A) : Calculate Q = A~'A~"" where A is based on the accepted draw of « in the previous
step. Draw from N (vec(B),Q® (X[{X;)™!).

(4) Repeat steps 2 and 3 until convergence. Adjust the scaling ¢ to ensure that the acceptance rate is between
20% and 40%.

One important issue regarding step 2 needs to be highlighted. The sign of the columns of A can be switched
without changing the likelihood function. Therefore a normalisation is required. A simple way to proceed is to switch
the sign of the elements of a column if the corresponding diagonal element is negative. Note, however, that Waggoner
and Zha (1997) show that this normalisation method may inflate the standard errors of the impulse responses and
suggest an alternative approach to normalisation that preserves the shape of the likelihood.

To demonstrate the algorithm we generate data from a 3 variable VAR with the following A matrix:

probability a =

x 0 0
A= z z 0
0 =z =z

where x denotes parameters that need to be estimated. This model is overidentified with 5 parameters and 6 distinct
elements in 2.
The code for this example is shown in figures 19 and 20. This example is based on artificial data generated from

the SVAR model on lines 1 to 17. The data is used to estimate the VAR coefficients and the sum of squares S (B)

mytemp

@ -1 o0 N

W W WWNNNNNNDNNNRR R 2 P 2R e 2o
k= WP O Wwo-1o U EwlNE o wo-1a & wleE o

36
37
38
39
40
41
42
43
44
45
46
va
47
48
49
50
51
52
83
54
85
56
57
58

5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

clear;

addpath (' functionsSTARVAR') ;
bxl=[0.7 -0.1 0; -0.1 0.7 0 1;
bx2=[0.1 -0.1 -3; -0.1 0.1 -10];
sigmax=[0.5 -0.1;

-0.1 1]

T=500;
dataout=zeros (T, 2);

TAR=-1;

GEM=3;

for i=2:T

Ystar (1)=dataout (i-1,1):
LSTAR(1)=1./ (l+exp(-GAM.* (Ystar(i)-TAR)));
el=1-LSTAR(1);

e2=LSTAR(i);
dataout (i, :)=el.* (([dataout (1i-1,:) 1]*bxl"))+...
e2.*(([dataout(i-1,:) 1]1*bx2"))+randn(l,2)*chol (sigmax);
end
data=dataout;
L=1;
lamdaP=1;

taubP=10*1lamdaP;

epsilonP=1/1000;

tarvar=1; %$threshold wvariable

tard=1; 2delay

gammean=1; %prior mean Gamma
gamvariance=10; %prior variance Gamma
tarvariance=10; %prior variance Threshold
REPS=20000;

BURN=15000;

MaxTrys=1000;

Y=data;

N=cols(Y);

nerit={N*L+1);

gtake lags

X=[]:

for j=1:L

X=[X lag0 (data,j)]:
end

X=[X ones(rows(X),1)]:

gcompute threshold variable
Ystar=lag0(Y(:,tarvar),tard(1l));

Y=Y (max ([L,tard(1)])+1l:zend, :);

X=X (max ([L,tard(1)])+l:zend, :);
Ystar=Ystar (max([L,tard(1)])+l:end,:);

p(y)~1'(¥0.v0)

tarmean=mean (Ystar) ; %mean of the prior on the threshold is the mean value of the threshold

riable

¢ Additional priors for VAR coefficients

muP=mean (Y) *;

sigmaP=[];

deltabP=[];

e0=[1;

for i=1:N
vtemp=Y{:,1);
xtemp=[lag0 (ytemp,1l) ones(rows(ytemp),1)]:
vtemp=ytemp(2:end, :);
xtemp=xtemp(2:end, z);
btemp=xtemp\ytemp;
stemp=ytemp-xtemp*btenp;

mytemp.html[11/06/2017 16:39:39]

via OLS (Lines 28 to 31). The log posterior (T'— K)Indet (A) — 0.5trace (AS(B)A'

FIGURE 16. Code for the STVAR model

) is then maximised. Note that

given a starting value of the 5 free parameters, the log posterior is evaluated by the function getML which returns the
negative of this function. This negative posterior is then minimised first via Simplex on lines 41 using 500 iterations
in the Matlab function fminsearch. This refines the starting values to be input into the main minimisation routine
CSMINWEL which was introduced above. The values of « at the mode of the log posterior (minimum of minus log
posterior) are given Theta2 and the covariance by hess. The former is used as the initial values in the metropolis step
while the latter is used to calibrate the variance of the candidate distribution. The MCMC algorithm begins on line
58. Line 60 draws « from the candidate density. Lines 63 and 64 evaluate the posterior at the new and old draws
with the acceptance probability calculated on line 66. The draw of A is normalised 75 to 77. The commented lines
78 to 80 show the normalisation rule proposed in Waggoner and Zha (2003). Finally, the VAR coefficients are drawn

4. THE INDEPENDENCE METROPOLIS HASTINGS ALGORITHM 153

mytemp
59 stemp=etemp'*etemp/rows (ytemp) ;
60 if abs(btemp(l))>1
6l btemp (1)=1;
62 end
63 deltaP=[deltaP;btemp(l)];
64 sigmaP=[sigmaP;stemp] ;
05 e0=[e0 etemp];
66 end
67 %dummy data to implement priors see http://ideas.repec.org/p/ecb/echwps/20080966.html
68 [yd,xd] = create dummies(lamdaP,tauP,deltaP,epsilonP,L, muP,sigmaP, N);

69 T=rows(Y);

70 YO=[Y;yd]l;

71 X0=[X;xd]r

72

73 sigmal=eye (N); %starting value for sigma

74

75 betal=vec (X0\Y0) ;

76 betall=betal;

77 betal2=betal;

78 betaZ=betal2;

79 tar=tarmean; %initial value of the threshold Set an lmtial Value for Y*
80 gam=gammean; %initial value of smoothness parameter

81 paramold=[tar;gam]; &starting value for MH step

82 paramvar=eye (2) .*0.001; %diag(abs(paramold)).*2; %scaling for MH step
83

84

85 naccept=0;

86 igibbs=1;

87 jgibbs=0;

88 while Jjgibbs<REPS-BURN

89

90

91

92 %step 1: Seperate into two regimes

93 %$evaluate LSTAR function 1

94 LSTAR=1./ (l+exp(-gam.* (Ystar-tar))); (;(jl,jﬁ*,é;t) =S]________g__;;__
95 el=(1-LSTAR) ; +exp(-y(Si-1*))
96 e2=LSTAR;

97 X1=X.*repmat (el,1,cols (X))

98 X2=X.*repmat (e2,1,cols (X))

99

100 gstep 2 Sample Coefficients and variance regime 1

101 Ystarx=Y-X2*reshape (beta2, N*L+1,N); ¥, — Gy, ", 5 (c? +£‘r;"_| p?‘}fh) - Gy, F L850 (.,»t +Ei| F4,5m j +¥,
102 YO0=[Ystarx;yd];

103 X0=[X1;xd];

104 $conditional mean of the VAR coefficients

105 mstarl=vec (X0\Y0); %ols on the appended data

106 xx=X0"*X0;

107 ixxl=xx\eye (cols (xx));

108 [betal,PROBLEM1] = getcoef(mstarl,sigmal,ixzxl,MaxTrys,N,L);

109 if PROBLEM1

110 betal=betall;

111 else

112 betall=betal;

113 end

114 gstep 3 Sample Coefficients and variance in regime 2

115 Ystarz=Y-Xl*reshape (betal , N*L+1,N); T F
118 F=Yr-(1-Gy 1. 5)(c +Zj=1 }31,;1/}—;)

Y0=[Ystarx;yd]:
117 X0=[X2;xd];
118 $conditional mean of the VAR coefficients

mytemp.html[11/06/2017 16:39:39]
FiGURE 17. Code for the STVAR model

on 83 to 85. Running the code provides a comparison of the true impulse responses and the estimated posterior
distribution.

4. The independence Metropolis Hastings algorithm
The independence MH algorithm differs from the random walk MH algorithm in that the candidate generating
density is not specified as a random walk. Therefore, the new draw of the parameters does not depend directly on
the previous draw. The candidate density is specified as
q (©G+1‘(I)G) =q (@GJrl) (41)

Note that now, in general, the formula for the acceptance probability does not simplify and is given by

154 5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

mytemp
119 mstar2=vec (X0\Y0) ; %ols on the appended data
120 xx=K0"+X0;
121 ixx2=zx\eye (cols (xx)):
122 [beta2,PROBLEM2] = getcoef(mstar2,sigmal,ixx2,MaxTrys,N,L);
123 if PROBLEMZ2
124 betaZ=pbetal2;
125 else
126 betal2=betal;
127 end
128 % draw covariance
129 e=Y0-X0*reshape (beta2 ,N*L+1,N) ;
130 scale=e'*e;
131 sigmal=iwpQ (rows (Y0),inv(scale)):
132
133
134
135 gstep 4 Sample Threshold via a Random Walk Metropolis Step
o _ . LEnew — g0 4 g e N(O, Z)
paramnew=paramold+ (randn(1l,2)*chol (paramvar))"; » »
138 %compute conditional posterior at the old and new draw
139

postnew=getvarpostx (Y, X,betal,beta2,sigmal, L, [paramnew] , tarmean, tarvariance, gammean, gamvariance, Ystar, ncr:

140

postold=getvarpostx (Y, X,betal,beta2,sigmal, L, [paramold], tarmean, tarvariance, gammean, gamvariance, Ystar,ncr:

FNE QB)p (B™")

141 —
142 accept=exp (postnew-postold) ;) :Gﬁj (: ﬂirf)
143 %end . : F(P‘B“Q’H P s
144 u=rand (1,1);

145 if u<accept

146 paramold=paramnew;

147 naccept=naccept+l;

148 end

149 tar=paramold(1);

150 gam=paramold (2) ;

151 arate=naccept/igibbs;

152

153 if igibbs>100 && igibbs<1000

154 if arate<0.2

155 paramvar=paramvar*0.99999;

156 elseif arate>0.5

157 paramvar=paramvar*1l.01;

158 end

158 end

160

161

162 % Display progress:

163

164 disp(sprintf (" Replication %s of %s acceptance %s. ',
nun2str (igibbs), num2str (REPS) ,num2str (arate)))

165

166

167

168

169 if igibbs>BURN && ~PROBLEM1 &&~ PROBLEMZ2

170 Jgibbs=jgibbs+1;

171

172 bsavel (Jgibbs, :)=betal';
173 bsavel2 (jgibbs, :)=betal';
174 sigmasl(jgibbs, :, :)=sigmal;

mytemp.html[11/06/2017 16:39:39]

FI1GUure 18. Code for the STVAR model

T (®G+1) /(] (CI)G+1|¢’G)
™ (2Y) /q (29|02 H)

« = min ,1 (4.2)
The independence MH algorithm is therefore more general than the random walk MH algorithm. Unlike the
random walk MH algorithm, the candidate generating density in the independence MH algorithm has to be tailored
to the particular problem at hand. We examine an application to stochastic volatility models below.
Apart from the change in the form of the candidate generating density the steps of the algorithm remain the
same:

Step 1 Set starting values for the model parameters.
Step 2 Draw a candidate value of the parameters ®“*!from the candidate generating density ¢ (<I>G+1)

4. THE INDEPENDENCE METROPOLIS HASTINGS ALGORITHM 15

(S

mytemp

clear;
addpath ('functions', "sims_Optimization');

bxl=[0.7 -0.1 0.1 0; —-0.1 0.7 0.1 0; -0.1 0.1 0.7 0]; -
E1=l] Generate artificial data
20x=[0.1 0 O0;

~0.1 0.1 0; from an SVAR

0 0.5 0.1];
sigmax=inv (A0x)*inv (A0x) *;
T=500;
N=3;
10 dataout=zeros(T,N);
11 for i=2:T
12 dataout (i, :)=[dataout (i-1,:) 11*bxl'+randn(l,3)*chol (sigmax);
13 end
14 irftruel=irfsim(bxl',N,1,inv(R0Ox)",[1 0 0],21);
15 dirftrue2=irfsim(bx1',N,1,inv{(&0x) "', [0 1 0],21);
16 irftrued=irfsim(bxl',N,1,inv(E0x) ", [0 0 1],20);
17 data=dataout;
18 L=1;
19 v=datar
20 N=cols(Y);
21 nerit=(N*L+1)
22 %take lags
23 X=[1;
24 for j=1:L
25 X=[X lag0(data,j) 1:
26 end
27 X=[X ones(rows (X),1)1; Y
28 B=X\Y;
29 iXX=inv (X'"*X);
30 E=Y-X*B; & = ! 2
warn S(B) = (Y= BX;) (Y1 - BX;)
32 T=rows(X); r r I r
33 K=cols(X);
34 thetal=cnes(5,1).*0.1;
35 out=getML (thetal,SB, T, K):

@ -1 o0 N

©

true impulse responses

36 options = optimset('Disp”, 'iter', 'Diagnostics’, 'on', "LargeScale’, "off", ...
37 '"MaxFunEvals',100000, '"MaxIter',500, '"TolFun',1le-05, "TolX",1e-05);
38 3
39 8
40 & % %simplex
41 [Thetal,fval] = fminsearch(BgetML, thetal,options,SB,T,K):
42 % %sims
43 [fval,Theta2,gh,hess,itct, fcount,retcodeh] = X 0 0
csminwel ("getML', Thetal, eye(length(Thetal))*.5,[],1le-15,1000,SB,T,K);
114 4= x x 0
45 AOML=formdaO (ThetaZ) ;
46 %check all diagonal elements are positive and switch sign if not 0 x x
47 indx=find(diag (AOML)<0) ;
48 AOML(:,indx)=A0ML(:,indx)*-1;
49
50 $%3322332%%%32823MCMC Algorithm?23%2828292282523228828%3928%%%
51 REPS=30000;
52 BURN=20000;
53 thetaold—formA0 (ROML) ; a’ﬂd
54 scale=0.6;
55 P=chol (hess)*scale; L 1}2
56 naccept=0; (W) X C
57 33j=1;
58 for j=1:REPS
mytemp.html[12/06/2017 19:03:35]
F1GURE 19. Code for SVAR model
Step 3 Compute the acceptance probability
T (,:I)GJrl) /q ((DG+1/(I)G)
a = min ,1 (4.3)

™ (2F) /q (2F/@CHT)

Step 4 If u ~ U(0,1) is less than « retain ®“+1. Otherwise retain the old draw.
Step 5 Repeat steps 2 to 4 M times and base inference on the last L draws. In other words, the empirical
distribution using the last L draws is an approximation to target density.

4.1. Estimation of stochastic volatility models via the independence MH algorithm. A simple sto-
chastic volatility model for a T x 1 data series y; is given by

156 5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

mytemp
59 2draw from candidate
60 thetanew=thetaold+(randn (1, rows (thetaold))*P)"; Hnew __
- o =a
62 %acceptance probability
63 liknew=-getML(thetanew,SB,T,K):
64 likold=-getML(thetaold,SB,T,K);
65
66 accept=liknew-1likold; — H(A(amw ::I)
67 . HiA (aoid))
68 if accept>log(rand)
69 thetaold=thetanew;
70 naccept=naccept+l;
71 end
72 arate=naccept/7j;
73
74 $Normalise AD
75 AQ=formAl (thetanew) ;
76 indx=find (diag (A0)<0);

77 A0 (:,indx)=A0(:,indx)*-1;

78 2 indx=find(diag(RO\AOML)<0); %alternative normalisation used by Waggoner
79 % Zha

80 % A0 (:,indx)=A0(:,indx)*-1;

81 %draw coefficients conditicnal on A0

82

83 sigma=inv (A0)*inv (A0) ";

84 V=kron (sigma,iXX); ~
85 beta=vec (B)+ (randn(1,N* (N*1+1))*chol(V)) '; LIraw ﬁ'gmN(vgc[:B), QR (X;_X'I)_l)
86

87 disp(sprintf (" Replication %s of %s.7, .

88 num2str ([j arate]), num2str(REPS))):

89

90 if §>BURN;

91 $compute IRFs

92 irfl=irfsim(reshape (beta,N*L+1,N),N,L,inv(20)",[1 0 0],21);

93 irf2=irfsim(reshape(beta,N*L+1,N),N,L,inv(R0)", [0 1 0],21);

94 irf3=irfsim(reshape(beta,N*L+1,N),N,L,inv(A0)", [0 0 1],21);

95 outl(jj,:,:)=1irfl;
96 out2(jj,:,:)=1irf2;
97 out3(j]j,:,:)=1irf3;

98 jj=jj+l:
99 end
100 end
101

102 gplot

103 tmpl=prctile(outl, [50 16 84]1);
104 tmp2=prctile(out2, [50 16 84]1);
105 tmp3=prctile(out3, [50 16 84]);
106 figure (1)
107 for j=1:3

108 subplot (3,3,73);

109 plot (tmpl(:z,:,3) ", 'r");
110 hold on

111 plot (irftruel(:,3),'k"):
112 end

113 Jj=4;

114 for j=1:3

115 subplot(3,3,33):

116 plot (tmp2(=,:,3) ", "r'):
117 hold on

118 plot (irftrue2(:,j), k") 7

mytemp.html[12/06/2017 19:03:35]

FI1cure 20. Code for the SVAR model

Yy = epvexp(lnhy)
lllflt = lllllt__l + vy
'Ut~N(Oa g)

ald +

(4.4)

where h; is time-varying variance. Note that this is a state space model where the observation equation is non-linear
in the state variable h; and therefore the Carter and Kohn algorithm does not apply. Jacquier et al. (2004) instead
suggest applying an independence MH algorithm at each point in time to sample from the conditional distribution of
ht which is given by f (h¢|h_¢, y:) where the subscript —t denotes all other dates than t.Jacquier et al. (2004) argue
that because the transition equation of the model is a random walk, the knowledge of h;+1 and h;_; contains all

4. THE INDEPENDENCE METROPOLIS HASTINGS ALGORITHM 157

relavant information about h;. Therefore, the conditional distribution of h; can be simplified as

[(helh—y,y) = f (Relhe—1, hiv1, ye) (4.5)
Jacquier et al. (2004) show that this density has the following form
_ —y? _ — (Inhy — p)?
f (helhi—1, hugr, ye) = by *° exp (TZZ) X hy ' exp (%) (4.6)
with nh wh
po o ”1; nhi-1) (4.7)
o), = g (4.8)

.2
o

To sample from f (h¢|hi—1, hey1,9:), Jacquier et al. (2004) suggest a date by date application of the independence
MH algorithm with the candidate density defined as the second term in equation 4.6

1\ _ p—1 _(lnht_ﬂ)z
q (<I>G+) = h; “exp (T) (4.9)

That is f (ht|ht—1, he11,y¢) is a product of a normal density h;o's exp () and a log normal density h;l exp (M) .

20p,

The acceptance probability in this case is given by

. T (I)G-i-l / @G-‘rl/@G
a = min (i(@G))/q(i(IgG/QGJrl))’l) (4.10)

2 2 2
—0.5 -y -1 —(Inht new—p) -1 —(Inht new—p)
|:ht,new €xp (th,ntgw) X ht,new €xp (20, /ht,new €xXp 201,

—0.5 —y? 1 —(Inh¢ o 7/1,)2 -1 —(Inh¢ o *M)Q
[ht,old exp (#ht,om) X by g4 €XP (—zfg,lld)] /ht,old exp (—zfg,lld)
where the subscript new denotes the new draw and the subscript old denotes the old draw. Equation 4.11 simplifies
to give

o =

(4.11)

Ni i €XD (Qh_tﬂf’;w)
o= 2
ht_,glg exXp (tht:lifld)
Therefore, for each ¢ one generates a value of h; using the candidate density in equation 4.9 and then calculates
the acceptance probability using equation 4.12. Note however that this algorithm is not operational for the first and
the last date in the sample as the calculation of u = %J;IH#” requires knowledge of h;11 and hy_q.

Jacquier et al. (2004) suggest sampling the initial value of h; denoted by hy using the following procedure.
Starting with the following prior for In hg™ N (@, 5) Jacquier et al. (2004) show that the posterior for In kg is given by

(4.12)

-1 —(Inhg — Mo)2
f(holh1) = hy exp | —————— (4.13)
200
where
og
G' P—
0 oc+yg
o Inh
Ho = 00 (E-l- = 1>
o g

Therefore the algorithm starts by sampling hg from equation 4.13 and accepting the draw (as the data for this
observation yq is not defined).

Jacquier et al. (2004) suggest sampling the final value of h; (with ¢ = T)using the following modified candidate
generating density

G+1 -1 — (Inhy — M)2
q (P9t =h;lexp BT (4.14)
where
wo= Inhyq (4.15)
Onh = g

The algorithm for the stochastic volatility model consists of the following steps®:

4Note that the Jacquier et al. (2004) algorithm is a single-move algorithm— the stochastic volatility is drawn one period at a time.
This may mean that this algorithm requires a large number of draws before convergence occurs. Kim et al. (1998) develop an algorithm
to sample the entire time-series of the stochastic volatility jointly and show that this multi-move algorithm is more efficient.

158 5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

Step 1 Obtain a starting value for hy,t = 0....T as é? and set the prior fi, & (e.g i could be the log of OLS estimate
of the variance of ¢; and & could be set to a big number to reflect the uncertainty in this initial guess). Set

an inverse Gamma prior for g i.e. p(g) ~ IG (%,%) Set a starting value for g.

Step 2 Time 0 Sample the initial value of h; denoted by hg from the log normal density

—(Inhy — u0>2>

20‘()

f (holh1) = hy ' exp (

_ 2 Inh _ T
where the mean g = g (a— + =) and o¢ = —*’L5+g.

ArcoriTHM 5. To sample from the log normal density z ~ log normal (u,) sample zy from the normal density
N (p,0). Then z = exp (z0) .
p 2 Time 1 to T-1 For each date t=1 to T-1 draw a new value for h, from the candidate density (call the draw hy new)
_ —(nhy — p)?
0(@9H) =i exp (T,

(11‘1 ht+1+1n htfl)
2

where p = and o, = 4. Compute the acceptance probability

2
—0.5 -y
ht,new €Xp (2ht,nt5w)
0.5 -y \’
Ry oliq €XP (Qh ,old)

Draw v U(0,1). If u < « set hy = hy pew. Otherwise retain the old draw.
Step 2 Time T For the last time period ¢t =T compute px = In h;_; and o), = g and draw hy peq, from the candidate density

¢ (95+1) = byl exp (— (Inhy — ,u)2>

o = min

QO'h

Compute the acceptance probability

h0:5 exp (473’2)
1

t,new 2h new
—0.5 —y2 ’
ht,Ol; exp (th,old)
Draw w U(0,1). If u < a set hy = hy pey. Otherwise retain the old draw.
Step 3 Given a draw for h; compute the residuals of the transition equation vy = Inh; — In hy;_1. Draw g from the

a = min

inverse Gamma distribution with scale parameter U,L;rg“ and degrees of freedom T%l Note that this is an
example of a combination of Metropolis and Gibbs sampling algorithms.

