
Centre for Central Banking Studies
Modelling credit risk

Somnath Chatterjee



 

CCBS Handbook No. 34 

Modelling credit risk 
Somnath Chatterjee 

Somnath.Chatterjee@bankofengland.co.uk  
 

Financial institutions have developed sophisticated techniques to quantify and manage credit risk across different 
product lines. From a regulator’s perspective a clear understanding of the techniques commonly used would 
enhance supervisory oversight of financial institutions. The initial interest in credit risk models originated from the 
need to quantify the amount of economic capital necessary to support a bank’s exposures. This Handbook discusses 
the Vasicek loan portfolio value model that is used by firms in their own stress testing and is the basis of the Basel II 
risk weight formula. 

The role of a credit risk model is to take as input the conditions of the general economy and those of the specific 
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Modelling credit risk 
Introduction 

Credit is money provided by a creditor to a borrower (also referred to as an obligor as he or she has an obligation). 

Credit risk refers to the risk that a contracted payment will not be made. Markets are assumed to put a price on this 

risk. This is then included in the market’s purchase price for the contracted payment. The part of the price that is 

due to credit risk is the credit spread. The role of a typical credit risk model is to take as input the conditions of the 

general economy and those of the specific firm in question, and generate as output a credit spread. 

The motivation to develop credit risk models stemmed from the need to develop quantitative estimates of the 

amount of economic capital needed to support a bank’s risk taking activities. Minimum capital requirements have 

been coordinated internationally since the Basel Accord of 1998. Under Basel 1, a bank’s assets were allotted via a 

simple rule of thumb to one of four broad risk categories, each with a ‘risk weighting’ that ranged from 0%-100%. 

A portfolio of corporate loans, for instance, received a risk weight of 100%, while retail mortgages – perceived to be 

safer – received a more favourable risk weighting of 50%. Minimum capital was then set in proportion to the 

weighted sum of these assets. 

minimum capital requirement = 8% x ∑݇ݏ݅ݎ	݀݁ݐ݄݃݅݁ݓ	ݏݐ݁ݏݏܽ 

Over time, this approach was criticised for being insufficiently granular to capture the cross sectional distribution of 

risk. All mortgage loans, for instance, received the same capital requirement without regard to the underlying risk 

profile of the borrower (such as the loan to value or debt to income ratio). This led to concerns that the framework 

incentivised ‘risk shifting’. To the extent that risk was not being properly priced, it was argued that banks had an 

incentive to retain only the highest risk exposures on their balance sheets as these were also likely to offer the 

highest expected return. 

In response, Basel II had a much more granular approach to risk weighting. Under Basel II, the credit risk 

management techniques under can be classified under: 

 Standardised approach: this involves a simple categorisation of obligors, without considering their actual 

credit risks. It includes reliance on external credit ratings. 

 Internal ratings-based (IRB) approach: here banks are allowed to use their ‘internal models’ to calculate 

the regulatory capital requirement for credit risk. 

These frameworks are designed to arrive at the risk-weighted assets (RWA), the denominator of four key 

capitalisation ratios (Total capital, Tier 1, Core Tier 1, Common Equity Tier 1). Under Basel II, banks following the IRB 

approach may compute capital requirements based on a formula approximating the Vasicek model of portfolio 

credit risk.  The Vasicek framework is described in the following section. 
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Under Basel III the minimum capital requirement was not changed, but stricter rules were introduced to ensure 

capital was of sufficient quality. There is now a 4.5% minimum CET1 requirement. It also increased levels of capital 

by introducing usable capital buffers rather than capital minima. See BCBS (2010). Basel III cleaned up the 

definition of capital, i.e., the numerator of the capital ratio. But it did not seek to materially alter the Basel II risk-

based framework for measuring risk-weighted assets, i.e., the denominator of the capital ratio; therefore, the 

architecture of the risk weighted capital regime was left largely unchanged. Basel III seeks to improve the 

standardised approach for credit risk in a number of ways. This includes strengthening the link between the 

standardised approach the internal ratings-based (IRB) approach. 

 1. Economic capital allocation 

When estimating the amount of economic capital needed to support their credit risk activities, banks employ an 

analytical framework that relates the overall required economic capital for credit risk to their portfolio’s probability 

density function (PDF) of credit losses, also known as loss distribution of a credit portfolio. Figure 1 shows this 

relationship. Although the various modelling approaches would differ, all of them would consider estimating such a 

PDF. 

Figure 1   Loss distribution of a credit portfolio 

 

Probability density function of credit losses 

Mechanisms for allocating economic capital against credit risk typically assume that the shape of the PDF can be 

approximated by distributions that could be parameterised by the mean and standard deviation of portfolio losses. 

Figure 1 shows that credit risk has two components. First, the expected loss (EL) is the amount of credit loss the 

bank would expect to experience on its credit portfolio over the chosen time horizon. This could be viewed as the 

normal cost of doing business covered by provisioning and pricing policies. Second, banks express the risk of the 

portfolio with a measure of unexpected loss (UL). Capital is held to offset UL and within the IRB methodology, the 

regulatory capital charge depends only on UL. The standard deviation, which shows the average deviation of 

expected losses, is a commonly used measure of unexpected loss. The area under the curve in Figure 1 is equal to 

100%. The curve shows that small losses around or slightly below the EL occur more frequently than large losses. 
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The likelihood that losses will exceed the sum of EL and UL – that is, the likelihood that the bank will not be able to 

meet its credit obligations by profits and capital – equals the shaded area on the RHS of the curve and depicted as 

stress loss. 100% minus this likelihood is called the Value-at- Risk (VaR) at this confidence level. If capital is set 

according to the gap between the EL and VaR, and if EL is covered by provisions or revenues, then the likelihood 

that the bank will remain solvent over a one-year horizon is equal to the confidence level. Under Basel II, capital is 

set to maintain a supervisory fixed confidence level. The confidence level is fixed at 99.9% i.e. an institution is 

expected to suffer losses that exceed its capital once in a 1000 years. Lessons learned from the 2007-2009 global 

financial crisis, would suggest that stress loss is the potential unexpected loss against which it is judged to be too 

expensive to hold capital. Regulators have particular concerns about the tail of the loss distribution and about 

where banks would set the boundary for unexpected loss and stress loss. For further discussion on loss distributions 

under stress scenarios see Haldane et al (2007). 

A bank has to take a decision on the time horizon over which it assesses credit risk. In the Basel context there is a 

one-year time horizon across all asset classes. The expected loss of a portfolio is assumed to be equal to the 

proportion of obligors that might default within a given time frame, multiplied by the outstanding exposure at 

default, and once more by the loss given default, which represents the proportion of the exposure that will not be 

recovered after default. Under the Basel II IRB framework the probability of default (PD) per rating grade is the 

average percentage of obligors that will default over a one-year period. Exposure at default (EAD) gives an estimate 

of the amount outstanding if the borrower defaults. Loss given default (LGD) represents the proportion of the 

exposure (EAD) that will not be recovered after default. Assuming a uniform value of LGD for a given portfolio, EL 

can be calculated as the sum of individual ELs in the portfolio (Equation 1.1) 

Equation 1.1    ܮܧ	 ൌ ∑ ௜ܦܣܧ௜ܦܩܮ௜ܦܲ
ே
௜ୀଵ   

Unlike EL, total UL is not an aggregate of individual ULs but rather depends on loss correlations between all loans in 

the portfolio. The deviation of losses from the EL is usually measured by the standard deviation of the loss variable 

(Equation 1.2). The UL, or the portfolio’s standard deviation of credit losses can be decomposed into the 

contribution from each of the individual credit facilities: 

Equation 1.2  ܷܮ ൌ ∑ ௜ߩ௜ߪ
ே
௜ୀଵ   

where ߪ௜ denotes the stand-alone standard deviation of credit losses for the ith facility, and ߩ௜ denotes the 

correlation between credit losses on the ith facility and those on the overall portfolio. The parameter ߩ௜ captures the 

ith facility’s correlation/diversification effects with other instruments in the bank’s credit portfolio. Other things 

being equal, higher correlations among credit instruments – represented by higher ߩ௜ – lead to a higher standard 

deviation of credit losses for the portfolio as a whole. 

