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Objective

= Assess the potential use of payments data for prediction of various
macroeconomic indicators.

= Evaluate the capability of supervised machine learning for improving
prediction accuracy in the presence of payments data.

= Generate an index using payments data which can be used alongside
other traditionally used features to predict GDP.
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Why Nowcasting?

= Accurate and timely information about macroeconomic indicators can
help policy maker to make key policy decisions.

= (Official estimates of Key macroeconomic indicators are released with lag.
E.g. COnsumptiOn (ln Canada) Jan Feb Mar ﬂ Apr May jl

Q1 Payments Data Q1 Consumption

= Substantial revisions of these indicators are frequently done (sometimes
after years of primary release).

Nowcasting Canadian Economic Activity in an Uncertain Environment, Tony Chernis & Rodrigo Sekkel, Bank of Canada Staff Discussion Paper 2017.
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Why Payments Data?

= Capture a broad range of the financial activities.
= Gathered electronically hence, it is available on a timely basis.

= Little or no measurement or sampling error.

= Multiple aggregates of payments streams are available at different
frequencies (each-pay, daily, monthly & quarterly).

Using the payment system data to forecast the Italian GDP, V. Aprigliano et. al. Banca d'ltalia, 2016
Money talks — Nowcasting real economic activity with payment systems data, Luis Dias and Andre Dias, ISI conference, 2017
Nowcasting with Payments System Data, John Galbraith and Greg Tkacz, International Journal of Forecasting, 2018.
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Why Machine Learning?

= Statistical learning models that are shown to efficiently handle large-
scale regression, classifications, clustering and reinforcement learning.

= |deal for nowcasting/forecasting problems in which we are more
concerned about improving prediction accuracy.

Big data: New tricks for econometrics, H. Varian, The Journal of Economic Perspectives, 2014
Machine learning at central banks, C. Chakraborty and A. Joseph, Bank of England Working Paper-674, 2017
Machine learning: an applied econometric approach, Mullainathan, S. and Spiess, J., Journal of Economic Perspectives, 2017

Macroeconomic Nowcasting and Forecasting with Big Data, B. Bok, D. Caratelli, D.Giannone, A. Sbordone, and A. Tambalotti, Annual
Review of Economics, 2018
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Preliminary Inferences:

= Payments data can improve prediction accuracy in the retail trade sales
(RTS) and household consumption (HFCE) nowcasting.

¢ In RTS RMSE reduced by 25% & in HFCE by 37% over basic AR model
when payments data is used with OLS.

= ML-based elastic net can further improve the prediction accuracy.

*¢* In RTS RMSE reduced by 8% & in HFCE by 20% compared to OLS
model with payments data when elastic net is used.
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Features: Canadian Retail Payments Data

Payments Instrument Available form ACSS

ACSS Stream

| Label, (VAL and VOL)

(AFT Debit TAPEDEB. )
AFT Credit TAPECRED.

Shared Network SHARNET.

POS Debit POSDEB.

POS Credit POSCRED.

EDI EDI
\Electronic Remittances EREMIT. J
ABM Adjustments ABMADJ.

Online Credit Payments ONLCRDPAY.

Online Payment Refunds ONLPAYRFD.

Small Cheques SMCHEQ.

Large Cheques LGCHEQ.

Paper Remittances PAPREMIT.

Electronic Total ETOTAL.

Paper Total PTOTAL.

All Payment Streams Total | ALLSTREAMS.

bank-banque-canada.ca

Automated Clearing and Settlement
System (ACSS)

AFT Debit or pre-authorized debit (PAD): Commonly used for
mortgage installments, utility bills, property taxes, credit card bills, etc.

AFT Credit or Direct Deposits (DD): Commonly used for payroll.

POS Debit and Credit: The debits or credit payments initiated in
physical POS environments using debit cards.

Electronic Data Interchange (EDI): Involves business-to-business
electronic direct credits (businesses inventory management).

Electronic Remittances (EREMIT): Bill payments to businesses.
Shared ABM Network (SHARNET): ABM cash withdrawals,

Online Payments: Payments for Online purchases using e-wallet,
PayPal and electronic Person-to-Person (P2P) transactions.

