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What we do: We propose, compare and evaluate a variety of
machine learning methods for bond returns predictability in a
regression-based context.

Research questions:

— Can machine learning (ML) methods capture predictable
variation in bond excess returns better than benchmark principal
component regressions (PCR)?

— Why is it so? In particular, what features really matter?

— How to disentangle the incremental contribution of ML for the
measurement of bond risk premia? which variables matter?

This is relevant for any application that requires estimates of
expected bond returns: (a) selecting portfolios, (b) evaluating
portfolio performance, (c) risk management, (d) understanding
risk premia, etc...
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Supervised learning vs. data compression:

We show that Principal Component Analysis (PCA) is outperformed by
both sparse linear models, e.g., ElasticNet, and dense non-linear
models, e.g., shallow and deep neural networks (NN).

PCA � Penalized regressions � NNs

Macro and financial variables through the lens of NNs:

Substantial heterogeneity in the relative importance of predictors;
broadly speaking financial variables (output growth/inflation) matter
for the short-end (long-end) of the yield curve.

Why neural networks work:

The factors extracted from NNs have incremental forecasting power for
the level and slope of the term structure, as well as aggregate economy
activity and nominal variables.
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Bianchi, Büchner and Tamoni Bond Risk Premia with Machine Learning 10/ 48

Identity links current yield to the sum of one-period yields and excess returns

y
(n)
t =

1

n
Et

 ∞∑
j=0

y
(1)
t+j | x t

+
1

n
Et

 ∞∑
j=0

xr
(n−j)
t+j,t+j+1 | x t


State variables x t are assumed to have a
unique effect on the yield curve y t , i.e.,

x t = f −1(y t ;N)

e.g., x t : level, slope and curvature.

Et

(
xr

(n)
t+1

)
= g(y t ;N)

for some g (·) unknown a priori.

A canonical approach is to assume
g (·) is linear, s.t.

Et

(
xr

(n)
t+1

)
= α̂ + β̂

>
x t + γ̂>F t

Ex 1: Cochrane and Piazzesi
(2005), x t is a linear combination
of the forward rates.

(see Duffee 2013)



Motivation
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>
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Ex 1: Cochrane and Piazzesi
(2005), x t is a linear combination
of the forward rates.

Ex 2: Ludvigson and Ng (2009),
F t is a linear combination of a
large panel of macro variables.

(see Duffee 2013)
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Key criteria for suitable machine learning tasks:

learning g (·)— Learning a function that maps well-defined
inputs to outputs.

— Clear feedback with clearly definable goals
and metrics outputs.

predictive R2

— No need for detailed explanation of how
“decisions” are taken.

focus is on prediction
and not inference.
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Goal: Recursive forecasting of the one-year holding period excess returns.

Two benchmark applications of
regression-based forecasting:

I Forecasting based on forward rates
(Cochrane and Piazzesi 2005).

I Forecasting based on a large panel
of macro variables and forward
rates (Ludvigson and Ng 2009).

Competing Methodologies:

I Data compression methods
(e.g., PCA and PLS)

I Simple and penalized linear
regressions (e.g., Ridge, Lasso,
ElasticNet)

I Non-linear models (regression
trees, random forests, shallow
and deep neural networks)

Out-of-sample performance metrics:

I Mean Squared Prediction Error (MSPE) and predictive R2

(see Campbell and Thompson 2007).

I Diebold and Mariano (2002) test for pairwise comparison across models.
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the neural network is just a hierarchical model of the form

x t = hL (W LzL−1,t + bL) (Hidden layer L)

zL−1,t = hL−1 (W L−1zL−2,t + bL−1) (Hidden layer L− 1)

...

z1,t = h1 (W 1y t + b1) (Hidden layer 1)

Activation function:

Rectified Linear Unit (ReLU)
activation function, i.e.,

h(z) = max (z , 0)

Optimization and regularization:

Stochastic Gradient Descent (SGD)
+

Early stopping, batch normalization,
model averaging, drop-out.