Step 4 Repeat steps 2 and 3 M times. The last L. draws of h; and g provide an approximation to the marginal
posterior distributions.

Figures 21, 22 and 23 present the Matlab code for the stochastic volatility model applied to annual UK inflation
over the period 1914ql to 2011g4 (exampled.m). Lines 14 and 15 of the code set the prior for g. Lines 16 and 17
set the prior In hg” N (fi, &) where [is set equal to the log of the variance of the first 10 observations in the sample.
Line 23 calculates a rough starting value for h; as the square of the first difference of y;. Lines 35 and 36 calculate
oo and pg and line 38 draws hg from the log normal density. Line 41 starts a loop from period 1 to T-1. Note that
line 42 selects hyy1 as the lead value of h; using the last draw of h;. Line 47 and 48 calculate the mean and variance
of the candidate density and line 49 draws the candidiate value of h;. Line 54 calculates the acceptance probability
in logs. Lines 68 to 84 repeat this for the final observation in the sample period. Line 84 calculate the residuals of
the transition equation as vy = In h; — In h;_1. Line 85 draws g from the inverse Gamma distribution.

4. THE INDEPENDENCE METROPOLIS HASTINGS ALGORITHM

$a stochastic volatility model for UK inflation
clear

addpath (*functions');

$cad inflation data
Y=xlsread('\data\inflation.xlsx");

¥Y=((log (Y)-log(lagO(¥,4))))*100;

Y=Y (5:end, :);

T=rows (Y);

TT0=10; S%$training sample

W - o U W N
o

11 %Independence metropolis hastings algorithm for svol model

12 %$step 1 priors for g~IG(V0,T0) and initial conditions for the
stochastic

13 svolatility

P& ~ 1G(go,vo)

14 v0=0.01; $prior scale
15 T0=1; $prior degrees of freedom

16 mubar=log (std (Y (1:TTO))"2); ll

17 sigmabar=10;

18 %$remove training sample

18 Y=Y (TTO+l:end,:);

20 T=rows (Y) ;

21 %step 2 starting values for stochastic volatility and

)) - s
N —— Obtain a starting value for /;,t = 0....1 as &;

23 hlast=[hlast(1:2):hlast]+0.0001; $small number added to ensure no
value is zero

24 g=1;

25 REPS=30000;

26 BURN=25000;

27 out=[];

28 for j=1:REPS

29 %step 3 data by date metropolis hastings algorithm to draw the
stochastic

30 %$volatility

31 hnew=zeros (T+1,1);

3z i=1;

33 %$time pericd 0

i

34 hlead=hlast(i+1):;

Opg = =
35 gss = sigmabar*g/ (g + sigmabar):; $variance
36 mu = ss*(mubar/sigmabar + log(hlead)/g); S%mean

_ g (2
Ho = Oq¢ (s T2)
37 %$draw from lognormal using rmu and ss
38 h = exp(mu + (ss”.5)*randn(1l,1));
Sample the mitial value of /2, denoted by 4, from the log normal density

39 hnew(i)=h;
40 %$time pericd 1 to t-1
41 for i=2:T

ht+1

4z hlead=hlast (i+1};

F1GURE 21. Matlab code for the stochastic volatility model

160

5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

hia

43 hlag=hnew(i-1);
44 yt=Y(i-1);
45

46 %mean and variance of the proposal log normal density
U= (Inhpq+Inh,)
47 mu = (log(hlead)+log(hlag))/2; 2

o'h:§
48 ss = g/2; 2

49 %$candidate draw from lognormal

50 htrial = exp(mu + (ss™.5)*randn(l,1));

51 %acceptance probability in logs

52 1pl = -0.5*log(htrial) - (yt*2)/(2*htrial); %numerator

53 1p0 = -0.5*log(hlast(i)) - (yt"2)/(2*hlast(i)); $denominator

54 accept = min([l;exp(lpl - 1p0)]): %ensure accept<=1

0.5 1;

e 5P| 57—

> 2hgnew 1
2

>
- -
h 0.5 exp 1
Gets 2y o1

55 u = rand(1l,1);
56 1if u <= accept;

¢ = min

57 h = htrial;
58 else

59 h = hlast(i):
60 end

61 hnew(i)=h;

62 end

63 %$time pericd T
64 i=T+1;

65 yt=Y (i-1);
66 hlag=hnew(i-1);
67 %$mean and variance of the proposal density

(n/,)

68 mu = log(hlag); % only have ht-1

(0} =
69 ss = g: h é:
70 %candidate draw from lognormal
71 htrial = exp(mu + (ss”.5)*randn(l,1));
72 %acceptance probability
73 1pl = -0.5*log(htrial) - (yt®2)/(2*htrial};
74 1p0 = -0.5*log(hlast(i)) - (yt"2)/(2*hlast(i));

75 accept = min([l;exp(lpl - 1p0)]1); %ensure accept<=l1l
76 u = rand(1,1);
77 if u <= accept;

78 h = htrial;
79 else

80 h = hlast(i);
81 end

82 hnew(i)=h;
83 %step 4 draw g from the inverse Gamma distribution
84 errors=diff (log(hnew));

Draw g from the inverse Gamma distribution with scale parameter v,v; + g and degrees of freedom T + v,

85 g=IG(T0,V0,errors); %draw from the inverse Gamma distribution
B6 %step 5 update vale of H
87 hlast=hnew;

FicUure 22. Matlab code for the stochastic volatility model continued

4. THE INDEPENDENCE METROPOLIS HASTINGS ALGORITHM

88 %save

89 if J>BURN

90 out=[out hlast];

91 end

92 end

93 TT=1917.5:0.25:2011;

94 subplot(l,2,1);

85 plot (TT(l:end),Y);

96 title('"Annual CPI inflation for the UK');

97 axis tight

88 subplot(l,2,2);

99 plot (TT, [prctile(out(2:end,), [50 18 84]1)']);
100 title('Estimated stochastic volatility');

101 axis tight

102 legend('Estimated posterior median', 'lower bound', "upper
bound', "true');

Published with MATLAB® 7.9

F1cure 23. Matlab code for the stochastic volatility model continued

161

162

5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

Annual CPI inflation for the UK Estimated stochastic volatility

600 [

Estimated posterior median

lower bound “

upper bound

-15 B |

100 JJ

AR

_30k 4
I

I I I I L I I L I
1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

L S\ AV it Y
1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

F1GURE 24. Estimated stochastic volatility of UK inflation

The right panel of figure 24 plots the estimated stochastic volatility of UK inflation.
We now a consider an extended version of this stochastic volatility model for inflation. The model now assumes
a time-varying AR(1) specification for inflation with stochastic volatility in the error term. This model is given as

Ye = ¢ + biyr—1 + e/exp (Inhy) (4.16)
Letting B = {c, b} the coefficients in the regression evolve as
By =B 1 +e (4.17)
where e; ~ N(0,Q). As before, the variance of the error term h; evolves as
Inh; = Inhi_q+vs (4.18)
v N(0,9)

This model can be easily estimated by combining the Carter and Kohn algorithm with the Metropolis algorithm
described above. The steps are as follows:

Step 1

Step 2 Time 0

p 2 Time 1 to T-1

Set a inverse Wishart prior for (). The prior scale matrix can be set as Qo = k X Qs X Ty where Tj is the
length of training sample, (s is the variance covariance matrix of B obtained via OLS using the traning
sample and k is a scaling factor set to a small number. Obtain a starting value for hs,t = 0....7T as éf and
set the prior 1,5 (e.g & could be the log of OLS estimate of the variance of &; using the training sample
and & could be set to a big number to reflect the uncertainty in this initial guess). Set an inverse Gamma
prior for g i.e. p(g) ~ IG (go,vo) Set a starting value for g and Q.

Conditional on g and B; sample the initial value of h; denoted by hg from the log normal density

—(lnhy — uof)

200

I (holh1) = ho_lexp<

a9

G+g°
For each date t=1 to T-1 draw a new value for h; (conditional on g and B;) from the candidate density

(call the draw hy pew)
— (Inhy — M)2>

QO'h

where the mean p, = o9 (% + %) and og =

q (<I>G+1) = h;l exp (

(nheyitinhe—i)]
2

where p = and oj, = 4. Compute the acceptance probability (note that the residuals ¢; are
used in the expression below rather than y; as in the previous example)

_ 2

t,new
) b

o = min 0 >
—0. —£&;
ht,Old eXp (th,old

4. THE INDEPENDENCE METROPOLIS HASTINGS ALGORITHM 163

Draw v U(0,1). If u < a set hy = hy pey. Otherwise retain the old draw.
Step 2 Time T For the last time period ¢t = T' compute it = In h;_; and o), = g and draw Ay e, from the candidate density

_ —(Inhy — p 2
q ((I)G—I—l) = h; Lexp (%)

Compute the acceptance probability

—0.5 -}
ht,new exp (thi:ew) 1
—0.5 —e? ’
ht’Old €Xp (th,zm)
Draw v U(0,1). If u < a set hy = hy pew. Otherwise retain the old draw.

Step 3 Given a draw for h; compute the residuals of the transition equation v; = Inh; — In hy_1. Draw ¢ from the
v, v:+go

a = min

and degrees of freedom T£% . Note that this is an

inverse Gamma distribution with scale parameter 5

example of a combination of Metropolis and Gibbs sampling algorithms.

Step 4 Conditional on h; and @ sample B; using the Carter and Kohn algorithm as described in Chapter 3. This
algorithm remains apart from the minor difference that the variance of the error to observation equation is
different at each point in time. This is easily incorporated into the Kalman filter by selecting the appropriate
variance at each point in time.

Step 5 Sample @ from the inverse Wishart distribution (conditional on B;) with scale matrix (B; — Bt,l)/ (By — Bi—1)+
Qo and degrees of freedom Ty + T

Step 6 Repeat steps 2 and 5 M times. The last L draws of h;, g, By and @) provide an approximation to the
marginal posterior distributions.

164 5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

1 %a time-varying parameter model with stochastic volatility model
2 clear

3 addpath ('functions'):;

4 %Load inflation data

5 Y=xlsread('\data\inflation.xlsx");

6 Y=((log(Y)-log(lagO(Y,4))))*100;

7 Y=Y(5:end, :);

8 T=rows(Y);

9 TT0=10; %$training sample

10 X=[lag0O(Y, 1) ones(T,1)]:;

11 Y=Y (2:end);

12 X=X (2:end, :);

13 %$Independence metropolis hastings algorithm for svol model

14 $step 1 priors for g~IG(V0,T0) and initial conditions for the
stochastic

15 gvolatility

p(g) ~ 1G(go,vo)

1le V0=0.01; $prior scale

17 TO=1; $prior degrees of freedom
18 Y0=Y (1:TTO);

19 X0=X(1:TTO, :);

20 BO=XO\YO;

21 EO0=Y0-X0*BO;

22 S0=(EQO"*E0)/TO;

23 VV0=50*inv (X0'*X0);

24 mubar=log(std(E0)"2); lt
) o
25 sigmabar=10;
26 %$step 2 set starting values for time varying coefficient beta
27 betal=R0; $state variable Db[t=1/t=-1
28 p00=vv0; $variance of state variable p[t-1/t-1]
29 %step 3 set prior for Q

kXQolsXTO

30 Q0= (VVO*TO)*le-4;

31 09=Q0; %intial values

32 %$remove training sample

33 Y=Y (TTO+1l:end, :);

34 X=X (TTO+1l:end,:);

35 T=rows (Y);

36 %$step 4 starting values for stochastic volatility and

37 hlast=diff(Y)."2;

38 hlast=[hlast(1:2);hlast]+0.0001; $small number added to ensure no
value 1s zero

39 errors=diff(Y):

40 errors=[errors(l);errors]; $rough estimate for the errors of
observation equation

41 g=1;

42 REPS=50000;

43 BURN=45000;

44 out=1[];

45 outl=[];

46 out2=[];

47 for j=1:REPS

48 %step 5 data by date metropolis hastings algorithm to draw the
stochastic

49 %volatility

50 hnew=zeros (T+1,1);

FIGUrRE 25. Matlab code for the time-varying parameter AR model with stochastic volatility

The matlab code for this example (example5.m) is shown in figures 25, 26 and 27. Lines 18 to 23 of the
code estimate an AR(1) model via OLS on a training sample of 10 observations. Line 24 sets i as the log of the
error variance using this OLS residuals. Lines 27 and 28 set the initial value of the time varying coefficients and
the associated variance as the OLS estimates. Line 30 sets the prior scale matrix)y using the OLS estimate of the
coefficient covariance. Lines 37 to 40 set an initial value for h; and €; and line 47 starts the algorithm. Lines 48 to 101
sample h; using the independence MH step described in the previous example. The only change is that the residuals

2 2
from the observation equation €; are used to evaluate the densities h; 05 exp (ﬁ) and h,_ 0% exp (ﬁ:) when
calculating the acceptance probability. Line 104 samples g from the inverse Gamma distribution. Line 108 samples

4. THE INDEPENDENCE METROPOLIS HASTINGS ALGORITHM 165

51 i=1;
52 %time pericd 0O
53 hlead=hlast(i+l):;

54 gss = sigmabar*g/ (g + sigmabar); $variance

55 mu = ss*(mubar/sigmabar + log(hlead)/g); %mean
56 %draw from lognormal using rmu and ss

57 h = exp(mu + (ss”.5)*randn(1,1));

58 hnew(i)=h;
59 %$time peried 1 to t-1
60 for i=2:T

6l hlead=hlast (i+1});

62 hlag=hnew(i-1):

63 yt=errcrs(i-1); %note change

note that the residuals & are used in the expression below rather than y; as in the previous example
G4

65 %$mean and variance of the proposal log normal density

66 mu = (log(hlead)+log(hlag))/2;

67 ss = g/2;
68 %candidate draw from lognormal

69 htrial = exp(mu + (ss”.5)*randn(l,1));

70 %$acceptance probability in logs

71 1pl = -0.5*log(htrial) - (yt?2)/(2*htrial); S%numerator

72 1p0 = -0.5*log(hlast(i)) - (yt"2)/(2*hlast(i)); $denominator

73 accept = min([l;exp(lpl - 1p0)1); %ensure accept<=1
74 u = rand(1l,1);

75 if u <= accept;

TG h = htrial;

77 else

78 h = hlast(i);

79 end

80 hnew (i)=h;

81 end

82 %$time pericd T

83 1=T+1;

B4 yt=errors(i-1);

note that the residuals g; are used in the expression below rather than y; as in the previous example
85 hlag=hnew(i-1);

86 %mean and variance of the proposal density

87 mu = log(hlag); % only have ht-1

88 ss = g;

89 %candidate draw from lognormal

90 htrial = exp(mu + (ss”.5)*randn{l,1));

91 %$acceptance probability

92 1pl = -0.5*log(htrial) - (yt*2)/(2*htrial);

93 1p0 = -0.5*log(hlast(i)) - (yt"2)/(2*hlast(i));

94 accept = min([l;exp(lpl - 1p0)]1); %¥ensure accept<=1
95 u = rand(l,1);
96 if u <= accept;

97 h = htrial;
98 else

99 h = hlast(1i);
100 end

101 hnew(i)=h;

102 %step 6 draw g from the inverse Gamma distribution

103 gerrors=diff (log(hnew)) ;

104 g=IG(T0,V0,gerrors); %draw from the inverse Gamma distribution
105 %step 7 update vale of H

106 hlast=hnew;

107 %step 8 draw the time varying coefficients using CARTER and KOHN
algorithm

FIGURE 26. Matlab code for the time-varying parameter AR model with stochastic volatility continued

the time-varying coefficients using the Carter Kohn algorithm. For simplicity, the code for this algorithm is moved
into a seperate function carterkohnl.m saved in the functions folder. This code is identical to the examples discussed
in the previous chapter apart from the minor difference that the value of the variance of the errors of the observation
equation at time ¢ is set to hy. See line 18 in carterkohnl.m. Note that this function also returns the updated value of
the error term ;. The inputs to this function are as follows: (1) the initial state Byjo (2) Variance of the initial state
(3) the time-varying variance of shock to the observation equation h: (4) @ (5) Y; the dependent variable and (6) X;
the independent variables. Conditional on a value for B; line 112 samples @ from the inverse Wishart distribution.
Figure 28 shows the estimated stochastic volatility and the time-varying coeflicients.

166 5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

Conditional on /; and Q sample B, using the Carter and Kohn algorithm as described in Chapter 3
108 [beta,errors]=carterkchnl (betal',p00,hlast,Q,Y,X);

109 %$step 9 draw Q

110 errorsg=diff (beta);

111 scaleQ=(errorsqg'*errorsqg)+Q0;

112 Q=iwpQ (T+TTO, inv (scaleQ));

Sample O from the inverse Wishart distribution (conditional on B;)

113 %save

114 if 3>BURN

115 out=[cut hlast]:

116 outl=[outl beta(:,1)]
117 outZ2=[out2 beta(:,2)]
118 end

119 end

120 TT=1917.75:0.25:2011;
121 subplot(2,2,1):

122 plot(TT, [prctile(out(2:end, :) "', [50 18 84])"])

123 legend('Estimated posterior median', 'lower bcund', 'upper bound');
124 title('Stochastic Volatility'):

125 axis tight

126 subplot(2,2,2);

127 plot(TT, [prctile(outl (l:end,:) ", [50 18 84])'])

128 legend('Estimated posterior median', 'lower bcund', 'upper bound');
129 title('Time-Varying AR(1l) Coefficient');

130 axis tight

131 subplot(2,2,3):

132 plot(TT, [prctile(out2(l:end,:) ", [50 18 84]1)' 1)

133 legend('Estimated posterior median','lower bound', 'upper bound');
124 title('Time-Varying constant');

135 axis tight

136 subplot(2,2,4);

137 plot(TT, [pretile({(out2(l:end,)./ (l-outl(l:end,:))) ", [50 18 84])' Y
]

138 legend('Estimated posterior median', 'lower bound', "upper bound');
139 title('Long Run Mean of Inflation ¢ {t}/(1-b{t})'):

140 axis tight

;
;

Published with MATLAB® 7.9

FI1GURE 27. Matlab code for the time-varying parameter AR model with stochastic volatility continued

5. A VAR with time-varying coefficients and stochastic volatility

We re-examine an extended version of the time-varying parameter VAR model shown in the previous chapter.
The extension involves allowing the variance covariance matrix of the error terms to be time-varying. This model
has been used in several recent studies (see for e.g. Primiceri (2005)) and is especially suited to examining the
time-varying transmission of structural shocks to the economy.

5. A VAR WITH TIME-VARYING COEFFICIENTS AND STOCHASTIC VOLATILITY 167

Stochastic Volatility Time-Varying AR(1) Coefficient

Estimated posterior median
lower bound
upper bound

A 4 = 0.87 =
1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Time-Varying constant Long Run Mean of Inflation c/(1-b)

08

-01p

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

FiGURE 28. Estimates from the time-varying AR model with stochastic volatility

We consider the following VAR model with time-varying parameters

P
i = o+ ZBj,tY;t—j + vy, VAR (vi) = Ry (5.1)
=1
Bt = {CtaBl,t'-'-BP,t}

By = Biite,VAR(er) =Q
The covariance matrix of the error term v; i.e. R; has time-varying elements. For simplicity most studies consider
the following structure for Ry
Rt = A;lHtA;ll (52)
where A; is a lower triangular matrix with elements a;;; and H; is a diagonal matrix with diagonal elements h; ;.
For example for a three variable VAR

1 0 O hig O 0
Ay=| awpe 1 0 |,H=| 0 hy 0
a13,; a23; 1 0 0 hs:
where
aiji = aij i1 + Vi, VAR(V;) = D
and

In hi,t =In hi,tfl + Zit, VAR(ZLt) = g;
for 4 = 1..3. Therefore, this model has two sets of time varying ‘coefficients’ 5, and a;;; and a stochastic volatility
model for the diagonal elements h;¢. As in the previous example, this VAR model can be estimated by combining the
Carter and Kohn algorithm to draw 3, and a;;; with the independence MH algorithm for the stochastic volatility.
Before we describe the algorithm, it is worth noting the following relationship

Atvt = &t (53)
where VAR (g;) = H;. For a three variable VAR this relationship implies the following set of equations
1 0 0 (R €1t
az¢ 10 v | = | ez (5.4)
a1z a3 1 U3¢ €3,
or expanding
Vig = €1t (5.5)
V2t = —Q12:4V1¢ tE24¢

V3t = —Q133V1t — A23,tV2¢ + €3¢

168 5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

where VAR (e24) = hoy and VAR (e3,) = hs; and
a2t = a12¢—1 + Vie, VAR(Viy) = Dy (5.6)

aist a13t—1 Var Var
’ = ’ VAR =D 5.7
< a23t > < a23,t—1 >+ < Vi)7 (< Vst)> 2 (5.7)

Therefore, a;;; are time varying coefficients on regressions involving the VAR residuals and can be sampled using
the method described in the previous example. The Gibbs and MH algorithm for estimating this three variable
time-varying VAR model consists of the following steps

Step la Set a prior for @ and starting values for the Kalman filter. The prior for @ is inverse Wishart p (Q) ~
IW(Qo,Tp). Note that this prior is quite crucial as it influences the amount of time-variation allowed for in
the VAR model. In other words, a large value for the scale matrix ()o would imply more fluctuation in 3.
This prior is typically set using a training sample. The first T observations of the sample are used to estimate
a standard fixed coefficient VAR via OLS such that 8, = (X{,Xot) " (X4, Yo:) with a coefficient covariance

matrix given by poo = X ® (X(’)tXOt)fl where Xo; = {Yor—1,..Yor—p, 1}, Xo = (YOt_XOtﬁ:,‘EU)/_(;‘”_XO‘BO)
and the subscript 0 denotes the fact that this is the training sample. The scale matrix)y is set equal to
Pojo X To x T where 7 is a scaling factor chosen by the researcher. Some studies set 7 = 3.510~* i.e. a small
number to reflect the fact that the training sample in typically short and the resulting estimates of pgjo
maybe imprecise. Note that one can control the apriori amount of time-variation in the model by varying
7. Set a starting value for). The initial state is set equal to 3y = vec(By)" and the intial state covariance
is given by pojo-

Step 1b Set the prior for Dy and Dy. The prior for D; is inverse Gamma p(D1) ~ IG (D19,Tp) and the prior
for Dy is inverse Wishart p (Dg) ~ IW (Dgg,Tp). Benati and Mumtaz (2006) set D1p = 0.001 and Dgy =

0.001 0

(0 0.001
to 1. The initial values for a;;; (i.e. the initial state a;; ojo) are the non-zero elements of C0 with the variance
of the initial state set equal to abs(a;;) x 10 (as in Benati and Mumtaz (2006)). Set a starting value for

.Let C = Z(l)/ % and let CO denote the inverse of the matrix C' with the diagonal normalised

Qjjt-

Step 1c Obtain a starting value for h;+,t = 0....T and i = 1..3 as 0% and set the prior fi;,5. f; can be set equal to
the log of the ith diagonal element of ¥y and & to a large number. Set an inverse Gamma prior for g; i.e.
p(gi) ~ IG (go,v0). Set a starting value for g;.

