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This	Handbook	describes	an	important	part	of	the	Empirical	Finance	for	Monetary	Policy	course	run	
at	 the	 CCBS	 for	 the	 past	 few	 years,	 the	 use	 of	 options	 prices	 to	 estimate	 risk‐neutral	 forecast	
densities	 for	 financial	 market	 prices.	 	 Central	 banks	 around	 the	 world	 make	 routine	 use	 of	 this	
information	 to	 assess	market	 sentiment	 for	 a	 variety	 of	 asset	 classes.	 	 These	 for	 example	 include	
equities,	oil	futures	and	the	focus	of	this	Handbook,	foreign	exchange.		With	them,	policymakers	can	
assess	risk‐neutral	predicted	densities	not	just	the	most	likely	values.		This	provides	a	rich	forecast	
information	 set,	 so	 that	 not	 just	 the	most	 likely	 outcome	 can	be	 ascertained,	 but	 also	 the	market	
assessment	of,	say,	any	potential	skewness	in	the	density	of	possible	outcomes.	

This	whole	area	might	 seem	 impenetrable	 to	 the	casual	 reader,	needing	as	 it	does	option	pricing,	
density	 estimation	 and	 some	 mastery	 of	 a	 suitable	 computer	 language,	 but	 it	 turns	 out	 to	 be	
remarkably	self‐contained	and	easy	to	implement.		With	a	relatively	simple	set	of	tools,	all	described	
here,	 it	 is	a	straightforward	matter	 to	estimate	densities.	 	We	give	a	complete	how‐to	guide,	 from	
finding	appropriate	data	 to	giving	the	complete	MATLAB	code	needed	to	get	up	and	running.	 	We	
focus	 on	 foreign	 exchange	 options	 for	 reasons	described	 in	 the	 text,	 but	 our	 general	 approach	 to	
density	estimation	follows	a	similar	methodology	to	that	found	in	textbooks	such	as	Taylor	(2005),	
who	implements	similar	techniques	in	Excel	for	equities.			
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Introduction	

Options	 are	 financial	 instruments	 that	 give	 the	 purchaser	 the	 right	 but	 not	 the	 obligation	 to	

purchase	or	sell	a	defined	asset	at	a	specified	price	on	a	future	date.		Options,	like	futures	contracts1	

initially	came	about	from	the	need	for	insurance.		For	example,	a	farmer	planting	a	crop	may	look	to	
purchase	 an	 options	 contract	 to	 ensure	 a	minimum	price	 at	which	 he	 can	 sell	 his	 goods	when	 it	

comes	time	to	harvest	them.		A	futures	contract,	where	the	farmer	agrees	a	minimum	price	at	which	

he	 must	 sell,	 insures	 against	 the	 downside	 risk	 for	 the	 purchaser	 but	 also	 eliminates	 potential	
upside	gains.	 	By	contrast,	options	contracts	can	be	left	to	expire	unused	should	it	be	beneficial	to	

the	holder	of	the	option	to	so	do.	In	the	case	of	the	farmer	this	means	he	can	exercise	his	option	and	

sell	at	a	pre‐agreed	price	if	the	prevailing	market	price	falls	below	the	agreed	level.		But	equally	the	
farmer	can	pass	up	the	options	contract	and	sell	at	the	prevailing	market	price	if	this	is	higher	than	

the	option	contract	guarantees.	

While	 options	 contracts	 began	 as	 bilateral	 transactions	 between	 buyers	 and	 sellers,	 many	
transactions	now	take	place	on	centralised	exchanges.		The	move	to	exchange	trading	has	permitted	

the	standardisation	of	 contracts	and	opened	 the	markets	 to	a	wider	 range	of	participants.	 	Today	

options	 contracts	 are	 traded	 daily	 on	 a	 vast	 array	 of	 underlying	 assets	 ranging	 from	 agricultural	
produce	 through	 financial	 instruments	such	as	exchange	rates	and	 interest	rates	 to	more	esoteric	

items	such	as	the	weather	and	economic	events.		

Central	banks	may	purchase	options	as	part	of	their	regular	interactions	with	financial	markets	for	
policy	purposes.		For	example,	a	central	bank	may	use	options	as	a	way	of	hedging	against	risk	in	its	

management	of	foreign	exchange	reserves.		But	options	are	also	of	interest	to	analytical	areas	of	the	

central	bank,	because	options	reveal	the	beliefs	of	markets	participants.		Options	contracts	allow	us	
to	infer	what	market	participants	believe	about	the	likelihood	of	future	events.	 	Participants	in	the	

options	markets	are	after	all	insuring	themselves	against	a	particular	market	outcome;	and	the	price	

that	they	are	willing	to	pay	will	reflect	the	perceived	likelihood	of	such	outcomes	occurring.	

The	 purpose	 of	 this	 technical	 handbook	 is	 to	 provide	 the	 reader	 with	 the	 intuition	 and	 the	

MATLAB®2	 code	 required	 to	 draw	 risk‐neutral	 densities3	 for	 expectations	 of	 future	 asset	 price	

movements.	 	 In	order	 to	make	 the	different	methods	 transparent	we	 focus	on	options	written	on	
one	asset	class,	 foreign	exchange.	 	Exchange	rates	play	an	important	role	 in	determining	domestic	

inflation	and	output	in	an	economy.		For	practical	purposes,	a	good	reason	for	looking	at	exchange	

rates	 is	 to	 take	 advantage	 of	 their	 bilateral	 nature.	 	While	many	 developing	world	 countries	 lack	
deep	and	liquid	option	markets,	such	markets	exist	 in	major	financial	centres.	 	Options	written	on	

																																																													
1	As	opposed	to	options,	the	holder	of	the	futures	contract	has	the	obligation	to	purchase	or	sell	the	specified	asset	at	the	
price	agreed	within	the	contract.	
2	MATLAB®	is	a	registered	trademark	of	The	MathWorks	Inc.	
3	Under	risk‐neutral	pricing,	true	subjective	probabilities	of	an	event	happening	are	replaced	by	risk‐neutral	probabilities.		
They	are	required	in	asset	pricing	as	they	allow	us	to	represent	an	asset’s	price	as	the	discounted	expected	value	of	the	
asset’s	payoff	without	having	to	adjust	for	compensation	for	risk.		The	risk‐neutral	probability	of	any	state	of	the	world	can	
be	thought	of	the	product	of	the	true	probability	of	that	state	occurring	and	the	utility	derived	by	the	agent	in	that	state.		
Hence	risk‐neutral	probabilities	correct	for	bearing	risk.		Risk‐neutral	can	be	a	misleading	terminology,	as	crucially	risk‐
neutral	probabilities	place	higher	event‐probabilities	on	states	with	higher	marginal	utility	or	disutility.		Cochrane	(2005)	
uses	the	example	of	people	who	report	high	probabilities	of	plane	crashes,	suggesting	that	instead	of	being	irrational	they	
are	in	fact	reporting	their	risk‐neutral	probabilities;	it	is	just	that	the	personal	disutility	gained	from	the	possibility	of	
dying	in	a	plane	crash	is	extremely	high.		The	conceptual	conversion	from	real‐world	probabilities	to	risk‐neutral	
probabilities	overweights	the	probability	of	bad	states	reflecting	that	agents	are	risk	averse	and	thus	require	
compensation	for	risk.	
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developing	 world	 currencies	 are	 likely	 to	 be	 traded	 against	 the	 US	 dollar	 in	 US	 markets	 and	 so	
options	data	are	readily	available	for	many	countries	that	themselves	do	not	have	domestic	options	

markets.	 	 It	 is	hoped	that	by	focussing	on	this	particular	asset	class	that	these	methods	will	prove	

accessible	to	many	researchers	in	central	banks	and	elsewhere.	

The	Handbook	is	organised	as	follows.	 	Section	1	gives	a	brief	introduction	to	options,	introducing	

both	terminology	and	the	structure	of	options	contracts.		Section	2	discusses	options	pricing	and	the	

key	concept	of	implied	volatility.		Section	3	describes	the	Breeden‐Litzenberger	result	which	is	the	
key	insight	into	the	derivation	of	risk‐neutral	densities	from	option	pricing.		Section	4	discusses	the	

unique	 features	 of	 options	 contracts	written	 on	 foreign	 exchange	 and	discusses	 some	of	 the	 data	

sources	 for	 these	 prices.	 	 Sections	 5	 and	 6	 discusses	 and	 implements	 two	 different	 methods	 for	
deriving	 option‐implied	 probability	 densities	 from	 options	 written	 on	 foreign	 exchange	 markets	

both	proposed	by	Alan	Malz	(1997,	2014).		The	first,	covered	in	Section	5,	which	we	will	refer	to	as	

the	parametric	approach,	involves	solving	simultaneously	for	the	so‐called	delta	of	an	option	and	its	
implied	 volatility	 using	 just	 three	 options	 contracts	 to	 parameterise	 a	 functional	 form	 for	 the	

volatility	smile.	 	The	second,	covered	in	Section	6	and	referred	to	as	the	non‐parametric	approach,	

imposes	 no	 such	 restrictions	 on	 the	 shape	 of	 the	 volatility	 smile;	 instead	 it	 uses	 clamped	 cubic‐
spline	functions	to	interpolate	between	observed	volatility	points.		Finally	Section	7	discusses	how	

to	interpret	the	densities	derived.	

1.	 What	are	options?	

Structure	of	an	options	contract	
The	purchaser	of	an	option	is	often	referred	to	as	the	holder	and	is	said	to	be	long	the	option,	while	

the	seller	of	an	option	is	referred	to	as	the	writer	and	is	said	to	be	short	the	option.		Ahead	of	expiry	
the	writer	of	an	option	risks	unknown	losses,	while	the	holder	of	the	contract	risks	only	the	price	

they	paid	for	the	option.4,5	 	A	contract	which	gives	the	purchaser	of	the	option	the	right	to	buy	the	

asset	at	some	future	date	is	referred	to	as	a	call	option	and	a	contract	that	gives	the	purchaser	of	
the	option	the	right	to	sell	the	asset	at	some	future	date	is	referred	to	as	a	put	option.		

Within	each	option	contract	the	following	will	be	clearly	stated:	

 An	expiry	date;	for	European	options	the	contract	can	only	be	exercised	on	this	date,	while	

for	American	options	 the	 contract	 can	be	 exercised	 at	 any	 time	up	 to	 this	 date.6,7	 	 In	what	
follows	we	concentrate	on	European	options.	

 A	 strike	 price;	 this	 is	 the	 price	 which	 is	 agreed	 in	 advance	 that	 the	 underlying	 can	 be	

transacted	at	once	the	contract	is	exercised.	

 The	 underlying	 asset;	 this	 is	 the	 specified	 asset	 upon	 which	 the	 contract	 is	 based.	 For	

exchange	traded	option	these	are	often	standardised	quantities.	

																																																													
4	No	rational	holder	of	an	option	would	consider	exercising	the	option	if	it	would	lead	to	a	loss.	
5	For	exchange‐traded	options	there	may	be	fees	to	pay	which	may	increase	the	costs.	
6	However,	it	can	be	shown	that	it	is	always	optimal	not	to	exercise	an	American	call	option	ahead	of	expiry,	see	Taylor	
(2005).	
7	The	nomenclature	for	European	and	American	options	can	be	traced	to	Paul	Samuelson,	who	as	an	act	of	revenge	against	
European	options	traders	in	New	York	who	he	thought	had	slighted	him,	decided	to	christen	the	simpler	form	of	option	
European	and	the	more	complex	form	American.		http://www.afajof.org/details/video/2870851/Paul‐Samuelson‐
Interview.html	
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Options	are	said	to	be	in‐the‐money	when	the	difference	between	the	price	of	the	underlying	and	
the	strike	price	means	 it	would	be	beneficial	 for	 the	holder	 to	exercise	 the	options.	 	Equivalently,	

options	where	the	difference	between	the	underlying	and	strike	prices	means	the	holder	should	not	

exercise	the	option	are	said	to	be	out‐the‐money.		When	the	prices	are	identical	the	option	is	said	
to	be	at‐the‐money.	

Payoffs	
As	we	will	see,	unlike	a	futures	contract,	an	option	contract	has	a	value	ahead	of	expiry.	Therefore	

the	purchaser	of	an	option	will	pay	a	premium	to	hold	the	option.		That	premium	is	a	function	of	the	
payoff.		Consider	a	European	call	option	which	gives	the	right	to	buy	at	the	price	and	date	specified	

in	 the	 contract.	 	 The	 option	 expires	 at	 a	 specified	 time	T,	 is	 bought	 at	 some	 prior	 time	 t	 for	 the	

premium	Cሺt,Tሻ.		Notice	the	cost	of	the	option	is	a	function	of	time	to	expiry,	T	–	t.		At	the	expiry	date	
the	payoff	to	the	holder	is	

PayoffT	ൌ	maxሾST	–	XT,	0ሿ	

where	ST	is	the	price	of	the	underlying	asset	at	the	time	of	expiry	and	XT	is	the	strike	price.	Potential	
profits	 for	 the	 holder	 of	 the	 call	 option	 are	 unlimited;	 if	 the	 prevailing	market	 price	 is	 above	 the	

strike	price	then	the	holder	of	the	option	should	exercise	the	option	and	buy	the	underlying	at	the	

strike	price	 before	 immediately	 selling	 the	underlying	back	 to	 the	market	 at	 the	prevailing	price,	
making	 a	 profit	 of	 the	 payoff	 less	 the	 premium.	 Should	 the	 prevailing	market	 price	 be	 below	 the	

strike	price,	the	holder	should	let	the	option	expire	and	receive	no	payoff.		Losses	to	the	holder	are	

therefore	limited	to	the	initial	premium.	Losses	to	the	writer	of	the	option	are	potentially	limitless	as	
they	must	sell	the	asset	at	the	agreed	strike	price,	no	matter	what	the	prevailing	market	price	has	

become.		The	potential	profit	for	the	writer	is	limited	to	the	premium.	

Similarly	the	payoff	to	the	holder	of	a	European	put	option	(the	right	to	sell)	is	as	follows:	

PayoffT	ൌ	maxሾXT	–	ST,	0ሿ	

For	a	put	option	profits	for	the	holder	are	limited,	as	the	price	of	the	underlying	can	never	be	lower	

than	zero.		If	the	prevailing	market	price	is	below	the	strike	price	then	the	holder	can	realise	profits	
by	buying	the	underlying	in	the	spot	market	at	the	prevailing	price	and	exercising	the	option	to	sell	

at	the	agreed	strike	price.		If	the	prevailing	price	is	above	the	strike	price	then	the	holder	should	let	

the	option	expire	and	receive	no	payoff.	 	Losses	to	the	writer	of	the	option	are	also	limited	by	the	
zero	bound	to	asset	prices	(but	could	still	be	very	large).		Sample	payoffs	(and	profits)	for	the	holder	

and	writer	of	call	and	put	options	are	summarised	graphically	in	Table	1.	
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Table	1.	Option	payoffs	
Call	payoff	for	holder	 Put	payoff	for	holder	

Call	payoff	for	writer	 Put	payoff	for	writer	

For	 both	 calls	 and	 puts	 there	 is	 no	 possibility	 to	 the	 holder	 of	 the	 option	 of	 a	 negative	 payoff.		

