
Matlab basics for the course: �Applied Bayesian
Econometrics�

Haroon Mumtaz

April 18, 2011

1 Introduction

This note provides a basic introduction to Matlab and introduces the key concept needed in dealing
with the codes used in the course. Note that a number of alternative guides to matlab are available
on the web and these may be used to supplement the material here. For example see

http://www.economics.ox.ac.uk/members/martin.ellison/Boe/dsge_day1_2.ppt.
All the code used in the examples above is included in the folder called code.

2 Getting started

Figure 1 shows a basic screen shot of Matlab. There are two main windows: (1) the editor window
which is docked on top and the (2) command window which is docked at the bottom. The editor
is where we type our code. Once the code is typed it can be saved as a �le which has the extension
.m. The code is run by clicking on the green run button or by simply typing in the name of the
program �le in the command window. The command window is where the output from running
the code appears. Or alternatively, each line of the code can be run by typing it in the command
window and pressing enter.
In �gure 2 we show how to create a generic �rst program called helloworld.m which prints out

the words Hello World. The code simply consists of the line �Hello World�where the single quotes
signify that this a string variable as opposed to a numeric variable (or a number). By clicking on
run, the output appears in the command window. Alternatively one can run the line of the program
containing the code by highlighting the line and pressing F9.

3 Matrix programming language

The key data type in Matlab is a matrix and Matlab supports numerous Matrix operations (mul-
tiplication, transposes etc).

1

Figure 1: Matlab command window

2

Figure 2: Hello World

3

Figure 3: Example 1

3.1 Creating matrices

3.1.1 Entering a matrix manually

Suppose we want to create the following two matrices

X =

�
1 2 3 4
5 6 7 8

�

Z =

�
2 3 4 5
7 8 9 10

�
Figure 3 shows the matlab code required to do this (example1.m). Note that the numbers in the
�rst column are line numbers which are shown here for convenience and will not appear in the
actual code. Note also that any code starting with % is a comment and is ignored by matlab. Line
2 shows how X is created.1 The numbers have square brackets around them. Each column of the
matrix is seperated by a space and rows by a semi-colon. Lines 2 and 3 �nish with a semi-colon.
This stops Matlab from priniting out X and Z when the code is run. Instead we print the matrices
by typing X and Z without a semi-colon on lines 5 and 6.

3.1.2 Entering a matrix using built in commands

Line 2 in �gure 4 creates a 10� 10 matrix of zeros (the �le is example2.m). The �rst argument in
the function zeros denotes the number of rows, the second denotes the number of columns required.
Line 4 creates a 10� 20 matrix of ones. Line 6 creates a 10� 10 identity matrix. Line 8 creates a
10� 10 matrix where each element is drawn from a N(0,1) distribution. Similarly, line 9 creates a
matrix from the standard uniform distribution.

1Matlab is case sensitive. Therefore X is treated as a di¤erent variable than x.

4

Figure 4: Example 2

Figure 5: Example 3

5

Figure 6: Example 4

3.1.3 Reading in data from an excel �le

In practice we will read in matrices (i.e. data) from an outside source. As an example we have
stored data on UK GDP growth and in�ation in an excel �le called data.xls in the folder called
data. Figure 5 shows the matlab code used to read the excel �le. The command xlsread reads the
data into a matrix called data. The variable names are read into a string variable called names.
Note that text �les can be read by using the command load. Suppose one wants to read in data
from a text �le dalled data.txt, one simply needs to type load data.txt. Type �help load� in the
command window for further information.

3.2 Manipulating matrices

Lines 2 and 3 in �gure 6 create two matrices X and Z shown in example 1 above. Line 5 sets
the element (2,1), i.e. the element on the second row �rst column to 30. Line 7 creates a new
4� 4 matrix by vertically concatenating X and Z. This done by the command M=[X;Z] where the
semi-colon denotes vertical concatenation. That is, it creates

M =

0BB@
1 2 3 4
30 6 7 8
2 3 4 5
7 8 9 10

1CCA
Line 9 of the code creates a new 2� 8 matrix N by horizontally concatenating X and Z. This done
by the command N=[X Z] where the space denotes horizontal concatenation. Finally Line 11 of

6

the code shows how to set the entire second row of N equal to -10. Note that argument 1:end in
N(2,1:end)=-10 selects columns 1 to 10. One can delete elements by setting them equal to []. For
example N(2,:)=[] deletes the entire second row.