Step 2 Conditional on A;, H; and @ draw [, using the Carter and Kohn algorithm. The algorithm exactly as
described for the time-varying VAR without stochastic volatility in Chapter 3 with the difference that the
variance of vy changes at each point in time and this needs to be taken into account when running the
Kalman filter.

Step 3 Using the draw for g, calculate the residuals of the transition equation 5, — 5,_; = e; and sample @ from
the inverse Wishart distribution using the scale matrix eje; + Qo and degrees of freedom T + Tp.

Step 4 Draw a;;; the elements of A; using the Carter and Kohn algorithm (conditional on 8,, H;, D1 and D5). The
state space formulation for aja; is

vy = —a124V1,t+E24, VAR (e21) = hoy
aigy = a1+ Vi, VAR(Vi) = Dy
The state space formulation for ai3; and ags+ is

Usp = —13U1, — 23,2t + €3¢, VAR (e34) = h3y

a1t a3 t—1 Var Var
' = ’ + ,VAR =D
(a23.t > (a23,t—1 > < Vst) (< Vst)) ?
Note that these two formulations are just time-varying regressions in the residuals and the Carter and Kohn

algorithm is applied to each seperately to draw ai2,4, @13+ and as3 ;.

Step 5. Conditional on a draw for ais ¢, a13,+ and as3; calculate the residuals Vi¢, Vo and Vs, Draw D; from the

. . . VI, Vi+D
inverse Gamma distribution with scale parameter %‘F” and degrees of freedom T‘;TO. Draw Dy from

the inverse Wishart distribution with scale matrix V3, Vs, + D2 o and degrees of freedom T + Tp.

€1t
Step 6 Using the draw of A; from step 4 calculate e; = A;v; where e, = | €2+ |. Note that e, are contemporane-
€3t
ously uncorrelated. We can therefore draw h;; for ¢ = 1..3 separately by simply applying the independence
MH algorithm described above for each &; (conditional on a draw for g;).

Step 7 Conditional on a draw for h; ; for i = 1..3 draw g; from the inverse Gamma distribution with scale parameter
(Inh;t—Inh;—1) (Inh;—Inh; 1—1)+go T+vg
=,

5 and degrees of freedom
Step 8 Repeat steps 2 and 7 M times. The last L draws provide an approximation to the marginal posterior
distributions of the model parameters.

5. A VAR WITH TIME-VARYING COEFFICIENTS AND STOCHASTIC VOLATILITY 169

1 clear

2 addpath (*functions'):

3 % a TVP-VAR with stochastic volatility using dlog(GDP) dlog(CPI) and R
for the US 1962 2004

4 %$load data

5 data=xlsread('\data\usdata.xls')/100;

6 N=size(data,2);

7 L=2; gnumber of lags in the VAR

8 Y=data;

9 X=[lagO(Y,1l) lag0(Y,2) ones(size(Y,1),1) 1;:

10 Y=Y (3:end, :);

11 X=X (3:end, :);

12 %$step 1 set starting values and priors using a pre-sample of 10 years
13 T0=40;

14 y0=Y (1:T0, :);

15 x0=X(1:TO, :);

16 b0=x0\yO;

17 e0=y0-x0*b0;

18 sigmalO=(e0'*e0)/T0;

19 VO=kron(sigma0, inv (x0"'*x0)) ;

20 %priors for the variance of the transition eguation

The scale matrix (1s set equal to poo x To x T

21 QO0=V0*T0*3.5e-04; $%$prior for the variance of the transition equation

error
-1
22 PO0O=VO; pO\O B ZO ® (XIOtXOI) % variance of

the intial state vector variance of state variable p[t-1/t-1]

_ !
23 betal=vec (k0)'; [BOV) - 1430([30) $ intial state vector

$state variable b[t-1/t-1]

24 %priors and starting values for aij

25 CO=chol (sigma0) ;

26 C0=CO./repmat (diag(C0),1,N);

let CO denote the inverse of the matrix C with the diagonal normalised to 1
27 CO=inv (CO) ';

a0

28 al0=Cc0(2,1); $intial state vector
29 a20=C0(3,1:2); %intial state vector second equation

the variance of the initial state set equal to abs(ay) x 10

30 palO=abs(al0)*10; $variance of the state vector
31 pa20=diag(a20)*10; %variance of the state vector

0.001 0
0 0.001

32 D10=10"(-3); %prior scale matrix for D1

33 D20=10"(-3)*eye (2); %prior scale matrix for D2

34 %remove intial Sample

35 Y=Y (TO+1l:end, :);

36 X=X (TO+1l:end, :);

37 T=rows (X);

38 %priors and starting values for the stochastic vol
Obtain a starting value for /2;;,t =0....Tandi = 1..3 as f},.z,

D] = 0.001 and Dz =

FI1GURE 29. Matlab code for the time-varying VAR with stochastic volatility

The matlab code for estimating this model (example6.m) is shown in figures 29, 30, 31 and 32. We consider a
time-varying VAR model with two lags using US data on GDP growth, CPI inflation and the Federal Funds rate over
the period 1954Q3 to 2010Q2 in this code. Lines 25 to 27 set the initial values for the elements of A; by calculating
the matrix C'0. Lines 30 amd 31 set the variance around these initial values. Lines 32 and 33 set the prior scale
matrices Do and Dsyg. Lines 38 to 45 set the priors and starting values for the stochastic volatility models for the
transformed VAR residuals ¢;. Lines 59 to 112 contain the Carter and Kohn algorithm to sample the VAR coefficients
B;. The only change relative to the example in chapter 3 is on lines 69 to 72. Line 70 using the function chofac.m
to reshape the value of a;;,; at time ¢ into a lower triangular matrix. Line 72 calculates the VAR error covariance

170 5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

39 hlast=(diff(Y).”2)+0.0001;

40 hlast=[hlast(1:2,:):hlast]; ¢rough intial guess for svol
41 g=ones(3,1); %rough guess for the variance of the transition
equation

42 g0=0.01"2; $%$scale parameter for inverse gamma

43 TgO0=1;

44 mubar=log(diag(sigma0));

45 sigmabar=10;

46 %initialise parameters

47 0=00;

48 D1=D10;

49 D2=D20;

50 al=repmat(all,T,1);

51 a2=repmat (a20,T,1);

52 %Gibbs sampling algorithm Step 2

53 reps=100000;

54 burn=99000;

55 mm=1;
56 for m=l:reps
57T m

58 %%Step 2a Set up matrices for the Kalman Filter
59 ns=cols (betal);
60 F=eye(ns);

61 mu=0;

62 beta tt=[]; $will hold the filtered state wvariable
63 ptt=zeros(T,ns,ns); $ will hold its variance

64 betall=betal;

65 pll=P0O0

;
66 % $%%%%%%%%%%Step 2b run Kalman Filter

68 x=kron (eye (N),X (i, :));
69 a=[al(i) az2(i,:)]:
70 A=chofac(N,a');
71 H=diag(hlast(i+1,:));
= —1/
72 R=i ; 90 R: = AtlHtAtl
=inv (A)*H*inv (A)";
73 $Prediction
74 betalO=mu+betall*F"';
75 plO=F*pll*F'+Q;
76 yvhat=(x*(betall)"')"';
77 eta=Y(i,:)-vhat;
78 feta=(x*pl0o*x')+R;
79 %updating
80 K=(plO*x')*inv (feta);
81 betall=(betalO'+K*eta')';
82 pll=plO0-K*(x*pl0);
83 ptt(i,:,:)=pll;
84 beta tt=[beta tt;betall];
85 end
86 %%%%%%%%%%%end
Filter?%%%%%%%%%%%%%%%2%%%%%3%%%%%2%2%%%%2%%%3%2%2%%%%%%%%%%%%
87 %step 2c Backward recursion to calculate the mean and variance of the
distribution of the state
88 %vector
89 chck=-1;
90 while chck<0
91 betaZ2 = zeros(T,ns); $this will hold the draw of the state variable
92 wa=randn(T,ns):;
93 error=zeros(T,N);
94 roots=zeros(T,1);
95 1=T; gperiod t

Ficure 30. Matlab code for the time-varying VAR with stochastic volatility

matrix for that time period and this is used in Kalman filter equations. Line 116 samples () from the inverse Wishart
distribution. Line 121 uses the Carter and Kohn algorithm to sample ai2; (where for simplicity the code for the
algorithm is in the function carterkohnl.m). Line 122 samples a13; and ag3, using the same function. Lines 124
and 125 sample D; from the inverse Gamma distribution. Lines 127 and 128 sample Dy from the inverse Wishart
distribution. Lines 131 to 136 calculate e; = As;v;. Lines 138 to 142 use the independence MH algorithm to draw
hi+,© = 1..3 using these ;. The code for the algorithm is identical to the two previous examples but is included in
the function getsvol.m for simplicity. This function takes in the following inputs (1) the previous draw of h;; (2) g;
(3) it (4) & (5) &, and returns a draw for h; ;. Lines 145 to 148 draw g; from the inverse Gamma distribution.

6. CONVERGENCE OF THE MH ALGORITHM 171

96 pO0=squeeze(ptt(i,:,:));

97 beta2(i,:)=beta tt(i:i,:)+(wa(i:i,:)*chol(p00)); %draw for beta in
period t from N(beta tt,ptt)

98 error(i,:)=Y(i,:)-X(i,:)*reshape(beta2(i:i,:),N*L+1,N); %var
residuals

99 roots(i)=stability(beta2(i,:)",N,L);

100 %$pericds t-1..to .1

101 for i1=T-1:-1:1

102 pt=sqgueeze(ptt(i,:,:));

103 bm=beta tt(i:i, :)+(pt*F'*inv (F*pt*F'+Q)* (beta2 (i+1:1+1,:)-
beta tt(i,:)*F')'")"'; S%update the filtered beta for information
contained in beta[t+1]

$i.e. beta2(i+l:i+1l,:) eq 8.16 ppl93 in Kim Nelscn

104 pm=pt-pt*F'*inv (F*pt*F'+Q) *F*pt; Supdate covariance of beta

105 beta2(i:i,:)=bm+(wa(i:i,:)*chol(pm)); %draw for beta in period t
from N(bm,pm)eq 8.17 ppl%3 in Kim Nelson
106 error(i,:)=Y(i,:)-X(i,:)*reshape(beta2(i:i,:),N*L+1,N); S$var

residuals

107 roots(i)=stability(beta2(i,:)',N,L);

108 end

109 if sum({roocts)==0

110 chck=1;

111 end

112 end

113 % step 3 sample Q from the IW distribution
114 errorg=diff (betal);

115 scaleQ=(errorqg'*errorq)+Q0;

116 Q=1iwpQ (T+T0, inv (scaleQ)) ;

117 %$stepd sample aij using the carter kochn algorithm
The state space formulation for a;; is

Vo = —d12V1y T Ez,z,VAR(Ez,t) = hz,z
Q12p = iz + Vie VAR(Vy:) = Dy

The state space formulation for aj3 and az; 1s

Vag = —@13gV1y — Aa3eVas + 830, VAR(83;) = hay
13 1351 Vs Ve
- R JVAR(y=D;
a3 a235-1 Ve Vs

118 v3=error(:,3);
119 v2=error(:,2);
120 vl=error(:,1);

121 [al,trash]=carterkohnl(all,pall,hlast(:,2),Dl,v2,-v1);

122 [a2,trash]=carterkohnl (a20,pa20,hlast(:,3),D2,v3,[-v1l -v2]);

123 %$step 5 sample D1 and D2

124 alerrors=diff(al);

125 D1=IG(T0,D10,alerrcrs); %$draw from the inverse Gamma distribution
126 alerrors=diff (a2);

127 scaleDZ2=(aZerrors'*aZerrors)+D20;

128 D2=iwpQ(T+T0,inv(scaleD2)); %draw from inverse Wishart

129 %step 6 sample h 1 seperately for 1=1,3

1230 %step 6a calculate epsilon=RA*v

Using the draw of A, from step 4 calculate &, = 4,v;

131 epsilon=[];
132 for i=1:T

133 a=[al(i) az(i,:)]1:

134 A=chofac(N,a'");

135 epsilon=[epsilon;error(i,:)*A'];
136 end

137 $sample stochastic vel for each epsilon using the MH algorithm

Ficure 31. Matlab code for the time-varying VAR with stochastic volatility

Figure 33 plots the estimated impulse response to a monetary policy shock (identified via sign restrictions) and
the estimated stochastic volatility.

6. Convergence of the MH algorithm

5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

138 hnew=[];
139 for i=1:N

140 htemp=getsvol (hlast(:,i),g(i),mubar (i), sigmabar,epsilon(:,1));
141 hnew=[hnew htemp];
142 end

143 hlast=hnew;
144 %$step 7 Sample G for IG distribution
145 for i=1:N

lde gerrors=diff (log (hnew(:,1)));

147 g(i)=IG(Tg0,g0,gerrors); %draw from the inverse Gamma distribution
148 end

149 if m>burn

150 %$save output from Gibbs sampler

151 outl (mm, 1:T,:)=beta2;

152 out2 (mm,1:T,1:N)=hlast(2:end, :);
153 out3 (mm, 1:N* (N*L+1), 1:N* (N*L+1))=0Q;
154 outd (mm, 1:T,1: (N*(N-1))/2)=[al a2];
155 outh (mm, 1)=D1;

156 out6(mm,1:2,1:2)=D2;

157 out? (rmm, 1:N)=g";

158 mrm=mm+1 ;

159 end

160 end

161 %$save results

162 save tvp.mat outl outZ out3 outd outb outé out?

163 %compute irf to a policy shock using sign restrictions

164 horz=40;% impulse response horizon

165 irfmat=zeros(size(outl,1l),T,horz,N); %empty matrix to save impulse
response to a policy shock

166 for i=1l:sizef{outl,1);

1le7

168 for j=l:size(outl,2)

169

170 H=diag(sgueeze(out2(i,3,:)));

171 a=squeeze (outd (i,3,:));

172 A=chofac(N,a);

173 sigma=inv (A) *H*inv (A)'; S%covariance matrix
174 %2ign restrictions

175 chck=-1;

176 while chck<O

177 K=randn (N,N) ;

178 Q0=getQR(K);

179 AOhat=chol (sigma) ;

180 AOhatl=(QQ*AChat); $candidate draw
181 for m=1:N

182 $check signs in each row

183 el=A0hatl (m, 1)<0; %Response of Y
184 ez2=A0hatl (m, 2)<0; %Response of P
185 e3=A0hatl (m,3)>0; %Response of R
186

187 if el+e2+e3==

188 MP=A0Ohatl (m, :);

189 chek=10;

190 else

191 $check signs but reverse them
192 el=-A0hatl (m, 1)<0; %Response of Y
193 e2=-A0hatl (m, 2)<0; %Response of P
194 e3=-A0hatl (m, 3)>0; %Response of R
195

196 if el+e2+e3==

197 MP=-A0hatl (m, :);

F1cUurE 32. Matlab code for the time-varying VAR with stochastic volatility

6. CONVERGENCE OF THE MH ALGORITHM 173

GDP grawth Inflation Federal Funds Rate

2010 200 30 o - 2010
2000
. @ 1390
1 1980
Impulse Horizon 0 1 e Impulse Horizon 0 9 e Impulse Horizon o 9 e
+ 10 5tachastic Volatility GDP Growth 10" Stochastic Yolatllity Inflation Gtpthastic Volatlity Federal Funds Rate
A N — as 2r
3
18-
3
16-
25
25 14-
2 - 12-
2
1-
15
15 o8-
| B 1 0s-
04-
" WQ: N e
1970 %0 1990 2000 2010 1970 1980 1990 2000 2010 1970 190 1990 2000 2010

F1GURE 33. Response to a monetary policy shock from the time-varying VAR with stochastic volatil-
ity (Top panel) and the estimated stochastic volatility (bottom panel)

174 5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

2000

Draws Vectorised parameters Draws Vectorised parametets

VYectorised parameters

FIGURE 34. Recursive mean for key parameters of the time-varying VAR model

Most of the methods for checking convergence of the Gibbs sampler (see Chapter 1) can be applied immediately
to output from the MH algorithm. Several studies present simple statistics such as recursive means of the MH draws
and the autocorrelation functions to test if the algorithm has converged. As an example we present the recursive
means of the retained draws for the time-varying parameter VAR considered in the previous section. As described
above this model is estimated using a mixture of Gibbs and MH steps. Figure 34 presents the recursive means
calculated every 20 draws for 3;, hy; and a;;¢. The X-axis of each panel represents these parameterised vectorised.
The Y-axis represents the draws. The recursive means usggest convergence for 3,, a;;; but indicate some variation
in the means for h;; possibly suggesting that more draws are required for this model.

Gelman and Rubin (1992) suggest a diagnostic for monitoring the convergence of multiple MH chains (for esti-
mating the same model) started from different starting values. For every parameter of interest ¢ Gelman and Rubin
(1992) calculate the within chain variance as

Wr =

M T
Z Z gt ,m gm)
m= =1
_ T 1 M
gm = g = M mZZI gm
where T denotes the total number of iterations in each of the M MH algorithms.
Gelman and Rubin (1992) calculate the between chain variance

1
BT:MZ@W_
m=1

They argue that Wr underestimates the variance of ¢ (before convergence) as the MH algorithm has not explored
the parameter space. In contrast, o2 = %WT + Br overestimates this variance due to dispersed starting values. If
the MH algorithm has converged then Wy and 02 should be similar. Gelman and Rubin (1992) suggest calculating
the statistic

Sis
N =

’ﬂ|
N

2(o? +B—T 2
where vy = lTW—TML and checking if this is close to 1 which would indicate convergence of the MH algorithm.

7. Further Reading
e Koop (2003) chapter 5 provides an excellent description of the Metropolis Hastings algorithm.

8. APPENDIX: COMPUTING THE MARGINAL LIKELIHOOD USING THE GELFAND AND DEY METHOD 175

8. Appendix: Computing the marginal likelihood using the Gelfand and Dey method

Gelfand and Dey (1994) introduce a method for computing the marginal likelihood that is particularly convenient
to use when employing the Metropolis Hastings algorithm. This method is based on the following result.
f(®) 1
Fl————————Y| = —— 1
Femr@”) = T &1
where F'(Y|®) denotes the likelihood function, P (®) is the prior distribution, F'(Y') is the marginal likelihood and
f (@) is any pdf with support © defined within the region of the posterior. The proof of equation 8.1 can be obtained

by noting that E [%W] = /% x H (®|Y) d® where H (®|Y) is the posterior distribution. Note

)X
_ F(Y|®)xP(®)
that H (®|Y) = —Fy) and the density f (®) integrates to 1 leaving us with the right hand side in equation
8.1.

M
We can approximate the marginal likelihood as ﬁ Z ea éfﬁP(@) where ®; denotes draws of the parameters

j=1
from Metropolis Hastings algorithm and F (Y|®;) x P (®;) is the posterior evaluated at each draw. Geweke (1998)
recommends using a truncated normal distribution for f (®). This distribution is truncated at the tails to ensure
that f (®) is bounded from above, a requirement in Gelfand and Dey (1994). In particular, Geweke (1998) suggest
using
1

p(2m)"/?
where @ is the posterior mean, ¥ is the posterior covariance and k is the number of parameters. The indicator
function [(<I>j € é)) takes a value of 1 if

(e-0)s (2-0)] <,

where x7_, (k) is the inverse x* cumulative distribution function with degrees of freedom k and probability p. Thus
X%—p (k) denotes the value that exceeds 1 —p% of the samples from a x? distribution with k degrees of freedom. The

£ (@) = 5| exp {0.5 (cbj - <i>) 51 (cbj - q»)] x I (q>j e é) (8.2)

indicator function I (<I>j S @) therefore removes ‘extreme’ values of ®;. For more details, see Koop (2003) page 104.

In figures 35 and 36 we estimate the marginal likelihood for a linear regression model via the Gelfand and Dey
method. The model is exactly used in the appendix to Chapter 1 and is based on artifical data. A simple random walk
Metropolis Hastings algorithm is used to approximate the posterior on lines 35 to 62 and we save the log posterior
evaluated at each draw and each draw of the parameters. Lines 65 and 66 calculate the posterior mean and variance.
We set 1 —p = 0.1 on line 68. In practice, different value of 1 — p can be tried to check robustness of the estimate.
On line 70 we evaluate the inverse x2 CDF. Line 71 to 78, loop through the saved draws of the parameters. On 73 we

N ~ N/
calculate (<I> — CIJ) »-1 (CIJ — @) . If this is less than or equal to Xifp (k) we evaluate % in logs, adding

the constant lpost _mode to prevent overflow.