Research Design: Digression on Neural Networks

Figure: Example of a Neural Network

This figure shows a “deep” neural network which consists of an ouput layer and three
hidden layers. The green circles represent the input variables, that is the cross-section of
yields, macroeconomic variables of both. The purple circles represent the fully connected
hidden nodes. The red circles represent the output variables, that is the bond excess
returns across maturities.
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Research Design: Sample Splitting

I We initially divide the sample in three parts: training (85%) +
validation (15%) and testing sample (one-month ahead).

I We recursively refit each machine learning method at each time t.
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Bond Return Predictability and the Yield Curve
Table: Out-of-Sample Results with Forward Rates, Short Sample

Mean Squared Prediction Error R2
oos(%)

rx
(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1 rx

(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1

Panel A: PCA, PLS and Autoencoder

PCA (5 components) 2.69 9.21 17.25 26.17 -41.5 -31.3 -28.9 -27.2

PCA (3 components) 2.64 9.09 17.11 25.97 -38.4 -29.5 -27.9 -26.2

PLS (5 components) 2.69 9.21 17.25 26.17 -41.5 -31.3 -28.9 -27.2

PLS (3 components) 2.64 9.09 17.09 25.98 -38.7 -29.5 -27.8 -26.2

Autoencoder 2.56 8.82 16.51 25.05 -34.7 -25.7 -23.4 -21.7

Panel B: Simple and Penalized Linear Regressions

OLS 2.69 9.21 17.25 26.17 -41.5 -31.3 -28.9 -27.2

Ridge 2.59 8.92 16.80 25.35 -35.8 -27.2 -25.6 -23.2

Lasso 1.94 6.95 13.43 20.46 -1.8 1.0 -0.4 0.6

Elastic Net 1.95 7.01 13.52 20.91 -2.5 0.0 -1.1 -1.6

Panel C: Regression Trees and Neural Networks

Boosted Regression Tree 2.16 7.37 14.17 21.15 -13.3 -5.0 -5.9 -2.8

Random Forests 2.13 6.99 12.61 20.58 -12.1 0.4 5.7 0.0

NN - 2 layer (5 nodes) 1.94 6.45 11.90 17.80 -1.9 8.1 11.0 13.5

NN - 2 layer (3 nodes) 1.82 6.41 11.79 17.53 4.3 8.7 11.8 14.8

NN - 3 layer (5 nodes each) 1.75 5.92 10.72 15.95 7.9 15.6 19.9 22.5

NN - 3 layer (3 nodes each) 1.82 6.10 11.36 16.56 4.6 13.0 15.1 19.6

NN - 4 Layer (3 nodes each) 1.76 5.97 11.00 16.20 7.4 15.0 17.8 21.3

NN - 4 Layer (4,3,2 nodes each) 1.69 5.91 10.83 16.07 11.0 15.7 19.0 21.9
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Bond Return Predictability and the Yield Curve
Table: Out-of-Sample Results with Forward Rates, Long Sample

Mean Squared Prediction Error R2
oos(%)
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t+1 rx
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t+1 rx
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Panel A: PCA, PLS and Autoencoder

