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n Big data: large 3

n Standard inference (ML or flat prior) is a bad idea

Ø Proliferation of parameters

Ø High estimation uncertainty

Ø Overfitting and imprecise out-of-sample forecasting / poor external validity

➥Methods to address curse of dimensionality (Ng, 2013, CHL, 2017)

Ø Sparse modeling e.g. hand picking, Lasso regression

Ø Dense modeling e.g. Ridge regression, Factor models
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This paper: Sparse or dense modeling?

n Answer is an empirical matter
Ø Study a variety of predictive problems in macro, micro and finance

n Popular techniques not suitable to answer the question
Ø Sparsity/density often assumed
Ø A small set of predictors might be selected simply to reduce estimation error, 

even if the model is not sparse

n Our predictive model
Ø sparsity, without assuming it
Ø shrinkage, to give a chance to large models
Ø Bayesian inference on sparsity and shrinkage
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$-|12, 42, 5 ∼--. 6
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0 with probability 1 − 5

n “Spike-and-slab” prior
Ø Mitchel and Beauchamp (1988)
Ø Vast literature on Bayesian Model Averaging and Variable Selection
Ø This paper:  inference on D and EF



Giannone, Lenza, Primiceri   The i l lusion of sparsity

The predictive model

!" = $%&%" + ⋯+ $)&)" + *" , *" ∼--.
/ 0, 12

n Prior

$-|1
2, 42, 5 ∼

--.
6
/ 0, 1242 with probability 5

0 with probability 1 − 5

n Hyperpriors

5 ∼ ℬ E, F ,
G ) HIJ(L) NO

G ) HIJ L NOP%
≡ R2 ∼ ℬ S, T



Giannone, Lenza, Primiceri   The i l lusion of sparsity

The predictive model

!" = $%&%" + ⋯+ $)&)" + *" , *" ∼--.
/ 0, 12

n Prior

$-|1
2, 42, 5 ∼

--.
6
/ 0, 1242 with probability 5

0 with probability 1 − 5

n Hyperpriors

5 ∼ ℬ E, F ,
G ) HIJ(L) NO

G ) HIJ L NOP%
≡ R2 ∼ ℬ S, T



Giannone, Lenza, Primiceri   The i l lusion of sparsity

The predictive model

!" = $%&%" + ⋯+ $)&)" + *" , *" ∼--.
/ 0, 12

n Prior

$-|1
2, 42, 5 ∼

--.
6
/ 0, 1242 with probability 5

0 with probability 1 − 5

n Hyperpriors

5 ∼ ℬ E, F ,
G ) HIJ(L) NO

G ) HIJ L NOP%
≡ R2 ∼ ℬ S, T

∝ V WEX &"
Y$ |5, 42, 12∝ V WEX !" |5, 4

2, 12



Giannone, Lenza, Primiceri   The i l lusion of sparsity

The predictive model

!" = $%&%" + ⋯+ $)&)" + *" , *" ∼--.
/ 0, 12

n Prior

$-|1
2, 42, 5 ∼

--.
6
/ 0, 1242 with probability 5

0 with probability 1 − 5

n Hyperpriors

5 ∼ ℬ E, F ,
G ) HIJ(L) NO

G ) HIJ L NOP%
≡ R2 ∼ ℬ S, T



Giannone, Lenza, Primiceri   The i l lusion of sparsity

The predictive model
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n Hyperpriors
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The prior distribution

n Alternative representation
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n Relation with other popular shrinkage methods
Ø Ridge: ( = 1

Ø Lasso: -" ∼""* ℰ;<21/1=5>4

Ø Lava: -" ∼""* ?ℎ5A=/B ℰ;<21/1=5>4

Ø Horse shoe: -" ∼""* C>4A D>3EℎF

Ø Elastic net: -" ∼""* =0>1GA20H>=521 2A > =031E>=/B I>HH>

n None admits a sparse representation of with positive probability 
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Bayesian interpretation of various shrinkage methods
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Economic applications

n Macro
Ø Forecasting industrial production with many macro predictors
Ø The determinants of economic growth in a cross-section of countries

n Finance
Ø Prediction of the US aggregate equity premium over time
Ø Explaining the cross-section of equity returns across firms

n Micro
Ø Understanding the decline in crime rates in US states during the 1990s
Ø The determinants of government takings of private properties in US judicial 

circuits

n Some references: 
Ø Stock-Watson (2002a and b), Barro-Lee (1994), Sala-i-Martin et al. (2004), Welch-Goyal (2008), 

Freyberger et al. (2017), Donohue-Levitt (2001), Chen-Yeh (2012), Belloni et al. (2011, 2012, 
2014).
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Economic applications

Y X Sample

Macro 1 Growth rate of 
US Industrial Prod.