Basel II has specified the asset correlation values for different asset classes (BCBS 2006). But the theoretical basis 

for calculating UL under the Basel II IRB framework stems from the Vasicek (2002) loan portfolio value model. See 

BCBS (2005) for further explanation of the Basel II IRB formulae. A problem with the IRB approach is that it implies 

excessive reliance on banks’ own internal models in calculating capital requirements as the standardised approach 
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did not provide a credible alternative method for capturing risks in banks’ trading portfolios. However, banks’ 

internal models have been found to produce widely differing risk weights for common portfolios of banking assets. 

Part of the difficulty in assessing banks’ RWA calculations is distinguishing between differences that arise from 

portfolio risk and asset quality and those that arise from differences in models. To identify differences between 

banks’ internal models, regulators have undertaken a number of exercises in which banks applied internal models to 

estimate key risk parameters for a hypothetical portfolio assets. This ensured that differences in calculated risk 

weights are down to differences in banks’ modelling approaches, rather than differences in the risk of portfolios 

being assessed. The following section discusses the Vasicek (2002) methodology to calculate the joint loss 

distribution for a portfolio of bank exposures.  

Calculating joint loss distribution using the Vasicek model 

The Vasicek (2002) model assumes that the asset value of a given obligor is given by the combined effect of a 

systematic and an idiosyncratic factor. It assumes an equi-correlated, Gaussian default structure. That is, each 

obligor i defaults if a certain random variable ௜ܺ falls below a threshold, and these ௜ܺݏ are all normal and equi-

correlated. The asset value of the i-th obligor at time t is therefore given by: 

Equation 1.3  ௜ܺ௧ ൌ ܵ௧ඥߩ ൅ ܼ௜௧ඥ1 െ    ߩ

Where S and Z are respectively the systematic and the idiosyncratic component and it can be proved that ߩ is the 

asset correlation between two different obligors. See Box 1 for further details on the Vasicek loan portfolio model. 

Here ܺ, ܼ௜, ܼଶ, … , ܼ௡ are mutually independent standard normal variables. The Vasicek model uses three inputs to 

calculate the probability of default (PD) of an asset class. One input is the through-the-cycle PD (TTC_PD) specific 

for that class. Further inputs are a portfolio common factor, such as an economic index over the interval (0,T) given 

by S. The third input is the asset correlation. ߩ. Then the term ܵ௧ඥߩ  is the company’s exposure to the systematic 

factor and the term ܼ௜௧ඥሺ1 െ   .ሻ represents the company’s idiosyncratic riskߩ

A simple threshold condition determines whether the obligor i defaults or not. 

default iff ௜ܺ ൏ ܿ 

where ܿ will be shown to be a function of TTC_PD. 

 

௜ܣ݀ ൌ ݐ௜݀ܣ௜ߤ ൅  ௜݀ई௜ܣ௜ߪ

Box 1   The Vasicek loan portfolio value model 

Vasicek applied to firms’ asset values what had become the standard geometric Brownian motion model. Expressed as 
a stochastic differential equation, 

Where ܣ௜ is the value of the ݅ th firm’s assets, ߤ௜ and ߪ௜ are the drift rate and volatility of that value, and ई௜ is a 
Wiener process or Brownian motion, i.e. a random walk in continuous time in which the change over any finite time 
period is normally distributed with mean zero and variance equal to the length of the period, and changes in separate 
time periods are independent of each other. Solving this stochastic differential equation one obtains the value of the ݅ 
th firm’s assets at time T as: 
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The Vasicek model can be interpreted in the context of a trigger mechanism that is useful for modelling credit risk. 

A simple threshold condition determines whether the obligor ݅  defaults or not. 

Integrating over S in equation 1.3 we denote the unconditional probability of default by ݌∗ (this is the TTC_PD): 

Prሺ ௜ܺ ൏ ܿሻ ൌ ܰିଵሺܿሻ ൌ  ∗݌

The probability of default conditional on ܵ௧  can be written as:  

௥ܲሺ ௜ܺ ൏ ܿ|ܵሻ ൌ ௥ܲ൫ܵඥߩ ൅ ܼ௜ඥ1 െ ߩ ൏ ܿหܵ൯ ൌ ௥ܲ ቆܼ௜ ൏
ܿ െ ܵඥߩ

ඥ1 െ ߩ
|ܵቇ 

It follows that the probability of default conditional on S is equal to: 

Equation 1.4  ௥ܲሺ ௜ܺ ൏ ܿ|ܵሻ ൌ N൬
௖ିௌඥఘ

ඥଵିఘ
൰ ൌ N൬

୒షభሺఘ∗ሻିௌඥఘ

ඥଵିఘ
൰  

௜ܺ ൌ ܵඥߩ ൅ ܼ௜ඥ1 െ  ߩ

ܲሾܣ௜ሺܶሻ ൏ ௜ሿܤ ൌ ܲሾ ௜ܺ ൏ ܿ௜ሿ 

ൌ ܲሾ ௜ܺ ൏ ܰିଵሺ݌∗ሻሿ 

ൌ ܲൣሺܵඥߩ ൅ ܼ௜ඥ1 െ ሻߩ ൏ ܰିଵሺ݌∗ሻ൧ 

ܲሾ݌ሺܵሻ ൑ ईሿ ൌ ܲሾܵ ൒  ଵሺईሻሿି݌

௜ሺܶሻܣ     (1) ൌ ݁஺ሺ଴ሻାఓ೔்ି
భ
మ
ఙ೔
మ்ାఙ೔√்௑೔          

The ݅ th firm defaults if ܣ௜ሺܶሻ ൏  so the probability of such an event is ,ܤ

(2)     ܲሾܣ௜ሺܶሻ ൏ ௜ሿܤ ൌ ܲሾ ௜ܺ ൏ ܿ௜ሿ ൌ ܰሺܿ௜ሻ ൌ         ∗݌

where ܿ௜ is easily derived from equation (1) and N is the cumulative normal pdf. That is, default of a single obligor 
happens if the value of a normal random variable happens to fall below a certain ܿ௜. 

Correlation between defaults is introduced by assuming correlation in the ܣ௜ processes, and thus in the terminal 
values, ܣ௜ሺܶሻ. In particular, it is assumed that the ௜ܺݏ in equation (1) are pair-wise correlated according to factor ߩ. 

Being normal and equi-correlated, each random variable ௜ܺ can then be represented as the sum of two other random 
variables: one common across firms, and the other idiosyncratic: 

with ~ܰሺ0,1ሻ, ܼ௜~ܰሺ0,1ሻ. Hence the probability of default of obligor ݅ can also be written as 

(3)     ൌ ܲ ൤ܼ௜ ൏
௖೔ିௌඥఘ

ඥଵିఘ
൨ ൌ ܰ ൬

ேషభሺ௣∗ሻିௌඥఘ

ඥଵିఘ
൰      

…in equation (2) is the through-the-cycle average loss. ܲሾ ∗݌ ሿ in equation (3) is the loss subject to credit conditions S. 
The proportion of loans in the portfolio that suffer default is given by the following pdf: 

(4)     ൌ ܰ൫െି݌ଵሺईሻ൯ ൌ ܰ ൬ඥ
ଵିఘேషభሺईሻିேషభሺ௣ሻ

ඥఘ
൰ 
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The distribution function of the proportion of losses that suffer default is given by two parameters, default 

probability, p and asset correlation, ߩ(rho). Figure 2 shows the portfolio loss distribution with default probability (p 

= 0.02 or 2%) and asset correlation (ߩ ൌ 0.1 or 10%). This is the unconditional probability of default. 

