Matlab basics for the course: ‘Applied Bayesian
Econometrics’

Haroon Mumtaz

April 18, 2011

1 Introduction

This note provides a basic introduction to Matlab and introduces the key concept needed in dealing
with the codes used in the course. Note that a number of alternative guides to matlab are available
on the web and these may be used to supplement the material here. For example see
http://www.economics.ox.ac.uk/members/martin.ellison/Boe/dsge _dayl 2.ppt.
All the code used in the examples above is included in the folder called code.

2 Getting started

Figure |1 shows a basic screen shot of Matlab. There are two main windows: (1) the editor window
which is docked on top and the (2) command window which is docked at the bottom. The editor
is where we type our code. Once the code is typed it can be saved as a file which has the extension
.m. The code is run by clicking on the green run button or by simply typing in the name of the
program file in the command window. The command window is where the output from running
the code appears. Or alternatively, each line of the code can be run by typing it in the command
window and pressing enter.

In figure 2] we show how to create a generic first program called helloworld.m which prints out
the words Hello World. The code simply consists of the line "Hello World” where the single quotes
signify that this a string variable as opposed to a numeric variable (or a number). By clicking on
run, the output appears in the command window. Alternatively one can run the line of the program
containing the code by highlighting the line and pressing F9.

3 Matrix programming language

The key data type in Matlab is a matrix and Matlab supports numerous Matrix operations (mul-
tiplication, transposes etc).

J MATLAB 7. (R2009b) - Trial Yersion

File Edit Debug Parallel Desktop Window Help

=l&lx|

) | $ BB ‘ & = | 7 |CurrantFnlder:|v:\users\146431\FAVARMATLAB\ian2m1\estimatinn

SB[

Shartcuts @) How ko Add 2] What's Mew

Current Folder

w0 x

Workspace

w02 x|

7T Editor - Untitled* + [0 a x|

%[« estimation, ¥

- ol -

[[mame =

NG| R0 (b -Mesh|p-BRADE B "0 x

Bl 7 & & B | stk | [Alpot ~

il
B - |+ | +F |x |20 \

[value

Zmatouta.dht

Zmatout0.dat

amatout.dht

zmatout,dat

B zmat. xls

@J wols.xls

wols.dat

Bl valatiityprocs.ox

wim, dat

B varprocs.ox

Hz Eve.ox

ﬂ kempx.m

temp.ox.bak
kemp.ox

@ temp.gwg

temp.dat

Syvi.dat

v, dat

=) states.dat

EZ’ sqrtmall.sre

Ej sqrkmall.h
sqrkm.sre

[2) sqrtma.h

¥ sqrtma.src

=] sqrtmz.h

EZ’ sarkm.src

[Z) sartm.b

ZE‘ savefile.src

] savefie.h

SALPH dat

rho.dat

tFac.dat

QMATUK, dat

QMAT.dat

@J prmat.xls

) plobzm

plotxt.m

) plotirfworld.m

plotirFrorld, asw

B plotirFRealdctivityrPhilip2 . m

) plotirfEXTERNALphlp2.m

plotirfEXTERNALpHln2 asv
plotFactors.m

plotfactors.asv

specify directory

F|

1 %this is where I type my program

run
your
code

fx Trial>»

[Mame 2
«1x151 double>
0.0030

T
ans
«151x24 double>

5
b3 «150x21 double>
22 «150x1 double

T |]

Command History

“subplot (4,2,5] 7 B
~plotxZ (TT, [Si:,5) s(:
~axis tight
~title{'3tochastic Volatil
~subplot (4,2,6);
~plotxZ (TT, [Si:,6) =(:
~axizs tight

L 141

~title{'Stochastic Volatil
-aubploti4,2,7):
plotx2 (TT, [=5i:,7) =(:
axis tight

131

title{'Stochastic Volatil
subploti4,2,8);
plotx2 (TT, [=5(:,8) =(:
axis tight

, 18]

~title{'Stocha=stic Volatil
~0.005%0.95
~0.005%0.95%0.95
~0.005%0.95%10

4\ Start
Astart| | © & [~ @

Pz other.ox
=0 mainmennrambnival . hak [| ele
Details &3 T ——
OvF About My Trial | Trial Days ining: 58

| e o] o | o D] Be [Ems En | 5] En | B | E)s] Ee | G| Tr | @p| Do G| O SOHTARE 5o