PCA (5 components) 2.39 8.06 14.93 22.49 -78.7 -62.3 -48.2 -38.8

PCA (3 components) 2.06 6.92 12.94 19.26 -54.0 -39.2 -28.4 -18.8

PLS (5 components) 2.39 8.06 14.93 22.49 -78.7 -62.3 -48.2 -38.8

PLS (3 components) 2.21 7.54 13.87 20.85 -64.7 -51.9 -37.6 -28.6

Autoencoder 2.01 6.68 12.29 18.37 -50.4 -34.5 -22.0 -13.3

Panel B: Simple and Penalized Linear Regressions

OLS 2.39 8.06 14.93 22.49 -78.7 -62.3 -48.2 -38.8

Ridge 2.15 7.21 13.47 20.28 -60.4 -45.1 -33.6 -25.1

Lasso 1.34 5.00 10.10 15.97 -0.5 -0.6 -0.2 1.4

Elastic Net 1.36 5.04 10.17 16.35 -1.5 -1.5 -0.9 -0.9

Panel C: Regression Trees and Neural Networks

Boosted Regression Tree 1.49 5.28 10.59 16.67 -11.4 -6.4 -5.0 -2.8

Random Forests 1.44 4.71 9.12 13.42 -7.5 5.2 9.5 17.2

NN - 2 layer (5 nodes) 1.49 4.80 8.99 13.59 -11.3 3.4 10.8 16.1

NN - 2 layer (3 nodes) 1.47 4.82 9.03 13.56 -10.1 2.9 10.4 16.3

NN - 3 layer (5 nodes each) 1.37 4.58 8.31 12.50 -2.2 7.8 17.5 22.9

NN - 3 layer (3 nodes each) 1.48 4.77 8.75 13.03 -10.7 4.0 13.2 19.6

NN - 4 Layer (3 nodes each) 1.46 4.67 8.55 12.84 -8.9 6.0 15.2 20.8

NN - 4 Layer (4,3,2 nodes each) 1.28 4.37 8.21 13.07 4.6 11.9 18.6 19.3
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Panel C: Regression Trees and Neural Networks

Boosted Regression Tree 1.49 5.28 10.59 16.67 -11.4 -6.4 -5.0 -2.8

Random Forests 1.44 4.71 9.12 13.42 -7.5 5.2 9.5 17.2

NN - 2 layer (5 nodes) 1.49 4.80 8.99 13.59 -11.3 3.4 10.8 16.1

NN - 2 layer (3 nodes) 1.47 4.82 9.03 13.56 -10.1 2.9 10.4 16.3

NN - 3 layer (5 nodes each) 1.37 4.58 8.31 12.50 -2.2 7.8 17.5 22.9

NN - 3 layer (3 nodes each) 1.48 4.77 8.75 13.03 -10.7 4.0 13.2 19.6

NN - 4 Layer (3 nodes each) 1.46 4.67 8.55 12.84 -8.9 6.0 15.2 20.8

NN - 4 Layer (4,3,2 nodes each) 1.28 4.37 8.21 13.07 4.6 11.9 18.6 19.3
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Bond Return Predictability and the Yield Curve

Summary of the results:

1. Data compression methodologies show similar performances.

2. Sparse linear regressions, e.g., elastic-net, may help improve the
forecasts of bond excess returns.

3. Non-linearity matters: Deep neural networks exploit non-linearities
which are overlooked by using a simple linear combination of yields.

I Deep networks tend to outpeform shallow networks, especially at the
short/medium term of the term structure and more so when the ZLB
binds.
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Bond Return Predictability and Macro Variables

Table: OOS Results with Macro Variables and Fwd Rates, Short Sample

Mean Squared Prediction Error R2
oos(%)

rx
(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1 rx

(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1

Panel A: PCA, PLS and Autoencoder

PCA as in LN 1.98 7.47 15.02 22.91 -3.8 -6.5 -12.3 -11.3

PLS (macro + fwd rates) 2.38 8.81 17.23 26.12 -25.0 -25.6 -28.8 -26.9

Autoencoder + CP factor 2.11 7.88 15.50 23.17 -10.6 -12.3 -15.8 -12.6

Panel B: Simple and Penalized Linear Regressions

OLS 2.38 8.77 17.47 27.16 -25.2 -25.1 -30.6 -31.9

Ridge (macro + fwd rates) 3.04 10.95 21.80 34.62 -59.7 -56.0 -62.9 -68.2

Lasso (macro + fwd rates) 1.96 7.23 13.91 20.84 -2.7 -3.0 -4.0 -1.2

Elastic Net (macro + fwd rates) 1.96 7.16 13.28 20.11 -2.8 -2.0 0.7 2.3

Panel C: Regression Trees and Neural Networks

Boosted Regression Trees 1.63 5.54 11.24 16.35 14.4 21.0 15.9 20.6

Random Forests 1.42 4.85 9.52 14.61 25.7 28.9 28.8 29.0

NN 2 Layer, ensemble macro and fwd 1.41 5.04 9.41 14.32 25.7 28.2 29.7 30.4

NN 3 Layer, ensemble macro and fwd 1.40 4.99 9.39 14.31 26.6 28.9 29.8 30.5

NN 4 Layer, ensemble macro and fwd 1.39 5.02 9.48 14.41 27.1 28.4 29.2 30.0

NN 2 Layer, groups ensembling and fwd 1.37 5.00 9.52 14.67 27.8 28.7 28.8 28.7
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Bond Return Predictability and Macro Variables