Figure 2   Unconditional loss distribution 

 

In the Vasicek framework, two processes drive the cyclical level of a portfolio loss rate: the stochastic common 

factor S and asset correlations ߩ. What follows is an economic interpretation of both these processes beginning 

with the common factor S. 

Given a macroeconomic scenario, an S can be computed, which can then be used in the Vasicek framework to 

calculate the loss rate conditional to that specific scenario. The common component S may be viewed as 

representing aggregate macro-financial conditions which can be extracted from observable economic data. 

Aggregate credit risk depends on the stochastic common factor S, because when we face good economic times the 

expected loss rate tends to below the long-term average, while during bad times the expected loss rate is expected 

to be above the long-term average. In this framework, S is unobservable. Despite their latent nature, many macro-

economic and financial variables regularly collected contain relevant information on the state of economic and 

financial conditions. If we can extract from each of these observables the common part of information, which 

represent the state of aggregate conditions, then we can use this measure as the factor S in the Vasicek framework 

and compute the conditional loss rate. It is through the estimated S that a specific macro-economic scenario is 

taken into account in the default rate calculation. Therefore, S may be viewed as the macro-to-micro default part 

of the framework whereby macroeconomic and credit conditions are translated into applicable default rates. The 

Kalman filter algorithm can be used to compute S. The main advantage of this technique is that it allows the state 

variables to be unobserved magnitudes.  
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Figure 3   Expected loss conditional on the common state factor 

 

Figure 3 shows the expected loss conditional on the common factor, S where the latter has been estimated using 

the Kalman filter. It can be seen from Figure 3 that S shows strong persistence. Thus bad realisations of S tend to be 

followed by bad realisations of S and vice versa. S is a standard normal variable with a mean of 0 and a standard 

deviation of 1. In normal times one would not expect to observe large negative magnitudes for S. But under stress S 

would dip more significantly into negative territory. 

The Appendix at the end of this Handbook demonstrates how S can be estimated empirically using the Kalman 

filter algorithm. A detailed explanation of the Kalman filter can be found in Harvey (1989) and Durbin and 

Koopman (2012).  

Asset correlations ρ (rho) are a way to measure the likelihood of the joint default of two obligors belonging to the 

same portfolio and, therefore, they are important drivers of credit risk. The role of correlations in the Vasicek 

framework needs to be clarified. A portfolio with high correlations produces greater default oscillations over the 

cycle S, compared with a portfolio with lower correlations. Correlations do not affect the timing of the default; 

higher correlations do not imply that defaults earlier or later than other portfolios. Thus, during good times a 

portfolio with high correlations will produce fewer defaults than a portfolio with low correlations. While in bad 

times the opposite is true, high correlations are creating more defaults. 

Some benchmark values of ρ (rho) are available from the regulatory regimes. The Basel II IRB risk-weighted 

formulae, which are based on the Vasicek model, prescribes, for corporate exposures, correlations between 12% 

and 24%, where the actual number is computed as a probability of default weighted average. 
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Following the Vasicek framework, two borrowers are correlated because they are both linked to the common factor 

S. Clearly this is a simplification of the true correlation structure. However, it allows the Vasicek framework to 

provide a straightforward calculation of the default risk of a portfolio. 

The Vasicek model and portfolio invariance 

Banks estimate the input parameters for the Vasicek model via their internal models.  In order to make IRB 

applicable across jurisdictions, the BCBS determined that an approach with ‘risk weights’ would be used to 

determine capital requirements. The risk weights would be valid if a given asset will take the same risk weight 

regardless of the portfolio it is added to. This property is called portfolio invariance.  

In theory, portfolio-invariant risk weights can be used to limit the probability that losses exceed total capital 

provided two assumptions are met. First, portfolios must be ‘asymptotically fine-grained,’ which means that each 

loan must be of negligible size. Second, one must make an ‘asymptotic single risk factor’ (ASRF) assumption. The 

ASRF assumption means that, while every loan is exposed to idiosyncratic risk, there is only one source of common 

shocks. See Gordy (2003). One can think of the ASRF as representing aggregate macro-financial conditions, S, as 

described above. Each loan may have different correlation with the ASRF, but correlations between loans are driven 

by their link to that single factor, S. Violation of either of these assumptions would result in an incorrect 

assessment of portfolio credit risk.  

The ‘asymptotically fine-grained’ assumption treats the portfolio as being made up of an infinite number of 

negligible exposures. In practice, however, real portfolios are usually lumpy. Lumpiness effectively decreases the 

diversification of the portfolio, thereby increasing the variance of the loss distribution.  So to keep the same 

portfolio of containing losses, more capital is needed for a lumpy portfolio than for an asymptotically fine-grained 

one. ASRF implies that institution-specific diversification effects are not taken into account when calculating RWA. 

Instead, the RWA are calibrated to an ‘ideal’ bank which is well-diversified and international.  

The specific values used in the IRB formulas are asset-class dependent, since different borrowers and/or asset 

classes show different degrees of dependence on aggregate macro-financial conditions. For the IRB approach, banks 

must categorise banking-book exposures into five general asset classes: (a) corporate, (b) sovereign, (c) bank, (d) 

retail and (e) equity. Within the IRB methodology, the regulatory capital charge depends only on the UL – minimum 

capital levels must be calculated that will be sufficient to cover portfolio unexpected loss (UL). 

For corporate, sovereign and bank exposures, the unexpected loss is defines as: 

UL = (Total Loss – EL) x Maturity Adjustment 

ܭ ൌ ܮܷ ൌ ቈܦܩܮ.ܰ ቈ
ඥିܰߩଵሺ0.999ሻ ൅ ܰିଵሺܲܦሻ

ඥ1 െ ߩ
቉ െ .ܦܲ ቉ܦܩܮ ൈ

1 ൅ ሺܯ െ 2.5ሻ ൈ ܾ
1 െ 1.5 ൈ ܾ

 

where N and ܰିଵ represent the normal and inversed distribution function respectively 
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Asset correlation ߩ ൌ 0.12 ൈ
ଵି௘షఱబൈುವ

ଵି௘షఱబ
൅ 0.24 ൈ ቂ1 െ

ଵି௘షఱబൈುವ

ଵି௘షఱబ
ቃ 

 .has a permitted range of 12% - 24% ߩ 

 M is the average portfolio effective maturity 

 Maturity Adjustment ܾ ൌ ሺ0.11852 െ 0.05478 ൈ ln	ሺܲܦሻሻଶ 

A number of inferences can be made from this characterisation of unexpected loss. First, asset correlation is 

modelled entirely as a function of PD alone. Second, the formula sets the minimum capital requirement such that 

unexpected losses will not exceed the bank’s capital up to a 99.9% confidence level. Third, average portfolio 

maturity is assumed to be 2.5 years. Exposures with maturities beyond that time will necessitate holding more 

capital. 

For retail exposures, banks must provide their own estimation of PD, LGD and EAD. Moreover, for retail asset 

classes, no maturity adjustment applies. Therefore, the Vasicek looks more simplified. 

ܭ ൌ ܷ݈ ൌ ቆܦܩܮ.ܰ ቆ
ඥିܰߩଵሺ0.999ሻ ൅ ܰିଵሺܲܦሻ

ඥ1 െ ߩ
ቇ െ .ܦܲ  ቇܦܩܮ

For residential mortgage exposures, ߩ ൌ 0.15. For qualifying revolving retail exposures (credit cards), ߩ ൌ 0.04.  