Figure 1: Matlab command window

(R2009b) - Tri
o Cell Tools Debug Parallel

) MATLAB 7. ¥ersion

File Edit Text

Desktop Window Help

=18 x|

o R ‘ BB o ‘ & o = | (7] ‘CurrentFo\der:I‘f:\Users\l46431\FAVARMATLAB\1an201l\estimation

* Shortcuts (2] Howto Add 2] What's New

Current Folder wOa x Workspace =
& % [« estimation » - o EDEE“‘ %E"T("‘Q '|“ﬁ‘ﬁi‘ﬂvﬁﬁ@%@@3”lﬂv a x @ﬂ@"ﬁ%|5tatk:|p\ntm'
O uame + || B8] ke« =Fi < [H=]0 fane = Lvae
amatoutd. dhi =i B8 sthis is where I type my program = m ‘<1X151 dmfhle>
matoutn. dak Bl TS Hello world
Zmatout.dht e H «151x24 double>
amatout.dat T x <150xz1 double>
2] zmat.xls = <150x1 dauble>
|Ejvols.xls
vols.dat
Hg wolatilibyprocs. ox
wfm.dat
Bl varprocs.on
[
) tempx.m
temp.ox bak
Hztemp.ox
=] kemp.gwa
temp.dat
Sii.dat
= svv.dat
states,dat
sartmal st Command Window “0 o x
El sartmall.h Trial>> 'Hella World' 4 | ol
I sqrtma.erc e
=l sqrtm3.h ans = Command History + 0 a x|
Zfsqrtmzsr(CpIoCHE (T T, [S(:,5] s(:,l];l
=] sgrtmz.h Hello World axis tight
IF soptm.sre ~title(!Stochastic Volatil
£l sartmn f Trials> subplot (4,2, 6) ;
& savelnae) platx2 (TT, [5(:,6) 5(:,14]
savefile.h
SALPH.dat &xis tight
rho.dat title('Stochastic Volatil
rfac.dat subplot(4,2,7);
Q"‘“’”'—'Kﬁﬂt plotx2 (TT,[=(:,7) &(i,15)
QAT dat axis tight
apmat'XIS pitle (' Stochastic Volatil
platxZ.m
) plotsct.m --subplot (4,2,8) ;
) plotirfworld. m ~plotxz (TT,[=(:,8) 3(:,16)
plotirfworld. asv ~raxis tight
£ platirfrealactivitymPhilpz.m title('Stochastic Volabil
platirfEXTERMALphiip2.m 0.005%0.55
platifFEXTERMALPhIip2, asv
plotfactars.m ~-0.005%0.35+%0.95
plotfactors asv ~0.005+0.55"10
Hgother.ox cle
) mairnrnaramhinivolt .o halk || ‘Hello World' AIj
Details ~ 2| | »
4\ Start |smpt |Ln 2 cal 1 ‘OVR About My Trial | Trial Days Remaining: 58

Ristart| | ® & - @

Figure 2: Hello World

e =ir | @e | me. Er] ¥e| [0 @ONDAS@ 5

1l %entering a matrix manually

2 X=[1 2 3 4:5 6 7 8]=:

3 Z=[2 3 4 5;7 68 9 10]:

4 Sprint the matrices to screen
5 X

6 Z

Figure 3: Example 1

3.1 Creating matrices
3.1.1 Entering a matrix manually

Suppose we want to create the following two matrices
1 2 3 4
X = (5 6 7 8 >

2 3 4 5
Z= (7 8 9 10)
Figure [3| shows the matlab code required to do this (examplel.m). Note that the numbers in the
first column are line numbers which are shown here for convenience and will not appear in the
actual code. Note also that any code starting with % is a comment and is ignored by matlab. Line
2 shows how X is created[[] The numbers have square brackets around them. Each column of the
matrix is seperated by a space and rows by a semi-colon. Lines 2 and 3 finish with a semi-colon.

This stops Matlab from priniting out X and Z when the code is run. Instead we print the matrices
by typing X and Z without a semi-colon on lines 5 and 6.