However,	there	is	nearly	always	the	possibility	of	a	positive	payoff.		Even	if	the	option	is	significantly	

out‐the‐money	the	price	of	the	underlying	can	change	during	the	time	to	expiry	(only	if	the	variance	
of	the	underlying	is	exactly	zero	would	this	not	be	possible).	 	Hence	if	an	options	contract	did	not	

have	some	value	it	would	lead	to	arbitrage	opportunities.8		Unlike	standard	cash	flows	the	value	of	

the	option	increases	with	time	to	maturity,	hence	ceterus	paribus	an	option	with	a	longer	maturity	
will	be	worth	more	than	one	with	a	shorter	maturity.		The	logic	behind	this	result	is	that	there	is	a	

greater	chance	the	option	will	move	further	into	the	money	because	there	is	more	time	to	yet	elapse.	

2.	 Option	pricing	

Black‐Scholes	pricing	formula	
As	discussed	above	options	(unlike,	say,	futures)	have	value	ahead	of	expiry	as	there	is	always	the	

possibility	of	a	positive	payoff	and	no	possibility	of	a	negative	one.		Hence	to	avoid	riskless	profits	an	

option	must	 always	have	value	 and	 thus	 carry	a	positive	price.	 	A	number	of	methods	have	been	
proposed	for	obtaining	such	a	price,	the	most	famous	and	widely	used	is	the	one	proposed	by	Black	

and	 Scholes	 (1973).	 	 They	 proposed	 that	 the	 fair	 price	 of	 a	 European	 call	 option	 written	 on	 an	

underlying	equity	should	be	

																																																													
8	People	could	acquire	costless	out‐the‐money	options	in	the	hope	that	the	price	of	the	underlying	asset	in	one	or	more	
cases	could	move	such	that	the	option	would	give	a	positive	payoff.	
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,஻ௌሺܵܥ ߬, ܺ, ,ݎ ,ݍ ሻߪ ൌ ܵ݁ି௤ఛܰሺ݀ଵሻ െ ܺ݁ି௥ఛܰሺ݀ଶሻ	

where	

݀ଵ ൌ
log ቀ

ܵ
ܺቁ ൅ ሺݎ െ ݍ െ ଶ/2ሻ߬ߪ

߬√ߪ
	

and	

݀ଶ ൌ ݀ଵ െ 	߬√ߪ

with	N(•)	the	cumulative	probability	from	the	standard	normal	distribution.	

This	classic	equation	is	composed	of	six	parameters:	the	spot	price	of	the	underlying	(S),	the	time	to	
maturity	of	the	option	(߬	=	T	–	t),	the	embedded	strike	price	(X),	the	risk‐free	interest	rate	(r),	the	

dividend	yield	(q)	and	the	volatility	of	the	underlying	asset	(σ).	

The	crucial	underlying	assumptions	for	the	Black‐Scholes	pricing	formula	to	hold	are	that	the	price	
of	 the	underlying	asset	 follows	a	 geometric	Brownian	motion	and	 that	markets	 are	 complete	 and	

free	 of	 imperfections9.	 The	 original	 approach	 used	 by	 Black	 and	 Scholes	 (1973)	was	 based	 upon	

pricing	the	option	using	combinations	of	the	underlying	security	and	a	risk‐free	bond	to	mimic	an	
option’s	 payoff	 structure.	 A	 derivation	 using	 a	 probabilistic	 approach,	 as	 presented	 by	 amongst	

others	Baz	and	Chacko	 (2009),	 is	outlined	 in	Appendix	1,	while	Cochrane	 (2005)	 shows	 that	 the	

Black‐Scholes	formula	can	also	be	derived	by	solving	for	the	appropriate	stochastic	discount	factor.	

An	implication	of	the	pricing	formula	is	that	we	need	only	concern	ourselves	with	either	call	or	put	

options,	as	the	price	of	a	put	option	is	related	to	the	price	of	a	call	option	through	the	put‐call	parity	

relationship.		Put‐Call	parity	relates	the	prices	of	call	and	put	options,	and	arises	from	the	possibility	
of	arbitrage	should	the	two	not	be	connected,	 i.e.	 the	possibility	of	making	a	profit	 from	writing	a	

call	and	purchasing	a	put	at	the	same	price	or	vice	versa.		It	requires	the	price	of	a	put	option	to	be:	

஻ܲௌ ൌ ஻ௌܥ െ ܵ݁ି௤௧ ൅ ܺ݁ି௥௧	

This	implies	

஻ܲௌሺܵ, ߬, ܺ, ,ݎ ,ݍ ሻߪ ൌ ܺ݁ି௥ఛܰሺെ݀ଶሻ െ ܵ݁ି௤ఛܰሺെ݀ଵሻ	

where	the	properties	of	a	standard	Normal	imply	that	N(–d)	=	1	–	N(d).		

Crucially	 for	what	 follows	 the	 Black‐Scholes	 pricing	 formulae	 assume	 risk‐neutral	 probabilities10.		
This	should	be	apparent	as	 the	risk	preferences	of	agents	do	not	enter	 into	 the	pricing	equations.		

The	 implications	 of	 this	 for	 the	 interpretation	 of	 the	 derived	 density	 functions	will	 be	 discussed	

below.	

																																																													
9	That	is	there	are	no	taxes,	short‐selling	bans,	transactions	costs	etc.		In	addition	trading	is	continuous	and	investors	have	
access	to	unlimited	borrowing	and	lending	opportunities.		
10	Under	risk‐neutral	pricing,	true	subjective	probabilities	of	an	event	happening	are	replaced	by	risk‐neutral	probabilities.		
The	risk‐neutral	probability	of	any	state	of	the	world	can	be	thought	of	the	product	of	the	true	probability	of	that	state	
occurring	and	the	utility	derived	by	the	agent	in	that	state.		Hence	risk‐neutral	probabilities	correct	for	bearing	risk.		Risk‐
neutral	can	be	a	misleading	terminology,	as	crucially	risk‐neutral	probabilities	place	higher	event‐probabilities	on	states	
with	higher	marginal	utility	or	disutility.	Cochrane	(2005)	uses	the	example	of	people	who	report	high	probabilities	of	
plane	crashes,	suggesting	that	instead	of	being	irrational	they	are	in	fact	reporting	their	risk‐neutral	probabilities,	it	is	just	
that	the	anticipated	disutility	from	dying	in	a	plane	crash	is	extremely	high	for	the	individual	concerned.	
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Pricing	currency	options	
The	Black‐Scholes	pricing	formula	was	initially	designed	to	price	options	written	on	equities;	it	can	
easily	be	adapted	 to	price	options	on	other	underlying	assets.	 	The	main	alteration	needed	 to	 the	

formula	is	related	to	the	inclusion	of	the	dividend	yield.		Often	this	is	a	matter	of	interpretation.		The	

role	of	the	dividend	yield	in	the	Black‐Scholes	formula	can	be	related	to	the	means	of	its	derivation.		
The	 payoff	 of	 an	 option	 can	 be	 approximated	 by	 the	 payoff	 of	 a	 replicating	 portfolio	 of	 risk‐free	

bonds	and	the	underlying	asset.		The	payoff	to	the	risk‐free	bond	is	the	risk‐free	rate	and	in	this	case	

the	payoffs	to	the	underlying	asset,	an	equity	or	equity	index,	are	the	dividends.	

To	 price	 options	 on	 other	 forms	 of	 assets	 the	 dividend	 should	 be	 replaced	 by	 the	 payoff	 from	

holding	such	assets.		In	the	case	of	foreign	exchange,	instead	of	the	underlying	being	an	equity,	the	

underlying	is	a	foreign	currency	and	the	payoff	to	that	foreign	currency	will	be	the	foreign	interest	
rate.11	

Thus	 the	 formula	 for	 the	 fair	 price	 of	 a	 European	 call	 option	 written	 on	 foreign	 exchange,	 was	

proposed	by	Garman	and	Kohlhagen	(1983)	as	

,஻ௌሺܵܥ ߬, ܺ, ,ݎ ,∗ݎ ሻߪ ൌ ܵ݁ି௥
∗ఛܰሺ݀ଵሻ െ ܺ݁ି௥ఛܰሺ݀ଶሻ	

where	

݀ଵ ൌ
log ቀ

ܵ
ܺቁ ൅ ሺݎ െ ∗ݎ െ ଶ/2ሻ߬ߪ

߬√ߪ
	

and	

݀ଶ ൌ ݀ଵ െ 	.߬√ߪ

Malz	(1997)	proposed	a	further	simplification	to	the	Garman‐Kohlhagen	pricing	formula	applicable	

to	currency	options	by	making	an	additional	substitution	so	

,஻ௌሺܳ௧ܥ ,ݐ ሻߪ∗ݎ ൌ ܰ൮െ
logሺܳ௧ሻ െ ߬ ൬

ଶߪ
2 ൰

߬√ߪ
൲ െ ܳ௧ܰ൮െ

logሺܳ௧ሻ ൅ ߬ ൬
ଶߪ
2 ൰

߬√ߪ
൲	

where	

ܳ௧ ൌ
்ܺ
்,௧ܨ

		

and	noting	that	the	forward	and	sport	rate	are	related	by	

்,௧ܨ ൌ ܵ௧݁ሺ௥ି௥
∗ሻఛ.	

Here	Ft,T	is	the	forward	rate	at	time	t	for	settlement	at	time	T	in	the	future.		The	forward	rate	can	be	
seen	 as	 the	 current	 spot	price	 adjusted	by	 the	 cost	 of	 carry	over	 the	period	 to	 the	 future	date	 in	

question.	 	 In	 the	 case	 of	 currencies	 the	 cost	 of	 carry	 is	 defined	 as	 the	 difference	 between	 the	

domestic	and	foreign	interest	rates.	

																																																													
11	It	should	be	noted	that	for	some	underlying	assets	the	payoff	can	be	negative,	for	example	options	written	on	
agricultural	produce	could	include	a	negative	payoff	should	the	costs	of	storing	the	underlying	through	the	life	of	the	
contract	outweigh	perceived	convenience	yields	from	owning	the	product.	
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Implied	volatility	
When	 it	 comes	 to	observing	 the	six	parameters	 that	enter	 into	 the	call	price	 formulas	above,	 it	 is	
nearly	always	the	case	that	while	spot	price,	time	to	maturity,	strike	price,	risk‐free	interest	rate	and	

dividend	 yield	 (or	 equivalent),	 are	 at	 least	 approximately	 observable,	 perceived	 volatility	 is	 not.		

What	are	observable	are	 the	market	prices	 for	options,	 the	 left	hand	side	of	 the	pricing	equation.		
Thus	 it	 is	 possible	 to	 back	 out	 a	 value	 for	 volatility	 by	 finding	 the	 value	 that	 equates	 the	 price	

suggested	 by	 the	 pricing	 formula	 and	 the	 observed	 market	 price.	 	 In	 most	 cases,	 including	 the	

examples	 discussed	 above,	 it	 is	 impossible	 to	 invert	 the	 pricing	 formula	 to	 find	 a	 closed‐form	
solution;	instead	numerical	methods	must	be	used	to	iteratively	find	a	solution.		

The	value	of	volatility	that	equates	the	market	price	with	the	pricing	formula	price	is	referred	to	as	

the	implied	volatility.		It	is	important	to	understand	what	this	value	means.		The	implied	volatility	
is	a	measure	of	uncertainty	of	the	asset	price	at	the	expiry	date.		

One	of	 the	most	notable	 features	of	 implied	volatilities	 is	 the	variation	 in	 such	values	 for	options	

written	 on	 the	 same	 underlying	 asset	 across	 strike	 prices	 at	 the	 same	 maturities	 (and	 across	
maturities).		Such	observations	are	commonly	referred	to	as	the	volatility	smile	(or	surface).	

The	 volatility	 smile	 was	 first	 observed	 when	 traders	 plotted	 implied	 volatilities	 for	 a	 range	 of	

foreign	exchange	options	written	on	the	same	underlying	currency	pair	with	the	same	maturity	for	a	
range	 of	 strike	 prices.	 	 It	was	 apparent	 that	 implied	 volatilities	 for	 options	 at	 or	 near	 the	money	

were	relatively	low,	but	rose	as	the	strike	price	moved	further	into	or	out‐the‐money,	and	drawing	a	

line	 through	 these	 points	 created	 a	 smile‐like	 shape.	 	 Such	 a	 smile	 is	 often	 observed	 in	 currency	
options	 (Table	2).	 	 The	 rationale	 for	 the	 appearance	 of	 the	 smile	 in	 currency	 options	 is	 that	 the	

Black‐Scholes	 pricing	 formula	 assumes	 that	 price	 changes	 are	 distributed	 log‐normally	 while	 in	

reality	 exchange	 rate	 movements	 (like	 other	 asset	 price	 movements)	 are	 often	 distributed	
differently.	 If	 returns	were	distributed	 log‐normally	 then	 there	would	be	no	 volatility	 smile,	with	

implied	volatility	constant	across	strike	prices.	The	volatility	smile	for	currency	options	is	presented	

in	‘delta’	space.	‘delta’,	defined	as	the	first	derivative	of	the	option	price	with	respect	to	the	price	of	
the	underlying,	is	an	important	concept	in	currency	options	and	is	explained	below.	

Table	2:	Common	volatility	‘smile’	for	currency	options.

Source:	Bloomberg	
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The	smile	shape	observed	for	currency	options	is	also	seen	in	options	written	on	other	assets	such	
as	 commodities.	 One	 notable	 exception	 is	 for	 options	written	 on	 equities:	 for	 equity	 options	 the	

shape	of	the	volatility	is	often	described	as	a	smirk	where	implied	volatility	decreases	as	the	strike	

price	increases.	

This	makes	a	 lot	of	sense.	 	One	reason	 for	 the	difference	 in	shape	 is	 that	 in	currency	markets	 the	

demand	for	hedging	options	is	relatively	evenly	split	between	those	protecting	against	appreciation	

and	 deprecation,	 because	 different	 groups	 of	 economic	 agents	 (i.e.	 exporters	 and	 importers)	will	
suffer	 in	 either	 cases.	 Similar	 cases	 can	 be	 made	 for	 options	 on	 other	 underlying	 assets,	 i.e.	 for	

agricultural	 commodities	 the	market	 is	 balanced	 between	 producers	 and	 consumers.	 	 For	 equity	

options	 the	 majority	 of	 economic	 agents	 usually	 require	 hedging	 against	 a	 fall	 in	 equity	 prices.		
Therefore	demand	will	be	less	evenly	distributed	between	in	and	out‐the‐money	options.12	

Comparing	 the	volatility	 smile	across	different	 strike	prices	 and	different	maturities	 for	 the	 same	

underlying	asset	 is	 referred	 to	as	 the	volatility	surface.	 	Hull	 (2006)	notes	 that	 typically	over	 time	
volatility	will	be	mean‐reverting.		As	such	it	will	be	expected	to	rise	if	near‐term	volatilities	are	low	

relative	to	historical	experience	and	be	expected	to	fall	if	near‐term	volatilities	are	historically	high.		

