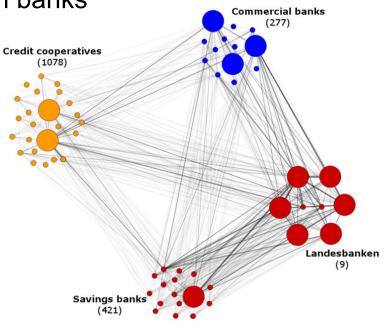


The Credit Quality Channel
A novel approach to model contagion in the interbank market
Ulrich Krüger, Deutsche Bundesbank

Motivation and general approach

- Analysis of contagion effects due to a deterioration in credit quality in the banking network
 - Credit event in the banking network
 - Transmission of the shock to other banks via asset devaluation and deterioration in credit quality
 - Adverse effect on Tier 1 capital derived from Basel accords
 - Reduction in aggregated Tier 1 capital in the banking system due to an exogenous shock
- "Banking System Loss" (BSLoss) measures interconnectedness
 - Extends existing default cascade models (sensitivity to small shocks)


Illustration of the contagion process

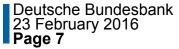
Conceptual description

- Capital ratios of banks in the network (bank 2, bank, 3, bank 4 in the example) change through contagion
 - Change to Tier 1 capital is translated into an increase of the Probability of Default (PD)
 - Expected losses of the neighboring banks are deducted from their Tier 1 capital (consistent with Basel accord)
- "Banking System Loss" measures interconnectedness
 - Reduction in aggregated Tier 1 capital in the banking system due to the exogenous shock

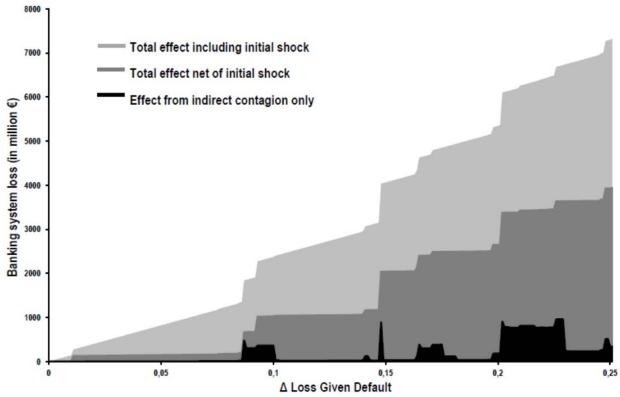
ApplicationNetwork of German banks

• Data as of end of December 2013 from Deutsche Bundesbank's credit register of large exposures (€1.5m or more)

Application IRanking of systemically important institutions


Rank	Total Effect			Indirect Effect	
of Inst.	BSLoss	Defaults	BSLoss / direct Exp.	BSLoss	Defaults
1	1	1	5.51	92%	96%
2	1	1	7.19	94%	96%
3	1	1	4.68	90%	95%
4	0.34	0.69	1.23	64%	21%
5	0.11	0.02	0.94	53%	54%
6	0.09	0.02	0.76	41%	27%
7	0.08	0.03	0.73	38%	17%
8	0.07	0.12	0.69	35%	2%

- "BSLoss" normalised by BSLoss of the highest ranked bank (bank 1)
- Number of defaults of banks in the contagion process shown in relation to the number of defaults following the default of bank 1


Benchmarking with other measures of interconnectedness

	D-SIBs (Total score)	D-SIBs (Interconnec- tedness)	Bonacich centrality	In-Degree measure
ρ	39 %	66 %	96 %	70 %

- p shows Spearman's rank correlation coefficient between BSLoss and other measures
- Low correlation with D-SIBs' methodology for interconnectedness due to restrictions to direct exposures
- High correlation with Bonacich eigenvector-based centrality underlines that both measures take into account the entire network structure

Application IIShock to the real estate sector

Conclusion

- Merits
 - "BSLoss" easy to interpret (expressed in monetary units)
 - Sensitive to small shocks
 - Allows for different credit stress scenarios
 - shock to one bank or a group of banks
 - shock to the mortgage sector or to other sectors
 - Supports evaluation of macroprudential instruments (eg SIFI-buffer)
- Limitations
 - Ignores impact from other relevant contagion channels (liquidity channel, reputation channel etc.)

References

Alter, A., B. Craig, and P. Raupach (2015). Centrality-based capital allocations. Discussion Paper Deutsche Bundesbank 03/2015.