 2. Structural credit risk models 

A credit risk model is used by a bank to estimate a credit portfolio’s PDF. In this regard, credit risk models can be 

divided into two main classes: structural and reduced form models. Structural models are used to calculate the 

probability of default for a firm based on the value of its assets and liabilities. The basic idea is that a company 

(with limited liability) defaults if the value of its assets is less than the debt of the company.  

Reduced form models typically assume an exogenous cause of default. They model default as a random event 

without any focus on the firm’s balance sheet. This random event of default is described as a Poisson event. As 

Poisson models look at the arrival rate, or intensity, of a specific event, this approach to credit risk modelling is also 

referred to as default intensity modelling. This chapter discusses the structural approach to credit risk. Chapter 3 

looks at reduced form models. 

Structural models were initiated by Merton (1974) and use the Black-Scholes option pricing framework to 

characterise default behaviour. They are used to calculate the probability of default of a firm based on the value of 

its assets and liabilities. The main challenge with this approach is that one does not observe the market value of a 

firm’s assets. A bank’s annual report only provides an accounting version of its assets. But for any publicly listed 

bank, the market value of equity is observable, as is its debt. The analysis that follows is known as contingent claims 

analysis (CCA) and uses equity prices and accounting information to measure the credit risk of institutions with 

publicly traded equity.  
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Equity and debt as contingent claims 

Structural credit risk models view firm’s liabilities (equity and debt) as ‘contingent claims’ issued against the firm’s 

underlying assets. As there is a possibility of the debt defaulting, the debt is risky. Risky debt is the default-free 

value of the debt minus the expected loss. The value of risky debt is, therefore, derived from the value of uncertain 

assets. As risky debt is a claim on uncertain assets, such claims are called contingent claims. 

Equity is a residual claim on assets after debt has been repaid. This means the equity holder has a call option on the 

value of the firm’s assets at time T, ்ܸ , where the payoff is either zero or the value of assets less liabilities, D, 

whichever is greater. The strike price is the nominal value of outstanding debt, D. This is shown in Figure 4. 

Figure 4   Payoff for equity 

 

The value of the call option at maturity, ்ܧ, depends on the final value of the underlying, ்ܸ  

்ܧ ൌ max	ሺ்ܸ െ ,ܦ 0ሻ 

The value of risky debt is the default-free value of debt minus the debt guarantee. 

Risky debt ≡ Risk-free debt – guarantee against default 

If the debt is collateralised by a specific asset, then the guarantee against default can be modelled as a put option 

on the assets with the exercise price equal to the face value of the debt. The debt holder is offering an implicit 

guarantee, as it is obliged to absorb the losses if there is default.  

Risky Debt = Default-Free – Implicit put option 

Financial Guarantee = Implicit Put Option 

There is no single payoff diagram that corresponds perfectly to the debt payoff. There is a need to replicate the 

debt payoff with a combination of payoffs from options and also from other securities. To start with, we consider 

buying a zero-coupon UK Treasury bond which is viewed as default-free debt. The payoff of default-free debt vs. 

the asset value is flat horizontal line as shown in the first diagram of Figure 5. No matter how the asset value of the 

bank changes, the bond holder only receives the face value of the bond when the bond matures. By combining the 

payoff of a Treasury bond with the payoff of a short put option, we arrive at the payoff for risky debt as shown in 

the third diagram of Figure 5. Investing in risky debt is the same as buying a Treasury Bond and writing a put option 

on the firm’s assets. The debt holders are, in effect, giving the right to sell the firm’s assets to the equity holders. 
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Figure 5   Payoff diagrams for risky debt – default-free debt plus short put option 

 

Financial crises have caused equity holders and debt holders of a bank to become more uncertain about how the 

value of the bank’s assets will evolve in the future. A bank’s creditors participate in the downside risk but receive a 

maximum payoff equal to the face value of debt. Equity holders benefit from upside outcomes where default does 

not occur but have limited liability on the downside. So uncertainty in a bank’s asset value has an asymmetric effect 

on the market value of debt and equity. The asymmetry in the payoffs to debt holders and equity holders is shown 

in Figure 6. 

Figure 6   Payoff to debt and equity holders of the firm 

 

Asset value uncertainty 

The central idea behind CCA is that an institution’s risk of default is driven by the uncertainty in its assets values 

relative to promised payments on its debt obligations. Assets of a bank are uncertain and change due to factors 

such as profit flows and risk exposures. Default risk over a given horizon is driven by uncertain changes in future 

asset values relative to promised payments on debt – where these payments are often referred to as “default 

barriers”. Having identified the nature of the payoffs to debt and equity holders, the next step would be to examine 

how the value of a bank’s assets would evolve through time relative to a default barrier. Stochastic assets which 

evolve relative to a distress barrier can be used to determine the value of liabilities with implicit options. The 

probability that the assets will be below the distress barrier is the probability of default, which is required to be 

estimated in order to quantify credit risk. 
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A stochastic process is a random process indexed by time. Let ܸሺݐሻ be the value of assets at time t. Changes in 

between any two points in time can be accounted for by a certain component (the drift term) and an uncertain 

component (the random or stochastic term). The drift represents the expected (average) growth rate of the asset 

value. The stochastic term is a random walk where the variance is proportional to time and the standard deviation 

is proportional to the square root of time. It represents the uncertainty about asset value evolution.  

The dynamics of assets which are uncertain follow this “diffusion” process, with drift and volatility, given by  

ܸ݀
ܸ
ൌ ݐ݀ߤ ൅  ௏ܼ݀ߪ

Such a process in continuous time is a Geometric Brownian Motion (GBM) and dz is a Wiener-process, which is 

normally distributed with zero mean and unit variance. A more rigorous description can be found in Baz and Chacko 

(2004).  

For a GBM the asset value at time t can be calculated from the asset value at time 0 using the following 

relationship: 

௧ܸ ൌ ଴ܸ expሾሺߤ െ
ఙೡ
మ

ଶ
ሻݐ ൅   [ݐ√ߝ௩ߪ

Here ߝ is the realisation of a normal random variable with mean zero and unit variance. The drift term is adjusted 

by the term,  െఙೡ
మ

ଶ
,  which must be included if there is uncertainty in the evolution of the assets. In a certain world, 

௩ߪ ൌ 0 and, in this case, ௧ܸ ൌ ଴ܸexp	ሺߤ௩ݐሻ. 

The asset at time t may be above or below a barrier ܦ௧, which represents the level of promised payments on the 

debt. Since assets can fall below the barrier, we can calculate the probability that 	 ௧ܸ ൏   .௧ܦ

Using the equation above for ௧ܸ, 

ሺܾ݋ݎܲ ௧ܸ ൑ ௧ሻܦ ൌ ሺܾ݋ݎܲ ଴ܸexp		ሾቆߤ െ
௩ଶߪ

2
ቇ ݐ ൅ ሿݐ√ߝ௩ߪ ൑  ௧ሻܦ

Rearranging the probability that assets are less than or equal to the barrier is equivalent to the probability that the 

random component of the asset return, ߝ, is less than െ݀ଶ: 

The term ݀ଶ is called the “distance to default” and is the number of standard deviations the current asset value is 

away from the default barrier, ܦ௧.  It is a concept pioneered by KMV Corporation and is explained in Kealhofer 

(2003). Since ߝ~ܰሺ0,1ሻ is normally distributed, 

ሺܾ݋ݎܲ ௧ܸ ൑ ௧ሻܦ ൌ ߝሺܾ݋ݎܲ ൑ െ݀ଶሻ~ܰሺെ݀ଶሻ, 

i.e. the probability of default on the debt is the standard cumulative normal distribution of the minus distance to 

default, ݀ଶ. Figure 7 illustrates two possible paths of the firm’s asset value. A higher asset return raises the firm’s 

asset value more quickly, reducing the probability of default, other things being equal. But there is also uncertainty 
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about the asset value growth. Uncertainty about the asset value growth means that the range of possible values for 

the firm’s assets widens out over time. The probability distribution of the asset value at time T is developed on the 

assumption that financial assets follow a lognormal distribution. Therefore, the logarithm of the asset value follows 

a normal distribution at time T. If the firm’s asset value falls below the horizontal line (default boundary), there is a 

default. The probability of default is the area below the default barrier in Figure 7. In order to arrive at the 

probability of default we need to estimate the mean and variance of the probability distribution.  