In	addition	the	effect	of	the	smile	or	smirk	becomes	less	pronounced	as	maturity	lengthens.	

3.	 Obtaining	risk‐neutral	probability	density	functions	

Making	use	of	Breeden	and	Litzenberger	(1978)	
Taylor	(2005)	notes	that	the	following	three	problems	are	essentially	equivalent:	

a) Specify	a	risk‐neutral	density	(fQሺSሻ)	for	all	possible	prices	(S).	
b) Specify	call	prices	(CሺXሻ)	for	all	possible	exercise	prices	(X).	
c) Specify	implied	volatilities	(σimpliedሺXሻ)	for	all	possible	exercise	prices	(X).	

If	we	are	able	to	obtain	b)	or	c)	then	we	are	able	to	obtain	a).	 	To	understand	the	logic	behind	this	

statement,	 we	 need	 to	 see	 that	 information	 regarding	 both	 the	 call	 price	 and	 implied	 volatility	

across	 sequential	 incremental	 changes	 in	 the	exercise	price	 reflects	 the	 location	and	 shape	of	 the	
underlying	 risk‐neutral	 density	 across	 the	 same	 exercise	 prices.	 We	 know	 that	 b)	 and	 c)	 are	

equivalent	 from	 our	 previous	 discussion.	 In	 other	 words,	 to	 be	 able	 to	 specify	 call	 prices	 at	 all	

potential	 strike	prices	we	need	 to	have	 a	 value	 for	 implied	volatility	 at	 all	 potential	 strike	prices.		

How	then	is	it	that	we	know	fQ?	

By	 specifying	 call	prices	 for	options	written	on	every	available	 strike	price	we	can	determine	 the	

location	and	shape	of	the	risk‐neutral	density.	When	comparing	the	price	of	two	sequential	equally‐

spaced	deeply	out‐of‐the‐money	call	options,	both	the	price	and	the	difference	in	price	between	the	
two	 options	 will	 tend	 to	 zero	 as	 the	 strike	 prices	 move	 further	 out‐the‐money.	 	 This	 happens	

because	 the	possibility	of	 the	option	returning	 to	 the	money	 tends	 further	 towards	zero.	 	As	both	

options	are	perceived	to	have	very	little	chance	of	being	exercised,	the	market	does	not	make	much	
distinction	 in	 the	price	of	 two	 long	shots.	 In	 this	 instance	the	second	difference	between	prices	of	

options	also	tends	to	zero.	

																																																													
12	Hull	(2006)	also	notes	that	the	volatility	smirk	was	not	detectable	in	equity	options	before	the	stock	market	crash	of	
1987,	suggest	a	‘crashaphobia’	in	investors.	
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At	the	opposite	end	of	the	scale,	the	prices	of	two	sequential	equally	spaced	options	deeply	in‐the‐
money	options	will	tend	towards	the	profit	that	can	be	made	from	exercising	the	option	(i.e.	St	–	X)	

and	the	difference	in	prices	will	tend	towards	the	incremental	difference	in	price	between	the	two.	

This	 happens	 because	 the	 possibility	 of	 the	 option	 not	 being	 exercised	 decreases	 as	 the	 option	
becomes	 further	 and	 further	 in‐the‐money.	Any	difference	 in	price	between	 two	options	deep	 in‐

the‐money	reflects	only	the	difference	in	profit	that	will	be	realised	on	expiry.	Here	too	the	second	

difference	between	the	option	prices	tends	to	zero.	

At	 both	 of	 these	 extremes	 the	 difference	 in	 the	 probability	 that	 the	 sequential	 options	 will	 be	

exercised	is	very	low;	deep	out‐of‐the‐money	both	will	expire	unexercised,	deep	in‐the‐money	both	

will	be	exercised.	 	That	 is,	 the	underlying	will	 almost	 certainly	be	above	 the	 strikes	of	 the	 in‐the‐
money	 calls	 but	 below	 the	 strike	 prices	 on	 the	 out‐of‐the‐money	 call.	 	 In	 between	 these	 two	

extremes	(at	or	around	the	money)	both	the	price	of	the	two	sequential	equally	spaced	options	and	

the	 difference	 in	 the	 prices	 of	 these	 options	 differs	 at	 each	 interval.	 	 This	 reflects	 the	 differing	
probabilities	of	whether	the	underlying	will	end	at	the	specified	level	and	whether	the	option	will	

expire	 in‐the‐money	 and	 hence	 be	 exercised.	 	 This	 area	 represents	 the	 central	 part	 of	 the	

distribution.		In	fact	the	mean	of	the	underlying	risk‐neutral	density	can	also	be	ascertained	simply	
from	specifying	all	possible	call	prices.		This	is	the	point	where	the	incremental	difference	between	

the	prices	of	two	equally	spaced	sequential	options	will	start	to	decline	compared	with	two	equally	

spaced	options	closer	to	the	money.		The	rates	at	which	the	extremes	of	the	call	prices	tend	towards	
their	limits	also	contains	information	about	the	standard	deviation	of	the	risk‐neutral	density,	while	

the	 symmetry	 above	 and	 below	 the	 mean	 of	 the	 distribution	 gives	 information	 as	 to	 the	 skew.		

Finally,	 kurtosis	 can	 also	be	determined	by	how	quickly	 the	 tails	 of	 the	distribution	 tend	 to	 their	
extremes.	 	 Hence	 from	 specifying	 call	 prices	 for	 all	 possible	 strike	 prices	 we	 can	 ascertain	

information	regarding	the	underlying	risk‐neutral	density.	

However,	as	discussed	above,	to	be	able	to	specify	a	call	price	for	every	potential	strike	we	need	a	
measure	of	volatility;	else	we	can’t	use	Black‐Scholes.	So	specifying	an	 implied	volatility	 for	every	

possible	 strike	 price	 means	 we	 are	 fundamentally	 using	 the	 same	 information.	 	 By	 specifying	

implied	volatilities	across	a	range	of	strike	prices	we	are	ascertaining	the	volatility	smile.		The	shape	
and	 location	 of	 the	 volatility	 smile	 simply	 reflects	 the	 shape	 and	 location	 of	 the	 underlying	 risk‐

neutral	density.			

If	returns	on	an	asset	are	log‐normally	distributed	(as	the	Black‐Scholes	pricing	formula	assumes)	
then	implied	volatility	would	be	constant	across	all	strike	prices	and	there	would	be	no	smile	effect	

in	the	implied	volatility.		If	this	was	the	case	the	risk‐neutral	density	would	also	be	a	log‐normal.		It	

is	the	very	presence	and	shape	of	a	volatility	smile	that	gives	us	information	regarding	the	shape	of	
the	 equivalent	 risk‐neutral	 density.	 	 The	 skew	 of	 the	 smile	will	 also	 reflect	 the	 skew	 of	 the	 risk‐

neutral	density,	while	how	pronounced	 the	smile	 is	will	 reflect	 in	 the	kurtosis	of	 the	distribution.		

For	currency	options,	where	recall	there	is	often	a	detectable	smile	with	implied	volatility	for	at	or	
around	 the	 money	 options	 lower	 than	 for	 both	 in‐	 and	 out‐of‐the	 money	 options,	 then	 the	

distribution	 will	 likely	 be	 symmetric.	 	 More	 pronounced	 smiles	 will	 imply	 a	 more	 leptokurtic	

distribution.		For	equity	options	or	any	with	a	pronounced	smirk	(where	implied	volatilities	fall	as	
the	strike	price	increases)	this	gives	a	downward	skew	to	the	distribution.		
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Breeden	 and	 Litzenberger	 (1978)	 formally	 obtained	 the	 results	 reflecting	 the	 intuition	 discussed	
above,	 i.e.	 deriving	 the	 underlying	 risk‐neutral	 density	 from	 the	 volatility	 smile	 and	 call	 price	

schedule.	 	 They	 show	 the	 exact	 risk‐neutral	 density	 implied	 from	options	priced	using	 the	Black‐

Scholes	 formula.	As	discussed	above,	under	 risk	neutrality	 the	Black‐Scholes	 formula	 implies	 that	
the	fair	price	of	a	call	option	is	ultimately	the	discounted	expectation	of	the	options	payoff.		

This	 can	 be	 obtained	 from	 the	 following.	 	 The	 call	 price	 function,	 as	 with	 any	 asset	 price,	 is	

ultimately	just	the	discounted	value	of	the	expected	return,	which	is	

஻ௌሺ்ܺሻܥ ൌ ݁ି௥ఛܧொሾሺ்ܵ െ ்ܺሻሿ.	

This	can	be	written	

஻ௌሺ்ܺሻܥ ൌ ݁ି௥் න maxሺݔ െ ்ܺ, 0ሻ ொ݂ሺݔሻ݀ݔ
ஶ

଴
	

or	

஻ௌሺ்ܺሻܥ ൌ ݁ି௥் න ሺݔ െ ்ܺሻ ொ݂ሺݔሻ݀ݔ
ஶ

௑
	

where	fQ	 is	the	risk‐neutral	density.	In	other	words	the	fair	value	for	the	call	price	is	the	weighted	

sum	of	all	possible	outcomes	multiplied	by	their	probability	of	occurring.		

From	this,	it	must	be	the	case	that	if	we	differentiate	the	call	price	function	with	respect	to	the	strike	
price	we	obtain	

஻ௌሺ்ܺሻܥ߲
்߲ܺ

ൌ ݁ି௥ఛ න ொ݂ሺݔሻ݀ݔ.
ஶ

௑
	

Differentiating	a	second	time	gives	

߲ଶܥ஻ௌሺ்ܺሻ
்߲ܺ

ଶ ൌ ݁ି௥ఛ ொ݂ሺ்ܺሻ	

which	implies	

ொ݂ሺ்ܺሻ ൌ ݁௥ఛ
߲ଶܥ஻ௌሺ்ܺሻ

்߲ܺ
ଶ .	

Thus	the	risk‐neutral	density	can	be	obtained	from	the	discounted	second	derivative	of	the	call	price	

function.	 	 In	general,	 the	 second	derivative	of	 the	 call	price	 function	 simply	needs	 to	be	 scaled	 to	
integrate	to	unity,	as	it	is	a	density	function.	

For	the	Black‐Scholes	call	price	formula	there	is	an	analytic	solution,	which	is	

ொ݂ሺ்ܺሻ ൌ ݊ሺ݀ଶሻ ቊ
1

߬√்ܺߪ
൅
2݀ଵ
ߪ

ߪ߲
்߲ܺ

൅
݀ଵ݀ଶ்ܺ√߬

ߪ
൬
ߪ߲
்߲ܺ

൰
ଶ

൅ ்ܺ√߬
߲ଶߪ
்߲ܺ

ଶቋ	

where	 d1	 and	 d2	 are	 as	 defined	 before	 in	 the	 Black‐Scholes	 pricing	 formula.	 	 The	 result	 can	 be	

applied	straightforwardly	to	the	Garman‐Kohlhagen	variation.		Whilst	closed	form‐solutions	can	be	
used,	 often	 just	 taking	 the	 second	 difference	 between	 call	 prices	 is	 used	 as	 a	 form	 of	 numerical	

differentiation.			
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4.	 Currency	options	

The	 standard	means	 of	 presentation	 for	 options	 contracts	written	 on	 the	majority	 of	 underlying	

asset	classes	has	put	and	call	contracts	offered	at	a	range	of	strike	prices	for	a	small	number	of	fixed	

maturity	dates.		In	these	instances	the	option	contract	is	nearly	always	quoted	in	currency	units.		

The	presentation	of	 options	written	 on	 foreign	 exchange	differs	 significantly.	 	 In	 FX	markets	 it	 is	

common	for	options	to	be	priced	in	terms	of	implied	volatility	instead	of	currency	units.		In	addition	

delta,	defined	as	the	rate	of	change	in	the	value	of	the	option	with	respect	to	changes	in	the	price	of	
the	underlying,	becomes	an	important	trading	measure.	Because	of	this,	delta	is	an	attractive	way	to	

price	currency	options,	as	for	a	given	volatility	and	exercise	price	it	gives	a	measure	that	depends	on	

the	asset	price	alone.		This	means	it	provides	a	pricing	schedule	for	changes	in	the	underlying	asset	
price	holding	exercise	price	and	volatility	constant.		In	particular	this	means	that	the	strike	prices	of	

in‐	 and	 out‐of‐the‐money	 options	 remain	 a	 fixed	 distance	 away	 from	 the	 at‐the‐money‐volatility	

even	as	other	elements	vary.	

Under	 the	 Black‐Scholes	 assumptions,	 delta	 is	 an	 approximate	measure	 of	 the	 ‘moneyness’	 of	 an	

option.		An	at‐the‐money	option	will	have	a	delta	approximately	equal	to	0.5,	representing	a	50:50	

chance	 that	 it	will	expire	 in‐the‐money.	 	Exercise	prices	 for	FX	options	 too	are	often	expressed	 in	
terms	of	delta,	so	an	at‐the‐money	option	would	be	referred	to	as	50‐delta	call	or	put.13		In	addition,	

round	numbers	in	percentage	points	such	as	25‐delta	and	75‐delta,	representing	close	in‐the‐money	

and	out‐of‐the‐money	 calls	 respectively	 (or	 close	 out‐of‐	 and	 in‐the‐money	puts	 respectively)	 are	
particularly	common.		

Formally	delta	is	defined	as	

ߜ ൌ 	
஻ௌሺܵ௧ሻܥ߲
߲ܵ௧

	

which	is	obviously	the	first	derivative	of	the	call	price	function.		Thus	delta	is	

ߜ ൌ
߲ሺܵ݁ି௥

∗ఛܰሺ݀ଵሻ െ ܺ݁ି௥ఛܰሺ݀ଶሻሻ
߲ܵ௧

	

which	is	

ߜ ൌ ݁ି௥
∗ఛܰሺ݀ଵሻ	

where,	as	before,	

݀ଵ ൌ
log ቀ

ܵ
ܺቁ ൅ ሺݎ െ ∗ݎ െ ଶ/2ሻ߬ߪ

߬√ߪ
.	