3.1.2 Entering a matrix using built in commands

Line 2 in figure [4] creates a 10 x 10 matrix of zeros (the file is example2.m). The first argument in
the function zeros denotes the number of rows, the second denotes the number of columns required.
Line 4 creates a 10 x 20 matrix of ones. Line 6 creates a 10 x 10 identity matrix. Line 8 creates a
10 x 10 matrix where each element is drawn from a N(0,1) distribution. Similarly, line 9 creates a
matrix from the standard uniform distribution.

I'Matlab is case sensitive. Therefore X is treated as a different variable than x.

=]

Screate a matrix of zeros
X=zeros (10, 10) :

=]

Screate a matrix of ones
Y=ones (10, 20) ;

=]

tcreate an identity matrix
I=eye (10);

=]

tcreate a 10 by 10 matrix from N(0,1)
N=randn (10, 10) ;

tcreate a 10 by 10 matrix from U(0,1)
0 U=rand(10,10):

(LU Je = BRES e S Y S R O S T

Figure 4: Example 2

1 %read in data from an excel file
2 [data,names]=xlsread('\data\data.xls"'):

Figure 5: Example 3

1l %entering a matrix manually
2 X=[1 2 3 4;5 6 7 8];:

3 Z=[2 3 4 5;7 8 9 10]:

4 3 set X(2,1)=30

5 X(2,1)=30;

6 % vertical concatenation
1 M=[X:;2]:

8 %horizontal concatenation
9 N=[X Z]:

1

1

0 %set the second row of N to -10
1l N(2,1l:end)=-10;

Figure 6: Example 4

3.1.3 Reading in data from an excel file

In practice we will read in matrices (i.e. data) from an outside source. As an example we have
stored data on UK GDP growth and inflation in an excel file called data.xls in the folder called
data. Figure [5] shows the matlab code used to read the excel file. The command xlsread reads the
data into a matrix called data. The variable names are read into a string variable called names.
Note that text files can be read by using the command load. Suppose one wants to read in data
from a text file dalled data.txt, one simply needs to type load data.txt. Type ‘help load’ in the
command window for further information.

3.2 Manipulating matrices

Lines 2 and 3 in figure [0] create two matrices X and Z shown in example 1 above. Line 5 sets
the element (2,1), i.e. the element on the second row first column to 30. Line 7 creates a new
4 x 4 matrix by vertically concatenating X and Z. This done by the command M=[X;Z] where the
semi-colon denotes vertical concatenation. That is, it creates

1 2 3 4

30 6 7 8

M= 2 3 4 5
7 8 9 10

Line 9 of the code creates a new 2 x 8 matrix N by horizontally concatenating X and Z. This done
by the command N=[X Z] where the space denotes horizontal concatenation. Finally Line 11 of

the code shows how to set the entire second row of N equal to -10. Note that argument 1:end in
N(2,1:end)=-10 selects columns 1 to 10. One can delete elements by setting them equal to []. For
example N(2,:)=][] deletes the entire second row.

3.3 Matrix Algebra

Matlab supports numerous matrix functions. We demonstrate some of these by writing code to
estimate an OLS regression using data in the file data.xls used in example 3 above (example5.m).
Recall the formulas for an OLS regression Y = X B + F are

B = (X'X) ' (X'Y)
. (Y -XB)(Y-XB)
VAR(E) = S= o
VAR (B) = Sx(X'Xx)"!

Where T denotes the number of observations and K are the number of regressors. We assume Y is
the first column of data.xls and X is the second column of data.xls and a constant term. Line 3 of
the code shown in Figure [7] loads the data. Line 5 shows the function size to find the number of
rows in the data. Line 7 assigns the first column of data to a T' x 1 matrix called Y. Line 9 creates
the T' x 2 X matrix where the first column is the constant and the second column is the second
column of data.