Figure 7   Probability of default 

 

Estimating the probability of default 

Figure 8 shows a balance sheet identity that always holds: assets equal the value of risky debt plus equity. Asset 

value is stochastic and may fall below the value of outstanding liabilities which constitute the bankruptcy level 

(“default barrier”) D. D is defined as the present value of promised payments on debt discounted at the risk-free 

rate.  

Figure 8   Balance sheet evolution 
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The firm’s outstanding liabilities constitute the bankruptcy level whose standard normal density defines the 

“distance to default” relative to firm value. Equity value is the value of an implicit call option on the assets with an 

exercise price equal to the default barrier. The equity value can be computed as the value of a call option as shown 

in equation 2.1 

Equation 2.1   ܧሺݐሻ ൌ ܸሺݐሻܰሺ݀ଵሻ െ  ௥௧ܰሺ݀ଶሻି݁ܦ

Where the factors ݀ଵ and ݀ଶ are given by 

݀ଵ ൌ
ln ቀ ଴ܸ

ቁܦ ൅ ൬ݎ ൅
௩ଶߪ
2 ൰ ܶ

ܶ√௩ߪ
 

݀ଶ ൌ ݀ଵ െ ܶ√஺ߪ ൌ
ln ቀ ଴ܸ

ቁܦ ൅ ൬ݎ െ
௩ଶߪ
2 ൰ܶ

ܶ√௩ߪ
 

Where r is the risk-free rate, σ is the asset value volatility, and N(d) is the probability of the standard normal 

density function below d. 

The present value of market-implied expected losses associated with outstanding liabilities can be valued as an 

implicit put option, which is calculated with the default threshold D as strike price on the asset value V.  The 

implicit put option is given by: 

Equation 2.2  ܲሺݐሻ ൌ ௥௧൫ܰሺെ݀ଶሻ൯ି݁ܦ െ ଴ܸܰሺെ݀ଵሻሻ 

The value of risky debt, B, is thus the default-free value minus the expected loss, as given by the implicit put option: 

Equation 2.3   ܤ ൌ ௥௧ି݁ܦ െ ܲሺݐሻ 

The market value of assets of banks cannot be observed directly but it can be implied using financial asset prices. 

From the observed prices and volatilities of market-traded securities, it is possible to estimate the implied values 

and volatilities of the underlying assets in banks. Using numerical techniques, asset and asset volatility can also be 

estimated directly to calibrate the Merton model.  In equation 2.1 neither V, nor  ߪ௩ is directly are directly 

observable. However, if the company is publicly traded then we observe E.  This means equation 2.1 provides one 

condition that must be satisfied by 	ܸ	and  ߪ௩.  ߪா can also be estimated from historical data. In order to calibrate 

the Merton model we need to find a second equation in these two unknowns, ܸ	and ߪ௩. To do so we invoke Ito’s 

lemma as follows: 

௧ܧ݀ ൌ
ܧߜ
ܸߜ

݀ ௧ܸ ൅
1
2
௩ଶߪ

ଶாߜ
ଶܸߜ

ሺ݀ ௧ܸሻଶ 

Using Ito’s lemma we can also state that: 

ܧாߪ ൌ
ܧߜ
ܸߜ

 ௩ܸߪ
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Where 	ܸߜ/ܧߜ is the delta of the equity. It can be proved that this delta is: 

ܧாߪ ൌ ܰሺ݀ଵሻߪ௩ܸ 

Crucially, from the above we can relate the unknown volatility of asset values to the observable volatility of equity: 

Equation 2.4    ߪ௩ ൌ ቀ
௏

ா

ఋா

ఋ௏
ቁ
ିଵ
 ாߪ

This provides another equation that must be satisfied by ଴ܸ and  ߜ௩.  

Therefore, calibrating the Merton model requires knowledge about the value of equity, E, the volatility of equity, 

ሻݐሺܧ  ா, and the distress barrier as inputs into equationsߪ ൌ ܸሺݐሻܰሺ݀ଵሻ െ ாߪܧ  ௥௧ܰሺ݀ଶሻ  andି݁ܦ ൌ  ௏ܰሺ݀ଵሻ, inߪܸ

order  to calculate the implied asset value  ܸ  and implied asset volatility ߪ௏. 

Applying the Merton model 

We illustrate the Merton model framework, described above, with an example. To do so, we initialise the 

parameters of the Merton model with the following values: 

 V  = 100; Asset value 

 D  =  90;  Default-free value of debt or “default barrier” 

 r  =  0.05 (5%); Risk-free rate of interest 

 σv  = 0.10 (10%); Asset value return uncertainty 

 T  = 1; Time to maturity 

The solution of the model provides throws up the value of equity, E, and the risky debt B.  Using an iterative 

procedure, the output of the Merton model gives value of E and B as 14.63 and 85.37 respectively. The risk-neutral 

probability, that the firm will default on its debt, is N(-d2). The risk-neutral probability of default describes the 

likelihood that a firm will default if the firm was active in a risk-neutral economy, an economy where investors do 

not command a premium for bearing default risk.  

The risk-neutral default probability N(-d2) is 6.63% for one year.  

As we are modelling credit risk, we want to estimate the credit spread s. This is the risk premium required to 

compensate for the expected loss (EL).  The credit spread s, is the spread of the yield-to-maturity, y, over the risk-

free rate of interest, r.  

The yield-to-maturity for risky debt B, denoted as y, is derived as follows; 

ܤ ൌ  ௬்ି݁ܦ

ݕ ൌ
ln	ሺ
ܦ
ሻܤ

ܶ
 

ݏ ൌ ݕ െ ݎ ൌ0.0028 
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Thus, credit spread for risky debt is equal to 28 basis points (0.28 per cent). For extensions of this approach to 

estimate sovereign credit risk see Gray et al. (2008).  

Figure 9   Variation of default probability with asset uncertainty 

 

Using the same model parameters we can do some sensitivity analysis by varying the asset value uncertainty from 

0 to 30 per cent. Figure 9 shows how the default probability increases as the volatility in asset value increases. This 

implies that if the value of the bank’s assets fluctuates over time, the likelihood that the asset value will fall below 

the debt value at maturity increases.  

The CCA framework is useful because it provides forward-looking default probabilities which take into account both 

leverage levels and market participants’ views on credit quality. In the context of stress testing, it provides a 

standardised benchmark of credit risk (default probabilities) that facilitates cross-sector and cross-density 

comparisons. However, CCA can only be applied to entities with either publicly traded equity or very liquid CDS 

spreads, and it cannot capture liquidity or funding roll-over risk.  

 3. Reduced form models 

In the structural credit risk model, the underlying asset value follows a standard GBM with no jumps and constant 

drift and volatility:  

݀ ௧ܸ

௧ܸ
ൌ ݐ݀ߤ ൅ ݀ߪ ௧ܹ 

As discussed above, this is the asset value diffusion process in the Merton (1974) model. A stochastic variable ௧ܸ can 

follow a GBM as described above and exhibit, on top of this, jumps at random times when it drops to a lower value. 