Therefore	we	 can	 formally	 express	 delta	 as	 a	 function	 of	 a	 range	 of	 known	 parameters	 and	 one	
unknown	 parameter,	 implied	 volatility	 (σ).	 	 Thus	 for	 given	 values	 of	 the	 other	 parameters,	 delta	

maps	to	a	particular	value	of	implied	volatility.		We	also	know	that	delta	can	at	most	vary	between	

zero	and	unity.	

																																																													
13	Malz	notes	that	’put‐call	parity	implies	that	puts	and	calls	with	the	same	exercise	price	have	identical	implied	volatilities,	
so	the	volatility	of	an	x‐delta	put	equals	that	of	a	(1‐x)‐delta	call’.	
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It	turns	out	to	be	useful	to	define	delta	in	terms	of	the	modified	Garman‐Kohlhagen	formula.		Malz	
(1997)	suggests	using:	

ߜ ൌ ݁ି௥
∗ఛ ቆെ

logሺܳ௧ሻ െ ሺߪଶ/2ሻ߬

߬√ߪ
ቇ		

A	further	wrinkle	to	the	presentation	of	currency	options	is	it	often	common	to	see	quoted	the	price	

of	a	combination	of	options	as	opposed	to	a	single	option,	for	example	the	presentation	of	currency	
options	 on	 Bloomberg	 is	 discussed	 in	 Appendix	 2.	 	 In	 particular	 it	 is	 common	 to	 see	 three	

combinations	of	options	quoted	these	are	straddles,	strangles	and	risk	reversals	instead	of	individual	

calls	and	puts.		

A	 long	 straddle	 involves	 purchasing	 both	 an	 at‐the‐money	 call	 and	 an	 at‐the‐money	 put	with	 the	

same	expiry	date.		The	profit	to	the	holder	of	a	straddle	is	shown	in	Table	3,	which	may	be	negative	

taking	into	account	the	premium.		The	holder	receives	a	positive	payoff	from	the	strategy	as	long	as	
the	price	of	the	underlying	moves	away	from	the	strike	price;	it	does	not	matter	if	the	price	rises	or	

falls.		A	straddle	is	therefore	a	hedge	against	volatility;	the	greater	the	potential	move	away	from	the	

strike	price	the	greater	the	profit	to	the	holder	of	a	long	straddle.	In	the	case	of	currency	options	the	
price	of	a	long	straddle	represents	the	at‐the‐money	volatility	(or	the	price	of	a	50‐delta	call	or	put).	

A	 long	strangle	 is	 similar	 to	a	straddle	 in	 that	 the	holder	profits	 from	volatility	 in	 the	price	of	 the	

underlying.	 	 In	 a	 long	 straddle	 the	 holder	 purchases	 both	 a	 call	 and	 a	 put	with	 the	 same	 expiry,	
however	in	a	straddle	both	purchased	options	are	initially	‘out‐the‐money’.		The	profits	from	a	long	

strangle	are	shown	in	Table	2.		A	greater	degree	of	price	movement	is	now	required	for	the	strategy	

to	 be	 profitable,	 but	 the	 initial	 cost	 of	 the	 component	 options	 is	 lower	 (they	 are	 less	 likely	 to	 be	
individually	exercised).		In	the	case	of	currency	options	the	price	of	a	strangle	will	be	quoted	as	half	

of	the	volatility	of	X‐delta	call	plus	a	(1‐X)‐delta	call	(or	X‐delta	put),	minus	the	volatility	of	an	at‐the‐

money,	50‐delta	call.14	

Table	3.	Portfolio	of	options	profits	
Long	straddle	profit	 Long	strangle	profit	

Finally,	 a	 risk	 reversal	 involves	an	 investor	selling	an	out‐of‐the‐money	put	option	and	buying	an	
out‐of‐the‐money	call	option.	The	profits	from	a	risk	reversal	are	shown	in	Table	4.	Unlike	the	two	

																																																													
14	It	is	common	to	see	strangles	quoted	with	X	=	10,	25	and	35.	
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previous	strategies	(whose	payoff	does	not	depend	on	whether	the	price	of	the	underlying	goes	up	
or	 down)	 a	 positive	 payoff	 on	 a	 long	 risk	 reversal	 is	 dependent	 on	 the	 price	 of	 the	 underlying	

increasing.	In	the	case	of	currency	options	the	price	of	a	X‐delta	risk	reversal	would	be	quoted	as	the	

difference	 between	 the	 volatility	 of	 a	X‐delta	 call	 and	 a	 (1‐X)‐delta	 call	 (equivalent	 to	 the	X‐delta	
put).15	

Table	4.	Long	risk	reversal	profits	

	

5.	 Parametric	implied	probability	densities	from	currency	options	

As	 discussed	 above	 to	 ascertain	 a	 risk‐neutral	 implied	 probability	 density	 from	 option	 prices	we	

require	the	discounted	second	derivative	of	the	call	price	function.	To	produce	a	call	price	function	

at	all	potential	strike	prices	we	require	an	estimate	for	implied	volatility	at	all	potential	strike	prices,	
Bahra	 (1997)	 discusses	 a	 number	 of	 such	 approaches.	 A	 common	 method	 for	 approaching	 this	

problem	is	to	assume	that	 implied	volatility	 follows	some	underlying	functional	 form	and	that	the	

implied	 volatilities	 that	 we	 can	 calculate	 from	 actual	 published	 options	 prices	 are	 merely	

observations	 of	 this	 function.	 Therefore	 a	 first	 step	 in	 ascertaining	 a	 density	 is	 to	 estimate	 a	
functional	form	for	the	volatility	smile.	

One	such	approach	for	currency	options	was	proposed	by	Malz	(1997).	Malz	suggested	the	following	

form	for	the	volatility	smile	

ሻߜሺߪ ൌ ܾ଴ܽ݉ݐ௧ ൅ ܾଵݎݎ௧ሺߜ െ 0.5ሻ ൅ ܾଶݎݐݏ௧ሺߜ െ 0.5ሻଶ.	

This	form	utilises	the	combination	of	options	discussed	above.		The	at‐the‐money	volatility	gives	the	

location	of	the	smile,	the	risk	reversal	gives	the	skew,	and	the	strangle	kurtosis.		In	Malz’s	approach	
he	 utilises	 25‐delta	 risk	 reversals	 and	 strangles.	 	 The	 assumed	 functional	 form	 is	 a	 quadratic	

function	which	allows	for	the	smile	shape	often	observed	in	the	volatility	smile	for	currencies.		Malz	

showed	that	 for	 the	parameterisation	of	 the	 implied	volatility	 function	 to	hold,	 the	bi	values	must	
be16	

ሻߜሺߪ ൌ ௧݉ݐܽ ൅ ߜ௧ሺݎݎ2 െ 0.5ሻ ൅ ߜ௧ሺݎݐݏ16 െ 0.5ሻଶ	

																																																													
15	Again	it	is	common	to	see	risk	reversals	quoted	with	X	=	10,	25	and	35.	
16	To	do	this	he	assumed	that	the	observed	values	of	these	contracts	must	satisfy	this	functional	form.		For	example	in	the	
case	where	observed	volatility	is	at‐the‐money	so	delta	=	0.5,	the	values	of	the	risk	reversal	and	strangle	terms	will	be	
zero,	therefore	for	the	equation	to	hold	the	coefficient	on	the	at‐the‐money	volatility	must	be	1.	
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What	 this	 gives	 is	 an	 equation	 for	 implied	 volatility	 in	 terms	of	 delta;	 however,	we	 initially	don’t	
know	either	implied	volatility	or	delta.		However,	from	the	definition	of	delta	noted	above	we	have	

an	equation	 for	delta	 in	 terms	of	 implied	volatility.	 	This	provides	us	with	a	pair	of	 simultaneous	

equations,	with	the	two	unknowns	implied	volatility	and	delta:	

ሻߜሺߪ ൌ ௧݉ݐܽ ൅ ߜ௧ሺݎݎ2 െ 0.5ሻ ൅ ߜ௧ሺݎݐݏ16 െ 0.5ሻଶ	

ߜ ൌ ݁ି௥
∗ఛ ቆെ

logሺܳ௧ሻ െ ሺߪଶ/2ሻ߬

߬√ߪ
ቇ	

Solving	these	simultaneous	equations	at	each	potential	strike	price	(defined	in	currency	units)	will	

provide	values	for	implied	volatility	and	delta	at	those	strike	prices.		This	is	easily	done	in	MATLAB	
and	the	relevant	code	can	be	found	in	the	Application	below.	

Once	values	 for	 implied	volatilities	are	determined	 for	each	strike	price	 these	can	be	put	 into	 the	

modified	 call	 price	 function	 for	 FX	 options,	 determining	 the	 price	 at	 every	 potential	 strike.	
Subsequently,	 numerical	methods	 need	 to	 be	 used	 to	 determine	 the	 second	derivative	 of	 the	 call	

price	function	and	hence	the	implied	probability	density.		

	

Application:	Drawing	parametric	densities	for	currency	options	in	MATLAB	

The	technique	for	drawing	densities	using	the	parametric	approach	to	specifying	the	volatility	smile	
in	MATLAB	is	relatively	straightforward.	It	involves	setting	up	a	loop	to	recursively	solve	for	sigma	
and	delta	at	each	potential	strike	price,	followed	by	the	calculation	and	twice	differentiation	of	the	
call	price	function	to	obtain	the	density	function.		

There	are	a	number	of	 techniques	that	can	be	used	to	solve	simultaneous	equations	 in	MATLAB©,	
one	of	the	simplest	is	to	use	the	built‐in	fsolve function.		However,	using	fsolve can	be	a	slow	
process	so	a	 simple	 iteration	which	achieves	 the	 same	result	much	more	quickly	can	be	coded	as	
follows:	

function [delta, sigma] = SolveV(delta, sigma, atm, rr, str, rstar, t, q) 
  
lq   = log(q); 
ert  = exp(-rstar*t); 
st   = sqrt(t); 
Vold = delta+sigma+1; 
while abs(delta+sigma-Vold)>0.0000001 
    Vold  = delta+sigma; 
    sigma = atm-2*rr*(delta-0.5)+16*str*(delta-0.5)^2; 
    d     = -(lq-sigma*sigma*t/2)/(sigma*st); 
    delta = ert*0.5*erfc(-d/sqrt(2)); 
end 

	

One	notable	feature	of	this	code	is	the	use	of	the	complementary	error	function	(erfc)	instead	of	
the	 cumulative	 normal	 density	 function	 (normcdf)	 to	 evaluate	 the	 cumulative	 normal	 of	 the	
calculated	value	of	d,	referred	to	in	the	text	as	N(d).	 	The	relationship	between	the	two	is	a	simple	
rescaling,	with	

normcdf(d) = 0.5*erfc(-dx/sqrt(2)) 

	

Application:	Drawing	parametric	densities	for	currency	options	in	MATLAB  
 
The	technique	for	drawing	densities	using	the	parametric	approach	to	specifying	the	volatility	smile	
in	MATLAB	is	relatively	straightforward.	It	involves	setting	up	a	loop	to	recursively	solve	for	sigma	
and	delta	at	each	potential	strike	price,	followed	by	the	calculation	and	twice	differentiation	of	the	
call	price	function	to	obtain	the	density	function.	 
 
There	are	a	number	of	techniques	that	can	be	used	to	solve	simultaneous	equations	in	MATLAB©,	
one	of	the	simplest	is	to	use	the	built‐in	fsolve function.		However,	using	fsolve can	be	a	slow	
process	so	a	simple	iteration	which	achieves	the	same	result	much	more	quickly	can	be	coded	as	
follows:  
 
function [delta, sigma] = SolveV(delta, sigma, atm, rr, str, rstar, t, q) 
  
lq   = log(q); 
ert  = exp(-rstar*t); 
st   = sqrt(t); 
Vold = delta+sigma+1; 
while abs(delta+sigma-Vold)>0.0000001 
    Vold  = delta+sigma; 
    sigma = atm-2*rr*(delta-0.5)+16*str*(delta-0.5)^2; 
    d     = -(lq-sigma*sigma*t/2)/(sigma*st); 
    delta = ert*0.5*erfc(-d/sqrt(2)); 
end 

 
One	notable	feature	of	this	code	is	the	use	of	the	complementary	error	function	(erfc)	instead	of	
the	cumulative	normal	density	function	(normcdf)	to	evaluate	the	cumulative	normal	of	the	
calculated	value	of	d,	referred	to	in	the	text	as	N(d).		The	relationship	between	the	two	is	a	simple	
rescaling,	with   
 

normcdf(d) = 0.5*erfc(-dx/sqrt(2)) 
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	We	 use	 this	 for	 two	 reasons,	 one	 the	 minor	 improvement	 that	 it	 is	 usually	 quicker,	 but	 more	
importantly	 that	 this	 then	 avoids	 the	 need	 to	 use	 the	 statistics	 toolbox	 which	 some	 all	 users	 of	
MATLAB	may	not	have	as	it	is	only	available	at	extra	cost.	

Using	 this	 solve	 function,	 which	 can	 be	 saved	 somewhere	 as	 a	 routine	 to	 call	 upon,	 it	 is	
straightforward	 to	 set	 up	 code	 to	 solve	 the	desired	 equations.	 	 Given	 the	 constant	horizon	of	 the	
options	contracts	provided	on	currencies	it	is	possible	to	not	only	to	draw	a	density	function	for	a	
single	day	but	a	series	of	density	functions	across	time.		To	illustrate	this	code	we	use	data	for	the	
UK	pound/US	dollar	 exchange	 rate	 and	 related	3‐month	 constant	maturity	options	 for	 the	period	
during	November	2014.	

Sample	code	to	do	this	is	as	follows.	

 
% Program for calculating option implied pdfs using 3Month GBP / USD options. 
% Data for November 2014 
% Follows parametric technique outlined by Malz(1997) 
 
%% Clean up 
close all; clear all; clc; 
 
%% Data 
 
D = [1.599  1.600   -0.785  0.220   6.130   0.008   735906; 
    1.599   1.601   -0.760  0.215   6.060   0.030   735907; 
    1.598   1.600   -0.835  0.220   6.445   0.025   735908; 
    1.584   1.586   -0.865  0.238   6.623   0.028   735909; 
    1.587   1.589   -0.920  0.230   6.465   0.028   735910; 
    1.586   1.587   -0.895  0.225   6.350   0.020   735913; 
    1.589   1.590   -0.905  0.230   6.448   0.020   735914; 
    1.580   1.581   -0.933  0.230   6.543   0.018   735915; 
    1.571   1.572   -0.950  0.235   6.658   0.013   735916; 
    1.567   1.569   -1.038  0.238   6.838   0.013   735917; 
    1.564   1.566   -1.033  0.233   6.963   0.015   735920; 
    1.565   1.567   -1.038  0.235   6.888   0.023   735921; 
    1.568   1.570   -1.018  0.238   6.578   0.010   735922; 
    1.569   1.570   -1.033  0.235   6.613   0.010   735923; 
    1.566   1.567   -1.045  0.235   6.693   0.008   735924; 
    1.570   1.571   -1.040  0.230   6.828   0.013   735927; 
    1.571   1.572   -1.040  0.235   6.673   0.028   735928; 
    1.578   1.580   -1.040  0.230   6.580   0.030   735929; 
    1.572   1.574   -1.030  0.228   6.505   0.030   735930; 
    1.565   1.566   -1.055  0.238   6.643   0.015   735931]; 
  
spot   = timeseries(D(:,1),datestr(D(:,7))); 
fwd3m  = timeseries(D(:,2),datestr(D(:,7))); 
rr3m   = timeseries(D(:,3),datestr(D(:,7))); 
st3m   = timeseries(D(:,4),datestr(D(:,7))); 
vol3m  = timeseries(D(:,5),datestr(D(:,7))); 
usd3m  = timeseries(D(:,6),datestr(D(:,7))); 
gdates = D(:,7); 
  
rstar = usd3m.Data/100; 
fwd   = fwd3m.Data; 

We	use	this	for	two	reasons,	one	the	minor	improvement	that	it	is	usually	quicker,	but	more	
importantly	that	this	then	avoids	the	need	to	use	the	statistics	toolbox	which	some	all	users	of	
MATLAB	may	not	have	as	it	is	only	available	at	extra	cost.  
 