176

5. AN INTRODUCTION TO THE THE METROPOLIS HASTINGS ALGORITHM

clear;

ele

addpath (*functions"')

$generate artificial data

T=100;

X=[ones(T,1) randn(T,1)]:
btrue=[1;0.5];

sigmatrue=0.2;

9 Y=X*btrue+randn(T,1)*sgrt(sigmatrue);
10 %$set priors

11 TO=3;

12 D0=2.5;

13 BO=zeros(2,1);

14 Sigmal=eye(2)*(4);

15 %$step 2 set SIGMA matrix via OLS estimation
16 yols=Y;

17 xols=X;

18 bols=inv{xols'*xols)*(xols'*yols);
19 eols=yols-xocls*bols;

® o U W N

20 sols=((eols'*eols)/T);

21 vols=sols*inv (xols'*xols);

22 K=0.1;

23 P=eye(3); $this is the variance of the metropolis

hastings random walk based partly on OLS estimates

24 P(1,1)=(vols(1,1));

25 P(2,2)=(vols(2,2));

26 P(3,3)=0.1;

27 %analytical computation of the marginal likelihood
28 mlika=mlikols (BO,Sigma0, TO,DO,Y,X);

29 disp('Analytical log Marginal Likelihood');

30 disp(logfmlika));

31 sigmaz=1;

32 Gammaold=[0;0;1]; %$starting values

33 %compute posterior

34 posteriorOLD=postols(Y,X, Gammaold, BO, Signa0,T0,DO) ;
35 reps=15000; $total numbers of MH iterations

36 burn=4000; $percent of burn-in iterations

37 outpost=[]; %will hold posterior

38 outparam=[]; %will hold parameters

39 naccept=0;

40 for i=1l:reps

41 Gammanew=Gammaocld+ (randn (1, 3)*chol (P*K)) ';

42 sigmaZ=Gammanew(3);

43 if sigma2<0

44 posteriorNEW=-1000000;

45 else

46 posteriorNEW=postols (Y, X, Gammanew, BO, Sigma0, TO, DO) ;
a7 end

48 accept=min ([exp(posteriorNEW-posteriorOLD);1]);
$min (accept, 1)

49

50 u=rand(l,1l); %$random number from the uniform dist
51

52 if u<accept

53 Gamma ol d=Gammanew; %accept draw

54 naccept=naccept+l; %count number of acceptances
55 posteriorOLD=posteriorNEW;

56

57 end

58 if i>burn

Ficure 35. Matlab code to calculate the marginal likelihood via the Gelfand and Dey Method

8. APPENDIX: COMPUTING THE MARGINAL LIKELIHOOD USING THE GELFAND AND DEY METHOD

59 outpost=[outpost;posteriorOLD] ;
60 outparam=[outparam; Gammaold"] ;
61 end
62 end

63 %calculate the marginal likelihood using Gelfand and Dey method
64 %$posterior mean and variance

65 pmean=mean (cutparam) ;

66 pvar=cov{outparam);

67 lpost mode=max (outpost);

68 p=0.1; %critical value of the Chi-squared distribution

69 npara=size(outparam,2); %number of parameters

70 critval = chi2inv(p,npara);

71 tmp = 0;

72 for i = l:size(outparam,l);

73 deviation = (outparam(i,:)-pmean)*inv (pvar)*((outparam(i,:)-
pmean)) ';

T4 if deviation <= critval;

75 lftheta = -log(p)-

(npara*log (2*pi)+log(det (pvar))+deviation)/2;

76 tnp = tmp + exp(lftheta - outpost(i)+lpost mode);
77 end;

78 end;

79 mlik=1post mode-log (tmp/size (outparam,l));
80 disp('Gelfand and Dey log Marginal Likelihood!');
81 disp(mlik);

Published with MATLAB® 7.9

FIGURE 36. Matlab code to calculate the marginal likelihood via the Gelfand and Dey Method (continued)

CHAPTER 6

Bayesian estimation of Linear DSGE models

This chapter considers the Bayesian estimation of Dynamic Stochastic General Equilibrium (DSGE) models using
the random walk metropolis hastings algorithm. These models are popular in academia and central banks for policy
analysis. Several menu driven computer packages (e.g. DYNARE) are now available for the estimation of these
models and several papers and books discuss the econometrics of DSGE models (see An and Schorfheide (2007)).
The focus of the chapter is practical — it offers a step by step guide to DSGE estimation from a Bayesian perspective
and tries to clarify the practical aspects of the problem. It, therefore, offers a useful starting point for researchers
who are new to DSGE estimation but are familiar with the economics behind these models.

1. The DSGE model

In this chapter we consider the estimation of the following simple log-linearised DSGE model:

e = Ewi — (/o) (iy — Eymeg1) + gt (1.1)
Ty = BEmip1 + KT+ ug

iy = O0mp+ v

. _ (=) -pw)

aw

g = pigi—1+ew,en N(0,07)

Uy = pyus_1 + 2,2 N(0,03)

v = psvi_1 + ez, e3¢ N(0,03)

Here z; is output gap, m; is inflation and 4; is the short-term interest rate. The first equation is the IS curve
linking the output gap to the real interest rate and a ‘demand shock’ g;. The second equation is the Phillips curve
linking inflation to inflation expectations and the output gap while u; is a supply shock. The third equation is a
simple policy rule that postulates that interest rates are set in response to inflation developments with the policy
shock denoted by v;. The three shocks follow AR(1) processes as shown by the last three equations. Our aim is
to estimate the unknown parameters © = (0,5,a,w,pl,pz,pg,ag,og,ag). As is typical in the literature, we fix
8 =0.99.

1.1. Solving the model. The model in equation 1.1 cannot be estimated in its current form as it includes
unobserved variables dated in the future on the right hand side of the first two equations. One way to proceed is to
solve the model so that it can be re-written in a VAR form:

Be=FBi 1+ 9% (1.2)
Tt
T o2 0 0
where 5, = gt and z; are iid shocks with covariance matrix 0 03 0 |. The elements of the coefficient
t 2
s 0 0 o3
Ut

matrix F' and the contemporaneous impact matrix g are functions of the model parameters O. If we treat (5, as state
variables, then equation 1.2 is a transition equation. As described below, once this is combined with an observation
equation we have a linear state space model that can be easily estimated as the Kalman filter can be used to calculate
the likelihood of the model.

Therefore, model solution is a key step in the estimation process. There are several solution algorithms available.
In this application we use the algorithm developed in Sims (2002). To use this algorithm and Chris Sims’ code, the
model needs to be written in matrix form:

YoBe = 11841 + &Et + Rur
where v; denotes expectational errors x; — Fy_1x¢ and w; — Fy_1m;. Here Bt is:

179

180 6. BAYESIAN ESTIMATION OF LINEAR DSGE MODELS

Tt
¢
it
B _ gt
t = uy
Ut
Eizy 1
Eimia

For the model in equation 1.1 these matrices are defined as:

1 0 1fo -1 0 0 -1 -1/o IS curve
-k 1 0 0 -1 0 0 —p Phillips curve
0 -5 1 0o 0 -1 0 0 Policy rule
0 0 0 1 0 0 0 0 Demand shock
=L o 0 0 0o 1 0 0 0 Supply shock (1.3)
0 0 0 0 0 1 0 0 Policy shock
1 0 0 0 0 0 0 0 Exp. error 1
0 1 0 0 0 0 0 0 Exp. error 2
000 0 O 0 00O IS curve
000 0 0 0 00O Phillips curve
000 0 0 0 00O Policy rule
1000 p, O 0O OO Demand shock (1.4)
=10 00 o0 p, 0 0 0 Supply shock '
000 0 0 p3 00 Policy shock
000 0 0 O0 10 Exp. error 1
000 0 0 0 01 Exp. error 2
0 0 0 IS curve
0 0 0 Phillips curve
0 0O Policy rule
1 0 0 Demand shock
&= 010 Supply shock (1.5)
0 01 Policy shock
0 0 0 Exp. error 1
0 0 0 Exp. error 2
0 0 IS curve
0 0 Phillips curve
0 0 Policy rule
_ 0 0 Demand shock
=10 0 Supply shock (1.6)
0 0 Policy shock
1 0 Exp. error 1

0 1 Exp. error 2

Equation 1.3 shows v, which is an 8 x 8 matrix in our case. The dimensions reflect the number of variables in
the model including the 2 expectational errors. The dimensions of v, are also 8 x 8 while the number of columns of
¢ and k reflect the fact that the model has three iid structural shocks and two expectational errors.

The file examplel.m demonstrates the solution of the model using the Sims (2002) method. For this example,
we use assume that the parameters have the following values:

c0=1,0=15,a=3,w=15p, =0.7,p, =0.7,p5 = 0.7

Line 16 calls the main function model solve.m that sets up v, 7;,&, & and calls the function to solve the model.
Figures 1 and 2 display the code for this function. The input to the function is the vector of parameters which
are extracted on lines 7 to 16. In order to set up 7,71, ¢, & while minimising coding errors, it is helpful to set up
indices of equations, variables and shocks. These are set up on lines 21 to 44. Line 60 to 65 modifies the first row
of v, to insert the coefficients of the IS equation. Lines 68 to 71 insert the coeflicients of the Phillips curve in the
second row while lines 75 to 77 deal with the policy rule. Lines 83 to 85 modify 7,,7y; and £ to reflect the coefficients
of the demand shock equation g: = p;gt—1 +€1¢. Lines 87 to 93 do exactly the same for the supply and policy shocks.
Finally, the expectational errors are dealt with on lines 97 to 104. The function written by Sims to solve the model
is called gensys. The inputs to this function are ~,,7;, a vector C' that specifies constants in the model (as shown
on line 52, this is a vector of zeros as all variables are in deviations from the steady state in the example model), &, &
and a number div which specifies the criteria for stable roots. Typically div=1. In other words, the function call is

1. THE DSGE MODEL 181

mytemp

fextract parameters

sigma = Theta(l):;
beta = 0.999; %calibrated
delta = Theta(2);
alpha = Theta(3)
omega = Theta(4)

1 function [Fmat, gmat, PROBLEM | = model solve(Theta) Theta=model param.
2 % produce the states space solution of the model give by:

3 % GAMO*y(t) = GAMl*y(t-1) + C + PSI*z(t) + PPI*etal(t).

4 % and the solution is solved by sims gensys given by

5 % beta(t) = Fmat*beta(t-1) + gmat*z(t)

6

7

8

= o
o

-
-

12 rhol = Theta(b);

13 rho2 = Theta(@);

14 rho3 = Theta(7);

15 & parameter definitions: (1-w)(1-pw)

16 kappa={(l-omega)* (1-(beta*omega)))/ (alpha*omega); K= - aw

17 %*****k****************‘k*****k**********‘k*****k**********%*****%*****

18 g* matrices of canonical system

19 %‘k&&&*‘k&&&**&&&&**&&&&*‘k&&&**‘k&&&**&&&&*‘k‘k&&&*‘k&&&**&&&&*&&&&&*&&&&**/

20 %* Define equation indices **/ Indices make it more

;; eq{};m =15 %; = cfr;’stl/ .) convenient to set up
eq = 23 2 illips Curve

23 eq:RULE = 3; $* Monetary Policy Rule **/ Cam, Cam] efte

24 eq g = 4; g* AR for g **/

25 eq u = 5; %* AR process for u **/

26 eq v = 6; 3* AR process for v **/

27 eq Ex =7; %* AR process for v **/

28 eq_Epi = 8; $* AR process for v **/

29 %* wvariable indices **/

30 v x = 1;

31 v_pi = 28

32 v_R = 33

33 v g =4;

34 v_u =57

35 v v =6;

36 v Ex = T7; &% E[x] **/

37 v_Epi = 8; &* E[pi] **/

38 &* shock indices **/

39 e x = 1;

10 e pi = 2;

41 e 1 = 3;

42 %* expectation error indices **/

43 n x = 1;

44 n pi = 23

45 2% summary **/

16 neq = 8; %#number of equations

47 neps = 3; %number of shocks

48 neta = 2; %number of expectaticnal errors
49 2+ initialize matrices **/

50 GEMO = zeros(neq,neq): Y0

51 GAM1 = zerosineq,neq); yl

52 C = zerostneq,1l);

B8 BSI = zeros(neq,neps);g

54 PPI = zeros{neq,neta);_

55 2% equations K

56 8 GAMO y(t) = GAM1 y(t-1) + C + PSI z(t) + PPI eta(t)

D7 Gtk kkkkk ok k ok sk k ok ok bk k ok ok k ok ok kA h ok E kkkh ok ok k ke ok kA ok kA k ok ok Ak k kL d ok
58 g*+ 1. IS Curve

59 %&{&{*‘L{&{&}&{&{&}&&‘k&*‘L&‘k&&*‘L{&{&}&{&{*&&&{&*&&{&&}&{&{&&/

mytemnp.html[15/06/2017 15:59:40]

FIGURE 1. Model Solution

gensys(GAMO,GAMl,C,P%S'I,PPI,div). The function is called on line 114. The first key output from this function
Yo 71 K

is RC which is a 2 x 1 vector. If the first element of this vector equals 1, then a solution to the model exists. If the
second element equals 1, the solution is unique. The top 6 x 6 block of the return 77 is the matrix F' in the solution
(see equation 1.2). Similarly, the top 6 rows of T0 correspond to the matrix g in equation 1.2. The final two rows
(and columns in case of T1) correspond to the expectational errors which are not directly relevant for estimation.

182

mytemp

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
03
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

6. BAYESIAN ESTIMATION OF LINEAR DSGE MODELS

GAMO (eq_IS,v_x) = 1;

GAMO (eq_IS,v_Ex) = -1;)

GREMO (eq_IS,v_R) = 1/sigma; Xy = Erx”'l - (1/0)(17 - Et”:t'H) +gt
GEMO (eq_IS,v_Epi) = -1/sigma;

GAMO (eq_IS,v_g) = -1:

R R R R R R R R R R R A R R R

o

b 2. Phillips Curve

‘k&&&*‘k&&&**&&&&**&&&&*‘k&&&**‘k&&&**‘k&&&*&&&&&*&&&&&*&&&&*&&/
GAMO (eq PHIL,v pi)=1;

GAMO (eq PHIL,v Epi)=-beta; T = ﬁEI’THl + KXt + Ur
GBEMO (eq_PHIL,v_x)=-kappa;

GAMO (eq_PHIL,v_u)=-1;

Sk kA ok kA kA ko k kA kb ok ok Ak Ak Ak ok k kA kA k kA kA ko h ok kb kA kA kA
G 3. Policy Rule
%***********\k**********\k***********************************/
GEMO (eq_RULE,v_R)=1;

GEMO (eq_RULE,v_pi)=-delta; it = Oms + V¢
GAMO (eq RULE,v _v)=-1;

o0 oo

R st R R e R R R R 2R R 2R3

o

g Shock process

R R R R R T T T T T Ty}
EXd g &*/

GAMO (eq_g,v_g) = 17

GEM1 (eq_g,v_g) = rhol; 2t = pi1gi-1 + €1t

PSI(eq g,e_x) = 1;

gk g kE/

GAMO (eq_u,v_u) = 1; ut — pzutil + 82[
GAM1 (eq_u,v_u) = rho2;
PSI(eq u,e_pi) = 1;

%‘k V‘k *‘k/

GAMO (eq v,v_v) = 17 Vi = Vi1 + E
GAM1 (eq v,v_v) = rho3; ? F)3 . 1 3t
PSI(eq v,e_i) = 17

R R R R R R R R R R R A R R R

o

e Expectation error
&&&&*‘k&&&&*‘k&&&&*‘k&&&*‘k&&&&*‘k&&&&*&&&&*&&&&&*&&&&**&&&&*&&/

E(x)

GAMO (eq_Ex,v_x) = 1; xt _Et—lxt

oo oo ao

GEM1 (eq_Ex,v_Ex) = 1;
PPI(eq Ex,n_x) = 1;
8+ B(pi) **/
GAMO (eq Epi,v piy = 1;
GAM1 (eq Epi,v_Epi) = 1; 7[[- E[—]_ﬁ_[
PPI(eq Epi,n pi) = 1;
B T T R s S e e e
grx QZ (generalized Schur) decomposition by GENSYS
%‘k{{*‘L{{{&}&{&{&}&{&{*‘L{{&&*‘L{{&&}&{&&*‘L&{&&*‘L{{&&}&{{&&&&{{&*&{{{&*&/
PROBLEM=0;
div = 1; %2 criteria for stable roots
% y(t) = Tl*y(t-1) + TC + TO0*z(t)
% A, B, Q and Z are the QZ decomp matrix
% RC(1) = 1 => existence
% RC(2) = 1 => Unique
[T1,TC,T0,Q,A,B,%,RC,LO0SE] = gensys (GAMO,GAM1,C,PSI,PPI,div);
Fmat = zeros(neqg-neta);
Fmat (l:neq-neta,l:neq-neta) = Tl(l:neq-neta,l:neg-neta);
gmat= [T0(l:negq-neta,:)];
if RC(1l)~=1 | RC(2)~=1 % non-unique and existence
PROBLEM=1;

mytemnp.html[15/06/2017 15:59:40]

For the calibration considered in the example, the following unique solution is produced:

FIGURE 2. Model Solution

4 0 0 1.56 —4.16 —1.56 Tr 1
028 1.56 —0.28 Tt
043 234 0.26 i1
07 0 0 gt—1
0 07 0 ey
0 0 0.7 Ve
B, F 8oy
223 —594 —2.23

041 223 —0.41

0.61 3.34 0.38 1t

1 0 0 “at

0o 1 0 i

0 0 1

g9

N
ISS
OO O OO
jen Bl el el en B en)
O O OO oo

1. THE DSGE MODEL 183

As discussed above, the solution in equation 1.7 is in the form of a VAR(1). It is now straightforward to produce
impulse responses to any of the 3 structural shocks and calculate objects such as variance decomposition. Moreover,
the solution can be used to calculate the likelihood function of the model via the Kalman filter. We turn to this next.

1.2. Calculating the log likelihood and log posterior. We treat 3, as our vector of unobserved state
(model) variables and consider the model solution 5, = F3,_; + gz as a transition equation of a state-space model.
We can obtain data on ‘real world’ counterparts of the model variables Z; (output gap) , 7; (inflation) and 7; (short-
term interest rate). Typically the output gap would be measured as de-trended GDP, inflation as the log difference
of CPI and interest rate as the policy rate set by the central bank. As we do not allow for constants in the model,
the data is demeaned.

The observation equation of the model is then given as:

Tt
i 100000 72.”
7@+ |=1010 000 ¢ (1.8)
W 001000 gt
Y, H Ut
Ut
By
Ty
Notice that we have three observable variables | 7 and three structural shocks in this model. If the number
1

of shocks is less than the number of observables, then the model is stochastically singular and the Kalman filter
cannot be used to calculate the likelihood function (see Ruge-Murcia (2007) for further explanations on this point).
Equations 1.8 and 1.2 thus gives a linear state-space model:

Y. = Hp,
Be = FBi1+2
var () = g(var(z))g
o2 0 0
where var (z;) = 0 o3 O2 . The file example2.m demonstrates the calculation of the likelihood using ar-
0 0 o3

tificial data generated from the calibrated model in examplel.m. On line 8, the function likelihood is called to
carry out this calculation. This function is shown in figure 3. The input to the function is the parameter vec-
tor © = (0‘,(57a,w7p1,p2,p3,0‘%70'%,0%). Note from line 6, that when the model is solved, only the parameters
0,0, Q,w, p1, Pa, Py are required. With the solution of the model at hand, the next step is to build the matrices of the
state-space. However, this is only useful if the model solution exists and is unique. Therefore, lines 8 to 10 are used
to terminate the likelihood calculation (and to set the log likelihood to minus infinity), if existence or uniqueness are
rejected. The matrices of the state-space are created on lines 16 to 22. Lines 25 and 26 set the initial state vector and
its covariance. The Kalman filter begins on line 29. Note that on line 37, the code calculates the reciprocal condition
number of the variance of the prediction error. The program terminates if the reciprocal condition number is small
indicating that the variance may not have an inverse (which is used to calculate the log likelihood on line 48). The
function returns the log likelihood of the model in the scalar out.
Note from Bayes rule that the log posterior is proportional to the log likelihood plus the log prior:

Ing(B)Y;) xInL (©]Y;) +1In P (O)

log posterior log likelihood log prior
Therefore to calculate the log posterior we have to evaluate the log prior In P(0). For simplicity we assume that there
is an independent prior on each parameter and thus In P(©) = In P(0) + In P(d) + In P(w) + In P(a) + In P(p;) +
In P(py) + In P(p3) + In P(0?) + In P(03) + In P(03), i.e. the sum of the log prior on each parameter. The question
now arises: what prior distributions should be used? In the current example, the following choices for the prior

distributions seem reasonable:
Parameter | Distribution(mean,variance) | 95% interval
o Gamma(1,1) 0.02,3.76
1) Gamma(1.5,1) 0.21,4.00
o Gamma(3,1) 1.40,5.25
w Gamma(1.5,1) 0.21,4.00
01 Beta(0.5,0.2) 0.13,0.87
2o Beta(0.5,0.2) 0.13,0.87
Ps Beta(0.5,0.2) 0.13,0.87
o3 Inverse Gamma(1,0.5) 0.34,2.68
o3 Inverse Gamma(1,0.5) 0.34,2.68
0% Inverse Gamma(1,0.5) 0.34,2.68

184 6. BAYESIAN ESTIMATION OF LINEAR DSGE MODELS

mytemp

function out=likelihood (theta,y)

N=length(theta);

N1=N-3; %last 3 elements of theta are standard deviation of shocks

t=size(y,1);

fmodel solution to obtain state space form

[PP, QQ, PROBLEM] = model solve(theta(l:N1)):

Sigma=diag (theta (N1+l:end)); o 0 0

if PROBLEM var(z) = 0 03 0
out=-inf; 0 0 o3

@ -1 o0 N

= o
o

else

2COMPUTE MATRICES OF THE STATE SPACE
2Y=H*S

3 S[t]=F*S[t-1]+eta

g Var(eta)=Q

20=00*Sigma* Q0

H=zeros(3,6); 100000
H(1,1)=1; 010000
H(2,2)=1; 001000
E(3,3)=ig H

F=PP; 17

Q=00*sigma*QQ’ ; var(%t) = g(var(zr))g’

mu=0;

1ik=0;

gfilter

betall=zeros(1l,6);

pll=eye(6);

ptt=zeros(t,6,6);

R=0;

for i=1:t
$Prediction

betalO=mutbetall*F"';

plO=F*pll1*F"+0Q;

vhat=(H* (betall) ") ";

eta=y (1, :)-yhat;

feta=(H*plO*H") +R;

gupdating

rc=rcond (feta) ;

if rc<le-15%

W oW W W WWWWWWRNRNRNNNRNINDRNNDN R 2 R e e e e
W oo E LR O WL o-]o 0L N R O WWo-]o 0 N e

out=-inf;

=
o

return;
else

=
SIS

ifeta=inv (feta);

=
w

end
K=(plO*H")*ifeta;
betall=(betall"+K*eta') ";
pll=pl0-K* (H*pl0);
ptt(i,:,:)=pll;
1iki=-0.5%log(2*pi) -0.5*1log(det (feta))+ (-0.5*% (eta) *ifeta* (eta'));
if isreal (1iki) && (~isinf (liki)
lik=1ik+1liki:;
else
1ik=11k-10;

I R e
WR PO Wm-do ;e

end

&l
S

end
out=1ik;
end

[T
o o

mytemp.html[16/06/2017 13:53:57]
Ficure 3. Kalman filter

The prior for o is assumed to be a Gamma distribution with a mean and variance of 1. The Gamma distribution
is appropriate for this parameter as we expect o to be greater than zero. Note that this (and other) distributions can
be parameterised via their means and variances or parameters such as scale, degrees of freedom etc. As discussed in
the appendix to Bauwens et al. (1999), the mean p and the variance V' of a Gamma(ca, 8) distribution are given by
p=afand V = af?. Tt is then easy to calculate that g = % and o = % This transformation is useful as functions
to simulate and evaluate the Gamma distribution in Matlab require the user to provide values for o and § which
can be backed out from p and V. The Beta distribution is chosen as a prior for the autoregressive parameters to
ensure that they remain between 0 and 1. Note that for a Beta(a, 8) distribution, the mean and variance is defined
as: p = ﬁ, V= waﬂ) As before, we can specify the prior in terms of p and V' and back out the implied
parameters «, 5. Finally, we use an Inverse Gamma prior for the shock variances, following the practice in reduced
form econometric models. As described in Bauwens et al. (1999) (page 292), the Inverse Gamma-2 distribution

2. METROPOLIS HASTINGS ALGORITHM 185
IG(s,v) has the following first two moments: p = =25,V = ﬁ 12, This allows us to solve for s, v given an value for
the mean and the variance. The matlab code logprior.m evaluates these prior distributions at a given value of the
model parameters and prior means and variances and returns In P(0).