Table: OOS Results with Macro Variables and Fwd Rates, Long Sample

Mean Squared Prediction Error R2
oos(%)

rx
(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1 rx

(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1

Panel A: PCA, PLS and Autoencoder

PCA as in LN 1.46 5.00 9.78 14.79 -9.3 -0.7 2.9 8.7

PLS (macro + fwd rates) 2.17 6.70 12.50 19.14 -62.5 -34.8 -24.0 -18.1

Autoencoder + CP factor 1.51 5.37 11.05 17.02 -12.6 -8.1 -9.6 -5.0

Panel B: Simple and Penalized Linear Regressions

OLS 3.04 10.19 19.76 29.87 -127.2 -105.2 -96.0 -84.3

Ridge (macro + fwd rates) 2.49 8.58 16.84 26.67 -85.9 -72.7 -67.1 -64.6

Lasso (macro + fwd rates) 1.39 5.08 10.01 15.78 -3.8 -2.2 0.7 2.6

Elastic Net (macro + fwd rates) 1.39 5.00 10.09 16.40 -3.8 -0.7 -0.1 -1.2

Panel C: Regression Trees and Neural Networks

Boosted Regression Trees 1.51 4.28 8.36 13.26 -12.8 13.8 17.1 18.2

Random Forests 1.26 3.87 7.24 13.17 5.7 22.1 28.1 18.7

NN 2 Layer, ensemble macro and fwd 1.88 4.94 8.10 11.96 -40.7 0.6 19.6 26.2

NN 3 Layer, ensemble macro and fwd 1.17 4.17 7.33 10.94 12.3 13.8 27.2 32.5

NN 4 Layer, ensemble macro and fwd 1.04 3.76 6.81 10.28 22.3 22.1 32.5 36.6

NN 2 Layer, groups ensembling and fwd 1.19 3.61 6.98 11.05 11.0 27.3 30.8 31.8
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Bond Return Predictability and Macro Variables

Table: OOS Results with Macro Variables and Fwd Rates, Long Sample

Mean Squared Prediction Error R2
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(5)
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Panel A: PCA, PLS and Autoencoder

PCA as in LN 1.46 5.00 9.78 14.79 -9.3 -0.7 2.9 8.7

PLS (macro + fwd rates) 2.17 6.70 12.50 19.14 -62.5 -34.8 -24.0 -18.1

Autoencoder + CP factor 1.51 5.37 11.05 17.02 -12.6 -8.1 -9.6 -5.0

Panel B: Simple and Penalized Linear Regressions

OLS 3.04 10.19 19.76 29.87 -127.2 -105.2 -96.0 -84.3

Ridge (macro + fwd rates) 2.49 8.58 16.84 26.67 -85.9 -72.7 -67.1 -64.6

Lasso (macro + fwd rates) 1.39 5.08 10.01 15.78 -3.8 -2.2 0.7 2.6

Elastic Net (macro + fwd rates) 1.39 5.00 10.09 16.40 -3.8 -0.7 -0.1 -1.2

Panel C: Regression Trees and Neural Networks

Boosted Regression Trees 1.51 4.28 8.36 13.26 -12.8 13.8 17.1 18.2

Random Forests 1.26 3.87 7.24 13.17 5.7 22.1 28.1 18.7

NN 2 Layer, ensemble macro and fwd 1.88 4.94 8.10 11.96 -40.7 0.6 19.6 26.2

NN 3 Layer, ensemble macro and fwd 1.17 4.17 7.33 10.94 12.3 13.8 27.2 32.5

NN 4 Layer, ensemble macro and fwd 1.04 3.76 6.81 10.28 22.3 22.1 32.5 36.6

NN 2 Layer, groups ensembling and fwd 1.19 3.61 6.98 11.05 11.0 27.3 30.8 31.8
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Bond Return Predictability and Macro Variables

Summary of the results:

1. We confirm that macroeconomic variables carry information that is
not contained in the yield curve (Duffee 2011, Joslin et al. 2014).