3.3 Matrix Algebra

Matlab supports numerous matrix functions. We demonstrate some of these by writing code to
estimate an OLS regression using data in the �le data.xls used in example 3 above (example5.m).
Recall the formulas for an OLS regression Y = XB + E are

B̂ = (X 0X)
�1
(X 0Y)

V AR (E) = S =
(Y �XB)0 (Y �XB)

T �K
V AR

�
B̂
�

= S � (X 0X)
�1

Where T denotes the number of observations and K are the number of regressors. We assume Y is
the �rst column of data.xls and X is the second column of data.xls and a constant term. Line 3 of
the code shown in Figure 7 loads the data. Line 5 shows the function size to �nd the number of
rows in the data. Line 7 assigns the �rst column of data to a T � 1 matrix called Y. Line 9 creates
the T � 2 X matrix where the �rst column is the constant and the second column is the second
column of data.
Line 11 calculates the OLS esimate of the coe¢ cients using the formula B̂ = (X 0X)

�1
(X 0Y).

This line shows three matrix functions. First the the transpose of X in matlab is simply X�. One
can multiply conformable matrices by using the * key. The inverse of matrix is calculated in matlab
using the inv function. Line 13 calculates the residuals while Line 15 calculates V AR (E) and line

17 calculates V AR
�
B̂
�
= S � (X 0X)

�1
: Note that S is a scalar and (X 0X)

�1 is a matrix. In

general a scalar can be multiplied by each element of matrix by the �.*�key which denotes element
by element multiplication. So this can also be used for element by element multiplication of two
matrices. Finally, the standard errors of the coe¢ cients are given as the square root of the diagonal
of the matrix S� (X 0X)

�1
: Line 19 uses the diag command to extract the diagonal and then takes

the square root by raising them to the power 0.5. This is done by the command .^ which raises
each element of a matrix to a speci�ed power.
Other useful matrix functions include the Cholesky decomposition (command chol, type help

chol in the command window for details). A list of matrix functions can be seen by typing help
matfun in the command window.

4 Program control

4.1 For Loops

One of the main uses of programming is to use the code to repeat tasks. This is used intensively
in Bayesian simulation methods. The main type of loop we use is the For loop. To take a trivial
example suppose we need to create a 100 � 1 matrix called Z where each element is equal to row
number raised to power 2. So Z(1,1)=1, Z(2,1)=2^2, Z(3,1)=3^2 and so on. The code is shown in
�gure 8. Line 2 sets the total number of rows in the matrix Z. Line 3 creates the empty matrix Z.

7

Figure 7: Example 5

8

Figure 8: Example 6

Figure 9: Example 7

9

Figure 10: Example 8

Line 4 begins the for loop and instructs matlab to repeat the instruction on line 5 REPS times.
That is the loop starts with i=1 and repeats the instruction below (instructions on lines before the
end statement) until i=REPS. It increases i by 1 in each iteration. On line 5 the ith row of Z is
set equal to i squared. Therefore when i=1, Z(1,1)=1, when i=2, Z(2,1)=22, when i=3, Z(3,3)=32

and so on. The instruction end on line 6 closes the for loop. Note if we had typed on line 4 for
i=1:-1:REPS, i would be decreased by 1 in each iteration. If we had typed on line 4 for i=1:2:REPS,
i would be increased by 2 in each iteration.
Figure 9 shows a second example where we simulate an AR(1) process for 1000 periods Yt =

�Yt�1 + Vt; t = 1:::1000. Where Vt~N(0; 1). Line 3 of the code creates a T � 1 matrix of zeros Y:
Line 4 draws the error term from the standard normal distribution. Line 5 sets the AR coe¢ cient
� = 0:99. Line 6 starts the loop from period 2 going up to period T=1000. Line 7 simulates each
value of Yt; t = 1::::1000 and line 8 ends the for loop. Line 9 plots the simulated series.

4.2 Conditional statements

Conditional statements instruct Matlab to carry out commands if a condition is met. Suppose, in
example 7 above, we want to simulate the AR model but only want to retain values for Y which
are greater than or equal to zero. We can do this by using the if statement in matlab. Figure 10
shows the matlab code. Lines 1 to 5 are exactly as before. Line 6 begins the for loop. Line 7 sets
a variable temp = �Yt�1 + Vt: Line 8 begins the if statement and instructs matlab to carry out the

10

Figure 11: Example 9

command on line 9 if the condition temp>=0 is true. Line 10 ends the if statement. Line 11 ends
the for loop. If we wanted to retain negative values only, line 8 would change to if temp<0. If we
wanted to retain values equal to zero, line 8 would change to if temp==0. If we wanted to retain all
values not equal to zero, line 8 would change to if temp~=0. If we wanted to retain values greater
than 0 but less than 1, line 8 would change to if temp>0 && temp<1. If we wanted to retain values
greater than 0 or greater than 1 line 8 would change to if temp>0 jj temp >1.