Note that one may want to check the shape of the prior distributions implied by these choices. This can be
easily done by simulating random numbers from the prior distribution and examining the percentiles of the resulting
distribution (see matlab file simprior.m). The final column of the table above lists the 5th and 95th percentile for
each chosen prior. In practice, this interval can provide information about whether the prior distribution covers the
range of estimates of these parameters reported in previous papers.

2. Metropolis Hastings Algorithm

We are now ready to proceed to a description of the algorithm to estimate the DSGE model described above.
Once the prior distributions are set, the estimation proceeds in the following steps:

(1) Numerically maximise the log posterior In g (©|Y};) to obtain the parameter estimates at the posterior mode
OMAX and the associated covariance matrix of the estimates VM4X Set the initial value of the parameters
00l = @MAX = The candidate density for this random walk Metropolis algorithm will be of the form
ONew = @Ol 4 ¢ ™ N(0,cVMAX) where c is a scaling factor used to control the acceptance rate.

(2) Draw the parameter vector from the candidate density and compute the acceptance probability

a=exp(Ing (@Nsw\Yt) —1Ing (@Old\Yg))

If o > u~U(0, 1) accept the draw and set 94 = @New, Otherwise !¢ is retained. Note that the posterior
is evaluated in this step when calculating . Recall from the discussion in the previous section, that this
involves the following steps:
(a) Given the vector of parameters O, solve the model to obtain the reduced form 8, = F3,_; + Z.
(b) Combine this with an observation equation Y; = Hf, and calculate the likelihood In L (©]Y;) by running
the Kalman filter.
(¢) Evaluate the prior In P (©) and obtain the log posterior as Ing (0]Y;) =In L (0[Y;) + In P (©).
(3) Repeat step 2 until convergence is detected. The scaling factor ¢ can be used to keep the acceptance rate
between 20% and 40%.

The code for the Metropolis algorithm for the DSGE model is shown in figures 4 and 5. Note that this example
uses artificial data generated in examplel.m. This data is loaded on line 4. Line 6 sets starting values for the model
parameters. Lines 8 to 18 set a lower and upper bound for the model parameters. This ensures that implausible
values for the parameters are not considered. For example, if one believes that the monetary authority reacts by more
than one to one to inflation developments, then § > 1 but a value bigger than 5 would indicate a degree of activism
that has not been observed for many countries. Whenever, the value of the parameters violates these bounds, the
value of the likelihood (and posterior) is set to minus infinity. Thus such a parameter vector is disregarded in the
algorithm. To obtain starting values for the algorithm, we first numerically maximise the log posterior (or minimise
minus log posterior). As this is a difficult task, we proceed by using two optimisation algorithms. First, the starting
values are refined by employing 500 iterations of the derivative free Simplex method (line 22). The file posterior.m
evaluates the posterior of the DSGE model. If the parameters are within bounds and the model solution exists, then
the log likelihood is calculated via the Kalman filter and the log prior is evaluated. Otherwise log posterior is set to
minus infinity. The output from the Simplex optimisation is used as starting values in CSMINWEL (line 24). The
model parameters at the mode of the log posterior are stored in xh, while H denotes the covariance of the maximum
posterior estimates. These estimates are used to initialise the Metropolis algorithm. Line 29 sets the covariance of the
candidate density as a scaling factor times H. Line 30 sets the starting values as the maximum posterior estimates.
The MH algorithm begins on line 34. Line 37 involves a draw of the model parameters from the random walk canidate
density. The posterior is evaluated on line 40 at these parameter values. As explained above, this involves solving
the model and evaluating the likelihood and prior distributions. The acceptance probability is calculated on line 49.
If this probability is larger than a number from the standard uniform density, then the value of the parameters and
log posterior are updated. Otherwise, the previous values are retained. The parameter draws are used to produce
three objects.

First, the estimated marginal posterior distributions of the parameters are compared to the prior distributions
(obtained using random draws from the prior distributions). The results are shown in figure 6. In the figure the blue
vertical line shows the maximum posterior value of each parameter, while the dotted line shows the true values used
to generate the data. A comparison of the estimated posterior of the parameters (blue curve) obtained via the MH
algorithm and the prior distributions (red curve) can be informative about the information contained in the data about
the parameters. Note for example that for the parameter o, the prior and posterior distributions are quite different
indicating that the data leads to an update in the value of o. In contrast, the prior and posterior distributions
for « lie on top of each other. This might imply that the data containes limited information for estimating this
parameter. This might occur if the parameter is hard to identify — i.e. the likelihood function is relatively flat with
respect to this parameter and attains similar values for different estimates of a. In our example, this may occur
as « enters the model in a highly non-linear fashion and it may not be easy to distinguish this parameter from .

186 6. BAYESIAN ESTIMATION OF LINEAR DSGE MODELS

mytemp
1 clear
2 addpath('distributions', 'functions', 'gensys', 'sims Optimization'); %change these to reflect
yours!
3 %load data
1 load data
5 %set starting values for each parameter
6 Theta=[0.5 1.1 0.1 1.1 0.5 0.5 0.5 0.1 0.1 0.1];
7 %set bounds for each parameter
8 bounds=zeros (length(Theta),2);
9 bounds(1l,:)=[0.01 5]; %sigma
10 bounds(Z J)=[1.01 5]; %&delta
11 bounds(3,:)=[0.01 5]; %alpha
12 bound5(4,)=[1.01 5]; gomega
13 bounds(5,:)=[0.01 0.999]; %rhol
14 bounds(6,:)=[0.01 0.999]; 2rho2
15 bounds(7,:)=[0.01 0.998]; %rho3
16 bounds(8,:)=[0.01 5]; gsigma 1
17 bounds(9,:)=[0.01 5]; S%sigma 2
18 bounds(10,:)=[0.01 5]; % sigma 3
19 options = optimset('Disp', "iter', 'Diagnostics®, 'en', "LargeScale’, "off",
20 "MaxFunkvals',100000, "MaxIter',6 500, "TolFun',le-05, "TolX",1e-05);
21 & % %$simplex
22 [Thetal, fval] = fminsearch (@posterior, Theta,options,y,bounds,1);
23 %38BFGS
24 [fh,xh,gh,H,itct, fcount,retcodeh] =

csminwel ("posterior',Thetal,eye(length(Theta)).*0.001,[],0.0001,10000,v,bounds,l);

25 REPS=35000;

26 BURN=20000;

27 &Metropolis Hastings algorithm

28 K=0.5; M4_X
29 P=chol (H*K) ; $choleski decomposition of inverse hessian used as starting value (j I}T

30 bold=xh"'; %starting value for DSGE parameters
el @MAX

32 naccept=0;

33 pold=posterior (bold',y,bounds,0) ; Evaluate posterior at old draw. Only needs to be done once for
34 for 1=1:REPS efficiency

BIS

36 2step 1 Generate new draw from random wal%Af old

37 bnew=bold+ (randn (1, length (bold) ew _ WX)
o fdn il Lo C) Y + e, e~N(0, ¢

39 tstep 2 Evaluate Posterior at new draw

40 pnew=posterior (bnew",y,bounds, 0) ; 1ng(®N€w |Yt)

41

42 3%

43

44 %compute acceptance probability

45

46 if pnew==-inf;

47 accept=0;

a8 else Old

49 accept=min([exp(pnew-pold) 11); (X = e}q)(]rlg(@nkw| K) —]rlg[:@ |K :l)
50 end

51

52 u=rand(1,1);

o UeeEt 0 Ifa > Ul 1) acceptihe draw and set® Y = &' Otherwise ¥ is retained
BB pold=pnew;

56 naccept=naccept+l;

57 end

mytemp.html[22/06/2017 18:44:22]
FI1GURE 4. MH algorithm for the DSGE model

Note, secondly that due to the asymmetry of the posterior distributions, it is likely that the posterior mean does not
coincide with the maximum posterior estimates. This may also reflect the fact that the maximum of the posterior
found by CSMINWEL is a local maximum.

Figure 7 compares the estimated distribution of the response to monetary policy shocks with the response
calculated at the true parameter values and shows that the algorithm performs reasonably well. Finally, note that
the last part of example3.m (see actual code), calculates the marginal likelihood of the model using the Gelfand and
Dey Harmonic mean method (see appendix to previous chapter). This simply requires one to store the value of the
log posterior and the parameters for each draw. Then the marginal likelihood F' (Y;) is approximated by using the

2. METROPOLIS HASTINGS ALGORITHM 187

mytemp
58 if i>BURN
59 out=[out;bold"'];
60 end
61 arate=naccept/i;
62 disp(sprintf ("' Replication %s of %s., acceptance %s',
63 num2str (i), num2str{(REPS),num2str (arate)));
64 end
65 draws=out;
BB "=————==————=====—====== PoEterlef Megii——=—============================ '
67 mean(draws)
68 "T——— e — Standard Deviation------—————-——————————————~————— '
69 stdi{draws)
TO Y=——=========c========== LeweE Boumgle==================================== T

71 prctile{draws,16)

P2 —————————————————————= UppeE BoURl======s=============================== !
73 prctile{draws,84)

T o !
75 'Acceptance Ratio';naccept/size(out,l)

76 outp=simprior(size(draws,l));

77 figure(l)

78 subplot({5,2,1);

79 [xx,ffl=ksdensity(draws(:,1));

80 [xxl,ffll=ksdensity(outp(:,1));

81 plot(ff,xx,ffl, zxl)

82 title('\sigma');

83 subplot(b,2,2);

84 [xx,ffl=ksdensity(draws(:,2));

85 [xx1,ffl]=ksdensity(l+outp(:,2));

86 plot (ff,=x,ffl,=xxl)

87 title('\delta");

88 subplot(5,2,3);

89 [xx,ffl=ksdensity(draws(:,3));

90 [xzxl,ffll=ksdensity(ocutpi:z,3));

91 plot(ff,xx,ffl, zxl)

92 title('\alpha');

93 subplot(b,2,4);

94 [xx,ffl=ksdensity(draws(:,4));

95 [xx1,ffl]l=ksdensity(l+outp(:,4));

96 plot(ff,xx,ffl,zxl)

97 title('\omega');

98 subplot(5,2,5);

99 [xx,ffl=ksdensity(draws(:,5));

100 [xxl,ffll=ksdensity(outp{:,5));

101 plot{ff,=x,ffl,xxl)

102 title{'\rho 1'"):

103 subplot(k,2,6);

104 [xx,ffl=ksdensity(draws(:,6));

105 [xxl,ffl]=ksdensity(outp(:,6));

106 plot(ff,=xx,ffl,xxl)

107 title{'\rho 2'");

108 subplot(5,2,7):

109 [xx,ffl=ksdensity(draws(:,7));

110 [xxl,ffll=ksdensity(outp{:,7));

111 plot{ff,=x, £f1,xxl)
112 title{'\rho 3'");
113 subplot(5,2,8);

114 [xx,ffl=ksdensity(draws(:,8));
115 [xxl, ffl]=ksdensity (outp(:,8));
116 plot{ff,=x, ffl, xxl)
117 title('\sigma 1");

mytemp.html[22/06/2017 18:44:22]

F1GURE 5. MH algorithm for the DSGE model

)

(e -8)5 18] o 8

M
: 1 1 f(9;) _ 1
equation -~ = 37 Z 30,19 where f (0,) = RCESIIE
j=1

where © and 3 denote the mean and covariance of the draws of the DSGE parameters and [(@j € é) is an indicator

~ ~ N /
function that equals 1 if —0.5 (@j — @) »-1 (@j — @) < X%—p (k) with k equal to number of parameters.
The estimated log marginal likelihood for this model is -945.61. The file example4.m estimates a version of the
model that restricts p; = 0. The estimated log marginal likelihood of this restricted model is -1072.34. Unsurprisingly,

188 6. BAYESIAN ESTIMATION OF LINEAR DSGE MODELS

FIGURE 6. Posterior estimates

A
0.5)
15 20 \5 10 15 20
Posterior distribution of IRF (median and 68% band)

true IRF

FIGURE 7. Impulse response (IRF) to a monetary policy shock

the (artificial) data favour the benchmark model. More formally one can consider the posterior odds of the benchmark
model My against the restricted model M;. The posterior odds ratio is defined as

™0 F(YHM@)
POol = X F(YHMl)
The first term in this expression is the prior odds ratio, i.e. the ratio of the prior probabilities (weights) attached
to the two models. If we assume that mg = 71, then the posterior odds ratio (collapses to the Bayes Factor) and
evaluates to POg; = exp(—945.61 — (—1072.34)) = 1.09 x 10° suggesting overwhelming evidence in favour of M.
Lubik and Schorfheide (2007) provide an interesting application of model comparison across DSGE models.

3. Further Reading

e Canova and Sala (2009) provide a detailed discussion of identification issues in DSGE models.
e A book on Bayesian estimation of DSGE models by Herbst and Schorfheide (2015)

Part 3

Further Topics

CHAPTER 7

State-Space models with time-varying parameters

1. Introduction

A number of recent papers have shown that time-variation in the parameters and shock variances of state-space
models can be useful in many empirical contexts. Some recent examples include Negro and Otrok (2008) and Mumtaz
and Surico (2012) who estimate dynamic factor models (DFM) with time-varying parameters and stochastic volatility,
while STOCK and WATSON (2007) introduce stochastic volatility in an unobserved component model. This chapter
considers the Gibbs sampling algorithm for such models in detail. In particular, it describes the algorithm and code
for estimating the dynamic factor model of Mumtaz and Surico (2012). The methods reviewed in this chapter can
be applied to several variants of these extended state-space models considered in the literature.

2. A dynamic factor model with time-varying parameters and stochastic volatility
Mumtaz and Surico (2012) consider the following DFM
T = Bl F)Y + BSFf + eiy (2.1)

where 7;; is a cross-country data set with N time-series (country-specific inflation measures in Mumtaz and Surico
(2012)), F}V is a world factor, Ff denotes a set of country-specific factors for ¢ = 1,2, ..., C countries in the data set
and e;; are the idisyncratic components/factors for ¢ = 1,2, ...N series. ﬁfv and 35 denote the factor loadings on the
world and country factors.

The world factor follows an AR(p) process:

P
1
FY = oV + ZpX/,thVYp + (V)2 e, (2.2)
p=1

eV -N(0,1) (2.3)

This AR model features time-varying coefficients and stochastic volatility. The coefficients ®V = vec ([al’v , p‘f‘ft, v p‘gt])
are assumed to evolve as random walks:

1/2
o = oY + Q") ",
n{’ "N(0,1)
Similarly the log-variances Inh}" also evolve as a random walk:
mhY = W, + (") ul,

ulY "N(0,1)

Exactly the same formulation is used for the country factors, with each of them described by an AR(p) process with
time-varying parameters and stochastic volatility . That is the country factors follow:

C C - (& (& c i C
Fo = o + pr,tFt—p + (hi)? €, (2.4)
p=1
ef"N(0,1) (2.5)
The coefficients ®§ = vec ([ag, Pl p‘ﬁt]) are assumed to evolve as random walks:
B o= B+ (@),
ny "N (0,1)
Similarly the log-variances In h{ also evolve as a random walk:
nhf = Inh§, +(g°)"uf,
u;"N(0,1)
Finally, the idiosyncratic factors follow an AR(1) process with time-varying coefficients and stochastic volatility:
1
eit = pigeit—1+ (hit)? cit,
i N(0,1)

191

192 7. STATE-SPACE MODELS WITH TIME-VARYING PARAMETERS

where:
Pit = Pig—1T (qz'l/Q) NiesMie N (0,1)
Inhy; = Inhy 1+ (gi)l/2 Wi, i N (0,1)
In short, this DFM features time-varying parameters in the transition equations of all the factors. Notice that

2
var (my) = (,va) var (FV) + (8S)? var (FF) + var (e;). Because of the time-varying parameters, the variances

var (FtW) ,var (Ff),var (e;) are time-varying. Thus the contribution of each of these factors to the total variance
var (m;+) changes over time. This feature is heavily used in Mumtaz and Surico (2012).
The DFM uses a simple assumption to distinguish between the world and country factors. Re-write the observa-
tion equations as
mit = BF + et

where F; = [FtW, Ff] for c=1,2,...,C. Assume that N = 8 and C = 2 for simplicity. Then the factor loading matrix
[looks as follows:

5 0
6:%0402
Y }
6, 0 P
o0
s 0 fy

In other words, the world factor loads on all 8 series. The country factors only load on the 4 series for each country.

3. Priors and the Gibbs Sampling algorithm

The model contains a large number of unknown parameters and state variables. In particular, the following
(blocks of) parameters need to be estimated: § (factor loadings) , F; (factors) , hy (stochastic volatilties: h}", hf, hit),
P, (time—varying AR coefficients: @}V, ®¢, pit), the variance-covariance matrices Q", Q¢ and the variances, ¢;, ¢", ¢, g;.
The Gibbs algorithm thus samples from the conditional posterior distribution of all these parameters. In the sections
below we describe the priors used for these parameters and each step of the Gibbs algorithm. As we go through the
algorithm we also describe the corresponding Matlab code. The complete code is in the file examplel.m.

3.1. Priors and starting values. We start the description by explaining how the starting values and priors
are set for each parameter. The code for this is shown in figures 1 to 3. Note that this example uses artificial data
that is generated from this model by running generate data.m. This data is loaded on line 8 and standardised on
line 9. Line 11 sets a training sample of 20 to calibrate some priors as discussed below.

(1) Factor loadings 8: In order to set the prior, we obtain estimates of F} by using a principal component
estimator. With an estimate of the factors F}V, F¢ in hand , estimates of the factor loadings can easily be
obtained by treating the equation m;; = ﬂzw FtW + Bfﬁf + e;; as N linear regressions and obtain the factor
loadings via OLS. The prior we use is then given as p () ~N(Bi, Vs) where Bl is the OLS estimate of BZV
and 7. In figures 1 to 3 this is done starting line 27 that estimates the world factor. The country factor
is then estimated via principal components on the residual data (after removing the impact of the world
factor) for each country on lines 30 to 34. Lines 37 to 44 run the OLS regression for each series storing the
prior mean in FLOADQO. Line 45 sets the prior variance V3. Note that the residuals from these regressions
are stored in the matrix res.

(2) Priors for Q" Q¢ g;: The prior is assumed to be inverse Wishart. We follow the approach developed in
papers by Cogley and Sargent and use a training sample to estimate the scale matrices. Given Tj training
sample observations for £}V we can estimate an AR model via OLS: F}V = a" + Zp Loy BV 4}V Call

the coefficient covariance from this regression VW. Then the prior for QW is set as p (QW) W (ng , TO)

where Q) = VW x Ty x scale where scale = 3.5 x 104 in our application. The prior for Q€ for c =1,2,..C
is set in exactly the same manner using the principal component estimates of the country factors. The same
procedure is used to set the prior for g;. The scale matrices obtained from this procedure are also used as
initial values for these variances. For example Q" is initialised by assuming that Q" = Q. For Q¥ these
calculations are implemented on lines 49 to 51. Line 49 prepares the dependent and independent variables
for an AR(2) regression. Line 50 runs the regression obtaining the coefficient covariance p00w which is used
to calculate the scale matrix on line 51. Exactly the same procedure is repeated for each country factor
on lines 53 to 64 and for each idiosyncratic factor on lines 66 to 76. Note that these OLS regressions are
also used to obtain the initial conditions for the time-varying coefficients and their variances. For example

3. PRIORS AND THE GIBBS SAMPLING ALGORITHM 193

mytemp

clear

addpath("./functions');

dfolder="./data/";

sfolder="./results/"';

file=1;
sfile=strcat (dfolder, 'dataxx0"',num2str (file));
tLoad data and transform?3:3i?
load (sfile);
dataS=standardise (datas) %standardise data

;
o [coo

$%estimation options%8%8%%%

@~ @ U W N

= = o
=

T0=20; $training sample

=
[av]

1=2; %$lag for transition equation

Lx=1; %lag for idiosyncratic component transiticn eg
REPS=10000; 2Reps

BURN=5000; %burn-in

SKIP=5; %every SKIP draw is kept after burn-in

e e
=1 oy o= W

maxdraws=100; %max trys to find stable coefficients
CHECK=1;

Sindex=BURN+1:SKIP:REPS;

fsize=length(Sindex} ;

id=unique (index); %index of countries

DN N
N = o W o

NC=length(id); S$number of countries

)
(o8]

NN=cols (dataS); %number of series

S
=

idc=vec (repmat (1:NC,1,1)); %index of countries

$%%%Starting Values and Priors
$initial estimate of the factors

[NCREICIN)
-~ o 0

pmatw=extract (dataS,1); $PC estimator of world factor
dataSS=dataS-pmatw* (pmatw\dataS) ;
pmatc=zeros (rows (pmatw) ,NC); %PC for countries
for 1=1:NC

dataC=datass (:, index==1id (1)) ;

tmp=extract (dataC,1);

W oW W W NN
w NP o w

pmatc(:,i)=tmp;

w
=

end

w
el

res=zeros (rows (pmatw) ,NN); %idiosyncratic

w
o

FLOADO=zeros (NN,2); Eprior mean for Factor loadings
for j=1:NN

w oW W
o o -~

yy=dataS(:,3);

=
=

xx=[pmatw pmatc (:,idc==index(J))]:

=
=

BB=xx\yy:

=
[av]

res(:,j)=yy-xx*BB;
FLOARDO (], :)=BB";

=
=

end

=
el

VFLOADO=eye (2) .*10; %prior variance

=
o

$priors for TVP parameters
scale=3.be-04;
tworld factor

=R
0 o -1

[y0w, x0w]=preparex (pmatw(1:T0,:),L,1)7
[L00W, 500w, p00w]l=getols (yO0w,x0w); %0LS AR regressicn on pre-sample

o
=]

QO0w=scale*p00w*T0; 20LS covariance times TO times scaling (scale matrix for IW prior Qw~IW({QOw,

[
N o

Qw=Q0w; &starting value

&
%]

$country factors
b00c=cell (NC, 1) ;
s00c=cell (NC,1);
p00c=cell (NC,1);
Q0c=cell (NC,1);
Qc=zeros (L+1,L+1,NC);

[EEC RN ENS E)
wm =1 oy o=

mytemp.html[11/07/2017 16:39:04]

FIGURE 1. Setting priors

O "N (@g“/o,P@W) where q>(‘)/‘\/0 is set to the OLS estimates of the coefficients while Pgw is the coefficient

covariance obtained via OLS.