Using	this	solve	function,	which	can	be	saved	somewhere	as	a	routine	to	call	upon,	it	is	
straightforward	to	set	up	code	to	solve	the	desired	equations.		Given	the	constant	horizon	of	the	
options	contracts	provided	on	currencies	it	is	possible	to	not	only	to	draw	a	density	function	for	a	
single	day	but	a	series	of	density	functions	across	time.		To	illustrate	this	code	we	use	data	for	the	
UK	pound/US	dollar	exchange	rate	and	related	3‐month	constant	maturity	options	for	the	period	
during	November	2014.  
 

Sample	code	to	do	this	is	as	follows.  
 
% Program for calculating option implied pdfs using 3Month GBP / USD options. 
% Data for November 2014 
% Follows parametric technique outlined by Malz(1997) 
 
%% Clean up 
close all; clear all; clc; 
 
%% Data 
 
D = [1.599  1.600 -0.785  0.220  6.130  0.008  735906; 
     1.599  1.601 -0.760  0.215  6.060  0.030  735907; 
     1.598  1.600 -0.835  0.220  6.445  0.025  735908; 
     1.584  1.586 -0.865  0.238  6.623  0.028  735909; 
     1.587  1.589 -0.920  0.230  6.465  0.028  735910; 
     1.586  1.587 -0.895  0.225  6.350  0.020  735913; 
     1.589  1.590 -0.905  0.230  6.448  0.020  735914; 
     1.580  1.581 -0.933  0.230  6.543  0.018  735915; 
     1.571  1.572 -0.950  0.235  6.658  0.013  735916; 
     1.567  1.569 -1.038  0.238  6.838  0.013  735917; 
     1.564  1.566 -1.033  0.233  6.963  0.015  735920; 
     1.565  1.567 -1.038  0.235  6.888  0.023  735921; 
     1.568  1.570 -1.018  0.238  6.578  0.010  735922; 
     1.569  1.570 -1.033  0.235  6.613  0.010  735923; 
     1.566  1.567 -1.045  0.235  6.693  0.008  735924; 
     1.570  1.571 -1.040  0.230  6.828  0.013  735927; 
     1.571  1.572 -1.040  0.235  6.673  0.028  735928; 
     1.578  1.580 -1.040  0.230  6.580  0.030  735929; 
     1.572  1.574 -1.030  0.228  6.505  0.030  735930; 
     1.565  1.566 -1.055  0.238  6.643  0.015  735931]; 
  
spot   = timeseries(D(:,1),datestr(D(:,7))); 
fwd3m  = timeseries(D(:,2),datestr(D(:,7))); 
rr3m   = timeseries(D(:,3),datestr(D(:,7))); 
st3m   = timeseries(D(:,4),datestr(D(:,7))); 
vol3m  = timeseries(D(:,5),datestr(D(:,7))); 
usd3m  = timeseries(D(:,6),datestr(D(:,7))); 
gdates = D(:,7); 
  
rstar = usd3m.Data/100; 
fwd   = fwd3m.Data; 
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atm   = vol3m.Data/100; 
rr    = rr3m.Data/100; 
str   = st3m.Data/100; 
  
% Define time (i.e. 3 months) 
tau   = 3/12;  
st    = sqrt(tau); 
 
% Define strike prices 
inc = 0.01; 
xax = (1.35:inc:1.8)'; 
xaxis = xax(3:end); 
 
% Set up storage matrices 
k     = usd3m.timeinfo.startdate; 
dates = datestr(D(:,7)); 
pdf   = nan(length(xax)-2,length(dates)); 
 
%% Main program loop 
 
for j = 1:length(dates)-1; 
 
  % Calculate the strike price relative to the forward rate 
  q     = xax/fwd(j); 
 
  % Calculate deltas by solving simultaneous equation (delta is the ratio of  
  % change of the price of the option with the price of the underlying asset). 
  delta = nan(length(xax),1); 
  s     = nan(length(xax),1); 
 
  for k=1:length(xax) 
    [delta(k), s(k)] = SolveV(0.5,1,atm(j),rr(j),str(j),rstar(j),tau,q(k)); 
  end 
 
  % Calculate the call prices 
  d1   = -(log(q)-s.^2*tau/2)./(s*st); 
  call = 0.5*(erfc(-d1/sqrt(2))-q.*erfc(-(d1-s*st)/sqrt(2))); 
 
  % Calculate change in the price of the call per difference quotient, i.e. 
  % create distribution: discrete version of Breeden and Litzenberger (1978) 
  pr       = diff(call,2); 
  pdf(:,j) = pr/sum(pr); 

 
end 
 
%% Creating graph 
figure 
surface(gdates,xaxis,pdf) 
dateaxis('x',1) 
colormap jet 
view([90-37.5,30]) 
 
	

atm   = vol3m.Data/100; 
rr    = rr3m.Data/100; 
str   = st3m.Data/100; 
  
% Define time (i.e. 3 months) 
tau   = 3/12;  
st    = sqrt(tau); 
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inc = 0.01; 
xax = (1.35:inc:1.8)'; 
xaxis = xax(3:end); 
 
% Set up storage matrices 
k     = usd3m.timeinfo.startdate; 
dates = datestr(D(:,7)); 
pdf   = nan(length(xax)-2,length(dates)); 
 
%% Main program loop 
 
for j = 1:length(dates)-1; 
 
  % Calculate the strike price relative to the forward rate 
  q     = xax/fwd(j); 
 
  % Calculate deltas by solving simultaneous equation (delta is the ratio of  
  % change of the price of the option with the price of the underlying asset). 
  delta = nan(length(xax),1); 
  s     = nan(length(xax),1); 
 
  for k=1:length(xax) 
    [delta(k), s(k)] = SolveV(0.5,1,atm(j),rr(j),str(j),rstar(j),tau,q(k)); 
  end 
 
  % Calculate the call prices 
  d1   = -(log(q)-s.^2*tau/2)./(s*st); 
  call = 0.5*(erfc(-d1/sqrt(2))-q.*erfc(-(d1-s*st)/sqrt(2))); 
 
  % Calculate change in the price of the call per difference quotient, i.e. 
  % create distribution: discrete version of Breeden and Litzenberger (1978) 
  pr       = diff(call,2); 
  pdf(:,j) = pr/sum(pr); 

 
end 
 
%% Creating graph 
figure 
surface(gdates,xaxis,pdf) 
dateaxis('x',1) 
colormap jet 
view([90-37.5,30]) 
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The	resulting	chart	suggests	that	there	was	little	change	in	participants	expectations	over	the	period	
covered.		The	location	of	the	distribution	remains	relatively	constant	over	the	time	horizon.		There	
does	appear	to	be	a	slight	increase	in	uncertainty	with	the	more	recent	distributions	appearing	less	
peaked	than	the	earlier	distributions.	

6.	 Non‐parametric	implied	probability	densities	from	currency	options	

The	approach	detailed	 above	 imposes	a	 functional	 form	upon	 the	volatility	 smile.	 	A	more	 recent	

approach	 proposed	 by	 Malz	 (2014)	 does	 not	 require	 assumptions	 regarding	 the	 shape	 of	 the	

volatility	 smile.	 	 Malz	 refers	 to	 this	 new	 approach	 as	 ‘a	 simple	 and	 reliable’	 approach	 as	 the	
implementation	is	almost	identical	across	a	range	of	asset	classes	such	as	equities,	foreign	exchange	

and	interest	rates.		The	approach	consists	of	three	simple	steps:	

1. Interpolate	and	extrapolate	 the	volatility	 smile	using	a	clamped	cubic	 spline	 (the	 intuition	
behind	clamped	splines	is	discussed	in	Appendix	3	together	with	code)	with	flat	ends.17	

2. Use	the	call	price	function	to	return	the	interpolated	volatilities	into	currency‐unit	options.	

3. Make	use	of	the	Breeden‐Litzenberger	result	and	take	the	second	differences	of	the	call	price	
function	to	obtain	the	density.	

The	 application	 of	 this	 technique	 to	 currency	 options	 is	 relatively	 straightforward,	 but	 has	 a	 few	

small	complications	that	need	to	be	overcome.		

																																																													
17	Malz	utilises	this	form	of	cubic	spline	to	ensure	concavity	in	the	volatility	smile.	Concavity	is	a	necessity	to	ensure	that	
positive	values	are	returned	for	the	second	differences	and	hence	all	potential	strike	prices	have	strictly	positive	
probability.	

The	resulting	chart	suggests	that	there	was	little	change	in	participants	expectations	over	the	period	
covered.		The	location	of	the	distribution	remains	relatively	constant	over	the	time	horizon.		There	
does	appear	to	be	a	slight	increase	in	uncertainty	with	the	more	recent	distributions	appearing	less	
peaked	than	the	earlier	distributions.	
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The	first	stage	is	to	interpolate	and	extrapolate	the	volatility	smile.		To	do	this	for	currency	options	
we	require	volatilities	at	various	deltas	in	and	out‐the‐money.		As	discussed	previously,	the	majority	

of	data	providers	present	currency	options	as	combinations	priced	in	terms	of	volatility.		This	means	

that	the	options	are	priced	in	the	space	over	which	we	want	to	draw	the	volatility	smile,	but	we	first	
need	 to	 manipulate	 the	 available	 data	 a	 little	 to	 find	 specific	 points.	 	 For	 most	 currency	 pairs	

Bloomberg	provides	data	for	strangles	and	risk	reversals	(see	Appendix	2)	at	10,	25	and	35	delta.		

From	these	prices	we	can	calculate	volatilities	at	10,	25,	35,	65,	75	and	90	delta:	

For	X	=	10,	25	and	35	

ݕݐ݈݅݅ݐ݈ܽ݋ݒ	ܽݐ݈݁݀ܺ ൌ ݉ݐܽ ൅ ሺ݈ܺ݀݁ܽݐ	ݎݐݏ ൅ 	ሻ/2ݎݎ	ܽݐ݈݁݀ܺ

For	X	=	65,	75	and	90		

ݕݐ݈݅݅ݐ݈ܽ݋ݒ	ܽݐ݈݁݀ܺ ൌ ݉ݐܽ ൅ ሺ݈ܺ݀݁ܽݐ	ݎݐݏ െ 	ሻ/2ݎݎ	ܽݐ݈݁݀ܺ

Here	we	face	one	of	the	minor	complications.		It	turns	out	that	the	at‐the‐money	volatility	has	a	delta	

close	 to	 but	 not	 precisely	 50.	 	 However	 the	 value	 of	 delta	 for	 the	 at‐the‐money	 volatility	 can	 be	
calculated	using	 the	 initial	 formula	 for	delta	and	setting	 the	strike	price	equal	 to	 the	current	 spot	

price.	

Having	done	this	we	now	have	7	data	points	over	which	to	draw	the	volatility	smile	using	a	clamped	
cubic	spline.		This	provides	us	with	a	value	for	volatility	at	all	potential	deltas.		The	main	complexity	

for	currency	options	 is	 that	 to	populate	 the	call	price	 function	we	need	volatilities	at	all	potential	

strike	 prices	 in	 currency	 units.	 	 As	 Malz	 notes,	 it	 is	 not	 possible	 to	 map	 directly	 between	
volatility/delta	space	to	volatility/strike	price	space	using	the	expression	for	delta.		This	is	because	

the	volatility	 argument	 in	 the	equation	 for	delta	 is	not	 constant,	 but	 varies	with	delta	 itself.	 	 It	 is	

possible	 however	 to	 use	 numerical	 methods	 to	 find	 the	 value	 of	 volatility	 associated	 with	 each	
potential	strike	price.	 	To	do	this	we	take	advantage	of	 the	 fact	 that	once	we	have	the	appropriate	

volatility	for	each	potential	strike	price,	the	value	of	delta	calculated	at	that	given	strike	price	from	

the	appropriate	value	of	implied	volatility	should	be	identical	to	the	value	of	delta	calculated	using	
the	value	of	implied	volatility	calculated	from	the	cubic	spline	function.		We	can	numerically	iterate	

to	a	value	of	implied	volatility	that	achieves	this.	 	Formally	we	can	express	this	as	follows.		Choose	

values	such	that	
௦ାଵߪ ൌ 	௦ߪ

where	

መߜ ൌ ݁ି௥
∗ఛܰ ቌ

log ቀ
ܵ
ܺቁ ൅ ሺݎ െ ∗ݎ െ ௦ଶ/2ሻ߬ߪ

߬√௦ߪ
ቍ	

and	

௦ାଵߪ ൌ ܽ௞ ൅ ܾ௞൫ߜመ െ ௞൯ߜ ൅ ܿ௞൫ߜመ െ ௞൯ߜ
ଶ
൅ ݀௞൫ߜመ െ ௞൯ߜ

ଷ
	

where	 ܽ௞,	 ܾ௞,	 ܿ௞	 and	 ݀௞	 are	 the	 coefficients	 of	 the	 cubic	 spline	 evaluated	 at	 δk	 the	 observed	

volatilities,	which	we	choose	as	the	knot	points	of	the	interpolator,	and	ߜመ	is	the	implied	delta.		So	we	

are	choosing	the	appropriate	value	of	ߜመ	to	equate	the	values	of	ߪ.		Once	this	is	done	we	can	calculate	
the	option	price	at	the	strike	price.	
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This	can	be	repeated	across	the	range	of	strike	prices	over	which	we	are	interested	in	drawing	the	
density	 over.	 	 Note	 care	must	 be	 taken	 to	 ensure	 that	 the	 correct	 values	 of	 the	 knot	 points	 are	

utilised	 once	 the	 calculated	 values	 of	 implied	 volatility	 move	 between	 the	 observed	 values	 of	

implied	volatility.	 	Once	this	 is	achieved	we	have	values	 for	sigma	at	all	possible	strike	prices	and	
can	hence	calculate	call	prices	at	all	potential	strike	prices.		Once	we	have	call	prices	at	all	potential	

strike	price	we	can	take	the	numerical	second	difference	to	ascertain	the	risk‐neutral	density.		Code	

for	implementing	this	technique	in	Matlab	is	in	the	next	Application.		