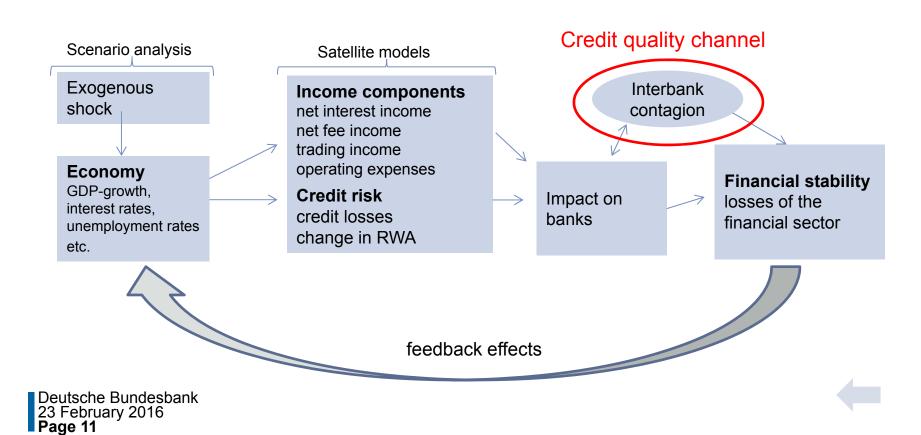
Craig, B., and G von Peter (2010). Interbank Tiering and Money Center Banks. BIS Working Paper 322.

Fink, K., Krüger, U., Meller, B., Wong, L.H. (2015). The credit quality channel: modeling contagion in the interbank market. Discussion Paper Deutsche Bundesbank 38/2015.

Marquez-Diez-Canedo, and S. Martinez-Jaramillo (2009). A network model of systemic risk: stress testing the banking system. Intell. Sys. Acc. Fin. Mgmt. 16.

Gauthier, C., A. Lehar, and M. Souissi (2010). Macroprudential Regulation and

Systemic Capital Requirements, Bank of Canada Working Paper 4/2010.


Martinez-Jaramillo, S., B. Alexandrova-Kabadjova, B. Bravo-Benitez, and J. P. Solorzano-Margain (2014). An empirical study of the Mexican banking system's network and its implications for systemic risk. Journal of Economics Dynamics and Control 1.

Martinez-Jaramillo, S., O.P. Pérez, and F.A. Embriz, and F.L.G. Dey (2010). Systemic risk, financial contagion and financial fragility, Journal of Economic Dynamics & Control 34.

Memmel, C., A. Sachs and I. Stein (2012), Contagion at the Interbank Market with stochastic Loss Given Default, International Journal of Central Banking, Vol. 8(3), 177-206.

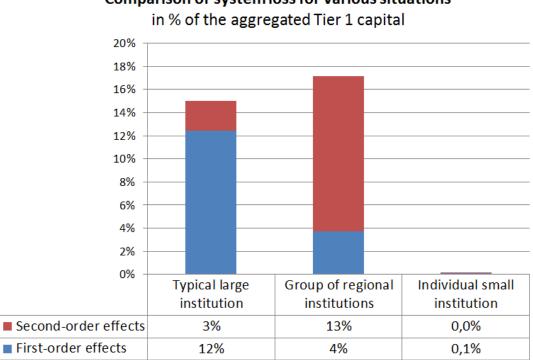
Georgiescu, O.-M. (2015). Contagion in the Interbank Market: Funding versus Regulatory Constraints. Available at SSRN http://ssrn.com.abstract=2271545 or http://dx.doi.org/10.2139/ssrn.2271545.

Appendix: The credit quality channel in the context of stress testing

Appendix: Relationship between Tier capital ratio and Probability of Default

Impact of banks' Tier1 capital ratio on its PDs derived from a univariate logit-regression

$$PD_{i,t} = F(\alpha + \beta \cdot ln(CapRat_{i,t-1}))$$


 $PD_{i,t}$: Probability that bank i will fail in time (t-1; t]

 $CapRat_{i,t}$: Tier 1 Capital Ratio $(Tier1_{i,t}/RWA_{i,t})$

F (z): Cumulative logistic distribution $(e^z/(1+e^z))$

Appendix: Assessing shock transmission for different types of banks

Comparison of system loss for various situations