Line 11 calculates the OLS esimate of the coefficients using the formula B = (X'X) ™ (X'Y).
This line shows three matrix functions. First the the transpose of X in matlab is simply X’. One
can multiply conformable matrices by using the * key. The inverse of matrix is calculated in matlab
using the inv function. Line 13 calculates the residuals while Line 15 calculates VAR (F) and line

17 calculates VAR <E) = S x (X'X)"". Note that S is a scalar and (X’X)”" is a matrix. In

general a scalar can be multiplied by each element of matrix by the ‘.*’ key which denotes element
by element multiplication. So this can also be used for element by element multiplication of two
matrices. Finally, the standard errors of the coefficients are given as the square root of the diagonal
of the matrix S x (X’X)™". Line 19 uses the diag command to extract the diagonal and then takes
the square root by raising them to the power 0.5. This is done by the command .~ which raises
each element of a matrix to a specified power.

Other useful matrix functions include the Cholesky decomposition (command chol, type help
chol in the command window for details). A list of matrix functions can be seen by typing help
matfun in the command window.

4 Program control

4.1 For Loops

One of the main uses of programming is to use the code to repeat tasks. This is used intensively
in Bayesian simulation methods. The main type of loop we use is the For loop. To take a trivial
example suppose we need to create a 100 x 1 matrix called Z where each element is equal to row
number raised to power 2. So Z(1,1)=1, Z(2,1)=2"2, Z(3,1)=3"2 and so on. The code is shown in
figure [8] Line 2 sets the total number of rows in the matrix Z. Line 3 creates the empty matrix Z.

WO 0 =] o 0

= = e e e e
[T == T B S B U O R

clear %clears all variables in memory

zread in data from an excel file

[data, names]=xlsread('\data\data.xls"):
zdimensions of the data
T=size(data,l); %number of rows in the data
tassign data
Y=data(:,1); %Y 1s the first column of data
X matrix with a constant
X=[ones (T,1l) data(:,2)]:

$0LS coefficients

B=inv (X"*X)* (X'*Y) ;

SResiduals

E=Y-X*B;

$Variance of Error term

S=(E'"*E) / (T-2):

$Covariance of B

V=S.*¥inv (X'*X) ;

$standard errors

SE=diag(V)."0.5;

Figure 7: Example 5

[T (Y S R S Y B

OO0 =] gy 0l L) [

clear
REPS=100; % number of repetitions
Z=zeros (REPS, 1) :
for 1i=1:REPS
Z(i,1)=i~2;
end

Figure 8: Example 6

clear

T=1000; %Simulate for a 1000 periods
Y=zeros (T, 1) :

V=randn (T, 1) :

RHO=0.99;

for 1=2:T

Y (i)=Y (i-1)*RHO+V (i, 1):

end

plot (YY)

Figure 9: Example 7

clear
T=1000; %Simulate for a 1000
Y=zeros (T, 1):
V=randn (T, 1) :
RHO=0.99;
for i=2:T
temp=Y (1i-1) *RHO+V (i, 1)
1if temp>=0

Y(i)=temp;
end

eriods

gs

[l e B I S e A i Y S P i Y e
==
tl

end
12 plot(Y):

Figure 10: Example 8

Line 4 begins the for loop and instructs matlab to repeat the instruction on line 5 REPS times.
That is the loop starts with i=1 and repeats the instruction below (instructions on lines before the
end statement) until i=REPS. It increases i by 1 in each iteration. On line 5 the ith row of Z is
set equal to i squared. Therefore when i=1, Z(1,1)=1, when i=2, Z(2,1)=22, when i=3, Z(3,3)=32
and so on. The instruction end on line 6 closes the for loop. Note if we had typed on line 4 for
i=1:-1:REPS, i would be decreased by 1 in each iteration. If we had typed on line 4 for i=1:2:REPS,
i would be increased by 2 in each iteration.

Figure |§| shows a second example where we simulate an AR(1) process for 1000 periods Y; =
pYi_1 + Vit = 1...1000. Where V;"N(0,1). Line 3 of the code creates a T' x 1 matrix of zeros Y.
Line 4 draws the error term from the standard normal distribution. Line 5 sets the AR coefficient
p = 0.99. Line 6 starts the loop from period 2 going up to period T=1000. Line 7 simulates each
value of Y, ¢t = 1....1000 and line 8 ends the for loop. Line 9 plots the simulated series.