2. Elastic-net substantially outperforms alternative penalized
regressions such as Lasso and Ridge.

3. Non-linearity matters: both shallow and deep neural networks
outperforms competing strategies, especially for the longer sample.

I For the longer sample the depth of the network matters, whereas for
the short sample shallow and deep networks are almost equivalent.

I Groups ensembling could compensate the depth of the network.

I Separate networks for macro and fwd rates substantially improves
the predictive performance.
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Relative Importance of Macroeconomic Variables
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It is instructive to understand what variables might drive the
results within the context of neural networks.
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It is instructive to understand what variables might drive the
results within the context of neural networks.

We investigate at each time t the marginal
relevance of single variables based on the
partial derivative of the target variable
with respect to the sample average of each
input.

∂xr
(n)
t+1

∂yit

∣∣∣
yit=y i

where y i represents the in-sample mean of the input variable i .
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It is instructive to understand what variables might drive the
results within the context of neural networks.

We investigate at each time t the marginal
relevance of single variables based on the
partial derivative of the target variable
with respect to the sample average of each
input.

∂xr
(n)
t+1

∂yit

∣∣∣
yit=y i

where y i represents the in-sample mean of the input variable i .

This allows to compute the sensitivity conditional on the network
structure and the average value of the other input variables.
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It is instructive to understand what variables might drive the
results within the context of neural networks.

We investigate at each time t the marginal
relevance of single variables based on the
partial derivative of the target variable
with respect to the sample average of each
input.

∂xr
(n)
t+1

∂yit

∣∣∣
yit=y i

where y i represents the in-sample mean of the input variable i .

This allows to compute the sensitivity conditional on the network
structure and the average value of the other input variables.

N.B: Results are averaged throughout the OOS period; benchmark
specification is a deep neural network with four layers.



Relative Importance of Macroeconomic Variables

Figure: Relative Importance Averaged Across Maturities

(a) Short Sample (b) Long Sample

This figure shows the relative importance of each input variable obtained from a four-layer neural
network. Variables are labeled according to McCracken and Ng (2016). The results are further
averaged across the bond maturities. The left panel shows the results for the short sample period
from 1964:01 to 2008:12, whereas the right panel shows the results for the long sample period from
1964:01 to 2016:12.
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Relative Importance of Macroeconomic Variables
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We further investigate:

1. The maturity-specific effect of macro and financial variables.

2. Both the average and the maturity-specific effect of groups of
predictors.
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We further investigate:

1. The maturity-specific effect of macro and financial variables.

2. Both the average and the maturity-specific effect of groups of
predictors.

Maturity-specific effect:

I Short-end of the curve: S&P
price, term and credit spread
matter more.

I Long-end of the curve: housing
starts and prices matter more.
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We further investigate:

1. The maturity-specific effect of macro and financial variables.

2. Both the average and the maturity-specific effect of groups of
predictors.

Maturity-specific effect:

I Short-end of the curve: S&P
price, term and credit spread
matter more.

I Long-end of the curve: housing
starts and prices matter more.

Groups of variables:

I Short-end of the curve: financial
variables matter more.

I Long-end of the curve:
output&income, consumption
matter more.

Such heterogeneity is confirmed for the short and the long sample.



The Value of Neural Networks
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Forecasting PCs of Yields and Macroeconomic Variables
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PCi,t+12 − PCi,t = b0 + b>1 Pt + b>2 x t + εi,t+1 for i = 1, 2, 3



Forecasting PCs of Yields and Macroeconomic Variables
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PCi,t+12 − PCi,t = b0 + b>1 Pt + b>2 x t + εi,t+1 for i = 1, 2, 3

PCi,t is the ith principal component extracted from the yield curve or
macroeconomic variables.
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PCi,t+12 − PCi,t = b0 + b>1 Pt + b>2 x t + εi,t+1 for i = 1, 2, 3

PCi,t is the ith principal component extracted from the yield curve or
macroeconomic variables.

Pt = (PC1,t ,PC2,t ,PC3,t)
′

Level, slope and curvature if from yields.