	

Application	–	Drawing	non‐parametric	densities	for	currency	options	in	MATLAB	

The	technique	for	drawing	densities	using	the	non‐parametric	approach	to	specifying	the	volatility	
smile	 in	 MATLAB	 is	 again	 relatively	 straightforward.	 	 We	 describe	 the	 necessary	 sub‐functions	
cubic_spline	and	cubic_spline_eval	to	calculate	the	coefficients	of	the	cubic	spline	and	to	
evaluate	 the	 spline	over	 the	desired	 interval	 in	Appendix	3.	 	 The	 interpolation	of	 the	 smile	 is	 an	
important	 issue	but	 is	not	central	 to	 the	non‐parametric	density	 itself.	 	 Interested	readers	should	
study	this	separately,	including	Malz’s	discussion	of	the	appropriate	form	of	spline	for	the	problem	
in	hand.	

The	code	below	calls	upon	two	additional	small	 sub‐routines	c_bs	 and	d_bs	which	calculate	 the	
call	price	of	a	European	call	option	and	the	delta	of	a	European	call	option	as	follows:18	

% European call option price 
% Inputs:   s = underlying asset price 
%       t = time to expiry 
%       x = strike price 
%       r = return on asset 
%       q = dividend yield 
%       v = volatility 
 
function c = c_bs(s,t,x,r,q,v) 
  vt = v*sqrt(t); 
  d1 = (log(s./x)+t*((r-q)*0.5*v.^2))./vt; 
  c  = 0.5*s*exp(-q*t).*erfc(-d1./sqrt(2)) ... 
       - 0.5*x*exp(-r*t).*erfc(-(d1-vt)./sqrt(2)); 
 
 
% Black-Scholes formula for delta 
% Inputs: S     asset price 
%          tau   time to expiry 
%          X     exercise price 
%          r     return on asset 
%          q     dividend yield 
%          sigma volatility 
  
function delta = d_bs(S,tau,X,r,q,sigma) 
  v     = (log(S./X)+tau*(r-q+0.5*sigma.^2))./(sigma*sqrt(tau)); 
  delta = 0.5*exp(-q*tau).*erfc(-v/sqrt(2)); 
 

	

																																																													
18	The	code	could	easily	be	modified	to	calculate	these	values	within	the	main	routine;	however,	calling	on	sub‐functions	
makes	the	presented	code	both	easier	to	follow	and	more	portable	to	other	applications.	

	

Application	–	Drawing	non‐parametric	densities	for	currency	options	in	MATLAB 
 

The	technique	for	drawing	densities	using	the	non‐parametric	approach	to	specifying	the	volatility	
smile	in	MATLAB	is	again	relatively	straightforward.		We	describe	the	necessary	sub‐functions	
cubic_spline	and	cubic_spline_eval	to	calculate	the	coefficients	of	the	cubic	spline	and	to	
evaluate	the	spline	over	the	desired	interval	in	Appendix	3.		The	interpolation	of	the	smile	is	an	
important	issue	but	is	not	central	to	the	non‐parametric	density	itself.		Interested	readers	should	
study	this	separately,	including	Malz’s	discussion	of	the	appropriate	form	of	spline	for	the	problem	
in	hand.  
 

The	code	below	calls	upon	two	additional	small	sub‐routines	c_bs	and	d_bs	which	calculate	the	
call	price	of	a	European	call	option	and	the	delta	of	a	European	call	option	as	follows:18  
 
% European call option price 
% Inputs:   s = underlying asset price 
%       t = time to expiry 
%       x = strike price 
%       r = return on asset 
%       q = dividend yield 
%       v = volatility 
 
function c = c_bs(s,t,x,r,q,v) 
  vt = v*sqrt(t); 
  d1 = (log(s./x)+t*((r-q)*0.5*v.^2))./vt; 
  c  = 0.5*s*exp(-q*t).*erfc(-d1./sqrt(2)) ... 
       - 0.5*x*exp(-r*t).*erfc(-(d1-vt)./sqrt(2)); 
 
 
% Black-Scholes formula for delta 
% Inputs: S     asset price 
%          tau   time to expiry 
%          X     exercise price 
%          r     return on asset 
%          q     dividend yield 
%          sigma volatility 
  
function delta = d_bs(S,tau,X,r,q,sigma) 
  v     = (log(S./X)+tau*(r-q+0.5*sigma.^2))./(sigma*sqrt(tau)); 
  delta = 0.5*exp(-q*tau).*erfc(-v/sqrt(2)); 
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Note	 that	 as	 before	we	 use	 the	 complementary	 error	 function	 to	 calculate	 the	 cumulated	 normal	
density	instead	of	a	call	to	normcdf.	
 
% Program for calculating option implied pdfs using 3Month GBP/USD options. 
% Data for November 2014 
% Follows non-parametric technique proposed by Malz (2014) 
 
%% Clean up 
close all; clear all; clc; 
 
% Data, entered a vector: [Spot, uk3m, us3m, atm, b10, b25, b35, r10, r25,  
% r35, dates] 
 
D = [1.599  0.448  0.008  6.130  0.665  0.220  0.075 -1.455 -0.785 -0.430  735906; 
     1.599  0.447  0.030  6.060  0.645  0.215  0.075 -1.415 -0.760 -0.420  735907; 
     1.598  0.447  0.025  6.445  0.645  0.220  0.075 -1.525 -0.835 -0.460  735908; 
     1.584  0.453  0.028  6.623  0.680  0.238  0.085 -1.570 -0.865 -0.478  735909; 
     1.587  0.437  0.028  6.465  0.670  0.230  0.080 -1.655 -0.920 -0.505  735910; 
     1.586  0.445  0.020  6.350  0.660  0.225  0.080 -1.658 -0.895 -0.495  735913; 
     1.589  0.445  0.020  6.448  0.675  0.230  0.080 -1.650 -0.905 -0.498  735914; 
     1.580  0.444  0.018  6.543  0.680  0.230  0.080 -1.700 -0.933 -0.513  735915; 
     1.571  0.444  0.013  6.658  0.673  0.235  0.080 -1.730 -0.950 -0.525  735916; 
     1.567  0.427  0.013  6.838  0.680  0.238  0.085 -1.860 -1.038 -0.575  735917; 
     1.564  0.453  0.015  6.963  0.670  0.233  0.080 -1.865 -1.033 -0.573  735920; 
     1.565  0.460  0.023  6.888  0.680  0.235  0.080 -1.885 -1.038 -0.573  735921; 
     1.568  0.459  0.010  6.578  0.685  0.238  0.083 -1.855 -1.018 -0.563  735922; 
     1.569  0.458  0.010  6.613  0.673  0.235  0.080 -1.865 -1.033 -0.570  735923; 
     1.566  0.450  0.008  6.693  0.690  0.235  0.080 -1.883 -1.045 -0.575  735924; 
     1.570  0.456  0.013  6.828  0.680  0.230  0.080 -1.910 -1.040 -0.575  735927; 
     1.571  0.460  0.028  6.673  0.675  0.235  0.080 -1.890 -1.040 -0.573  735928; 
     1.578  0.459  0.030  6.580  0.665  0.230  0.080 -1.885 -1.040 -0.573  735929; 
     1.572  0.458  0.030  6.505  0.665  0.228  0.080 -1.888 -1.030 -0.570  735930; 
     1.565  0.450  0.015  6.643  0.685  0.238  0.083 -1.900 -1.055 -0.580  735931]; 

 
% Data Manipulation 
SPOT = timeseries(D(:,1),datestr(D(:,11))); 
RUK  = timeseries(D(:,2),datestr(D(:,11))); 
RUS  = timeseries(D(:,3),datestr(D(:,11))); 
ATM  = timeseries(D(:,4),datestr(D(:,11))); 
B10  = timeseries(D(:,5),datestr(D(:,11))); 
B25  = timeseries(D(:,6),datestr(D(:,11))); 
B35  = timeseries(D(:,7),datestr(D(:,11))); 
R10  = timeseries(D(:,8),datestr(D(:,11))); 
R25  = timeseries(D(:,9),datestr(D(:,11))); 
R35  = timeseries(D(:,10),datestr(D(:,11))); 
gdates = D(:,11); 
 
iv10 = (ATM.Data + B10.Data + R10.Data/2)/100; 
iv90 = (ATM.Data + B10.Data - R10.Data/2)/100; 
iv25 = (ATM.Data + B25.Data + R25.Data/2)/100; 
iv75 = (ATM.Data + B25.Data - R25.Data/2)/100; 
iv35 = (ATM.Data + B35.Data + R35.Data/2)/100; 
iv65 = (ATM.Data + B35.Data - R35.Data/2)/100; 
 
atm = ATM.Data/100; 
r   = RUK.Data/100; 

Note	 that	 as	 before	we	 use	 the	 complementary	 error	 function	 to	 calculate	 the	 cumulated	 normal	
density	instead	of	a	call	to	normcdf.	
 
% Program for calculating option implied pdfs using 3Month GBP/USD options. 
% Data for November 2014 
% Follows non-parametric technique proposed by Malz (2014) 
 
%% Clean up 
close all; clear all; clc; 
 
% Data, entered a vector: [Spot, uk3m, us3m, atm, b10, b25, b35, r10, r25,  
% r35, dates] 
 
D = [1.599  0.448  0.008  6.130  0.665  0.220  0.075 -1.455 -0.785 -0.430  735906; 
     1.599  0.447  0.030  6.060  0.645  0.215  0.075 -1.415 -0.760 -0.420  735907; 
     1.598  0.447  0.025  6.445  0.645  0.220  0.075 -1.525 -0.835 -0.460  735908; 
     1.584  0.453  0.028  6.623  0.680  0.238  0.085 -1.570 -0.865 -0.478  735909; 
     1.587  0.437  0.028  6.465  0.670  0.230  0.080 -1.655 -0.920 -0.505  735910; 
     1.586  0.445  0.020  6.350  0.660  0.225  0.080 -1.658 -0.895 -0.495  735913; 
     1.589  0.445  0.020  6.448  0.675  0.230  0.080 -1.650 -0.905 -0.498  735914; 
     1.580  0.444  0.018  6.543  0.680  0.230  0.080 -1.700 -0.933 -0.513  735915; 
     1.571  0.444  0.013  6.658  0.673  0.235  0.080 -1.730 -0.950 -0.525  735916; 
     1.567  0.427  0.013  6.838  0.680  0.238  0.085 -1.860 -1.038 -0.575  735917; 
     1.564  0.453  0.015  6.963  0.670  0.233  0.080 -1.865 -1.033 -0.573  735920; 
     1.565  0.460  0.023  6.888  0.680  0.235  0.080 -1.885 -1.038 -0.573  735921; 
     1.568  0.459  0.010  6.578  0.685  0.238  0.083 -1.855 -1.018 -0.563  735922; 
     1.569  0.458  0.010  6.613  0.673  0.235  0.080 -1.865 -1.033 -0.570  735923; 
     1.566  0.450  0.008  6.693  0.690  0.235  0.080 -1.883 -1.045 -0.575  735924; 
     1.570  0.456  0.013  6.828  0.680  0.230  0.080 -1.910 -1.040 -0.575  735927; 
     1.571  0.460  0.028  6.673  0.675  0.235  0.080 -1.890 -1.040 -0.573  735928; 
     1.578  0.459  0.030  6.580  0.665  0.230  0.080 -1.885 -1.040 -0.573  735929; 
     1.572  0.458  0.030  6.505  0.665  0.228  0.080 -1.888 -1.030 -0.570  735930; 
     1.565  0.450  0.015  6.643  0.685  0.238  0.083 -1.900 -1.055 -0.580  735931]; 

 
% Data Manipulation 
SPOT = timeseries(D(:,1),datestr(D(:,11))); 
RUK  = timeseries(D(:,2),datestr(D(:,11))); 
RUS  = timeseries(D(:,3),datestr(D(:,11))); 
ATM  = timeseries(D(:,4),datestr(D(:,11))); 
B10  = timeseries(D(:,5),datestr(D(:,11))); 
B25  = timeseries(D(:,6),datestr(D(:,11))); 
B35  = timeseries(D(:,7),datestr(D(:,11))); 
R10  = timeseries(D(:,8),datestr(D(:,11))); 
R25  = timeseries(D(:,9),datestr(D(:,11))); 
R35  = timeseries(D(:,10),datestr(D(:,11))); 
gdates = D(:,11); 
 
iv10 = (ATM.Data + B10.Data + R10.Data/2)/100; 
iv90 = (ATM.Data + B10.Data - R10.Data/2)/100; 
iv25 = (ATM.Data + B25.Data + R25.Data/2)/100; 
iv75 = (ATM.Data + B25.Data - R25.Data/2)/100; 
iv35 = (ATM.Data + B35.Data + R35.Data/2)/100; 
iv65 = (ATM.Data + B35.Data - R35.Data/2)/100; 
 
atm = ATM.Data/100; 
r   = RUK.Data/100; 
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q   = RUS.Data/100; 
S   = SPOT.Data; 
 
inc = 0.001; 
xax = 1.35:inc:1.8; 
 
tau = 3/12; 
all_pdf = []; 
all_cdf = []; 
 
for j = 1:length(atm) 
 
  % Set up volatility smile observed points.     
  iv    = [iv10(j) iv25(j) iv35(j) atm(j) iv65(j) iv75(j) iv90(j)]'; 
  atmv  = d_bs(S(j),tau,S(j),r(j),q(j),atm(j)); 
  delta = [.10 .25 .35 atmv .65 .75 .90]'; 
  
  % Calculate and draw cubic spline 
  [a, b, c, d] = cubic_spline(delta,iv,0); 
  sv   = 0*xax'; 
  iv_n = sv + atm(j); 
  delta_n = d_bs(S(j),tau,xax',r(j),q(j),iv_n); 
  
  % Convert to price space  
  while max(abs(sv-iv_n)) > 1e-10 
    sv = iv_n; 
    iv_n  = cubic_spline_eval(delta_n',a,b,c,d,delta,iv); 
    delta_n = d_bs(S(j),tau,xax',r(j),q(j),iv_n); 
  end 
  call = c_bs(S(j),tau,xax',r(j),q(j),iv_n); 
   