(3) Starting values for h}V, k¢, hy: Lines 78 to 82 remove the training sample from the data and the initial
estimates of the factors. Line 86 and 87 again conducts the OLS regression [}V = a" —|—Z§:1 bWFtVEp +rV
using the estimation sample. The starting value for h}" is set as (TXV)2 + 0.0001. As explained in Chapter
5 and the description below, this starting value is used in the Metropolis Step devised by Jacquier et al.

194 7. STATE-SPACE MODELS WITH TIME-VARYING PARAMETERS

mytemp

59 for j=1:NC

60 [y0c,x0c]=preparex (pmatc(1:T0,3),L,1);

61 [b00c{]j},s00c{]},p00c{]j}]l=getols(y0c,x0c);

62 Q0c{j}=scale*p00c{j}*T0; %Qc~IW(QO0c{j},T0) for j=1,2,...NC
63 Qc(:z,:,j)=scale*pl0c{j}*T0; %starting valus for Qc

64 end

65 %idiosyncratic

66 b00e=cell (NN,1);

67 s00e=cell(NN,1);

68 p00e=cell(NN,1);

6% QOe=cell (NN,1);

70 Qe=zeros (Lx,Lx,NN);

71 for j=1:NN

72 [y0e,x0e]=preparex(res(1:T0,J),Lx,0);

73 [b00e{j},s00e{]},p00e{]j}]l=getols(yle,x0e);

74 Q0e{]jl=scale*p00e{J}*T0; %Qe~IW(Q0e{j},T0) for j=1,2,...NN
75 Qe(:,:,j)=scale*pl0e{j}*T0; 2Starting values

76 end

77 %remove training sample

78 dataS=dataS (TO0+l:end,:);

7% pmatw=pmatw (TO+l:end,:);

80 pmatc=pmatc (TO0+l:end,:);

81 res=res(TO+l:end,:);

82 T=rows (dataS) ;

83 %priors and starting values for stochastic wvolatilties as residual”2+small
84 %number

85 2Zworld
86 [yO0w,x0w]=preparex(pmatw,L,1);
87 [~,~,~,epswl=getols (yOw,x0w); %regression of factor on lags

88 hlastw=epsw.”2+0.0001; %residual”2+small number

8% hlastw=[hlastw(l:L+1,:);hlastw];

90 %country

51 hlastc=zeros(T+1,NC);

92 for j=1:NC

93 [yOc,x0c]=preparex(pmatc(:,3),L,1);

94 [~,~,~,epscl=getols(y0c,x0c};iregression of factor on lags
95 hlastcc=epsc.”2+0.0001;%residual”2+small number

96 hlastcc=[hlastcc(1:L+1,:);hlastcec];

97 hlastc(:,j)=hlastcc;

98 end

99 %idiosyncratic

100 hlaste=zeros (T+1,NN);

101 for j=1:NN

102 [yOe,x0e]=preparex(res(:,j;),Lx,0);

103 [~,~,~,epse]l=getols(yle,x0e);%regression of factor on lags
104 hlastee=epse.”2+0.0001;%residual”2+small number
10% hlastee=[hlastee(l:Lx+1l,:);hlastee];

106 hlaste(:,j)=hlastee;

107 end

108 550=10; $variance of initial condition of SVOL
109 g0=0.1"2; %prior scale parameter for inverse gamma prior for g
110 TgO=1; tpricr degrees of freedom

111 gw=g0; %starting values

112 gc=ones (NC,1).*g0; %starting values

113 ge=ones (NN, 1).*g0; $starting values

114 betalw=repmat (b00w",T,1);

115 betalc=zeros(T,L+1,NC);

116 for j=1:NC

117 betalc(:,:,j)=repmat (b00c{j}",T,1);

118 end

mytemp.html[11/07/2017 16:39:04]

FIGURE 2. Setting Priors

(2004) to sample from the conditional posterior of the stochastic volatilities. In exactly the same manner,
the starting values for h{ and h;; are set on lines 90 to 107.

(4) Priors for ¢, g¢, g;: The priors for these variances is inverse Gamma: IG (go, Ty). In our application we
set Ty = 1,90 = 0.01 (line 109). Note that the metropolis algorithm to draw the stochastic volatility uses a
prior for the initial condition. For example one needs to set Inh}Y "N (fi,5). We set & = 10 (line 108) and
use the OLS estimate of the error variance (in step 2) to set the prior mean fi (i.e. s00w on line 50). The
prior for the initial condition for all stochastic volatilties is set this way.

mytemp

119
120
121
122
123
124
125
126
127
128
129

3. PRIORS AND THE GIBBS SAMPLING ALGORITHM

betale=zeros (T, Lx,NN) ;
for j=1:NN

betale(:,:,])=repmat (b00e{J}"',T,1);
end

$initial conditions for the factors
prat00=[pmatw (L, :) pmate(L,:)];
for j=1:1L-1

pmat00=[pmat00 [pmatw(L-7J,:) pmatc(L-j,:)]1]1;

end
vmat00=eye (cols (pmat00))*1;
save priors

Published with MATLAB® R2015b

mytemp.html[11/07/2017 16:39:04]

(5) Initial value of the factors: We assume that Fy"N (F0|0, PF). Note that: F, =

FIGURE 3. Setting Priors

195

Lines 124 to

127 sets this vector using the initial principal component estimates of the factors. Pp is set equal to an
identity matrix on line 128.

196 7. STATE-SPACE MODELS WITH TIME-VARYING PARAMETERS

mytemp

$33282%%%3288%8%%38%8Gibbs Step 1: Draw TVP Parameters%3%3822%%535%%%%%3%
%1 A: World Factor

[yw, zW]=preparex ([pmatw (1:L, :) ;pmatw],L,1);

[

betalw,errorw, rootsw, problemw]=...

1
2
3
4
5 carterkohnaR (yw, xw, Qw, hlastw, bl00w',p00w, L, CHECK, maxdraws, 1) ;
6 1f problemw

7 betalw=betalw;

8 else

9 betalw=betalw;

10 end

11 %draw Qw

12 resbeta=diff (betalw);

13 scaleQ=resbeta'*reshetatQ0w;

14 Qw=iwpqg(T+T0, invpd (scaleQ)) 7

15 81 B: Country Factors

16 betalc=zeros(T,L+1,NC);

17 errorc=zeros(T,NC);

18 problemC=zeros (NC,1);

19 for j=1:NC

20 [ye,xe]l=preparex{[pmatc(1l:L,3);pmatc(:,3)],L,1);

21 [beta2c(z,:,]J),errorc(:,j),rootsc,problemc]=...

22 carterkohn?R (yc,xc,Qc(:,:,]),hlastc{:,]),b00c{j}",p00ci{]},L,CHECK, maxdraws, 1) ;
23 if problemc

24 betaZ2c(:,:,]j)=betalc(:,:,]);

25 else

26 betalc(:,:,j)=betal2c(:,:,]):

27 end

28 %draw Qc

29 resbeta=diff (betal2c(:,:,73));

30 scaleQ=resbeta'*resbetatQ0c{j};
31 Qc(z,:,])=1iwpq(T+T0, invpd(scaled));
32 problemC(]j)=problemnc;

33 end

34 81 c: Idiosyncratic Factors

35 betalZe=zeros (T, Lx,NN) ;

36 errore=zeros (T,NN);

37 problemE=zeros (NN,1);

38 parfor j=1:NN

39 [ye,xe]=preparex([res(l:Lx,j);res(:z,3)],Lx,0);

40 [betaZe(:,:,]),errore(:,j),rootse,probleme]l=...

41 carterkohn?R (ye,xe,Qe(:,:,3),hlaste(:,3),b00e{j}",p00e{j}, Lx, CHECK, maxdraws,0) ;
42 if probleme

43 betaZe(:,:,]j)=betale(:,:,]);

44 else

45 betale(:,:,j)=betaZe(:,:,73);

16 end

47 %draw Qe

48 resbeta=diff (betale(:,:,73));

19 scaleQ=resbeta'*resbetat+Q0e{]};

50 Qe(:,:,])=1wpq(T+T0,invpdiscale));
51 problemE (j)=probleme;

52 end

Published with MATLAB® R2015b

mytemp.html[20/07/2017 19:23:18]

FIGURE 4. Draw time-varying coefficients.

3.2. The Gibbs sampling algorithm. The Gibbs algorithm involves sampling from the following conditional
posterior distributions:

(1) Sample from H (®}V|Z): Here Z all remaining parameters and states in the model. Given a draw of the
world factor, the stochastic volatility A} and the variance Q" this step involves a TVP regression with a

3. PRIORS AND THE GIBBS SAMPLING ALGORITHM 197

known error variance:

P

BV = oV ST oY, (hV)E el
p=1

<I)¥V = vec([al’v,pm,..,p‘gt])

ol = ol + (")l

This is a linear state-space model and the Carter Kohn algorithm is used to draw ®}". As described in
Chapter 3, this involves running the Kalman filter and a backward recursion. As the variance of the error
to the observation equation is time-varying (i.e. k"), a slight modification to the Kalman filter is required
to ensure that this time-variation is taken into account — i.e. the different value for the variance is selected
in each recursion of the Kalman filter. The code for this step is shown in figure 4 lines 9 to 16. Line 19
creates the left and the right hand size variables in this TVP regression. Line 10 draws from H (®}"|Z)
given previous values of F}V, QW h!¥ and the initial conditions @%, Ppw. The function carterKohnAR
has the following inputs: 1) dependent variable, 2) independent variable, 3) QW, 4) h}V, 5) Q(%, 6) Ppw,
7) P, 8) CHECK, 9) maxdraws, 10) EX. If CHECK =1, then at most maxdraws attempts are made to find a
stable draw. If no stable draw is found problemw is set to 1. Finally EX=1 implies there is one exogenous
regressor, i.e. the intercept. The function returns the draw from conditional posterior using the Carter Kohn
algorithm: beta2w, the residuals of the regression errorw, a dummy variable that equals 1 at a particular

time period if the stability condition is violated at that observation (rootsw) and problemw.

Sample from H (Q"|Z): This conditional posterior is IW ((@ZV — @tvzl)/ (@ — V) + QKV,T+T0).
Lines 18 to 20 in figure 4 display the draw of this parameter.

Sample from H (®¢|Z) for ¢ = 1,2,...,C: This involves exactly the same calculation as step 1. The only
change is that we need to conduct this draw using each country factor seperately. Lines 22 to 33 in figure
4 show the application of the Carter Kohn algorithm using each F¥.

Sample from H (Q¢|Z) for ¢ = 1,2, ..., C: The draw from this inverse Wishart conditional posterior is carried
out on lines 35 to 38 exactly as in step 2.

Sample from H (pi)t|E) for i = 1,2,..., N: Given a value for the residuals e;;, the stochastic volatilties h;;
and variances ¢; this is imply an application of the Carter and Kohn algorithm to the TVP-AR model that
applies to each e, i.e.

1
eit = pigCit—1 + (hit)? it

1/2
Pix = Pig—1T (qi/)mt
The same code as in step 1 is again used (lines 41 to 52), looping over the N residuals. Not that EX=0
when calling carterkohnAR as the regression has no intercept. Not the use of parfor, the parallel for loop
which can speed up this step if N is large.

Sample from H (¢;|Z) fori = 1,2, ..., N: Lines 54 to 58 show this draw from the inverse Wishart distribution.

Sample from H (hfv |E) Given the residuals of the transition equation 2.2, the following stochastic volatility
model applies:

= (e

nrY = A", + (gW)1/2 ulV

Given ¢" and initial conditions, the independence Metropolis algorithm of Jacquier et al. (2004) can be
used to draw h}' as explained in Chapter 5. The code for this step is shown in figure 5 (lines 3 and 4).
Line 3 calls a function getsvol. The inputs to this function are: 1) hlastw, the last draw of h/V, 2) "V, 3)
the prior mean for the initial volatility &, 4) The variance of the prior for the initial volatility and 5) the
residuals 7}V, i.e. the observed data in the observation equation of the stochastic volatility model. It returns
a (T + 1) x 1 vector containing the draw of h}V. Line 4 updates hlastw for the next draw.

Sample from H (gW |E) This conditional posterior is inverse Gamma: IG((ln RV —1In hle)/ (ln R —1In hle)—i—

90, T+ T,). Lines 5 and 6 conduct this draw.

Sample from H (h$|E) for ¢ = 1,2, ...,C: As in step 7, this draw is a simple application of the Jacquier et al.
(2004) using the residuals from the transition equation of each country factor. This is done on lines 9 to 11
in figure 5.

Sample from H (gW|E) for c=1,2,...,C: This is simply a series of draws from the inverse Gamma distrib-
utions as in step 8. See lines 12 and 13 of the code.

198

mytemp

@ - oy O N

e e)
G W N e o

16
17
18
19
20
21
22

7. STATE-SPACE MODELS WITH TIME-VARYING PARAMETERS

$2%%%%22288888888G1bbs Step 2: Draw SVOL%2222222888888%%%
or SVOL
hneww=getsvol (hlastw, gw,log(s00w),SS0,errorw) ;

a0
00
N
oo
B
o
5o
=
o
=

o)

Q
a

hlastw=hneww;
gerrors=diff (log(hlastw));
gw=1G(Tg0, g0, gerrors) ;
%82B: Country factor SVOL
hnewc=zeros (T+1,NC) ;
for j=1:NC
hnewc (:,j)=getsvol (hlastc(:,3),gc(j),log(s00c{j}), 880, errorc(:,j));
hlastc(:,j)=hnewc(:,73);
gerrors=diff (log(hlastc(:,3))):
gc (j)=IG(Tg0,g0,gerrors) ;
end
%% 2C: Idiosyncratic factor SVOL
hnewe=zeros (T+1,NN) ;
parfor j=1:NN
hnewe (:,j)=getsvol (hlaste(:,]J),ge(j},log(s00e{j}),550,errore(:,j));:
hlaste(:,j)=hnewe(:,7);
gerrors=diff (log(hlaste(:,]j))):
ge(j)=IG(Tg0,q0,gerrors);
end

Published with MATLAB® R2015b

mytemnp.html[20/07/2017 19:21:25]

Sample from H (h;|Z) for ¢ = 1,2,..., N: This requires nothing more than an application of the Jacquier

FIGURE 5. Drawing stochastic volatility

et al. (2004) algorithm to the series of stochastic volatility models given by

where

1
rie. = (hit)?€i

Inh; = Inhg_1+ (9i)1/2 Uit

r;+ denotes the residuals r;; = e;; — Pi t€it—1 for: =1,2,..., N collected when conducting step 5 above.

See lines 16 to 19 of the code.

Sample from H (g;|Z) for i = 1,2, ..., N: Line 20 and 21 of figure 5 show the draw of this variance from the

inverse Gamma distribution for each i.

(13)

3. PRIORS AND THE GIBBS SAMPLING ALGORITHM 199

Sample from H (8]=): The observation equation of the factor model is
mi = B B + BiFf + e

where the serially correlated, heteroscedastic error term is defined as

1
eit = piCit—1 + (hit)® €it

For each i, given p;, and h;; the model can be easily transformed so that the error term has no serial
correlation or heteroscedasticity:

T putis _ gw B el | Fo el
(hie)? (har)? (i)
EitNN(O,D

w w 3
FY —pi e Fy2y Ft67pi,tFtC—1

Letting ¥, = T2 PeTitol x, — , , the conditional posterior is normal N (M,V) :
S (hit)% ‘ [(hit)% (hit)%] P ()
1 .
M= (vitexx) o (vilBi+ X (3.1)
-1
veo= (e xix)

The code for this step is shown in figure 6. Line 5 starts a loop across the countries. Lines 6 to 9, select the
data, the sereial correlation coefficients p,,, the error variances h;; and the prior means BZ for each country.
The first two sets of factor loadings for each country are fixed, i.e. the first two rows of the factor loading
matrix for each country is set equal to an identity matrix to deal with rotational indeterminancy of the
factor model. Line 18 loops over the remaining data series. Lines 19 to 26 remove the serial correlation and
heteroscedasticity and line 31 draws the laodings from the conditional posterior. The inputs to the function
getreg are: 1)Y;, 2)X;, 3) B 4) Vj and 5) Variance of the error of the regression which equals 1 here. Note
that the residuals e;; are updated on line 34.

Sample from H (F3|=): The final step is a draw of the factors from their conditional posterior. This is
simply an application of the Carter and Kohn algorithm. However, it is instructive to consider the model
in state-space form. Consider, for a simplicity an example where N = 8 and C = 2 and P = 2. The
observation equation is then given by:

X1 — pltXltfl ‘1‘:‘; i 0 _pltﬂg _pltﬁi 0 €1t
Xot — por Xot—1 2 s 0 —pyufBy —pabs 0 FY €2t
X3t — 3 X3-1 2 By 0 —paBy —pubs 0 F €3t
Xat — pyXar—1 _ VoBL 0 —puBY —puBl 0 I + Cat
X5t — p5 Xst—1 Y0 BT —psBY 0 —p5iB7 Yy Est
Xeot — PerXo6t—1 vo0 5 —PeBh 0 —peil3s Fi, Cot
X7 = P Xzi 70 B —puby 0 —prif3 F et
Xst — pgr-Xse—1 ¢ 0 BT —puBy 0 —psi31 g st
Yt o, €t

hi: O 0 0 0 0 0 0

0 hot O 0 0 0 0 0

0 0 hg O 0 0 0 0

- 0 0 0 ha O 0 0 0

var(@) = B=1 6 o 0 0 hy 0 0 0

0 0 0 0 0 heg O 0

0 0 0 0 0 0 hyu O

0 0 0 0 0 0 0 hst

The observation equation is defined so that the residuals are free from serial correlation. For example,
the first line reads X1z — p X11—1 = ﬁYV (FtW - pl,tFtI/Kl) + /6% (Ftl - pl,tFtl—l) + €1 where €y is serially
uncorrelated but heteroscedastic. Notice that the matrices Hy, R; change over time. We need to account

200

7. STATE-SPACE MODELS WITH TIME-VARYING PARAMETERS

$data for country 1

resl(:,j)=yy-xx*FL; %residuals are serially correlated and heteroscedastic

$save factor loadings for each country

mytemp
1 %% Step 3: Sample factor loadings
2 fload=zeros (NN,2);
3 res=zeros(T,NN);
4 §i3=1;
5 for jj=1:NC
6 tmpdata=datasS(:,idc (j])==1index) ;
7 tmpbetalZe=betale(:,:,idc(J])==1index);
8 tmphlaste=hlaste(:,idc(jj)==index);
9 tmpfload0=FLOADO (idc (jj)==1index, :);
10 floadl=zeros{cols (tmpdata),2);
11 resl=zeros (T,cols (tmpdata));
12 floadl(1l:2,:)=eye(2); %identification
13 for j=1l:2
14 yy=tmpdata(:,7);
15 xx=[pmatw pmatc(:,3j)];
16 resl(:,])=yy-xx*floadl (j,:)";
17 end
18 for j=3:cols(tmpdata)
19 yy=tmpdata(:,]J);
20 2x=[pmatw pmatc(:,3j)];
21 $remove serial correlation
22 yys=remSC (yy,tmpbetaZe (z,:,73));
23 xxs=rem5C (xx, tmpbetaZe(z,:,73));
24 gremove heteroscedasticity
25 yyss=yys./sqrt (tmphlaste (2:end,j)) ¢
26 ®XXS5=xX5./repmat (sqrt (tmphlaste(2:end,j)),1,cols (xxs));
27 $take care of missing values
28 yyss=yyss(Lxtl:end, :);
2% xxss=xxss (Lx+l:end, :);
30 ¢draw from conditional posterior
31 FL=getreg(yyss,xxss, tmpfloadl (J,:) ", VFLOADO, 1) ;
32 floadl (j,:)=FL";
33 $save residuals
34
35 end
36 fload (jjj:jjj+cols (tmpdata) -1, :)=floadl;
37 res(:,jjj:jjj+cols (tmpdata)-1)=resl;
38 jjj=jjj+cols (tmpdata) ;
39 end

Published with MATLAB® R2015b

mytemp.html[20/07/2017 12:21:36]

F1GURE 6. Draw factor loadings

for this in the Kalman filter. The transition equation of the model is defined as:

FtW oz}f/V p‘ﬂ/t 0
Ftl O‘tl 0 P%,t
FE _ af 0 0
Ftvfl o 0 1 0
Ft;l 0 0 1
gy 0 0 0
Bt Hy
h}f/V 0 O

hl 0

var (o) = Q= 0 0

0 p¥ 0 0 Y,

0 0 P%,t 0 F, tl—l

P%,t 0 0 P%,t F t271

0 0 0 0 FY,

0 0 0 0 FfLQ

1 0 0 0 Ff_2

Fy Bi_1
0 0 O
0 0 O
0 0 O
0 0 0

V1t
V2t
U3t

4. FURTHER READING 201

Again, the parameters of the transition equation are time-varying. This needs to be accounted for in the
Kalman filter and the backward recursion. The code for this step is shown in figures 7 and 8. Lines 2 to 5
calculate X;; — p,;; Xi1—1 using the function remSC which takes arguments X;; and p;,. The Kalman filter
iteration begins on line 13. Notice that the matrices of the state-space have to be built within the loop as
they are time-varying. Lines 18 to 36 construct the matrix H; shown in the observation equation. Line 38
constructs R;. The matrices of the transition equation are constructed on lines 42 to 47. Lines 50 to 53
are the equations of the prediction and the update steps of the Kalman filter. The backward recursion of
the Carter and Kohn algorithm begins on line 66. As in the Kalman filter, the matrices of the transition
equation are constructed at each time period. One important point is the fact that the backward recursion
is derived by assuming the following ‘observation equation’ (see Chapter 3):

Biv1 = a1 + Fep1By +vig,
var(vip1) = Qi1

Notice that the matrices of the state-space are dated at time ¢+ 1. Thus, in the Carter and Kohn backward
recusrsion when ¢ = T — 2, for example, the matrices of the state space are pr_;, Fr—1,Qr—1. These
matrices are constructed on lines 77 to 82. Line 84 to 86, select the rows corresponding to the non-singular
block of). The remaining lines calculate the mean and variance of the conditional distribution and draw
the state-variables (see Chapter 3). The factors are extracted on lines 94 to 96.