4.2 Conditional statements

Conditional statements instruct Matlab to carry out commands if a condition is met. Suppose, in
example 7 above, we want to simulate the AR model but only want to retain values for Y which
are greater than or equal to zero. We can do this by using the if statement in matlab. Figure [I0]
shows the matlab code. Lines 1 to 5 are exactly as before. Line 6 begins the for loop. Line 7 sets
a variable temp = pY;_1 + V;. Line 8 begins the if statement and instructs matlab to carry out the

10

clear

T=1000; %Simulate for a 1000
Y=zeros (T, 1) :
V=randn (T, 1) :
RHO=0.99;

1=2;

while 1<T

Y (i)=Y (i-1) *RHO+V (i, 1)
9 i=i+1;

10 end

11 plot(Y):

eriods

COo=1 o O s L [
s

tl

Figure 11: Example 9

command on line 9 if the condition temp>=0 is true. Line 10 ends the if statement. Line 11 ends
the for loop. If we wanted to retain negative values only, line 8 would change to if temp<0. If we
wanted to retain values equal to zero, line 8 would change to if temp==0. If we wanted to retain all
values not equal to zero, line 8 would change to if temp “=0. If we wanted to retain values greater
than 0 but less than 1, line 8 would change to if temp>0 && temp<1. If we wanted to retain values
greater than 0 or greater than 1 line 8 would change to if temp>0 || temp >1.

4.3 While Loops

While loops are loops which repeat matlab statements until a condition is met. The code in figure
re-formulates the for loop in example 7 using the while loop. Line 6 sets the starting point of
the lopp at i=2. Line 7 starts the while loop and instructs matlab to perform tasks before the end
statement until the condition i<T is true. On line 8 we simulate the AR(1) model as before. Line
9 increase the value of i by 1 in each iteration. Note that unlike the For loop, the index variable is
not incremented automatically and this has to be done manually.

4.4 Functions

As our code becomes longer and more complicated, it is good practice to transfer parts of the code
into seperate files called functions which can then be called from a main program in exactly the
same way as built in matlab functions (like inv() etc) . Suppose we want to create a function called
AR which takes as inputs the value of AR coefficient p and number of observations 7" and returns as

11

1 function Y=AR (RHO, T)

2 Y=zeros(T,1l):

3 V=randn (T, 1):

4 for 1=2:T

5 ¥Y(i)=Y(i-1)*RHO+V (i, 1):
& end

Figure 12: Example 10 ar.m

output simulated T x 1 matrix of data from this AR model. We can convert the code from example
7 into this function in a simple way. The code is shown in figure The function begins with the
word function. Then one specifies the output of the function (Y), the name of the function (AR)
and the inputs (RHO,T). Lines 2 to 6 remain exactly the same. This function should be saved
with the file name AR.m. The function (for e.g. with p = 0.99,7 = 100)can be called from the
command window (or from another piece of code) as Y=AR(0.99,100).

5 Numerical optimisation

A key tool in Matlab is the ability find the maximum /minimum of a function numerically. This is
important as we need these numerical tools to find the maximum of the likelihood functions. There
are several built in optmising routines in Matlab. Here we focus on a minimisation routine written
by Chris Sims called CSMINWEL (available from http://sims.princeton.edu/yftp/optimize /mfiles/.
We have saved these files in the folder func). This routine has been known to work well for the type
of models we consider in this course.

As an example we are going to maximise the likelihood function for the linear regression model
considered in example 5. The log likelihood function is given by

1mm:—ﬂmm@m%_;(W_XBﬂY—Xm>

o2

We need to maximise this with respect to B and o2. To use CSMINWEL we proceed in two steps

STEP1: We first need to write a function that takes in as input a set of values for B and o2
and returns the value of Inlik at that particular value of the parameters. The code to calculate
the likelihood function is shown in The function is called loglikelihood. It takes as input,
the parameters theta, and the data series Y and X. The parameter vector needs to be the first
argument. Line 5 extracts the regression coefficients. Line 6 extracts the standard deviation of the
error term o and squares it. Thus we optimise with respect to o (and not ¢2). Line 6 ensures that
the value of o2 will always be positive. Lines 7 and 8 calculate the likelihood function for a given B

12

1 function lik=lcglikelihood(theta,Y, X)