  % Calculate pdf and cdf 
  df   = (call(2:end)-call(1:end-1)); 
  pdf  = (df(2:end)-df(1:end-1));  
  cdf  = cumsum(pdf)/sum(pdf); 
  all_cdf = [all_cdf cdf]; 
  all_pdf = [all_pdf pdf]; 
 
end 
 
%% Draw chart 
figure 
surface(gdates,xax(3:end-2),all_pdf(3:end,:)) 
dateaxis('x',1) 
colormap jet 
view([90-37.5,30]) 
 

	
	
	
	
	
	

q   = RUS.Data/100;
S   = SPOT.Data; 
 
inc = 0.001; 
xax = 1.35:inc:1.8; 
 
tau = 3/12; 
all_pdf = []; 
all_cdf = []; 
 
for j = 1:length(atm) 
 
  % Set up volatility smile observed points.     
  iv    = [iv10(j) iv25(j) iv35(j) atm(j) iv65(j) iv75(j) iv90(j)]'; 
  atmv  = d_bs(S(j),tau,S(j),r(j),q(j),atm(j)); 
  delta = [.10 .25 .35 atmv .65 .75 .90]'; 
  
  % Calculate and draw cubic spline 
  [a, b, c, d] = cubic_spline(delta,iv,0); 
  sv   = 0*xax'; 
  iv_n = sv + atm(j); 
  delta_n = d_bs(S(j),tau,xax',r(j),q(j),iv_n); 
  
  % Convert to price space  
  while max(abs(sv-iv_n)) > 1e-10 
    sv = iv_n; 
    iv_n  = cubic_spline_eval(delta_n',a,b,c,d,delta,iv); 
    delta_n = d_bs(S(j),tau,xax',r(j),q(j),iv_n); 
  end 
  call = c_bs(S(j),tau,xax',r(j),q(j),iv_n); 
   
  % Calculate pdf and cdf 
  df   = (call(2:end)-call(1:end-1)); 
  pdf  = (df(2:end)-df(1:end-1));  
  cdf  = cumsum(pdf)/sum(pdf); 
  all_cdf = [all_cdf cdf]; 
  all_pdf = [all_pdf pdf]; 
 
end 
 
%% Draw chart 
figure 
surface(gdates,xax(3:end-2),all_pdf(3:end,:)) 
dateaxis('x',1) 
colormap jet 
view([90-37.5,30]) 
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The	resulting	graph	can	be	compared	to	the	parametric	approach	we	took	earlier.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Similar	to	what	we	found	with	the	parametric	approach,	there	is	little	change	in	the	location	of	the	
densities	over	the	time	period.		More	interestingly,	the	non‐parametric	approach	reveals	greater	
density	in	the	left	hand	tail,	suggesting	investors	were	looking	to	insure	against	sterling	
depreciation	(dollar	appreciation).		This	is	revealed	by	the	ability	to	use	more	contracts	either	side	
of	50	delta	when	fitting	the	PDF.	

	

The	 main	 difference	 between	 the	 densities	 produced	 by	 the	 parametric	 and	 non‐parametric	

approach	 is	 the	 smoothness	of	 the	density.	Those	produced	by	 the	 non‐parametric	 approach	will	
typically	be	less	classically	bell	curve	shaped	than	those	produced	by	the	parametric	approach.	This	

is	 a	natural	 consequence	of	not	 imposing	a	 shape	on	 the	volatility	 smile	and	 in	addition	ensuring	

that	 all	 observed	 volatilities	 are	 hit	 exactly	 by	 the	 assumed	 function	 for	 volatility.	While	 such	 an	
approach	may	 be	more	 accurate	 and	 the	 technique	 portable	 across	 asset	 classes	 it	may	 be	more	

sensitive	 to	 imperfections	 in	market	 pricing	 related	 to	 illiquid	 contracts,	 i.e.	 because	 all	 observed	

volatility	points	are	included	then	stale	or	illiquid	market	prices	may	have	undue	influence	on	the	
shape	of	the	smile.	
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7.	 Interpreting	densities	

Summary	statistics	
Having	obtained	a	risk‐neutral	density	the	final	piece	of	the	puzzle	 is	how	to	use	them.	Ultimately	

the	 derivation	 of	 option‐implied	 probability	 densities	 is	 to	 shed	 some	 light	 on	 the	 future	

expectations	of	currencies.	But	some	care	is	needed	in	interpreting	what	such	densities	are	telling	
us.	A	significant	amount	can	be	taken	from	the	main	summary	statistics	of	the	densities	produced.	

Each	day	on	its	website	the	Bank	of	England	publishes	data	on	the	summary	statistics	of	a	number	of	

densities	calculated	for	UK	equities	and	interest	rates19.	The	Bank	highlights	six	summary	statistics	
that	are	of	particular	use	in	interpreting	the	data	contained	within	the	implied	probability	density	

functions	(PDF)	which	are	similarly	relevant	to	the	densities	for	exchange	rates:	

 Mean:	the	first	moment	of	the	implied	PDF.	It	is	a	measure	of	central	tendency	or	‘centre	of	

gravity’	for	the	implied	PDF.	Given	the	risk‐neutral	nature	of	the	implied	PDF,	it	is	equal	to	
the	futures	price	of	the	underlying	asset.	

 Standard	deviation:	the	square	root	of	the	second	moment	of	the	implied	PDF.	It	provides	a	

measure	of	 the	dispersion	of	 the	 implied	PDF.	 It	 is	not	annualised	and	 is	expressed	 in	 the	
same	units	as	the	price	of	the	underlying	asset.	

 Median:	the	point	of	the	implied	distribution	that	has	50%	probability	above	and	below	it.	It	

is	 the	 50th	 percentile	 and	 shows	 the	 level	 of	 the	 underlying	 asset	 that	 has	 a	 cumulative	
probability	of	occurring	of	50%.	

 Skew:	 the	third	central	moment	of	the	implied	PDF	standardised	by	the	third	power	of	the	

standard	deviation.	It	provides	a	measure	of	asymmetry	for	the	distribution.	It	measures	the	

relative	 probabilities	 (weighted	 by	 cubic	 distances)	 above	 and	 below	 the	mean	 outcome,	
that	is,	the	futures	price.		

 Kurtosis:	 the	 fourth	 moment	 of	 the	 PDF	 divided	 by	 the	 fourth	 power	 of	 the	 standard	

deviation.	 It	 provides	 a	 measure	 of	 how	 peaked	 the	 distribution	 is	 or,	 equivalently,	 the	
concentration	of	probability	 in	 the	upper	and	 lower	 tails	of	 the	 implied	PDF.	A	 frequently	

used	benchmark	for	kurtosis	is	that	of	a	normal	distribution	which	has	a	kurtosis	of	3.	It	is	

location	invariant	and	unitless.	

 Xth	Percentile:	the	point	of	the	distribution	for	which	there	is	an	x	%	probability	for	future	

values	 of	 the	 underlying	 being	 at/below	 this	 point	 (i.e.	 the	 cumulative	 probability	 of	 this	

asset	price	occurring).		

By	 assessing	 these	 statistics	 we	 can	 infer	 a	 significant	 amount	 about	 market	 participants’	
expectations	of	future	asset	prices.	Obviously	such	interpretations	are	subject	to	caveats	regarding	

risk‐neutral	probabilities.	

Changes	in	densities	
In	 addition	 to	 analysing	 the	 information	 contained	 within	 individual	 densities,	 comparing	 the	
evolution	of	densities	across	dates	 relatively	 close	 together20	 can	help	 to	 see	how	expectations	of	

asset	 prices	 have	 changed.	 This	 technique	 can	 be	 used	 to	 analyse	 the	 impact	 of	 events	 or	 policy	

announcements.	 For	 example	 the	 significant	 impact	of	 the	Swiss	National	Bank’s	decision	both	 to	

																																																													
19	http://www.bankofengland.co.uk/statistics/Pages/impliedPDFs/default.aspx	
20	Assuming	that	the	densities	are	adjusted	to	reflect	a	constant	maturity	horizon,	which	is	true	in	the	case	of	the	
Bloomberg	currency	options.	
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impose	and	remove	a	floor	on	the	Swiss	franc	/	euro	exchange	rate	in	September	2011	and	January	
2015	 respectively	 can	 be	 clearly	 seen	 in	 expectations	 taken	 just	 before	 and	 just	 after	 the	 events	

(Table	5).	In	both	cases	both	the	location	and	shape	of	the	PDF	changes	dramatically	as	uncertainty	

is	removed	with	the	imposition	of	the	floor	and	increased	with	its	removal.		

Table	5.	3‐month	option‐implied	parametric	probability	densities	for	Swiss	franc/euro	exchange	rates.

Source:	Bloomberg	

Comparing	 densities	 over	 extended	 time	 periods	 is	 often	 more	 difficult,	 particularly	 if	 the	

underlying	 exchange	 rate	 is	 non‐stationary.	 In	 addition	 it	 is	 relatively	 difficult	 to	 compare	 PDFs	
across	 currencies	 as	 the	 shape	 and	 location	 of	 the	 densities	 is	 dependent	 on	 the	 values	 of	 the	

underlying	 exchange	 rate.	 A	 potential	way	 to	 get	 around	 this	 problem	 is	 to	 compare	 implied	 log	

returns	of	different	assets	implied	by	the	densities.21	Another	commonly	used	means	of	comparing	
assets	 is	 to	 compare	 at‐the‐money	 implied	 volatility	 which	 is	 often	 used	 to	 compare	 price	

uncertainty	across	different	assets.	

	 	

																																																													
21	Defined	as	the	logarithmic	difference	between	the	current	futures	price	and	the	spot	price	at	the	maturity	date	of	the	
contract.	
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Appendix	1	–	Deriving	the	Black‐Scholes	pricing	equation	

Baz	 and	 Chacko	 (2009)	 outline	 a	 probabilistic	 approach	 to	 deriving	 Black‐Scholes	 that	 explicitly	
uses	the	assumption	that	the	price	of	a	security	today	is	simply	the	expected	value	of	the	security	in	
the	future	discounted	by	the	risk‐free	interest	rate.		We	sketch	their	proof	here.	

Begin	by	noting	that	a	European	call	option	written	on	an	underlying	stock	S	which	does	not	pay	a	
dividend	and	has	expiry	at	time	T	and	strike	price	X	the	price	at	the	current	time	t	can	be	written	as:	

௧ܥ ൌ expሺെ߬ݎሻ ௧ܧ
ொሾmax	ሺ0, ்ܵ െ ܺሻሿ	

Where	τ	=	T	–	t	or	the	time	to	expiry	and	EtQ	is	the	risk‐neutral	expectations	taken	at	time	t.	This	can	
be	trivially	expressed	in	terms	of	log	prices	for	the	underlying	asset:	

௧ܥ ൌ expሺെ߬ݎሻ ௧ܧ
ொሾmax	ሺ0, expሺlogሺ்ܵሻሻሻ െ ܺሻሿ	

To	 put	 a	 value	 to	 this	 expectation	 we	 need	 some	 assumption	 about	 the	 future	 evolution	 of	 the	
underlying	 asset	 price.	 The	 most	 common	 one	 is	 that	 asset	 prices	 follow	 a	 geometric	 Brownian	
motion,	which	under	risk‐neutral	pricing	can	be	defined	as:	

݀ܵ௧
ܵ௧

ൌ ௧݀ݎ ൅ ߪ ௧ܹ
ொ		

where	 WtQ	 is	 a	 risk‐neutral	 Weiner	 process.	 	 Using	 Ito’s	 Lemma	 and	 assuming	 a	 log‐normal	
distribution	we	 are	 able	 to	 say	 that	 the	 conditional	 density	 of	 the	 underlying	 at	 expiry	 given	 the	
current	price	of	the	underlying	is	as	follows:	

log ்ܵ | log ܵ௧ 	~	ܰ ቈlog ܵ௧ ൅ ቆݎ െ
ଶߪ

2
ቇ ߬	, 	ଶ߬቉ߪ

Because	of	the	Brownian	motion	assumption	it	depends	on	the	initial	value	and	the	time	interval,	τ.		
Hence	we	express	the	conditional	expectation	of	the	future	asset	price	in	terms	of	an	integral	of	the	
conditional	density	of	that	asset	price:	

௧ܥ ൌ expሺെ߬ݎሻන ሾexp	ሺ்ܵሻ െ ܺሿ
1

߬ߨ2√ߪ
݁

ۏ
ێ
ێ
ۍ
െ
1
2
൮
log ்ܵ െ log ܵ௧ െ ൬ݎ െ

ଶߪ
2 ൰ ߬

߬√ߪ
൲

ଶ

ے
ۑ
ۑ
ې
݀ log ்ܵ

ஶ

୪୭୥௑
	

This	can	be	simplified	such	that	we	are	left	with	two	integrals	in	the	form	of	distribution	functions:	
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These	integrals	can	be	simplified	in	turn.	For	the	first	term	if	we	denote	Z	=	log(ST/St)	then	we	can	
rewrite	the	first	half	of	the	expression	as:	
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After	expanding	and	collecting	the	terms	in	the	exponential	we	can	further	write	the	term	as:	
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By	completing	the	square	in	the	numerator	of	the	exponential	by	adding	and	subtracting	2rσ2τ2	and	
then	rearranging	we	can	rewrite	as:	
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Making	a	second	transformation	such	that:	
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We	can	simplify	the	expression	such	that:	
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Here	the	integral	is	simply	the	standard	normal	evaluated	at	െ
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Hence	we	can	finally	write	the	first	integral	as:	
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where,	as	before,	Nሺxሻ	represents	the	standard	normal	distribution	evaluated	at	x	and	we	use	that	1	
‐N(x)	=	N(‐x).	

Using	similar	techniques	the	second	integral	can	be	rewritten	such	that:	

௧ܥ ൌ ܵ௧ܰ൮
log

ܵ௧
ܺ ൅ ൬ݎ ൅

ଶߪ
2 ൰ ߬

߬√ߪ
൲ െ ܺ݁ି௥ఛܰ൮

log
ܵ௧
ܺ ൅ ൬ݎ െ

ଶߪ
2 ൰ ߬

߬√ߪ
൲	

which	is	the	familiar	Black‐Scholes	equation	for	the	price	of	a	European	call	option.	
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Appendix	2	–	Bloomberg	currency	options	

Currency	options	data	are	available	on	Bloomberg	for	a	wide	array	of	currency	pairs	and	constant	

maturities.		Bloomberg	provides	the	three	contracts	required	to	implement	both	the	parametric	and	

non‐parametric	 approaches	 proposed	 by	 Malz:	 strangles,	 straddles	 and	 risk	 reversals.	 	 Some	
confusion	can	arise	as	the	contracts	on	Bloomberg	are	referred	to	by	different	names	to	those	in	the	

original	 Malz	 paper.	 	 For	 the	 straddle	 the	 value	 we	 require	 is	 simply	 the	 at‐the‐money	 implied	

volatility.	 	 The	 risk	 reversal	 is	 still	 called	 that,	 however,	 the	 equivalent	 contract	 for	 strangles	 is	
referred	to	as	a	butterfly.		