As mentioned above, the example uses artificial data. Based on a run using 20,000 iterations and a burn-in of
10,000 replications we can compare the estimated contribution of the world factor to the variance of each series with
the true value assumed in the data generating process.

Figure 9 shows this comparison for the first 40 series of artificially generated data. The black line shown the true
time-varying contribution of the world factor to the variance of the series. The red line shows the posterior estimate
obtained by running the algorithm described above.

4. Further reading

e Time-varying factor models are also estimated in Bianchi et al. (2009), Baumeister et al. (2013), Liu et al.
(2014), Ellis et al. (2014) and Mumtaz and Theodoridis (2017). The algorithms used in these papers is very
similar to the one described in this chapter.

e Kim and Nelson (1999) consider state-space models with Markov Switching in Chapter 10.

202 7. STATE-SPACE MODELS WITH TIME-VARYING PARAMETERS

mytemp
1 %% Step 4: Carter Kohn Algorithm to sample the factors
2 dataF=zeros (T,NN);
3 for j=1:NN
1 dataF (:,j)=remSC{dataS(:,]j),betale(:z,:,3));
5 end
& dataF({1:Lx,:)=repmat (dataF (Lx+1,:),Lx,1);
7 %Carter and Kohn algcocrithm to draw the factor
8 ns=cols (pmat00];
9 beta tt=zeros(T,ns); 2will hold the filtered state wvariable
10 ptt=zeros(T,ns,ns); %2 will hold its wariance

11 betall=pmat00;
12 pll=vmat00;
13 for 1=1:T

14

15 $build matrices of state space as they are time-varying

16

17 $observation equation

18 Hl=zeros (NN,NC+1) ;

19 H2=H1;

20 $world factor loadings

21 Hl(:,1)=fload{:,1);

22 HZ2(:,1)=fload(:,1).* -squeeze(betaZe(i,:,:));

23 tcountry factor loadings

24 ij=2;

25 jii=1;

26 for j=1:NC

27 floadc=fload (index==idc(j},2); %country factor loadings

28 tmpbetale=squeeze (betaze (i, :,idc(j)==index)); %AR coefficlient at time t of idiosyncratic
shock

29 H1(j3j:Jj)trows (floadc)-1,97)=floadc;

30 H2(337:Jjjtrows (floadc)-1,j7)=floadc.*-tmpbetale;

31 J3=33+1;

32 Jii=jjjtrows (floadc);

33 end

34 H=zeros (NN, (NC+1)*2) ;

35 H{:,1:NC+1)=H1;

36 H{:,NC+Z:end)=HZ2;

37

38 R=diag(hlaste(i+l,:));

39

10 $transition equation

41

12 Q=zerosins,ns);

43 Q(1:NC+1,1:NC+1)=diag([hlastw(i+l) hlastc(it+l,:)]1):

44 Fl=diag!{[betaZw(i,1) :squeeze(betaZc(i,l,:))]1):; %AR 1 coefficients
45 Fe2=diag!([betalw(i,2) :squeezelbetalc(i,2,:))1); % AR 2 coefficients
16 F=[[F1l FZ];eye(ns—-(NC+l),ns)];

47 MU=[betazw(i,L+1l) squeeze(betaZc(i,L+1l,:))"' zeros(l,ns-(NC+1})];
183

49 $Prediction

50 x=H;

51 betall=MU+betall*F’';
52 plO=F*pll*F"+Q;

53 vhat=(x* (betalQ)"')"';
54 eta= dataF(i,:)-vhat;
55 feta=(x*pl0*x")+R;

56 ifeta=invpd(feta);

57 Bupdating

58 K=(plOo*xT)*ifeta;

mytemp html[19/07/2017 20:11:19]

FIGURE 7. Carter Kohn Step to draw factors.

4. FURTHER READING 203

mytemp

56 betall=(betald"™+K*eta')";

00 pll=pl0-K* (x*pl0);

0l ptt(i,:,:)=pll;

62 beta tt(i,:)=betall;

63 end

64 % Backward recursion to calculate the mean and variance of the distribution of the state
&b Fvector

66 beta? = zeros(T,ns): 2this will hold the draw of the state wvariable

67 Jvl=1:NC+1l; %index of state wvariables to extract

68 Jv=jvl;

6% wa=randn(T,ns);

70 i=T; &period t

71 pO0=squesze (ptt(i,Jvl,Jvl));:

72 beta2(i,:)=beta tt(i,:);

73 beta2(i,jvl)=beta tt(i:i,jvi)+(wafi:i,jvl)*cholx(p00)); gdraw for beta in period t from
N{beta tt,ptt)

74 %periods t-1..to .1

75 for 1=T-1:-1:1

76 %build matrices of transition equation

77 Q=zeros (ns,ns) ;

78 Q(1:NC+1,1:NC+1)=diag([hlastw(i+Z2) hlastc(i+Z,:)1);

79 Fl=diag([betal2w(i+1l,1) ;squeeze(betalZc(i+l,1,:))]1); %AR 1 coefficients
30 F2=diag!([beta2w(i+1l,2) :squeeze(betaZc(i+l,2,:))]1); % AR 2 coefficients
81 F=[[Fl F2]l;eye{ns—-(NC+1l),ns)];

82 MU=[betalw(i+l,L+1) squeeze(betalc(i+l,L+1l,:))" zeros(l,ns—(NC+1))1;
83

8L f=F(jv,:):

85 g=Q{jv,iv):

86 mu=MU(jv) ;

87 pt=squeeze(ptt(i,:,:));

88 ifptfg=invpd(f*pt*f'+q);

89 bm=beta tt(i:i,:)+(pt*f"*ifptfqg* (beta2(i+l:i+l,jv) -mu-beta tt(i,:)*£") "1 ";
90 pm=pt-pt*f'*ifptfg*f*pt;

91 betaz(i,:)=bm;

92 betaZ(i:i,jvl)=bm(Jvl)+(wa(i:i,jvl)*cholx(pm(jvl,ivl)));
93 end

94 pmat=betaz(:,jvl); tupdate the factors

95 pmatw=pmat(:,1);

96 pmatc=pmat (:,2:NC+1);

Publishred with MATLAB® R2015b

mytemp html[19/07/2017 20:11:19]

FiGURE 8. Carter Kohn Step to draw factors.

204

7. STATE-SPACE MODELS WITH TIME-VARYING

PARAMETERS

10 Tag
T = ——
so [
0
0 50 100 150 200
ot
100 s =
0 TNl
0
0 50 100 150 200
T1ap
100
50 AP
0
0 50 100 150 200
10 "6t
50 l:’ﬂf—JD: — AN .
0
0 50 100 150 200
a0t
100 —
50 } W
0
0 50 100 150 200
T2t
100
50 P v = Q
0
0 50 100 150 200
Tast
100
2l]
0 50 100 150 200
Taap
100 -
50
: =
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

T34t "5 361
100 — - 100 100 —
i — % revw e I it v —
0 == 0 o
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
N X Ta0r
100 100 100 = T =
50% T NS SDL Nl { SDWY ;‘:51
0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

FIGURE 9. A comparison of the true contribution of the world factor (black line) with the estimated

posterior median contribution (red line)

CHAPTER 8

Appendix: Introduction to Matlab®©

1. Introduction

This appendix provides a basic introduction to Matlab and introduces the key concept needed in dealing with
the codes used in this book. Note that a number of alternative guides to Matlab are available on the web and these
may be used to supplement the material here.

2. Getting started

Figure 1 shows a basic screen shot of Matlab. There are two main windows: (1) the editor window which is
docked on top and the (2) command window which is docked at the bottom. The editor is where we type our code.
Once the code is typed it can be saved as a file which has the extension .m. The code is run by clicking on the green
run button or by simply typing in the name of the program file in the command window. The command window is
where the output from running the code appears. Or alternatively, each line of the code can be run by typing it in
the command window and pressing enter.

In figure 2 we show how to create a generic first program called helloworld.m which prints out the words Hello
World. The code simply consists of the line "Hello World” where the single quotes signify that this a string variable
as opposed to a numeric variable (or a number). By clicking on run, the output appears in the command window.
Alternatively one can run the line of the program containing the code by highlighting the line and pressing F9.

3. Matrix programming language

The key data type in Matlab is a matrix and Matlab supports numerous Matrix operations (multiplication,
transposes etc).

3.1. Creating matrices.
3.1.1. Entering a matriz manually. Suppose we want to create the following two matrices

12 3 4
X_<5678>

2 3 4 5
Z = (7 8 9 10)

Figure 3 shows the matlab code required to do this (examplel.m). Note that the numbers in the first column are
line numbers which are shown here for convenience and will not appear in the actual code. Note also that any code
starting with % is a comment and is ignored by matlab. Line 2 shows how X is created.! The numbers have square
brackets around them. Each column of the matrix is seperated by a space and rows by a semi-colon. Lines 2 and 3
finish with a semi-colon. This stops Matlab from priniting out X and Z when the code is run. Instead we print the
matrices by typing X and Z without a semi-colon on lines 5 and 6.

3.1.2. Entering a matriz using built in commands. Line 2 in figure 4 creates a 10 x 10 matrix of zeros (the file is
example2.m). The first argument in the function zeros denotes the number of rows, the second denotes the number
of columns required. Line 4 creates a 10 x 20 matrix of ones. Line 6 creates a 10 x 10 identity matrix. Line 8 creates
a 10 x 10 matrix where each element is drawn from a N(0,1) distribution. Similarly, line 9 creates a matrix from the
standard uniform distribution.

3.1.3. Reading in data from an excel file. In practice we will read in matrices (i.e. data) from an outside source.
As an example we have stored data on UK GDP growth and inflation in an excel file called data.xls in the folder
called data. Figure 5 shows the matlab code used to read the excel file. The command xlsread reads the data into a
matrix called data. The variable names are read into a string variable called names. Note that text files can be read
by using the command load. Suppose one wants to read in data from a text file dalled data.txt, one simply needs to
type load data.txt. Type ‘help load’ in the command window for further information.

IMatlab is case sensitive. Therefore X is treated as a different variable than x.

205

206 8. APPENDIX: INTRODUCTION TO MATLAB®

e
File Edt Debug Parallel Deskkop ‘Window Help
S| | ¥ B @9 N ‘ & = | (7] | Current Folder [vr\Users) 1 4643 1 FAYARMATLABLjanz01 Lestimation JE I s
* Shortcuts 2] Howto Add 2] What's Hew
Current Folder '+ 0O a x ||~ Editor - Untitled* + 0 2 X || Workspace +~Oa x
@ ® 3 « estmation, b v,oni@i-v5’358“&%@‘1F|$"—jv|ﬁﬁ¢ffi‘klj-@ﬁ@‘%@ﬂ@3”|E|'Iax) ¢ & & B | sk | [pet... -
[[mame + [TIE B8] -fa |+ | =L | = |0, \I [1ame = [vatue
2matoutd, dht =] 4this is whers I type wy program | E;;s ETIDEI:UI double=
B na : b s
matout.dat < <150x21 double>
[—_— specify directory un HH = <150x1 double>
B vals. s your
wols.dat code
HZ wolatilityprocs.ox
wim,dat
Pl vrprocs.ox
bvi,ox
ﬂ kemps.m
temp.ox.bak
kemp.ox
temp.gwg
temp.dat
Syvi.dat
v, dat
skates.dat
T sartmall sre [Cammand Window WO x
[Z] sartmall.h fi Trials» ‘ 4 |
sqrtm3. src o
&) szrtm}h Command History Hoax
¥ sortme.src subplot (4, 2,577 =]
E) sqremz.h ~plotxs (TT,[=(:,5) ={:,13)
EZ’ sarkm.src ~axis tight
E] sartm.h ~title('Stochastic Volatil
%‘ sa"eple'f‘“ ~subplot (4,2, 6] ;
;i\li:?":d.at ~plotx2 (TT,[s(:,6) s(:,14)
= rho.dat ~axis tight
rFac.dat ~title('Stochastic Volatil
[amatuk.dat ~aubplat [4,2,7) ¢
= cmam.cat wplotu2 [TT, [21:,7) =(:,15)
Y prat.sds ~axis tight
) plotxz.m "))
fﬂplntxl.m title('ZFtochastic Volatil
2 plotitForld.m subplot (4,2,8):
plotieror\d.asv plotxZ (TT,[=(:,8) =(:,16)
:j plotirfRealactivitymPhilipZ.m axis tight
j RlotieFEXTERNALpAZ. m title('Stochastic Volatil
plotirFEXTERNALphilin2 .asv
ﬂ plotFactors.m 0.00570.85
platfactors,asy 0.00570.3570.95
Bl ather ox ~0.005%0. 95> 10
=0 mainmrnnrambinivall oy hak = ole —lj
Details C3 4 | L4
4\ Start R About My Trial | Trial Days Remaining: 58

i A SORYIB @ 159

FiGure 1. Matlab command window

3.2. Manipulating matrices. Lines 2 and 3 in figure 6 create two matrices X and Z shown in example 1 above.
Line 5 sets the element (2,1), i.e. the element on the second row first column to 30. Line 7 creates a new 4 x 4 matrix
by vertically concatenating X and Z. This done by the command M=[X;Z] where the semi-colon denotes vertical
concatenation. That is, it creates

1 2 3 4
30 6 7 8
M= 2 3 4 5
7 8 9 10

Line 9 of the code creates a new 2 x 8 matrix N by horizontally concatenating X and Z. This done by the command
N=[X Z] where the space denotes horizontal concatenation. Finally Line 11 of the code shows how to set the entire
second row of N equal to -10. Note that argument 1:end in N(2,1:end)=-10 selects columns 1 to 10. One can delete
elements by setting them equal to []. For example N(2,:)=[] deletes the entire second row.

3.3. Matrix Algebra. Matlab supports numerous matrix functions. We demonstrate some of these by writing
code to estimate an OLS regression using data in the file data.xls used in example 3 above (example5.m). Recall the
formulas for an OLS regression Y = XB + E are

B = (X'X)"'(XY)
. (Y -XB)(Y-XB)
VAR(E) = S= e
VAR (B) = Sx(X'X)"!

Where T denotes the number of observations and K are the number of regressors. We assume Y is the first column
of data.xls and X is the second column of data.xls and a constant term. Line 3 of the code shown in Figure 7 loads
the data. Line 5 shows the function size to find the number of rows in the data. Line 7 assigns the first column of

3. MATRIX PROGRAMMING LANGUAGE 207

) MATLAB 7.9.0 (R2009b) - Trial ersion =12

File Edit Tesxt Go Cel Tools Debug Parallel Desktop Window Help
B | E| PN - | & = ‘ @ | Current Folder: | v:\sers) 1 464311FAYARMATLAB!jan201 1 estimation [~

* Shortcuts (2] How'to Add (2] What's New

Current Folder [C = I I/l | B Editor - X:\Users' 146431\ [LA5\Bayesian',course ymonograph' code',appendix helloworld.m Workspace 0 A x|
@ % 3 s« estimation » vp@-EKJEHHE%E‘)F‘Q%’v|ﬁ@¢ﬁi|ﬂ-@>@@@@@3”lﬂ_;lax B M] & & | st | [Pt -
[[time © [T Bd| -+ | <fx =[]0 [Fion heowordn] [vame o [atue
[zmatourn.che PN B $this is where I Lype wy program O m I<1xlSldmfh\a>
[zmatouto.dat B e mICES Hello world
2matout.dht SRR H 15124 double >
zmatout.dat [= «150=21 double >
B zmat. s = <1501 double>
B yols xls
wals,dat
Hg volatilitypracs ox
wm.dat
Bz varpracs.ox
tve.ox
) tempe.m
temp.ox.hak
temp.ox
temp.qug
temp.dat
S, dat
S dat
states.dat
I sartmall.sre Command Window n0e x|
] sartmail.h Trialy> 'Hello World' 4 |
sgrtm3.sre e
1] sartma.h ans = Command History ~n0Oa x
ﬁsqrtmz.src PLIOTXZ(TT, [=37, 50 S[:,l]d
E] sgrtmz.h Hello Gorld axis tight
¥ sartm.sre title(Stochastic Volatil
E] sartmh fe Trialss subplot (4,2, 6):
gz::::z:::[plotx2 (TT, [s{:,6) s(:,14)
SALPH, dat ~axis tight
tha.dat ~title('Stochastic Wolatil
tfac.dat ~subplot (4,2,7);
[cmaTuk. dat ~plotxZ (TT, [s{:,7) si:,15)
QMAT dat ~axis tight
B pmat xbs }))
fﬂ plotxz.m ~title('Stochastic Volatil
) plotx1.m ~auaplot (4,2,8);
ﬂplotlrfworld.m plotxz (TT, [5(:,8) =i:,16)
platirforld. asv axiz tight
] plotirfRealactivitymPhiipz.m title(Stochastic Volatil

) plotirFEXTERNALphilip2.m

0.005%0.95
plokirFEXTERNALphilip2. asv
0.005%0,95%0.95
plotfactors.m
plotfactors. asw ~0.00570.55"10
other,ox ~ole
[0 mairrennrambnivel . e hak = ~1Hello World' -
Details T 1 L
' StartI | seript [tn 2 Caol 1 [0/R AboutMy Trial | Trial Days Remaining: 58

Wistant| | @ & 1~ [|t e | e s @]G".‘l_m Ge. | W | En. | B .| Es. | Es. | Be | Tir | @r | T |Ge | Y| [@OWDIBE 1545

FI1GURE 2. Hello World

matrix manually

r
6 7 8
9 -

reemn

[T 4 BT S P T O T S

FIGURE 3. Example 1

data to a T' x 1 matrix called Y. Line 9 creates the T' x 2 X matrix where the first column is the constant and the
second column is the second column of data.

Line 11 calculates the OLS esimate of the coefficients using the formula B = (X’X)™' (X’Y). This line shows
three matrix functions. First the the transpose of X in matlab is simply X’. One can multiply conformable matrices
by using the * key. The inverse of matrix is calculated in matlab using the inv function. Line 13 calculates the

208 8. APPENDIX: INTRODUCTION TO MATLAB®©

1 %create a matrix of zeros

2 X=zeros (10,10);

3 %create a matrix of ones

4 Y=ones (10,20);

5 %create an identity matrix

6 I=eye(1l0);

1 %create a 10 by 10 matrix from N(0,1)
8 N=randn (10,10):

9 %create a 10 by 10 matrix from U(0,1)
10 U=rand(10,10);

Plu
FIGURE 4. Example 2
1 %read in data from an excel file
2 [data,names]=xlsread('‘\data\data.xls'):;
Publishe
Ficure 5. Example 3
1l %Sentering a matrix manually
2 X=[1 2 3 4:5 6 7 8]:
3 Z=[2 3 4 5;7 8 9 10]:
4 $ set X(2,1)=30
5 X(2,1)=30;
6 % vertical concatenation
T M=[X;2]:;
8 %horizontal concatenation
9 N=[X Z]:
10 %$set the second row of N to -10
11 N(2,1l:end)=-10:
Publishe.

FIGURE 6. Example 4

residuals while Line 15 calculates VAR (E) and line 17 calculates VAR (B) = 5% (X’X)"". Note that S is a scalar

and (X'X)_1 is a matrix. In general a scalar can be multiplied by each element of matrix by the ‘.* key which
denotes element by element multiplication. So this can also be used for element by element multiplication of two
matrices. Finally, the standard errors of the coefficients are given as the square root of the diagonal of the matrix

4. PROGRAM CONTROL 209

ol

clear %clears all wvariables in memory

Sread in data from an excel file

[data, names]=xlsread('\data\data.xls"'):;
%dimensions of the data

T=size(data,l):; %number of rows in the data
%asaig data

Y=data(:,1); %Y 1s the first column of data
% n

X

O =] Oy 0 = W [=

X matrix with a constant
=[ones (T,1l) data(:,2)]:
%0LS coefficients

=inv (X'*X)* (X'*Y) ;

a8
]

= =W
= =
]

E=Y-X*B;
SVariance of Error term
S=(E'*E) / (T-2) :

==
(o T 6 B = T I
:__J,_]
i
(41
}?1.
I':LL
=
Eu
(-
)

$Covariance of B
V=S.*inv (X"'*X)
2atandard errors

SE=diag (V) .”0.5;

WO 0o =]

F1GURrE 7. Example 5

clear
REPS=100; % number of repetitions
Z=zeros (REPS, 1) :
for 1i=1:REPS
Z(i,1)=i"2;

[T B SR R T O I ey

end

whili
1t

FicUre 8. Example 6

Sx(X'X)_1 . Line 19 uses the diag command to extract the diagonal and then takes the square root by raising them
to the power 0.5. This is done by the command .~ which raises each element of a matrix to a specified power.

Other useful matrix functions include the Cholesky decomposition (command chol, type help chol in the command
window for details). A list of matrix functions can be seen by typing help matfun in the command window.

4. Program control

4.1. For Loops. One of the main uses of programming is to use the code to repeat tasks. This is used intensively
in Bayesian simulation methods. The main type of loop we use is the For loop. To take a trivial example suppose we
need to create a 100 x 1 matrix called Z where each element is equal to row number raised to power 2. So Z(1,1)=1,
7(2,1)=2"2, Z(3,1)=3"2 and so on. The code is shown in figure 8. Line 2 sets the total number of rows in the matrix
Z. Line 3 creates the empty matrix Z.