2 %size of Time series

3 T=size(Y,1):

4 Zextract parameters

5 beta=theta(l:2); %coefficients

6 sigma=theta(3)"2; %variance of the error term
1T E=Y-X*beta; %calculate residuals

8 1lik=(-T/2) *log(2*pi*sigma)-(0.5*(E'*E) /sigma) ;
9 if isnan(lik) || isinf(lik) || l-isreal(lik)
10 1ik=100000;

11 el=e

12 lik=-1ik:

13 end

Figure 13: Example 11

13

and o2. The consitional statement on line 9 checks for numerical problems. In particular, it checks
if the log likelihood is not a number (isnan(lik), or it equals infinity (isinf(lik)) or is a complex
number (1-isreal(lik) — isreal(lik) equals 1 if lik is real and thus 1-isreal(lik) equals 1 if lik is not
a real number). In case of numerical problems, the negative of the log likelihood is set to a large
number. If there are no numerical problems the function returns the negative of the calculated log
likelihood. The function returns the negative of the log likelihood as CSMINWEL is a minimiser
(i.e. we minimise the negative of the log likelihood and this is equivalent to maximising the log
likelihood).

14

STOTJBI JO JIQUMN]

W poOTIEYI30]
o1 sindut YO [TV

JNEISP SE 2ABS]

 PdyTIgng

HE'R'00TFT-=1°

¢1 ordwrexy] T 0Indig

) SeMN[eA
[1°c-x(g)2f=2"e33y3”’ , pooyr=3I1hoT,) [2MuTWSS =
t ¥
__ TOTJ2UNT JO STIEN

[EQLISTUNT 0]
[] 10 seanjeausp
JJE[NITED
0] monoun

oung

[3ey=apo232z ‘3unca3 ‘3231 *3eyl ‘3eyb ‘3eyx ‘3ey3]

T2MUTWED TTED %
fltrof0f0l==32y3

sanTea Butazeas AzToadsy

f[(z*:)=a®p (7°1)s2uc]l=x

QUEIEUCD B YITM HTIITW X§

eqep JOo uUumMio2 9s8ITT 3Yl ST X% < (T’:)eaep=x
e1ep ubisses

BqEp 2471 UT sMoI JoO I3gqunug I (]'eyep)23zTIs=1L
Blep Y3l JO SUOTSUIWIPS

f{,ETE BlER\ B1ERY ,) PERISTX=[S2weu ‘e3ep]

2TTF T=°X2 UP WOII ¥IBVR UT pPEaIg
suoTlouny =yl sppes (,ouni,)ysedppe
IOWSW UT Sa3TQeRIIRA [[E SIB3To%

=
H

=70

FT
ET
€T
T
0T

(=1}

[=5]

L A A B L T B <

15

STEP2: We use CSMINWEL to minimise the negative log likelihood calculated by loglikeli-
hood.m. This code can be seen in figure Line 2 ensures that the files required for CSMINWEL
in the folder func can be found by Matlab. Lines 4 to 10 load the data and create the Y and X
matrix. Line 12 specifies the initial values of the K parameters. Line 14 calls the function csminwel.
The first input argument is the name of the function that calculates the log likelihood. The second
input are the starting values. The tird input is the starting value of the inverse hessian. This can
be left as default as a K x K matrix with diagonal elements equal to 0.5. If the next argument is
set equal to [] csminwel uses numerical derivitives in the optimisation. This is the default un all
out applications. The next argument is the convergence tolerance which should be left as defaults.
The next input argument are the number of maximum iterations. The remaining inputs are passed
directly to the function loglikelihood.m after the parameter values. The function returns the min-
imum of the negative log likelihood in fhat, the values of the parameters at the minimum in xhat
and the inverse hessian as Hhat.Retcodehat=0 if convergence occurs. Running this code produce
the same value of B as the OLS formula in the examples above.

16

	Introduction
	Getting started
	Matrix programming language
	Creating matrices
	Entering a matrix manually
	Entering a matrix using built in commands
	Reading in data from an excel file

	Manipulating matrices
	Matrix Algebra

	Program control
	For Loops
	Conditional statements
	While Loops
	Functions

	Numerical optimisation

