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Motivation

-We used an LSTM in a macroeconomic context.
- Prediction of danish GDP growth

- Why?
- Lag in the flow in macroeconomic information
- Powerful pattern recognizing abilities

- Two ways of implementation:
- Combined with econometrics
- Instead of econometrics



Deep Learning combined with econometrics

- Underlying data-generating role
- Economic interpretation by econometric framework

- A discussion of technical capabilities



Deep Learning versus econometrics

Web of Science: Literature on economic applications of Deep Learning
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Starting from: Y. Kuang (2017) — A novel macroeconomic forecasting model based on
revised multimedia assisted bp-neural network model and ant colony algorithm



The "Network” keyword

- Financial applications : LSTM’s
- Macroeconomic applications:  Feed Forward networks

rexchaige rate
VO




The "Indicator” keyword

- Links primarily to economic keywords
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Research Question

“How well does the
Long Short-Term Memory Neural Network
perform in a macroeconomic context”

How well does the LSTM predict
GDP growth based on a series of
macroeconomic indicators for the danish economy



Method

- Model Evaluation Out-of-sample validation
- Deep Learning approach: Long-Short Term Memory (LSTM)

- Econometric approach: Principal Component Regression (PCR)



Data:

Indicator Unit Source
Gross Domestic Product Mio. of DKK FRED
Consumer Price Index

- Total All Ttems Pct. Growth - YoY  FRED
Employed Persons

Age 15 and Over 1.000 Persons FRED
Unemploved Persons

- Total Harmonized 1.000 Persons FRED
3-Month Interbank Rate Pet. Per Annum OECD
10-Year Long-Term

Government Bond Yields Pct. Per Annum OECD
Total Share Prices Index 2010 = 100 OECD
Brent Crude Oil

- Global Price USD pr. Barrel FRED
Exchange Rate

- DKK/USD DKK to USD FRED
Building Permits

- Residential Pect. Growth - Prev. FRED
Total Credit

- Non-Financial Corporations Billions of DKK FRED
Housing Prices Index 2010 = 100 FRED
Hourly Earnings DK

- Manufacturing Pet. Growth - YoY  FRED
Hourly Earnings EU

- Manufacturing Pet. Growth - YoY  FRED
Government Consumption Pet. Growth - Prev. FRED
Private Consumption Pet. Growth - Prev. FRED
Import of Goods & Services  Mio. of DKK DST
Export of Goods & Services Mio. of DKK DST
Balance of Trade Mio of DKEK

DST

18 Commonly used indicators

Picked with reference to
different nowcasting article

Swith strong reference to
"Economic Outlook”, by the
danish central bank

92 observations

Difference stationary
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Model Evaluation

- Out-of-sample validation

91 obs.
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Deep Learning Approach
Long Short-Term Memory Block with a Forget Gate
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Sequence Design
GDP Growth

- All indicators are matched to GDP growth of same time-step

Xm

t : t-1 : t- : t-k
| | |
X1| |Xx2| |X3| . |Xm| | |X1| [Xx2| |X3| . |xm| | |X1| X2| |X3| . |Xm|  |X1| |X2| |X3
| | |
k4 k Y k4
Y | Y | Y | Y
| | |

13




Network Design

- 1LSTM block: 19 units
- 1output layer: 1 neuron

- Epochs: 150
- Activation: Rectified Linear Unit (ReLU)
- Loss: Mean Squared Error (MSE)

- Optimizer: Stochastic Gradient Descent (SGD)



Econometric Approach: PCR

- The idea behind a Dynamic Factor Models:

X; = AL)F; + e;

- Components are assumed to be linear combinations of inputs:
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PCR Design

- Cross-Validation Approach similar to Giovanelli and Proietti (2014)

First  components results in lowest CV-error

No. of components Error
5 7.292008e-05
S 11 7.571166e-05
S 18 7.513744e-05
Bold: The lowest (best) error
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Squared Error: (prediction - data)*2
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Accuracy

Red: PCR

Blue: LSTM

- LSTM shows lower RMSE and MAE
in out-of-sample prediction

- Diebold-Mariano: p > 0.001

Model RMSE MAE

LSTM 0.005584161 0.004289430

- Training 0.005584284 0.004207058

- Out-of-sample 0.005583643 0.004638299
DFM 0.007582204 0.006169701

- Training 0.007816738 0.006506790

- Out-of-sample  0.006495667 0.004742028
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Bold: The lowest (best) metric
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Conclusions

How does the LSTM perform?
- The same as our PCR in this specific scenario

- Structural inference is native to econometrics

- Deep Learning has strength in its ability to extract information
from non-traditional sources.
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