4.3 While Loops

While loops are loops which repeat matlab statements until a condition is met. The code in �gure
11 re-formulates the for loop in example 7 using the while loop. Line 6 sets the starting point of
the lopp at i=2. Line 7 starts the while loop and instructs matlab to perform tasks before the end
statement until the condition i<T is true. On line 8 we simulate the AR(1) model as before. Line
9 increase the value of i by 1 in each iteration. Note that unlike the For loop, the index variable is
not incremented automatically and this has to be done manually.

4.4 Functions

As our code becomes longer and more complicated, it is good practice to transfer parts of the code
into seperate �les called functions which can then be called from a main program in exactly the
same way as built in matlab functions (like inv() etc) . Suppose we want to create a function called
AR which takes as inputs the value of AR coe¢ cient � and number of observations T and returns as

11

Figure 12: Example 10 ar.m

output simulated T �1 matrix of data from this AR model. We can convert the code from example
7 into this function in a simple way. The code is shown in �gure 12. The function begins with the
word function. Then one speci�es the output of the function (Y), the name of the function (AR)
and the inputs (RHO,T). Lines 2 to 6 remain exactly the same. This function should be saved
with the �le name AR.m. The function (for e.g. with � = 0:99; T = 100)can be called from the
command window (or from another piece of code) as Y=AR(0.99,100).

5 Numerical optimisation

A key tool in Matlab is the ability �nd the maximum/minimum of a function numerically. This is
important as we need these numerical tools to �nd the maximum of the likelihood functions. There
are several built in optmising routines in Matlab. Here we focus on a minimisation routine written
by Chris Sims called CSMINWEL (available from http://sims.princeton.edu/yftp/optimize/m�les/.
We have saved these �les in the folder func). This routine has been known to work well for the type
of models we consider in this course.
As an example we are going to maximise the likelihood function for the linear regression model

considered in example 5. The log likelihood function is given by

ln lik = �T=2 ln
�
2��2

�
� 1
2

�
(Y �XB)0 (Y �XB)

�2

�
We need to maximise this with respect to B and �2: To use CSMINWEL we proceed in two steps
STEP1: We �rst need to write a function that takes in as input a set of values for B and �2

and returns the value of ln lik at that particular value of the parameters. The code to calculate
the likelihood function is shown in 13. The function is called loglikelihood. It takes as input,
the parameters theta, and the data series Y and X. The parameter vector needs to be the �rst
argument. Line 5 extracts the regression coe¢ cients. Line 6 extracts the standard deviation of the
error term � and squares it. Thus we optimise with respect to � (and not �2). Line 6 ensures that
the value of �2 will always be positive. Lines 7 and 8 calculate the likelihood function for a given B

12

Figure 13: Example 11

13

and �2: The consitional statement on line 9 checks for numerical problems. In particular, it checks
if the log likelihood is not a number (isnan(lik), or it equals in�nity (isinf(lik)) or is a complex
number (1-isreal(lik) � isreal(lik) equals 1 if lik is real and thus 1-isreal(lik) equals 1 if lik is not
a real number). In case of numerical problems, the negative of the log likelihood is set to a large
number. If there are no numerical problems the function returns the negative of the calculated log
likelihood. The function returns the negative of the log likelihood as CSMINWEL is a minimiser
(i.e. we minimise the negative of the log likelihood and this is equivalent to maximising the log
likelihood).

14

F
ig
ur
e
14
:
E
xa
m
pl
e
12

15

STEP2: We use CSMINWEL to minimise the negative log likelihood calculated by loglikeli-
hood.m. This code can be seen in �gure 14. Line 2 ensures that the �les required for CSMINWEL
in the folder func can be found by Matlab. Lines 4 to 10 load the data and create the Y and X
matrix. Line 12 speci�es the initial values of the K parameters. Line 14 calls the function csminwel.
The �rst input argument is the name of the function that calculates the log likelihood. The second
input are the starting values. The tird input is the starting value of the inverse hessian. This can
be left as default as a K �K matrix with diagonal elements equal to 0.5. If the next argument is
set equal to [] csminwel uses numerical derivitives in the optimisation. This is the default un all
out applications. The next argument is the convergence tolerance which should be left as defaults.
The next input argument are the number of maximum iterations. The remaining inputs are passed
directly to the function loglikelihood.m after the parameter values. The function returns the min-
imum of the negative log likelihood in fhat, the values of the parameters at the minimum in xhat
and the inverse hessian as Hhat.Retcodehat=0 if convergence occurs. Running this code produce
the same value of B as the OLS formula in the examples above.

16

	Introduction
	Getting started
	Matrix programming language
	Creating matrices
	Entering a matrix manually
	Entering a matrix using built in commands
	Reading in data from an excel file

	Manipulating matrices
	Matrix Algebra

	Program control
	For Loops
	Conditional statements
	While Loops
	Functions

	Numerical optimisation