The	 naming	 convention	 is	 consistent	 across	 currency	 pairs	 with	 the	 first	 six	 letters	 of	 the	 code	

referring	to	the	relevant	currency	pair	(i.e.	UK	sterling	to	US	dollar	is	GBPUSD).	The	following	letters	
refer	to	the	form	of	contract	and	the	delta	at	which	it	is	priced.	For	the	at‐the‐money	volatility	a	V	is	

required,	for	butterflies	B	and	risk	reversals	R.		For	the	butterfly	and	risk	reversal	a	value	for	delta	is	

also	required.	 	For	most	currency	pairs	10,	25	and	35	delta	contracts	are	available.	 	The	final	 two	
letters	 of	 the	 mnemonic	 refer	 to	 the	 maturity	 where	 a	 wide	 range	 of	 constant	 maturities	 are	

available	 (i.e.	 three‐month	 would	 be	 3M).	 	 Therefore	 is	 one	 was	 looking	 to	 implement	 the	

parametric	 approach	 to	 ascertain	 a	probability	density	 function	 for	 the	one‐month	Swiss	 franc	 to	
euro	exchange	rate	then	the	following	codes	would	be	required:	

Straddle	‐	CHFEURV1M	Currency.	

Strangle	–	CHFEUR25B1M	Currency.	

Risk	Reversal	–	CHFEUR25R1M	Currency.	

For	the	non‐parametric	approach	additional	risk	reversals	and	strangles	(butterflies)	can	be	used.		

The	10	and	35	delta	butterfly	and	risk	reversal	contracts	can	be	found	using	the	following	codes:	

Strangles	–	CHFEUR10B1M	Currency	and	CHFEUR35B1M	Currency.	

Risk	Reversals	–	CHFEUR10R1M	Currency	and	CHFEUR35R1M	Currency.	
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Appendix	3	–	Natural	and	clamped	splines	

The	 implementation	 of	 the	 non‐parametric	 approach	 to	 deriving	 option‐implied	 probability	

densities	requires	us	to	interpolate	between	observed	values	for	the	volatility	smile.	 	For	this	task	

Malz	uses	 a	 variation	of	 a	 standard	 cubic	 spline	known	as	 a	 clamped	 spline.	 	 The	 clamped	 spline	
makes	specific	assumptions	about	the	behaviour	of	the	curve	following	the	first	and	last	knot	points	

such	that	the	curve	becomes	constant	at	chosen	values.	

A	detailed	explanation	of	the	derivation	of	cubic	spline	coefficients	can	be	found	in	Klugman	et	al.	
(2008).		Briefly,	a	standard	cubic	spline	is	made	up	of	a	sequence	of	cubic	functions	defined	over	the	

intervals	 between	 the	observed	points.	 	 Such	 functions	 are	 subject	 to	 a	 series	 of	 restrictions	 that	

ensure	they	behave	as	desired	on	the	interpolating	interval	xj	to	xj+1.	

Cubic	splines	are	defined	by	the	following	five	properties:	

ŷ௝ ൌ ௝ܽ ൅ ௝ܾ൫ݔ െ ௝൯ݔ ൅ ௝ܿ൫ݔ െ ௝൯ݔ
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 The	first	property	defines	the	cubic	function	piecewise	between	the	observed	data	points.		

 The	second	ensures	that	at	the	observed	data	point	the	interpolated	value	is	the	same,	ensuring	
that	we	hit	all	of	the	data	points.	

 The	third	ensures	that	the	value	at	the	end	of	an	interval	is	identical	to	the	start	of	the	next	one,	

and	hence	the	interpolated	line	is	continuous.		

 The	 fourth	 and	 fifth	 ensure	 continuity	 of	 the	 first	 and	 second	 derivatives	 respectively	 at	 the	
points	where	the	functions	meet	to	ensure	a	smooth	curve.	

Therefore	to	produce	the	required	spline	we	need	to	estimate	values	for	a,	b,	c	and	d	across	the	n	

intervals	 between	 observed	n+1	 data	 points,	 so	 in	 total	4n	 coefficients	 are	 required.	 	 Property	 2	
provides	 n+1	 conditions	 that	 must	 hold	 (the	 number	 of	 data	 points)	 while	 properties	 3–5	 each	

provide	n‐1	conditions	(the	number	of	intervals	minus	one	because	they	are	conditions	that	hold	at	

both	 ends	 of	 an	 interval).	 Hence	 we	 have	 n+1+3(n‐1)	 =	 4n‐2	 conditions	 for	 the	 4n	 coefficients	
required.	 	 Two	 additional	 conditions	 are	 required	 to	 uniquely	 determine	 the	 values	 of	 the	

coefficients:	typically	these	two	conditions	are	used	to	determine	the	shape	at	the	end‐point	of	the	

interpolation.	 	 Choice	 of	 the	 end‐points	 gives	 rise	 to	 different	 types	 of	 spline,	 which	 we	 discuss	
below.	

If	we	let	mj	=	fj’’(xj)	and	number	the	observations	from	0	to	n	we	can	write	in	matrix	form:	

Hm	ൌ	u	
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where	

	

	

	

	

	

and	

	

	

If	we	make	some	assumptions	regarding	the	values	of	m0	and	mn	we	know	all	of	the	values	in	H	and	
u	we	can	solve	for	m	from:	

݉ ൌ 	ݑଵିܪ

We	can	subsequently	solve	for	a,	b,	c	and	d	using	the	following:	

ܽ௜ ൌ 	௜ݕ

ܾ௜ ൌ
Δݕ௜
Δݔ௜

െ
Δݔ௜
6
ሺ2݉௜ିଵ ൅ ݉௜ሻ	

ܿ௜ ൌ
݉௜

2
	

݀௜ ൌ
݉௜ െ ݉௜ିଵ

6Δݔ௜
	

The	most	common	form	of	spline	is	the	so	called	natural	spline,	where	the	second	derivatives	at	the	

end	 points	 are	 set	 to	 zero,	 hence	m0	 =	mn	 =	 0.	 	 For	 the	 clamped	 spline	 we	 instead	 fix	 the	 first	

derivative	of	the	end	points	to	some	fixed	value	(in	our	case	this	is	zero	so	that	the	slope	of	the	curve	
is	flat	at	the	end	points,	though	it	could	be	anything).		By	setting	f’j(xj)	=	f’j+1(xj+1)	=	0	this	implies:	

݉଴ ൌ 3
Δݕଵ
Δݔଵ

ଶ െ
݉ଵ

2
	

݉௡ ൌ െ3
Δݕ௡
Δݔ௡ଶ

െ
݉௡ିଵ
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With	the	imposition	of	these	restrictions	there	are	slight	alterations	to	H	and	u,	now:	
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and	

	

	

	

We	can	write	simple	code	in	Matlab	to	create	both	natural	and	clamped	splines.		This	is	most	easily	

done	as	a	function	we	can	call	upon	when	we	wish	to	calculate	the	coefficients.			

	

Application	–	Interpolating	using	cubic	splines	in	MATLAB	

We	now	give	some	code	to	 implement	 the	spline	methods	and	then	use	 them	to	 interpolate	some	
representative	data.	

 
 
% Code to calculate natural and clamped cubic splines. 
% We write the function with three arguments, our X and Y values and  
% a binary value for whether we want natural or clamped 
function [a, b, c, d] = cubic_spline(x,y,nc) 
 
% set nc = 0 for clamped at zero 
%        = anything else for natural    
 
% Define differences 
dy = y(2:end)-y(1:end-1); 
h  = x(2:end)-x(1:end-1); 
 
% Cubic spline: Natural and clamped use H and u 
H = diag(2*(h(1:end-1)+h(2:end)))+diag(h(2:end-1),1)+diag(h(2:end-1),-1); 
r = 6./h; 
z = zeros(length(r)-1,1); 
R = [diag(r(1:end-1)) z z] + [z -diag(r(1:end-1)+r(2:end)) z] + [z z 
diag(r(2:end))]; 
u = R*y; 
 
if nc == 0 % Clamped flat (zero 1st deriv at boundary) 
   H(1,1)     = 1.5*h(1)   + 2*h(2); 
   H(end,end) = 1.5*h(end) + 2*h(end-1); 
   u(1)       = u(1)   - 3*dy(1)/h(1); 
   u(end)     = u(end) + 3*dy(end)/h(end); 
   mc         = H\u; 
   m          = [3*dy(1)/(h(1)^2)-mc(1)/2;  
                 mc; 
                 -3*dy(end)/(h(end)^2)-mc(end)/2]; 
else % Natural spline (zero 2nd deriv at boundary) 
   m          = [0; H\u; 0]; 
end 
  
% To make calculation easier shift m by 1. 
me = m(2:end); 
m1 = m(1:end-1); 
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Application	–	Interpolating	using	cubic	splines	in	MATLAB 
 

We	now	give	some	code	to	implement	the	spline	methods	and	then	use	them	to	interpolate	some	
representative	data.  
 
 
% Code to calculate natural and clamped cubic splines. 
% We write the function with three arguments, our X and Y values and  
% a binary value for whether we want natural or clamped 
function [a, b, c, d] = cubic_spline(x,y,nc) 
 
% set nc = 0 for clamped at zero 
%        = anything else for natural    
 
% Define differences 
dy = y(2:end)-y(1:end-1); 
h  = x(2:end)-x(1:end-1); 
 
% Cubic spline: Natural and clamped use H and u 
H = diag(2*(h(1:end-1)+h(2:end)))+diag(h(2:end-1),1)+diag(h(2:end-1),-1); 
r = 6./h; 
z = zeros(length(r)-1,1); 
R = [diag(r(1:end-1)) z z] + [z -diag(r(1:end-1)+r(2:end)) z] + [z z 
diag(r(2:end))]; 
u = R*y; 
 
if nc == 0 % Clamped flat (zero 1st deriv at boundary) 
   H(1,1)     = 1.5*h(1)   + 2*h(2); 
   H(end,end) = 1.5*h(end) + 2*h(end-1); 
   u(1)       = u(1)   - 3*dy(1)/h(1); 
   u(end)     = u(end) + 3*dy(end)/h(end); 
   mc         = H\u; 
   m          = [3*dy(1)/(h(1)^2)-mc(1)/2;  
                 mc; 
                 -3*dy(end)/(h(end)^2)-mc(end)/2]; 
else % Natural spline (zero 2nd deriv at boundary) 
   m          = [0; H\u; 0]; 
end 
  
% To make calculation easier shift m by 1. 
me = m(2:end); 
m1 = m(1:end-1);  
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% Calculate coefficients 
a = y(1:end-1); 
b = dy./h - h.*(2*m1 + me)/6; 
c = m1/2; 
d = (me-m1)./(6*h); 

 
	

The	above	code	permits	us	to	calculate	the	coefficients.		We	now	need	code	to	evaluate	the	splines	
using	these	coefficients:	

 
% Function for evaluating cubic spline using coefficient calculated  
% using cubic_spline function. Function needs following entries, range  
% over which spline plotted, a,b,c,d the calculated coefficient, and x and 
% y data. 
 
function f_interp = cubic_spline_eval(xaxis,a,b,c,d,x,y) 
 
j = 0; 
f_interp = zeros(max(size(xaxis)),1); 
for xi = xaxis  %  
   j = j+1; 
   seg = sum(xi>=x);  
   if seg > length(a) 
      if c(1) == 0  
          seg = length(a); 
      else 
          f_interp(j) = y(end); 
          continue 
      end 
   elseif seg < 1 
      if c(1) == 0  % 2nd deriv at start = 0 
         seg = 1; 
      else 
         f_interp(j) = y(1); 
         continue 
      end 
   end 
   f_interp(j) = a(seg) + b(seg)*(xi-x(seg)) + c(seg)*(xi-x(seg))^2 + 
d(seg)*(xi-x(seg))^3; 
end 
	

To	illustrate	assume	we	have	the	following	pairs	of	data	points:	

X = [-0.23; -0.1; -0.05; -0.025; 0.001; 0.02;  0.05;  0.11; 0.22]; 

Y = [   24;   21; 18.75;  17.25; 15.75;   15; 14.25; 12.95; 12.5]; 

We	can	use	the	above	codes	to	compute	both	natural	and	clamped	cubic	splines,	which	we	do	in	the	
graph.It	is	immediately	obvious	that	the	natural	and	clamped	splines	imply	very	different	behaviour	
past	the	ends	of	the	available	sample.			Malz	(2014)	discusses	in	detail	why	the	clamped	spline	is	to		

 
% Calculate coefficients 
a = y(1:end-1); 
b = dy./h - h.*(2*m1 + me)/6; 
c = m1/2; 
d = (me-m1)./(6*h); 

 
 

 
The	above	code	permits	us	to	calculate	the	coefficients.		We	now	need	code	to	evaluate	the	splines	
using	these	coefficients:  
 
 
% Function for evaluating cubic spline using coefficient calculated  
% using cubic_spline function. Function needs following entries, range  
% over which spline plotted, a,b,c,d the calculated coefficient, and x and 
% y data. 
 
function f_interp = cubic_spline_eval(xaxis,a,b,c,d,x,y) 
 
j = 0; 
f_interp = zeros(max(size(xaxis)),1); 
for xi = xaxis  %  
   j = j+1; 
   seg = sum(xi>=x);  
   if seg > length(a) 
      if c(1) == 0  
          seg = length(a); 
      else 
          f_interp(j) = y(end); 
          continue 
      end 
   elseif seg < 1 
      if c(1) == 0  % 2nd deriv at start = 0 
         seg = 1; 
      else 
         f_interp(j) = y(1); 
         continue 
      end 
   end 
   f_interp(j) = a(seg) + b(seg)*(xi-x(seg)) + c(seg)*(xi-x(seg))^2 + 
d(seg)*(xi-x(seg))^3; 
end 
 

 
To	illustrate	assume	we	have	the	following	pairs	of	data	points:  
 
X = [-0.23; -0.1; -0.05; -0.025; 0.001; 0.02;  0.05;  0.11; 0.22];  
 
Y = [   24;   21; 18.75;  17.25; 15.75;   15; 14.25; 12.95; 12.5];  
 
We	can	use	the	above	codes	to	compute	both	natural	and	clamped	cubic	splines,	which	we	do	in	the	
graph.  
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be	preferred.		The	additional	code	needed	to	draw	the	precise	graph	shown	is	left	as	an	exercise	for	
the	interested	reader.	

  

	
It	is	immediately	obvious	that	the	natural	and	clamped	splines	imply	very	different	behaviour	past	
the	ends	of	the	available	sample.			Malz	(2014)	discusses	in	detail	why	the	clamped	spline	is	to	be	
preferred.		The	additional	code	needed	to	draw	the	precise	graph	shown	is	left	as	an	exercise	for	the	
interested	reader. 
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