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Monitoring Opportunities and Threats in Real-Time

• Opportunities and Threats – from geo-political to economic, finance to climate 
• Risk perspectives – multiple stakeholders from different departments are involved
• Mass movements – people are interested to monitor large shifts in prices, behavioral 

fluctuations, social and economic trends
• Monitoring Technologies – AI is transforming how business is done but little application 

to complex dynamic systems and policy-making has not yet been deployed
• Executive Decision-Making – Executives need applications to help them make informed-

decisions about their investments and policy moves 



Data-driven identification of Opportunities and Threats
Cross Sector Risk Domains and Impacts

Geopolitics
opportunities: defense negotiations, trade agreements
threats: terror attacks, revolutions, protests

Economics
opportunities: fast economic growth, decrease in public debt, job growth
threats: financial crisis, economic contraction, rising unemployment

Finance
opportunities: stock index or ticker growth, stable EXR, bitcoin price growth
threats: stock market crash, exchange rate instability, cryptocurrency crash
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Methods

• Clustering
Dynamic Time Warping, Hierarchical Clustering, K-means, t-SNE, MDS, UMAP

• Converting Time-Series to Class Labels
Z-threshold peak detection algorithm, Bayesian change-point detection, 

• Classification
Naïve Bayes Classifier, Support Vector Machines (SVMs), Convolutional Neural Networks (CNNs)

• Time-Series Sequence Prediction
ARMA, ARIMA, VAR, Kalman Filter, Particle Filter, Recurrent Neural Networks (RNNs), Long-Short 
Term Memory (LSTM)

• Uncertainty Quantification (UQ)
MVE, Bootstrap, Bayesian, MC Dropout, MQ-RNN, Tilt Loss Function
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Difference between Dynamic Time Warping (DTW) 
distance and Euclidean distance 
(green lines represent mapping between points of time series T and S ).

6Source: Cassisi et al. 2012.



Hierarchical Clustering Analysis (HCA)

HCA example for 
macroeconomic variables, USA
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Database
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Abstraction of entity, time, and features3d Database
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Long-Short Term Memory Neural Network



Research Objectives

• Structure Domain Logic for Training Data: Use unsupervised machine learning models to 
build training data

• Establish the proposed model framework in context of multi-variate time-series 
sequence prediction problem for domains of interest

• Establish in which cases proposed model framework works better than others

• Try to go beyond Black Box and provide examples to assess viability of proposed model 
framework through:
- Uncertainty Quantification (UQ)
- Benchmark Assess Model Reliability (MR)
- Simulations/External Shocks
- Alert System
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Proposed Model Framework
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Preprocessing Domain Knowledge and 
Structured Logic Approach to Training Groups



Processing Domain Knowledge

Take  given input data stream, using domain-specific methods can be extremely valuable to 
extract many new features, for example

• Macroeconomics: Economic Diversification Measures, Production Sophistication Measures, 
Income Inequality, etc.

• Geopolitics: Tone, Volume, Goldstein Score, etc. 

• Finance: Technical Features (30+), Similar Indices, Economic Foundations, Sentiments
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Sequence Learning Prediction Framework
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Go Beyond Black Box to Provide Structured 
Output
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Monte Carlo Simulation (MCS) for a more 
controlled-environment for stress-testing
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Uncertainty Quantification

• Mean Variance Estimation 
• Bootstrap
• Bayesian Methods
• MC Dropout method
• MQ-RNN
• Pinball Loss Function
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Clustering and Prediction System for Stock 
Price data 
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Clustering System Prediction System



Abstraction of Ensemble Prediction Model 
Framework
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Applying DTW and then Hierarchical 
Clustering

Calculate DTW distances for Sharpe Ratio of 
each ticker over 500 days

Make a Matrix of obtained DTW Distance

Based on the DTW matrix obtained apply 
Hierarchical Clustering with linkage=‘ward’

Here, using distance correlation matrix we 
create a cluster heat map
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Cluster 2, 4, and 5 for selected companies, 
stock tickers are identified
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Incorporating different models

Model Description
LSTM Long-Short Term Memory

Bi directional LSTM Bi-directional LSTM
RNN Recurrent Neural Networks

GRU Gated Recurrent Unit

GRADIENT BOOSING REGRESSOR Gradient boosting regressors are a type 
of inductively generated tree ensemble 
model. At each step, a new tree is 
trained against the negative gradient of 
the loss function, which is analogous to 
(or identical to, in the case of least-
squares error) the residual error.

ENSEMBLE Ensemble learning is the process by 
which multiple models, such as 
classifiers or experts, are strategically 
generated and combined to solve a 
particular computational intelligence 
problem.
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Ensembling
different models

Wealth Generated, S&P500
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S&P500
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GBP/USD Exchange Rate Example
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Benchmarking Reliability 
Model Reliability Matrix (MRM) 
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Simulation table to develop trust: 
which model to trust?
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Monitoring multiple assets
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Research Contributions

• Promising new application of deep learning to new domains of financial 
time series predictions

• Structured logic approach for training data in complex environments 

• The novel controlled experiment scenario for neural networks, provided 
new ideas to go beyond just black box – Ensembling, Model Reliability 
Matrix (MRM), Uncertainty Quantification (UQ), Simulation Tables

• Risk Management Framework: Application of foresight monitoring 
technologies i.e. integrating of predictions from different domains and 
time-horizons 
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Future Research

• Wider testing of models and benchmarking model reliability across 
domains; automation of hyper-parameter tuning

• Deeper Ensembling techniques with probabilistic and parametric 
model integration, Causal reasoning; Alert Systems

• Developing standards for data reliability and big data architecture in 
these domains

• Human Centered AI: Psychology, Cognition, Visualizations, how 
decision-makers react to forecasts
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Conclusions 

• Proposed model framework has proven to be scalable across domains

• Uncertainty Quantification and accuracy benchmarking is helpful to 
bring transparency

• Use cases for informing daily forecast monitor for risk management 
for trading, policy and mega-project investments

• Applications for geo-politics monitor, macro-and-micro economy –
scalability to apply high-and-low frequency data
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Thank you!
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