Available to BoC through Payments Canada in the form of daily (value and volume) aggregates.
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Targets: Official Estimates of Macro-Indicators

= Retail trade sales (RTS): Delayed by 6 weeks.

It is a key monthly indicator of consumer purchasing patterns in Canada. The RTS is an
important component of the GDP.

= Household final consumption expenditure (HFCE): Delayed by 8 weeks.

It consists of the expenditure incurred by resident households on individual consumption
goods and services. The HFCE It is an important component of GDP.

Publicly available through Statistics Canada.
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Machine Learning

Machine Learning

Supervised Learning Unsupervised Learning Reinforcement Learning
Predictive (Labeled Data) Descriptive (Not labeled) Agent based modelling

Clustering, Dimensional Robotics, Trading, Behavior
Reductions, Pattern Recog. Modelling (pay-sys)

Regression Classification
(Continuous Target) (Categorical/Discrete Target)

bank banque-canada.ca Deep Learning: Artificial Neural Networks with Multiple Hidden Layers
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Supervised Machine Learning: Workflow (ML-Pipeline)

Adjust seasonality & trend components
Check correlations & feature importance
Features Standardizing (or normalizing)
Prepare training and test datasets

Model training and preliminary predictions

Model tuning, variable selection and cross-validation

N o Uk W N

Model parameter selection and final predictions
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Features & Targets: Seasonal and Trend Adjustment

Seasonal

Residual

POS-Debit

le7

Observed

1.5 A
1.0+
0.5 A

Trend

2000000 ~
0 |
—2000000

1000000 ~
04
—1000000 +
T

Residual

POSDEB. VA

StatsModels: Seasonal Decomposition: Classical decomposition using moving averages.

The seasonal component is first removed by applying a convolution filter to the data
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RTS
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Drawbacks: 1: first few and last few months data is loosed during this procedure.
2: it assumes that the seasonal component repeats from year to year.

3: It doesn’t captures small (unusual) periods fluctuations.

More sophisticated methods are available (x13) that will be employed in future.
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Autocorrelations: Targets

Autocorrelation Autocorrelation
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Statsmodels: plot_acf function is used
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Pairwise Correlations : Heatmaps

RTS-Heatma ps

RTS = 240, 0.36 .50 1.0 -1.00
TAPEDEB. VOL{
TAPEDEB.
TAPECRED. VOL = . 2 0.26 0.40 0.400.3
TAPECRED.
SHARNET. VOL I8 3800 152.0.32 : -0.8 |
SHARNET. 0.75
POSDEB. VOL [*f .31/08 (EELET 0.82 0.99[EN0.76 +)7/-10.78 0.98 0.510.550,11 POSDEB.
POSCRED. VOL [BrEEeres 0.430.35r).370.490.170.440.490.:3 0.54@0.470.35:151 POSCRED. VO
EDI. VOL@ £ 0.6 EDI.
EREMIT. VOL{ X2 0.400.26[3 EREMIT 0.50
ETOTAL. VOLZ@ . X 079075081096 520,58 ETOTAL
PTOTAL. VOLQ PTOTAL
TAPEDEB. VAL LE kG . 76[ LA N1 0.77 07900 1.00 0.81 (£ 0.77 [JEEIEE] )41 0.83 0.4 TAPEDEB 0.25
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Seaborn: heatmap function is used
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Feature Importance: Random Forest

TAPECRED.
EDI.
SHARNET.
ETOTAL.

TAPECRED.

POSDEB.
TAPEDEB.
PTOTAL.
SHARNET.