130 lagged macro and 
financial indicators

659 time-series obs.
Feb. 60-Dec. 14

Macro 2 Countries average 
growth 1960-1985

60 country charact’
socio-econ, inst. 90 cross-section obs.

Finance 1 US equity premium 16 lagged macro and 
financial indicators 

58 time-series obs.
1948-2015

Finance 2 Stock returns of 
US firms

144 dummies 
lagged characts’

≈1400k panel obs. 
Jul. 63–Dec. 15, ≈2k firms

Micro 1 Crime rate 
in US states

285 state characts’
socio-econ, inst., law

476 panel obs. 
Jan. 86–Dec. 97, 48 states

Micro 2 Eminent domain 
judicial decisions

138 judges’ characts’
socio-polit., profess

312 panel obs.
1975-2008, circuits
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! "|$ as a measure of predictive accuracy

n Posterior of q

! "|$ ∝ ! $|" ='
(

)
! *(|*(+,, "

➥ Average log-predictive score

1
/0(

)
log ! *(|*(+,, " = 1

/ 456 ! "|$ + 859:;<9;
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Average log-predictive score, relative to best fitting model
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Patterns of sparsity:
Probability of inclusion of each coefficient 
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Best predictions with mixture of many models

n Some predictors systematically excluded?

n Predictive density implied by “model !”

# $%&' (, ! =+
,
# $%&' (, !,-, . # -, (, !

Ø Mixture of predictive densities of many models
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Exploring the posterior

� Inclusion probability and shrinkage are complements, but imperfect

1. No clear pattern of sparsity
Ø Posterior not concentrated on a single sparse model, but on a wide set

n Predictors rarely systematically excluded
n Model uncertainty is pervasive
n Best predictions not with single model, but mixture of many (BMA)

2. More sparsity emerges only if very tight prior favoring small models

.
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The predictive model
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n Prior

$-|12, 42, 5 ∼
--.
6
/ 0, 1242 with probability 5

0 with probability 1 − 5

n Hyperpriors

5 ∼ ℬ 1, E , F ) GHI J KL

F ) GHI J KLM%
≡ O2 ∼ ℬ 1, 1

Castillo et al. (2015, Annals)



Giannone, Lenza, Primiceri   The i l lusion of sparsity

Patterns of sparsity with a flat prior on !
Probability of inclusion of each coefficient 
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Patterns of sparsity with a tight prior on low !
Probability of inclusion of each coefficient 
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Baseline hyperprior: flat on !
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Alternative hyperprior: tight on low !
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Posterior of !" with a flat and a tight prior on #
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Summing up

� Inclusion probability and shrinkage are complements, but imperfect

1. No clear pattern of sparsity
Ø Posterior not concentrated on a single sparse model, but on a wide set

2. More sparsity emerges only if very tight prior favoring small models

.

The illusion of sparsity
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Probability of inclusion (!) and "#



Giannone, Lenza, Primiceri   The i l lusion of sparsity

Relation between Ridge and PC regression

Ridge regression:     ! = #$ + & $|(), +)~- 0, ()+)/0

➥ PC regression: ! = 12 + & 2|(), +)~- 0, ()+)3

4345 = 678 #5#
9

2 = 3:/)4′$

1 = #43=:/)
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Relation between Ridge and PC regression in macro 1

Ridge on data
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Relation between Ridge and PC regression in macro 1

Ridge on PCA
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Average Log-Predictive Score

Macro 1 Macro 2 (50% lo)

Flat prior on q -1.236 -1.383

Tight prior on q -1.246 -1.442

Tight prior on q (modal) -1.285 -1.495

Post Lasso (5-fold CV) -1.276 -1.564

Post Lasso (10-fold CV) -1.262 -1.630

Post Lasso (20-fold CV) -1.281 -1.628
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Mean Squared Prediction Error

Macro 1 Macro 2 (50% lo)

Flat prior on q 0.756 0.933

Tight prior on q 0.767 1.016

Tight prior on q (modal) 0.809 1.086

Post Lasso (5-fold CV) 0.830 1.182

Post Lasso (10-fold CV) 0.805 1.302

Post Lasso (20-fold CV) 0.840 1.274
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Number of Variables Selected using the whole sample

Macro 1 Macro 2 

Lasso (5-fold CV) 38 5

Lasso (10-fold CV) 16 6

Lasso (20-fold CV) 25 1

Post Lasso (5-fold CV) 8 1

Post Lasso (10-fold CV) 9 1

Post Lasso (20-fold CV) 8 1