Economic activity, interest rate spreads,
inflation if from macro variables
(see Ludvigson and Ng 2009).
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x t are the factors extracted
from the last hidden layer of a
neural network (either using
yields or macro variables).
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Bianchi, Büchner and Tamoni Bond Risk Premia with Machine Learning 44/ 48

PCi,t+12 − PCi,t = b0 + b>1 Pt + b>2 x t + εi,t+1 for i = 1, 2, 3

PCi,t is the ith principal component extracted from the yield curve or
macroeconomic variables.

Pt = (PC1,t ,PC2,t ,PC3,t)
′

Level, slope and curvature if from yields.

Economic activity, interest rate spreads,
inflation if from macro variables
(see Ludvigson and Ng 2009).

x t are the factors extracted
from the last hidden layer of a
neural network (either using
yields or macro variables).

Question: What is the incremental
explanatory power (w.r.t. PCs) of
the hidden factors extracted from a
neural network?



Forecasting PCs of Yields

Panel A: Predicting changes in PCs of yields from yields.

Short Sample Long Sample

PC # 1 PC # 2 PC # 3 PC # 1 PC # 2 PC # 3

PCA 16.83 28.08 58.78 11.38 26.38 55.79

NN 2 Layer + PCA 22.22 29.21 59.23 17.47 30.30 56.57

NN 3 Layer + PCA 23.06 28.78 59.46 19.39 29.26 56.90

NN 4 Layer + PCA 24.82 28.88 59.41 19.54 29.16 56.97

This table reports the in-sample R2 (%) of a predictive regression where the dependent variable is
the year-on-year growth rate of the first three principal components extracted from the cross-section
of forward rates. The independent variables are the first three principal components extracted from
the term structure. In addition to the PCA we also compute the in-sample R2 obtained by adding
the factors extracted from the same information sets obtained by a set of shallow and deep neural
networks (3 nodes for each layer).
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Forecasting PCs of Yields

Panel B: Predicting changes in PCs of yields from macro variables.

Short Sample Long Sample

PC # 1 PC # 2 PC # 3 PC # 1 PC # 2 PC # 3

PCA 15.47 39.61 3.26 6.75 35.84 2.92

NN 2 Layer + PCA 52.00 58.98 16.16 22.94 48.40 11.19

NN 3 Layer + PCA 62.03 57.18 14.05 20.07 44.43 7.34

NN 4 Layer + PCA 55.07 53.19 10.86 22.91 42.72 5.58

This table reports the in-sample R2 (%) of a predictive regression where the dependent variable is
the year-on-year growth rate of the first three principal components extracted from the cross-section
of forward rates. The independent variables are the first three principal components extracted from
macroeconomic variables. In addition to the PCA we also compute the in-sample R2 obtained by
adding the factors extracted from the same information sets obtained by a set of shallow and deep
neural networks.
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Forecasting PCs of Macroeconomic Variables

Panel C: Predicting changes in PCs of macroeconomic variables.

Short Sample Long Sample

PC # 1 PC # 2 PC # 3 PC # 1 PC # 2 PC # 3

PCA 38.97 37.73 52.28 39.20 39.67 50.06

NN 2 Layer + PCA 42.20 47.16 62.63 42.95 45.74 57.46

NN 3 Layer + PCA 40.59 42.87 61.95 40.54 43.56 55.37

NN 4 Layer + PCA 40.18 42.39 60.86 40.42 43.48 56.98

This table reports the in-sample R2 (%) of a predictive regression where the dependent variable is
the year-on-year growth rate of the first three principal components extracted from a large panel
of macroeconomic variables. The independent variables are the first three principal components
extracted from macroeconomic variables. In addition to the PCA we also compute the in-sample
R2 obtained by adding the factors extracted from the same information sets obtained by a set of
shallow and deep neural networks.
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Conclusion
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We show that machine learning techniques can
lead to a more accurate out-of-sample forecast
of bond excess returns.

In particular, we provide evidence that the
functional form of the mapping between
current yields, macroeconomic information
and future bond excess returns might not
be linear.

Open issues/next steps:

− Monthly returns in addition to one-year holding period
returns.

− Additional methodologies, e.g., group Lasso, predictive
Lasso, slice-inverse regressions, etc.

− ...