210 8. APPENDIX: INTRODUCTION TO MATLAB®

1 clear

2 T=1000; %Simulate for a 1000 periods
3 Y=zeros(T,1):

4 V=randn(T,1):

5 RHO=0.99;

6 for i=2:T

7 Y(i)=Y(i-1) *RHO+4+V (i, 1) :

8 end

9 plot(Y):

Ficure 9. Example 7

1 clear

2 T=1000; %Simulate for a 1000 periods
3 Y=zeros(T,1):

4 V=randn (T, 1):

5 RHO=0.99;

6 for 1=2:T

7 temp=Y (i-1)*RHO+V (i, 1):;
8 1if temp>=0

9 Y(1i)=temp:;

10 end

11 end

12 plot (Y):

FiGUuRrE 10. Example 8

Line 4 begins the for loop and instructs matlab to repeat the instruction on line 5 REPS times. That is the loop
starts with i=1 and repeats the instruction below (instructions on lines before the end statement) until i=REPS. It
increases i by 1 in each iteration. On line 5 the ith row of Z is set equal to i squared. Therefore when i=1, Z(1,1)=1,
when i=2, 7(2,1)=22, when i=3, Z(3,3)=3% and so on. The instruction end on line 6 closes the for loop. Note if
we had typed on line 4 for i=1:-1:REPS, i would be decreased by 1 in each iteration. If we had typed on line 4 for
1=1:2:REPS, i would be increased by 2 in each iteration.

Figure 9 shows a second example where we simulate an AR(1) process for 1000 periods Y; = pYi_1 + Vi, t =
1...1000. Where V;"N(0,1). Line 3 of the code creates a T' x 1 matrix of zeros Y. Line 4 draws the error term from
the standard normal distribution. Line 5 sets the AR coefficient p = 0.99. Line 6 starts the loop from period 2 going
up to period T=1000. Line 7 simulates each value of Y;,¢ = 1....1000 and line 8 ends the for loop. Line 9 plots the
simulated series.

4.2. Conditional statements. Conditional statements instruct Matlab to carry out commands if a condition
is met. Suppose, in example 7 above, we want to simulate the AR model but only want to retain values for Y which
are greater than or equal to zero. We can do this by using the if statement in matlab. Figure 10 shows the matlab
code. Lines 1 to 5 are exactly as before. Line 6 begins the for loop. Line 7 sets a variable temp = pY;_1 + V;. Line 8

4. PROGRAM CONTROL 211

1l clear

2 T=1000; %Simulate for a 1000 periods
3 Y=zeros(T,1):

4 V=randn(T,1):

5 RHO=0.99;

6 i=2;

7 while i<T

8 Y(i)=Y(i-1)*RHO+V (i, 1):

9 i=i+1;

10 end

11 plot(Y):

FIGURE 11. Example 9

function Y=AR (RHO, T)

1

2 Y=zeros(T,1):;

3 V=randn (T, 1):

4 for 1i=2:T

5 Y(i)=Y(i-1)*RHO+V (i, 1)
& end

Ficure 12. Example 10 ar.m

begins the if statement and instructs matlab to carry out the command on line 9 if the condition temp>=0 is true.
Line 10 ends the if statement. Line 11 ends the for loop. If we wanted to retain negative values only, line 8 would
change to if temp<0. If we wanted to retain values equal to zero, line 8 would change to if temp==0. If we wanted
to retain all values not equal to zero, line 8 would change to if temp “=0. If we wanted to retain values greater than
0 but less than 1, line 8 would change to if temp>0 & & temp<1. If we wanted to retain values greater than 0 or
greater than 1 line 8 would change to if temp>0 || temp >1.

4.3. While Loops. While loops are loops which repeat matlab statements until a condition is met. The code
in figure 11 re-formulates the for loop in example 7 using the while loop. Line 6 sets the starting point of the lopp at
i=2. Line 7 starts the while loop and instructs matlab to perform tasks before the end statement until the condition
i<T is true. On line 8 we simulate the AR(1) model as before. Line 9 increase the value of i by 1 in each iteration.
Note that unlike the For loop, the index variable is not incremented automatically and this has to be done manually.

4.4. Functions. As our code becomes longer and more complicated, it is good practice to transfer parts of the
code into seperate files called functions which can then be called from a main program in exactly the same way as
built in matlab functions (like inv() etc) . Suppose we want to create a function called AR which takes as inputs the
value of AR coefficient p and number of observations 7' and returns as output simulated 7" x 1 matrix of data from
this AR model. We can convert the code from example 7 into this function in a simple way. The code is shown in
figure 12. The function begins with the word function. Then one specifies the output of the function (Y), the name
of the function (AR) and the inputs (RHO,T). Lines 2 to 6 remain exactly the same. This function should be saved
with the file name AR.m. The function (for e.g. with p = 0.99,7 = 100)can be called from the command window
(or from another piece of code) as Y=AR(0.99,100).

Dy b T4
Sl

s hlial
a0 hiie
LS

212 8. APPENDIX: INTRODUCTION TO MATLAB®

1 function lik=loglikelihood(theta, ¥, X)

2 %s3ize of Time series

3 T=size(Y,1l):

4 Textract parameters

5 beta=theta(l:2); %coefficients

© sigma=theta(3)"2; Svariance of the error term
17 E=Y-X*beta; %calculate residuals

8 1lik=(-T/2)*log(2*pi* gma}—{D.E*{E‘*E}fsigma];
9 if isnan(lik) || isinf(lik) l-isreal(lik)
10 1ik=100000:

11 el=e

12 lik=-1ik:

13 end

FicUure 13. Example 11

5. Numerical optimisation

A key tool in Matlab is the ability find the maximum /minimum of a function numerically. This is important as
we need these numerical tools to find the maximum of the likelihood functions. There are several built in optmising
routines in Matlab. Here we focus on a minimisation routine written by Chris Sims called CSMINWEL (available
from http://sims.princeton.edu/yftp/optimize/mfiles/. We have saved these files in the folder func). This routine
has been known to work well for the type of models we consider in this course.

As an example we are going to maximise the likelihood function for the linear regression model considered in
example 5. The log likelihood function is given by

Inlik = —T/2In (270%) — QCY XBMY—XB»

o2

We need to maximise this with respect to B and 2. To use CSMINWEL we proceed in two steps

STEP1: We first need to write a function that takes in as input a set of values for B and ¢ and returns the
value of Inlik at that particular value of the parameters. The code to calculate the likelihood function is shown
in 13. The function is called loglikelihood. It takes as input, the parameters theta, and the data series Y and X.
The parameter vector needs to be the first argument. Line 5 extracts the regression coeflicients. Line 6 extracts the
standard deviation of the error term o and squares it. Thus we optimise with respect to o (and not ¢?). Line 6
ensures that the value of o2 will always be positive. Lines 7 and 8 calculate the likelihood function for a given B and
o?. The consitional statement on line 9 checks for numerical problems. In particular, it checks if the log likelihood is
not a number (isnan(lik), or it equals infinity (isinf(lik)) or is a complex number (1-isreal(lik) — isreal(lik) equals 1 if
lik is real and thus 1l-isreal(lik) equals 1 if lik is not a real number). In case of numerical problems, the negative of
the log likelihood is set to a large number. If there are no numerical problems the function returns the negative of
the calculated log likelihood. The function returns the negative of the log likelihood as CSMINWEL is a minimiser
(i.e. we minimise the negative of the log likelihood and this is equivalent to maximising the log likelihood).

STEP2: We use CSMINWEL to minimise the negative log likelihood calculated by loglikelihood.m. This code
can be seen in figure 14. Line 2 ensures that the files required for CSMINWEL in the folder func can be found by
Matlab. Lines 4 to 10 load the data and create the Y and X matrix. Line 12 specifies the initial values of the K
parameters. Line 14 calls the function csminwel. The first input argument is the name of the function that calculates
the log likelihood. The second input are the starting values. The tird input is the starting value of the inverse hessian.
This can be left as default as a K x K matrix with diagonal elements equal to 0.5. If the next argument is set equal
to [] csminwel uses numerical derivitives in the optimisation. This is the default un all out applications. The next
argument is the convergence tolerance which should be left as defaults. The next input argument are the number of
maximum iterations. The remaining inputs are passed directly to the function loglikelihood.m after the parameter
values. The function returns the minimum of the negative log likelihood in fhat, the values of the parameters at the

2

Dty o o i
FPHOsh

5

NUMERICAL OPTIMISATION

213

=0 0 = LN W D

0

clear %clears all variables in memor
addpath('func') %adds t.
%read in data from an =
[data, names]=xlsread('‘\data\data.xls");
%dimensions of the data
T=size(data,l); %number
%assign data
Y=data(:,1); %Y is the first column of data
%X matrix with a constant

X=[ones(T,1l) data(:,2)];

%specify

theta=[0;0;0.1];

% call csminwel

[fhat, xhat, ghat, Hhat, itct, fcount, retcodehat]

of rows in the da

/ Starcting values

ns in folder

func

Name of function

Function to
calculate
derivatives or []
for numerical

Y

v

I
= csminwel ('loglikelihood',theta,eye(3)*.5,[] ,1le-14,100,¥%,X);
—

t

Starting
values

: iz

FiGure 14. Example 12

ouslihpd| All Other inputs to
Starting hessian loglikelihood.m
Leave as default
Number of iterations

minimum in xhat and the inverse hessian as Hhat.Retcodehat=0 if convergence occurs. Running this code produce
the same value of B as the OLS formula in the examples above.

Bibliography

Albert, James H. and Siddhartha Chib, 1993, Bayesian Analysis of Binary and Polychotomous Response Data,
Journal of the American Statistical Association 88(422), 669-679.
URL: http://www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476321

An, Sungbae and Frank Schorfheide, 2007, Bayesian Analysis of DSGE Models, Econometric Reviews 26(2-4), 113~
172.
URL: http://dz.doi.org/10.1080/07474930701220071

Banbura, Marta, Domenico Giannone and Lucrezia Reichlin, 2007, Bayesian VARs with Large Panels, CEPR Dis-
cussion Papers 6326, C.E.P.R. Discussion Papers.
URL: http://ideas.repec.org/p/cpr/ceprdp/6326.himl

Baumeister, Christiane, Philip Liu and Haroon Mumtaz, 2013, Changes in the effects of monetary policy on disag-
gregate price dynamics, Journal of Economic Dynamics and Control 37(3), 543-560.
URL: https://ideas.repec.org/a/eee/dyncon/v37Ty2013i3p543-560.html

Bauwens, Luc, Michel Lubrano and Jean Frangois Richard, 1999, Bayesian inference in dynamic econometric models,
Oxford University Press.

Benati, Luca and Haroon Mumtaz, 2006, US evolving Macroeconomic Dynamics: A structural investigation., Mimeo
European Central Bank.

Bernanke, Ben, Jean Boivin and Piotr S. Eliasz, 2005, Measuring the Effects of Monetary Policy: A Factor-augmented
Vector Autoregressive (FAVAR) Approach, The Quarterly Journal of Economics 120(1), 387-422.
URL: http://ideas.repec.org/a/tpr/qjecon/v120y2005i1p387-422. html

Bianchi, Francesco, Haroon Mumtaz and Paolo Surico, 2009, The great moderation of the term structure of UK
interest rates, Journal of Monetary Economics 56(6), 856-871.
URL: https://ideas.repec.org/a/eee/moneco/v56y2009i6p856-871.html

Canova, Fabio, 2007, Methods for Applied Macroeconomic Research, Princeton University Press, Princeton.

Canova, Fabio and Luca Sala, 2009, Back to square one: Identification issues in DSGE models, Journal of Monetary
Economics 56(4), 431-449.
URL: https://ideas.repec.org/a/eee/moneco/v56y2009i4p431-449.himl

Carriero, Andrea, George Kapetanios and Massimiliano Marcellino, 2010, Forecasting Government Bond Yields with
Large Bayesian VARs, Working Papers 662, Queen Mary, University of London, School of Economics and Finance.
URL: http://ideas.repec.org/p/qmw/qmwecw/wp662.html

Carter, C. K. and R. Kohn, 1994, On Gibbs sampling for state space models, Biometrika 81(3), 541-553.
URL: http://biomet.oxfordjournals.org/content/81/3/541.abstract

Casella, George and Edward I. George, 1992, Explaining the Gibbs Sampler, The American Statistician 46(3), pp.
167-174.
URL: http://www.jstor.org/stable/2685208

Chen, Cathy W. S. and Jack C. Lee, 1995, BAYESIAN INFERENCE OF THRESHOLD AUTOREGRESSIVE
MODELS, Journal of Time Series Analysis 16(5), 483-492.
URL: http://dz.doi.org/10.1111/5.1467-9892.1995.tb00248.x

Chib, Siddhartha, 1993, Bayes regression with autoregressive errors : A Gibbs sampling approach, Journal of Econo-
metrics 58(3), 275-294.
URL: http://ideas.repec.org/a/eee/econom,/v58y1993i3p275-294.html

Chib, Siddhartha, 1995, Marginal Likelihood from the Gibbs Output, Journal of the American Statistical Association
90(432), 1313-1321.
URL: http://www.jstor.org/stable/2291521

Chib, Siddhartha, 1996, Calculating posterior distributions and modal estimates in Markov mixture models, Journal
of Econometrics 75(1), 79 — 97.
URL: http://www.sciencedirect.com/science/article/pii/03044 07695017704

Chib, Siddhartha, 1998, Estimation and comparison of multiple change-point models, Journal of Econometrics
86(2), 221 — 241.
URL: http://www.sciencedirect.com/science/article/pii/S0304407697001152

Chib, Siddhartha and Srikanth Ramamurthy, 2010, Tailored randomized block MCMC methods with application to
DSGE models, Journal of Econometrics 155(1), 19-38.
URL: http://ideas.repec.org/a/ece/econom/v155y2010i1p19-88.html

215

216 Bibliography

Cogley, Timothy and Thomas J. Sargent, 2002, Evolving Post-World War II U.S. Inflation Dynamics, NBER Macro-
economics Annual 2001, Volume 16, NBER Chapters, National Bureau of Economic Research, Inc, pp. 331-388.
URL: http://ideas.repec.org/h/nbr/nberch/11068.html

Doan, Thomas, Robert B. Litterman and Christopher A. Sims, 1983, Forecasting and Conditional Projection Using
Realistic Prior Distributions, NBER Working Papers 1202, National Bureau of Economic Research, Inc.

URL: http://ideas.repec.org/p/nbr/nberwo/1202.html

Ellis, Colin, Haroon Mumtaz and Pawel Zabczyk, 2014, What Lies Beneath? A Time-varying FAVAR Model for the
UK Transmission Mechanism, The Economic Journal 124(576), 668-699.

URL: http://dz.doi.org/10.1111/ecoj. 12147

Filardo, Andrew J. and Stephen F. Gordon, 1998, Business cycle durations, Journal of Econometrics 85(1), 99-123.
URL: https://ideas.repec.org/a/eee/econom/v85y1998i1p99-123.html

Fry, Renee and Adrian Pagan, 2007, Some Issues in Using Sign Restrictions for Identifying Structural VARs, NCER
Working Paper Series 14, National Centre for Econometric Research.

URL: http://ideas.repec.org/p/qut/auncer/2007-8.html

Gelfand, A. E. and D. K. Dey, 1994, Bayesian Model Choice: Asymptotics and Exact Calculations, Journal of the
Royal Statistical Society. Series B (Methodological) 56(3), pp. 501-514.

URL: http://www.jstor.org/stable/2346123

Gelman, Andrew and Donald B. Rubin, 1992, Inference from Iterative Simulation Using Multiple Sequences, Statistical
Science 7(4), pp. 457-472.

URL: hitp://www.jstor.org/stable/2246093

Geweke, John, 1991, Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments,
Technical report.

Geweke, John, 1998, Using simulation methods for Bayesian econometric models: inference, development, and com-
munication, Technical report.

Hamilton, J. D., 1994, Time series analysis, Princeton University Press, Princeton.

Herbst, E. and F. Schorfheide, 2015, Bayesian Estimation of DSGE Models, Princeton University Press, Princeton.

Jacquier, E, N Polson and P Rossi, 2004, Bayesian analysis of stochastic volatility models, Journal of Business and
Economic Statistics 12, 371-418.

Kadiyala, K Rao and Sune Karlsson, 1997, Numerical Methods for Estimation and Inference in Bayesian VAR-Models,
Journal of Applied Econometrics 12(2), 99-132.

URL: http://ideas.repec.org/a/jae/japmet/v12y1997i2p99-132.html

Kim, C-J. and C. R. Nelson, 1999, State-space models with regime switching, MIT Press, Cambridge, Massachusetts.

Kim, Sangjoon, Neil Shephard and Siddhartha Chib, 1998, Stochastic Volatility: Likelihood Inference and Comparison
with ARCH Models, Review of Economic Studies 65(3), 361-93.

URL: http://ideas.repec.org/a/bla/restud/v65y1998i3p361-93.html

Koop, Gary, 2003, Bayesian Econometrics, Wiley.

Liu, Philip, Haroon Mumtaz and Angeliki Theophilopoulou, 2014, The transmission of international shocks to the
UK. Estimates based on a time-varying factor augmented VAR, Journal of International Money and Finance
46(C), 1-15.

URL: https://ideas.repec.org/a/eee/jimfin/v46y2014icp1-15.html

Lopes, Hedibert F. and Esther Salazar, 2006, Bayesian Model Uncertainty In Smooth Transition Autoregressions,
Journal of Time Series Analysis 27(1), 99-117.

URL: http://dx.doi.org/10.1111/5.1467-9892.2005.00455.x

Lubik, Thomas A. and Frank Schorfheide, 2007, Do central banks respond to exchange rate movements? A structural
investigation, Journal of Monetary Economics 54(4), 1069 — 1087.

URL: http://www.sciencedirect.com/science/article/pii/S0304393206002108

Mumtaz, Haroon and Konstantinos Theodoridis, 2017, Common and country specific economic uncertainty, Journal
of International Economics 105, 205 — 216.

URL: http://www.sciencedirect.com/science/article/pii/S0022199617300090

Mumtaz, Haroon and Paolo Surico, 2012, EVOLVING INTERNATIONAL INFLATION DYNAMICS: WORLD AND
COUNTRYSPECIFIC FACTORS, Journal of the European Economic Association 10(4).

Negro, Marco Del and Christopher Otrok, 2008, Dynamic factor models with time-varying parameters: measuring
changes in international business cycles, Technical report.

Negro, Marco Del and Frank Schorfheide, 2004, Priors from General Equilibrium Models for VARS, International
Economic Review 45(2), 643-673.

URL: http://ideas.repec.org/a/ier/iecrev/v45y2004i2p643-673.himl

Primiceri, G, 2005, Time varying structural vector autoregressions and monetary policy, The Review of Economic
Studies 72(3), 821-852.

Ramirez, Juan Rubio, Daniel Waggoner and Tao Zha, 2010, Structural Vector Autoregressions: Theory of Identifi-
cation and Algorithms for Inference, Review of Economic Studies T7(2), 665-696.

URL: http://ideas.repec.org/a/bla/restud/vTTy2010i2p665-696.html

Bibliography 217

Robertson, John C. and Ellis W. Tallman, 1999, Vector autoregressions: forecasting and reality, Fconomic Review
(Q1), 4-18.
URL: http://ideas.repec.org/a/fip/fedaer/y1999iq1p4-18nv.84no.1.html

Robertson, John C, Ellis W Tallman and Charles H Whiteman, 2005, Forecasting Using Relative Entropy, Journal
of Money, Credit and Banking 37(3), 383—401.
URL: http://ideas.repec.org/a/mceb/jmonch/v3Ty2005i3p383-401.html

Ruge-Murcia, Francisco J., 2007, Methods to estimate dynamic stochastic general equilibrium models, Journal of
Economic Dynamics and Control 31(8), 2599 — 2636.
URL: http://www.sciencedirect.com/science/article/pii/S0165188906001758

Schorfheide, Frank and Dongho Song, 2015, Real-Time Forecasting With a Mixed-Frequency VAR, Journal of Busi-
ness & Economic Statistics 33(3), 366-380.
URL: https://ideas.repec.org/a/taf/jnlbes /v33y2015i3p366-380.html

Sims, Christopher A., 2002, Solving Linear Rational Expectations Models, Computational Economics 20(1), 1-20.
URL: http://dz.doi.org/10.1023/A:1020517101123

Sims, Christopher A., Daniel F. Waggoner and Tao Zha, 2008, Methods for inference in large multiple-equation
Markov-switching models, Journal of Econometrics 146(2), 255-274.
URL: https://ideas.repec.org/a/eee/econom /vl 6y2008i2p255-274.html

Sims, Christopher A and Tao Zha, 1998, Bayesian Methods for Dynamic Multivariate Models, International Economic
Review 39(4), 949-68.
URL: http://ideas.repec.org/a/ier /iecrev/v39y1998i4p949-68.hitml

Sims, Christopher A. and Tao Zha, 1999, Error Bands for Impulse Responses, Econometrica 67(5), 1113-1156.
URL: https://ideas.repec.org/a/ecm/emetrp /v67y1999i5p1113-1156.html

STOCK, JAMES H. and MARK W. WATSON, 2007, Why Has U.S. Inflation Become Harder to Forecast?, Journal
of Money, Credit and Banking 39, 3-33.
URL: http://dx.doi.org/10.1111/5.1538-4616.2007.0001 4.

Villani, Mattias, 2009, Steady-state priors for vector autoregressions, Journal of Applied Econometrics 24(4), 630
650.
URL: http://dz.doi.org/10.1002/jae. 1065

Waggoner, Daniel F. and Tao Zha, 1997, Normalization, probability distribution, and impulse responses, Technical
report.

Waggoner, Daniel F. and Tao Zha, 1999, Conditional Forecasts In Dynamic Multivariate Models, The Review of
Economics and Statistics 81(4), 639-651.
URL: http://ideas.repec.org/a/tpr/restat/v81y1999i4p639-651.html

Waggoner, Daniel F. and Tao Zha, 2003, Likelihood preserving normalization in multiple equation models, Journal
of Econometrics 114(2), 329 — 347.
URL: http://www.sciencedirect.com/science/article/pii/S0304407603000873

Zellner, Arnold, 1971, An introduction to Bayesian Inference in Econometrics, Wiley.