From these post-jump values it can proceed with the original diffusion process till the next jump occurs and so on.  
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We can extend the equation by adding a jump process: 

݀ ௧ܸ

௧ܸ
ൌ ݐ݀ߤ ൅ ݀ߪ ௧ܹ ൅ ሺܬ െ 1ሻ݀ ௧ܻ 

The occurrence of the jump is modelled using a Poisson process ௧ܻ	 with intensity ߣ: 

݀ ௧ܻ is a jump process defined by 

݀ ௧ܻ ൌ ሼଵ
଴ with probabilities ఒௗ௧

ሺଵିఒሻௗ௧
 

the jump size J  is drawn randomly from a distribution with probability density function P(J), say, which is 

independent of both the Brownian motion and Poisson process. Intuitively, if there is a jump (dY = 1), V 

immediately assumes value JV. For example, a sudden 10% fall in the asset price could be modelled by setting J = 

0.9. 

In the structural approach, the term ܻ݀ is absent; the value of the firm is modelled as a continuous process, with 

default occurring when the value reaches some barrier. In reduced form models, the emphasis is on the jump 

process, ܻ݀, and default will occur at the first jump of J. 

Default intensity 

In reduced form, or default intensity models, the fundamental modelling tool is the Poisson process, and we begin 

by demonstrating its properties. We assume there are constant draws from the Poisson distribution, and each draw 

brings up either a 0 or a 1. Most of the draws come up with 0. But when the draw throws up a 1, it represents a 

default. Poisson distribution specifies that the time between the occurrence of this particular event and the 

previous occurrence of the same event has an exponential distribution. Box 2 formalises the Poisson process. 

    

  

ሺܾ݋ݎܲ ௧ܰ ൌ ݇ሻ ൌ 	
݁ିఒ௧ሺݐߣሻ௞

݇!
 

Box 2   Poisson process and distributions 

A Poisson process is an ‘arrival’ process in which Nt  is the number of arrivals from time 0 to time t, and, 

 All arrivals are of size 1. 

 For all t, s > 0, ௧ܰା௦ െ ௧ܰ is independent of the history up to t.  

 For all t, s > 0, ௧ܰା௦ െ ௧ܰ is independent of t.  

The probability of k arrivals at time t has a Poisson distribution: 

And the expected number of arrivals between 0 and t is  

ଵሿݐሾܧ      ൌ   ݐߣ

It is important to note that ߣ has a time dimension. For example, if it refers to a year, then t = 1, above gives the 

expected arrivals in a year; t  = 1/52 gives the expected arrivals in a week. 
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When the Poisson process is used for credit risk, the arrival rate is referred to as default intensity and is normally 

represented by,ߣ. 

 The probability of default between 0 and t is 

ሻݐ݈ݑሺ݂ܾ݀݁ܽ݋ݎܲ ൌ 1 െ ݁ିఒ௧ 

 The probability of  no default between 0 and t is 

ሻݐ݈ݑ݂ܽ݁݀	݋ሺܾ݊݋ݎܲ ൌ ݁ିఒ௧ 

 The expected time until default (i.e. the first and only possible default) is 

ௗሿݐሾܧ ൌ
1
ߣ

 

Contingent convertible capital Instruments 

We will apply the default intensity model, described above, for pricing contingent convertible capital instruments 

(CoCos).  A CoCo is a bond that will get converted into equity or suffer a write-down   of its face value as soon as 

the capital of the issuing bank falls below a certain trigger level. This trigger level is the point at which the bank is 

deemed to have insufficient regulatory capital.  A key lesson of the financial crisis has been that regulatory capital 

instruments in the future must be able to absorb losses in order to help banks remain ‘going concerns.’ Triggering 

the conversion of the bond into shares or activating the write-down of the face value takes place when the bank is 

still a going concern. Conversion should occur ahead of banks having to write down assets and well ahead of the 

triggering of resolution measures. A trigger event is a barrier that causes another event, in this case the CoCo 

conversion. The risk of conversion should be compared to a default risk. 

A CoCo can convert into a predefined number of shares. Another possibility is that the face value of the debt is 

written down. This analysis focusses on the conversion of a CoCo into shares and the notion of a recovery rate. For 

ଵሿݐሾܧ ൌ
1
 ߣ

ሺܾ݋ݎܲ ௧ܰ ൌ 0ሻ ൌ ݁ିఒ௧ 

The expected waiting time (ݐଵ) until the first arrival is 

and the probability of no arrivals between 0 and t  is  

The same parameter, ߣ, determines all the above magnitudes: it gives us the waiting times and the expected number 

of arrivals by a given time. ߣ has various names including the ‘hazard rate’, the ‘arrival rate’, or the ‘arrival intensity’. 

The arrivals ௧ܰ can be used to represent the arrival of defaults in a portfolio of bonds, for example.  
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a discussion on the design characteristics of CoCos see Haldane (2011). Further quantitative analysis can be found 

in Spiegeleer and Schoutens (2011).  

The number of shares received per converted bond is the conversion ratio ܥ௥. The conversion price ൫ܥ௣൯ of a CoCo 

with face value F  is the implied purchase price of the underlying shares on the trigger event: 

Equation 3.1  ܥ௣ ൌ
ி

஼ೝ
  

If the bond is converted into shares, the loss for the investor ሺܮ஼௢஼௢ሻ depends on the conversion ratio ሺܥ௥ሻ and the 

value ܵ∗ of the shares when the trigger materialises. So if the CoCo gets triggered and a conversion occurs: 

Equation 3.2  ܮ஼௢஼௢ ൌ ܨ െ ∗௥ܵܥ ൌ ܨ ൬1 െ
ௌ∗

஼೛
൰ ൌ ሺ1ܨ െ ܴ஼௢஼௢ሻ  

Equation 3.2 has brought forth the introduction of a recovery rate for a CoCo bond. Then, with the notation as 

above, the recovery rate ܴ஼௢஼௢ is defined as: 

Equation 3.3  ܴ஼௢஼௢ ൌ
ௌ∗

஼೛
  

The recovery rate, ܴ஼௢஼௢, will be determined by the conversion price, ܥ௣, and the share price at conversion, ܵ∗. The 

closer the conversion price ܥ௣ matches the market price of the shares ܵ∗ at the trigger date, the higher this 

recovery ratio. 

Pricing CoCo bonds 

There are alternative approaches to pricing Coco bonds. In this analysis, we view the CoCo bond as a credit 

instrument and adopt a reduced form approach for pricing. It was explained in the beginning of this chapter that in 

the reduced form approach, a default intensity parameter ߣ is used when modelling default. This is also known as 

credit derivatives pricing. Credit instruments are usually quoted by their credit spread over the risk-free rate of 

interest. The credit spread ܿݏ is linked to the recovery rate ሺ1 െ ܴሻ and default intensity by what is known as the 

credit triangle: 

Equation 3.4  ܿݏ ൌ ሺ1 െ ܴሻ ൈ   ߣ

The credit spread is the product of the loss ሺ1 െ ܴሻ and the instantaneous probability of this loss taking place ሺߣሻ. 

Applying this principle enables one to view the trigger event whereby a CoCo is converted into shares as an extreme 

event akin to that in the credit default swap market. Triggering the CoCo conversion can then be modelled as such 

an extreme event. The default intensity ߣ is replaced by a trigger intensity ߣ௧௥௜௚, which has a higher value than the 

corresponding default intensity. From equation 3.4 we can determine the value of the credit spread on a CoCo 

using the credit triangle. 

Equation 3.5  ܵܥ஼௢஼௢ୀ ൌ ሺ1 െ ܴ஼௢஼௢ሻߣݔ௧௥௜௚   
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This approach can be applied to the pricing of CoCos after making some adjustments. First, to prevent the bank 

from defaulting the CoCo conversion has to occur before the default time. This implies that the default intensity of 

the conversion,  ߣ௧௥௜௚ has to be greater than the default intensity of the entity itself, namely, the bank. This is 

because the CoCo will fulfil its purpose if it converts before the bank defaults. 