PTOTAL.
POSCRED.
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EREMIT.
EREMIT.
POSCRED.
TAPEDEB.
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RTS

RTS Relative Importance
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POSDEB.
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Sklearn: randomForestRegressor function is used: Fl is computed: how much each
feature decreases the weighted impurity in a tree the impurity decrease from each
feature can be averaged and the features are ranked according to this measure.
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Supervised Machine Learning: Elastic Net (x: features y:target

=  Combines the benefits of both LASSO and RIDGE Regressions.

mini &(1 - P} ||w||3
“ 9N 2 :

where, a and p are the hyperparameters, they can be tuned using cross-validation techniques.

ly — Xwl[3 + apllwl|l +

" The L, part of the penalty generate sparse model
= The L, part of the penalty helps to

— Encourages grouping effects
— Remove the limitation on the number of selected variables

Zou, H. and Hastie, T. “Regularization and variable selection via the elastic net”, Journal of the Royal Statistical Society, 2005
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Hyperparameter Tuning & Cross-Validation

" The model parameters a and p are tuned over validation set

line-serach, alpha=0.05 line-serach, alpha=0.06

0.583 0.870
0.582 0.865
0.581
0.860
0.580
w @ 0.855
o IS
2 0.579 b
Q‘ ‘EIO.BSU
0.578
0.845
0.577
0.576 0.840
' RTS HFCE
0.8 ‘
0500 0.02 0.04 .06 0.08 0.10 0.12 0.14 0.16 oo 0.05 0.10 0.15 0.20
hyperparameter hyperparameter
1 2 a(l —p) 2 .. . i _
”EJ"WHS’ — Xw||3 + ap||w||; + T| || |2 CV: Training loss vs test loss on validation sample, overfitting and underfitting?
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Case Specifications
Base Case 1 OLS with only lagged target
Base Case 2 OLS with lagged target and payments data
Main Case Elastic net with lagged target and payments data, model tuning

= RTS(monthly data): Training sample: Jan-98 to Dec-13 and test sample: Jan-14 to Oct-17
=  HFCE (quarterly data): Training sample: Q1-98 to Q3-12 and test sample: Q1-13 to Q3-17

For Oct-1%t Nowcast ACSS Val and Vol

bank-banque-canada.ca

Features Latest Availability

RTS Lags March, April, May, June, July
September

HFCE Lags Q1, Q2

ACSS Val and Vol

Q3
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RTS and HFCE: Prediction Scores

Base Case 1 Base Case 2 Main Case
Nowcast: OLS with Lagged (6 lags) OLS with Lagged (6 lags) Tuned Elastic Net with Lagged (6 lags)
RTS RTS & Payments data RTS & Payments data
RTS 12 score 0.145 r2-score 0.518 (257%) r2-score 0.588 (14%)
RMSE 25% RMSE 8%
Base Case 1 Base Case 2 Main Case
Nowcast: OLS with Lagged (2 lags) OLS with Lagged (2 lags) Tuned Elastic Net with Lagged (2 lags)
HFCE HFCE & Payments data HFCE & Payments data
2- 0.775 (819 2- 0.865 (129
HFCE r2-score 0.428 re-score L i (#2%)
RMSE 37% RMSE 20%

bank-banque-canada.ca
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Actual Vs Predicted (Main Case)

RTS and HFCE
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Conclusions

= Payments data is useful in improving nowcasting of RTS and HFCE.
= MlL-based elastic net can further improve the prediction score.

= Payments data could be useful for predicting GDP along with other variables.

Drawbacks:

= Although every transaction or each day’s aggregates of payments data is available,
using it in monthly or quarterly aggregated forms reduces the number of samples.

= With fewer sample points in each stream, we cannot make use of more advanced
ML approaches such as Deep Learning (DNN).
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Questions?
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Model Training and Predictions: Expanding Window Approach

= Given dataset is split into: 80% training sample and 20% testing sample

» Training sample ¢ Test sample
fo|d 1 s —5% 5§ &% 8% 8% & 8% 8 & & 8% —8& 812 ®

fod2sm—=——=—=—=%—82 8% = =2 =5 = 82 8% &8 85— =& ®
fod3—=—=—=—=—=2 =% = =5 85 5 =5 5 85 85 85 82 =& @

fod4m—=—=—=—=—=—= = 85 =5 = 5 8§ 5 =5 85 85 85 —=& [ ]

fod56——=—=—=u—=—= 8 8 = = S5 85 =5 85 85 85 8588 O

Time —>»

bank-banque-canada.ca ROlling window approach: Can be used to see the effects of consumer’s changing priority of payments streams (eg: online vs POS etc.)