The trigger intensity, ߣ௧௥௜௚, is linked to the probability of hitting the trigger, ௧ܲ௥௜௚, according to the Poisson process:  

Equation 3.6  ௧ܲ௥௜௚ ൌ 1 െ ݁ିఒ೟ೝ೔೒்   

where T  is the maturity of the CoCo bond. The probability of hitting the trigger would be equivalent to hitting a 

barrier in a barrier option framework.  Equation 3.6 gives the probability of the CoCo defaulting at time T. By 

solving equation 3.6 for ߣ௧௥௜௚, we get the following: 

Equation 3.7  ߣ௧௥௜௚ ൌ െ
୪୭୥	ሺଵି௉೟ೝ೔೒ሻ

்
  

Thus equation 3.5 for the credit spread of the CoCo has the following computable solution: 

Equation 3.8  ܵܥ஼௢஼௢ ൌ ௧௥௜௚ሺ1ߣ െ ܴ஼௢஼௢ሻ ൌ െ
୪୭୥	ሺଵି௣೟ೝ೔೒ሻ

்
൬1 െ

ௌ∗

஼೛
൰   

CoCos are difficult to price because of their sensitivity to the probability of trigger.  Spiegeleer and Schoutens 

(2011) show that in a Black-Scholes framework, the probability ݌∗,  of hitting ܵ∗ is given by: 

Equation 3.9    ݌∗ ൌ ܰ൭
୪୭୥൬

ೄ∗

ೄ ൰ିఓ்

ఙ√்
൱ ൅ ቀ

ௌ∗

ௌ
ቁ
మഋ
഑మ ܰሺ

୪୭୥൬
ೄ∗

ೄ ൰ାఓ்

ఙ√்
ሻ 

 ߤ ൌ ݎ െ ݍ െ
ఙమ

ଶ
 

 ݍ ൌ   Continuous dividend yield 

 r  =  Continuous interest rate 

 ߪ ൌ Volatility 

 T  =  Maturity of the contingent convertible 

 ܵ ൌ	 Current share price 

This allows for a closed form solution and also promotes a better appreciation of the loss absorption qualities of a 

CoCo bond. 

 4. Counterparty credit risk  

Counterparty credit risk (CCR) is the risk that the counterparty, in a transaction, defaults before settlement of final 

cash flows. It exists in OTC derivatives, securities financing transactions and long settlement transactions. CCR has 

the following general characteristics: 

 it is bilateral (that is, each counterparty can have exposure to the other) 

 what is known today is only the current exposure 
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 it is random and depends on potential future exposure 

These characteristics differentiate CCR from credit risk. Unlike market risk, CCR arises when the market value of 

transactions is in your favour (that is, positive mark-to-market value) and the counterparty defaults. Quantifying 

CCR typically involves:  

 Simulating risk factors at numerous future points in time for the lifetime of the portfolio 

 Re-pricing positions at each time point 

 Aggregating positions on a path consistent basis, taking into account netting and collateral. 

Figure 10 shows quantifying exposure involves striking a balance between two effects. First, uncertainty of market 

variables and, therefore, risk increases the further we go out in time. Second, derivative contracts involve cash flows 

that are paid over time and reduce the risk profile as the underlying securities amortise through time. For instance, 

in a 5-year interest rate swap contract, maximum exposure to the dealer is unlikely to occur in the first year as 

there is less uncertainty about interest rates in that period. It is also unlikely to be in the last year since most of the 

swap payments will already have been made by then. It is more likely that maximum exposure will be in the middle 

of the contract.  An analysis of the different methods for quantifying CCR can be found in Gregory (2011). 

Figure 10   Quantifying counterparty credit risk

 

Credit value adjustments 

Credit valuation adjustment (CVA) is often mentioned in the context of market risk and CCR. It is an adjustment 

banks make to the value of transactions to reflect potential future losses they may incur due to their counterparty 

defaulting. CVA is the difference between the price of a credit-risky derivative and the price of a default-free 

derivative to account for the expected loss from counterparty default. Banks recognise counterparty risks in 

derivatives trades and make CVA adjustments. Basel II reports that two-thirds of credit risk losses during the global 

financial crisis are caused by CVA volatility rather than actual defaults. CVA is also an integral part of the Basel III 

accord. However, CVA is primarily a valuation and mark-to-market pricing concept and is not a substitute for 

traditional counterparty credit risk management. 
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In the presence of counterparty credit risk, the value of a derivative can be written as 

Equation 4.1  ܺ ൌ 	 ௙ܺ െ    ܣܸܥ

Where ܺ	is the value of the claim. ௙ܺ is the credit-risk-free value of the asset and CVA is the credit value 

adjustment that varies with counterparty creditworthiness. CVA is by definition ൒ 0. It follows from equation 4.1 

that a credit-risky derivative has a lower price than a derivative without risk.  This is because the buyer of the credit-

risky derivative (often referred to as the dealer) lowers the price of the derivative since he or she accounts for the 

credit risk of the counterparty (the derivatives seller). In particular, if the counterparty defaults, the buyer of the 

derivative will not receive a payout of the derivative. CVA is an adjustment since the derivatives buyer adjusts 

(lowers) the price of the derivative due to credit risk. 

The CVA is given by: 

Equation 4.2  ܣܸܥ ൌ ∑ܦܩܮ ௧்ܦ௧ܲܧܧ௧ܨܦ
௧ୀଵ  

where 

 LGD is the loss given default 

 DFt  is the discount factor for tenor t 

 EEt   is the expected exposure at time t. 

 PDt  is the (conditional) probability of default at time t 

The value of the CVA is an increasing function of both the probability of the counterparty defaulting, as well as 

expected exposure at the time of default. It can be seen from equation 4.2 that a higher PD, a higher LGD and a 

higher EE would all increase the CVA.  Banks’ CVA increased dramatically during the financial crisis. Regulatory 

reforms focussed on reducing the magnitude of the CVA. The starting point would be to reduce the probability of 

default of banks or reduce the expected exposures.  

Expected exposures with and without margins 

 ௧ is the expected ‘in the money’ value of the contract. If a counterparty is ‘in the money’ in a derivativesܧܧ

contract, ܺ௧ ൐ 0 

 If there are no margins, then: 

Equation 4.3  ܧܧ௧ ൌ Εሺ݉ܽݔሼܺ௧, 0ሽሻ  

Equation 4.3 shows the uncollateralised exposure. This is the expected exposure when no collateral is exchanged.  

If we introduce variation margins (VM) which are calculated daily (or intraday) and marked to market, the expected 

exposure (EE) diminishes. Counterparties in a derivatives transaction exchange gains and losses in this manner.  

 If there are daily variation margins (VM) 

Equation 4.4  ܧܧ௧ ൌ Εሺ݉ܽݔሼܺ௧ െ ,௧ܯܸ 0ሽሻ,   
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where  ܸܯ௧ ൌ ,ሼܺ௧ିଵݔܽ݉ 0ሽ 

VM is based on the value of the contract in the previous day. For the counterparty that is ‘in the money’, ܺ௧ିଵ is 

positive. Variations margins are designed to ensure the expected exposure never becomes too large. 

Initial margins (IM) are set to cover potential losses on in-the-money derivative contracts in the event of 

counterparty default. Their levels are based on a model looking at the product and historic market moves. In the 

case of bilateral transactions, both parties pay and the margins are segregated. If they are centrally cleared, all 

clearing members pay into a central CCP pool.  

With daily variation margin (VM) and initial margin (IM) 

Equation 4.5  ܧܧ௧ ൌ Εሺ݉ܽݔሼܺ௧ା௠ െ ௧ܯܸ െ ,௧ܯܫ 0ሽሻ, 

where IM is set to n-day VaR, i.e. ΡሺΧ௡ െ ܺ଴ ൐ ௡ሻܯܫ ൌ 1 െ   .and we assume m-day margin period of risk ,ߙ

If there is counterparty default, the contract will have to be replaced in the market. Due to fluctuations in market 

liquidity it won’t always be possible to replace the contract immediately following default. The n-day VaR is based 

on the number of days it would take to do so. The m-day margin period of risk would imply that the counterparty is 

exposed to the fluctuating value of the contract m-days into the future. The IM is meant to mitigate this loss. 

Suppose that it may take up to 5 days to find a new counterparty to the contract and that under normal market 

conditions the price should not be expected to move by more than £5 within five days with probability 99%. Then 

if the initial margin is set at £5, a dealer will be protected against default of a counterparty with 99% confidence. A 

95% VaR would imply that in 95 out of 100 cases, the counterparty will have enough margin to cover this loss. In 

actual practice, the confidence interval is typically 99.7%. 

Collateralising over-the-counter (OTC) derivatives in the bilateral market has historically been discretionary. The 

2007-2009 financial crisis saw the emergence of large bilateral exposures many of which were not sufficiently 

collateralised. A proliferation of redundant overlapping contracts exacerbated counterparty credit risk. Since then, 

collateral has assumed a central role in OTC derivatives transactions for mitigating counterparty credit risk. To 

make the OTC derivatives market more robust, the G20 has mandated that all standardised contracts be cleared 

through central counterparties (CCPs) and that standards be developed for margining non-centrally cleared trades. 

Stricter margin requirements for bilaterally cleared trades will also improve risk management. However, mandating 

central clearing of OTC derivatives and other proposed regulatory reforms, such as Basel III, is expected to increase 

demand for collateral overall. Sidanus and Zikes (2012) have made an assessment of how OTC derivatives reform 

will increase the demand for high-quality assets to use as collateral.  
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Appendix 

Estimating the unobserved state variable using the Kalman filter 

The Kalman filter is a set of equations which allows an estimator to be updated once a new observation becomes 

available. It first forms an optimal predictor of the unobserved state variable vector S given its previously estimated 

values. These estimates for the unobserved state variables are then updated using information provided by the 

observed variables.  

Let ௧ܻ be the set of m observable variables at time t. The model can be written as 

(1)       ௧ܻ ൌ ௧ݏߚ ൅ ߶ ௧ܻିଵ ൅ ߰߳௧ିଵ ൅ ߳௧ 

௧ାଵݏ ൌ ௧ݏߙ ൅  ௧ାଵߟ

,଴~ܰሺܵ଴ݏ                           ଴ሻ݌

߳௧~ܰሺ0,  ఢଶሻߪܫ

 ௧~ܰሺ0,1ሻߟ

ݐ ൌ 0,1, … , ܶ 

Where ݏ௧ is the scalar stochastic process representing the state of macro-financial conditions,  ߚ is the m-

dimensional vector of factor loadings, ∅ is a diagonal m x m matrix of AR(1) coefficients, ߮ is a diagonal matrix of 

MA(1) coefficients, ߙ is the autoregressive coefficient of the unobservable stochastic process ݏ௧, while ߝ௧ is a 

multivariate Gaussian white noise process with diagonal variance and covariance matrix ߪܫఌଶ and ߟ௧ is a scalar 

Gaussian white noise with unit variance. 

In order to close the model we need to specify the initial conditions for the stochastic process, ݏ௧. Therefore, we 

assume ݏ଴ to be normally distributed with mean ܵ଴ and variance ݌଴. 

The common factor ܵ௧ at time t is obtained as the expected value of the process, ݏ௧. The model parameters can be 

estimated by rewriting equations (1) in state space form and using the Kalman filter. An equivalent state space 

representation of (1) can be obtained as  

(2)     ௧ܻ ൌ            ௧ߠܨ

௧ାଵߠ       (3) ൌ ௧ߠܩ ൅  ௧ାଵݑܴ

଴~ܰሺΘ଴ߠ	           ଴ܲሻ 

Equation (2) is the measurement equation that relates the observable macroeconomic and financial variables to 

the unobservable state variables (ߠ௧). Equation (3) is called the state equation, and it captures the dynamics of the 

latent state variable ߠ௧. The algorithm works in a two-step process. In the prediction step, the Kalman filter 

produces estimates of the current state variables, along with the corresponding estimation uncertainty. Once the 

next measurement is observed (with some noise), these estimates are updated. 
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With the model written in state space form, the estimation of the model parameters can be obtained through the 

maximisation of the likelihood.  

The Kalman filter enables estimation of the conditional mean, ܧ൫ߠ௧ห ௧ܻ, ௧ܻିଵ,…, ଴ܻ൯ ൌ Θ௧ and the conditional 

variance ܸܽݎሺߠ௧| ௧ܻ, ௧ܻିଵ, … , ଴ܻሻ ൌ ௧ܲ. 

The Kalman recursions that allow us to compute the common factor ܵ௧ as the first element of the vector Θ௧, are 

௧ݒ     (4) ൌ ௧ܻ െ            Θ௧ܨ

(5)     ܼ௧ ൌ ܨ ௧ܲܨᇱ                

௧ܭ     (6) ൌ ܩ ௧ܲܨᇱܼ௧ିଵ         

௧ܮ     (7) ൌ ܩ െ             ܨ௧ܭ

(8)     Θ௧ାଵ ൌ Θ௧ܩ ൅      ௧ݒ௧ܭ

(9)     ௧ܲାଵ ൌ ܩ ௧ܲܮ௧ᇱ ൅ ܹ       

which are iterated starting from t = 0. The matrix ܭ௧ in (7) is referred to as the Kalman gain. 

The Kalman recursions are derived from the formula of the conditional mean and conditional variance in a 

multinormal distribution. A normal distribution is fully characterised by its first two moments and the exact 

likelihood function is obtained as a by-product of the Kalman filter algorithm. In order to initialise the filter we need 

to specify Θ଴ and ଴ܲ. A possible choice is to assume these parameters to be fixed and estimate them using 

maximum likelihood. Assume that ߠ ∼ ܰሺΘ଴, ଴ܲሻ, where Θ଴ and ଴ܲ are known and let ߰ denote the set of 

parameters to estimate, i.e. ߰ ൌ ሼܨ, ,ܩ ܴሽ, the likelihood function can be written as 

ሺ߰ሻܮ     (10) ൌ ∏଴ሻݕሺ݌ |௧ݕሺ݌ ௧ܻିଵሻ்
௧ୀଵ  

Since 

|௧ݕሺܧ ௧ܻିଵሻ ൌ |௧ߠܨሺܧ ௧ܻିଵሻ ൌ  Θ௧ܨ

௧ݒ ൌ ௧ݕ െ  Θ௧ܨ

|௧ݕሺݎܸܽ ௧ܻିଵሻ ൌ ௧ሻݒሺݎܸܽ ൌ ܹ 

Then 

ሺ߰ሻܮ ൌෑ݌ሺݒ௧ሻ										ݒ௧ ∼ ܰሺ0,ܹ

்

௧ୀଵ

ሻ 

Therefore the value of the likelihood function can be directly computed from the Kalman recursions in equations 

(4) – (9), and the maximum of log ሺܮሺ߰ሻሻ can be obtained numerically. 
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Figure 11 depicts the ‘true state’ common factor S, around which we build the macro indicators. We have 

considered two macro indicators (the blue and green lines) over a scenario of 30 years. They have been simulated 

from a random number series and are not based on actual data.  

Figure 11   State variable and macro indicators 

 

Figure 12 shows the estimated S, along with the ‘true state’ S. The Kalman recursive equations, (4) to (9), have 

been used to compute the estimated common factor, S.  

Figure 12   True and estimated state variable 
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