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This Paper

What we do: We propose, compare and evaluate a variety of
machine learning methods for bond returns predictability in a
regression-based context.

Research questions:

— Can machine learning (ML) methods capture predictable
variation in bond excess returns better than benchmark principal
component regressions (PCR)?

— Why is it so? In particular, what features really matter?

— How to disentangle the incremental contribution of ML for the
measurement of bond risk premia? which variables matter?

This is relevant for any application that requires estimates of
expected bond returns: (a) selecting portfolios, (b) evaluating
portfolio performance, (c) risk management, (d) understanding
risk premia, etc...
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We show that Principal Component Analysis (PCA) is outperformed by
both sparse linear models, e.g., ElasticNet, and dense non-linear
models, e.g., shallow and deep neural networks (NN).

PCA « Penalized regressions < NNs

Macro and financial variables through the lens of NNs:

Substantial heterogeneity in the relative importance of predictors;
broadly speaking financial variables (output growth/inflation) matter
for the short-end (long-end) of the yield curve.

Why neural networks work:

The factors extracted from NNs have incremental forecasting power for
the level and slope of the term structure, as well as aggregate economy
activity and nominal variables.
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Identity links current yield to the sum of one-period yields and excess returns

¢
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State variables x; are assumed to have a (see Duffee 2013)

unique effect on the yield curve y,, i.e., ] )
A canonical approach is to assume

x: = f Yy, N) g (+) is linear, s.t.
e.g., x¢: level, slope and curvature. E, (Xrt(+)1) —& +BTXt n ’?TFt
l Ex 1: Cochrane and Piazzesi
(2005), x; is a linear combination
E, (xrer)l) = g(y,; N) of the forward rates.
Ex 2: Ludvigson and Ng (2009),
for some g (+) unknown a priori. F. is a linear combination of a

large panel of macro variables.



Motivation: Why do we need Machine Learning?

POLICY FORUM TECHNOLOGY AND THE ECONOMY

What can machine learning do?

Erik Brynjolfsson'2, Tom Mitchell®
+ See all authors and affiliations

Science 22 Dec 2017:

Vol. 358, Issue 6370, pp. 1530-1534
DOI: 10.1126/science.aap8062

Key criteria for suitable machine learning tasks:

— Learning a function that maps well-defined
inputs to outputs.

— Clear feedback with clearly definable goals
and metrics outputs.

— No need for detailed explanation of how
“decisions” are taken.

learning g (+)

predictive R?

focus is on prediction
and not inference.
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Two benchmark applications of Competing Methodologies:

regression-based forecasting: ]
» Data compression methods

» Forecasting based on forward rates (e.g., PCA and PLS)

(Cochrane and Piazzesi 2005). > Simple and penalized linear

» Forecasting based on a large panel regressions (e.g., Ridge, Lasso,
of macro variables and forward ElasticNet)

rates (Ludvigson and Ng 2009). > Non-linear models (regression

trees, random forests, shallow
) and deep neural networks)
Out-of-sample performance metrics:
» Mean Squared Prediction Error (MSPE) and predictive R?
(see Campbell and Thompson 2007).

» Diebold and Mariano (2002) test for pairwise comparison across models.
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Research Design: Digression on Neural Networks
Recall, for e.g.,
E; (szgi) ) =a+ BTXt

the neural network is just a hierarchical model of the form

Xe=h (Wyzi_1:+ by) (Hidden layer L)
zi 1 p=h_1(Wi_1z;_o:+ bi_1) (Hidden layer L — 1)
z1:=h (Wyy, + by) (Hidden layer 1)
Activation function: Optimization and regularization:
Rectified Linear Unit (ReLU) Stochastic Gradient Descent (SGD)
activation function, i.e., +

Early stopping, batch normalization,
h(z) = max(z,0) model averaging, drop-out.



Research Design: Digression on Neural Networks

Figure: Example of a Neural Network

Hidden Hidden Hidden
Layer 1 Layer 2 Layer 3

Inputs Outputs

o

This figure shows a “deep” neural network which consists of an ouput layer and three
hidden layers. The green circles represent the input variables, that is the cross-section of
yields, macroeconomic variables of both. The purple circles represent the fully connected
hidden nodes. The red circles represent the output variables, that is the bond excess

returns across maturities.



Research Design: Sample Splitting

» We initially divide the sample in three parts: training (85%) +
validation (15%) and testing sample (one-month ahead).

» We recursively refit each machine learning method at each time t.

Test Sample

Time



An Empirical Study of US Treasury Bonds



Bond Return Predictability and the Yield Curve

Table: Out-of-Sample Results with Forward Rates, Short Sample

Mean Squared Prediction Error R2.(%)

R A )
Panel A: PCA, PLS and Autoencoder
PCA (5 components) 269 921 1725 26.17 -415 -31.3 -289 -27.2
PCA (3 components) 264 9.09 17.11 25097 -384 -295 -27.9 -26.2
PLS (5 components) 269 921 1725 26.17 -415 -31.3 -289 -27.2
PLS (3 components) 2.64 9.09 17.09 2598 -38.7 -295 -27.8 -26.2
Autoencoder 256 8.82 16.51 25.05 -347 -25.7 -234 -21.7
Panel B: Simple and Penalized Linear Regressions
OLS 269 9.21 1725 26.17 -415 -31.3 -289 -27.2
Ridge 259 892 1680 2535 -356.8 -27.2 -25.6 -23.2
Lasso 194 695 13.43 20.46 -1.8 1.0 -04 06
Elastic Net 195 7.01 1352 2091 25 00 -11 -16
Panel C: Regression Trees and Neural Networks
Boosted Regression Tree 216 737 1417 21.15 -133 50 59 -28
Random Forests 213 6.99 1261 2058 -121 04 5.7 0.0
NN - 2 layer (5 nodes) 194 645 11.90 17.80 -1.9 81 11.0 135
NN - 2 layer (3 nodes) 182 641 11.79 17.53 43 87 118 1438
NN - 3 layer (5 nodes each) 175 592 1072 1595 79 156 199 225
NN - 3 layer (3 nodes each) 182 6.10 11.36 16.56 46 13.0 151 196
NN - 4 Layer (3 nodes each) 176 597 11.00 16.20 74 150 178 213

NN - 4 Layer (4,3,2 nodes each) 169 591 10.83 16.07 11.0 157 190 219
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Bond Return Predictability and the Yield Curve

Table: Out-of-Sample Results with Forward Rates, Short Sample

Mean Squared Prediction Error R2 (%)

) (3) [©) (5) ) (3) (©) (5)
MXepr  PXegn P e Mgy PXegn  Mepn X

Panel A: PCA, PLS and Autoencoder

PCA (5 components) 269 921 1725 26.17 -415 -31.3 -289 -27.2
PCA (3 components) 264 9.09 17.11 2597 -38.4 -295 -279 -26.2
PLS (5 components) 269 921 1725 26.17 -415 -31.3 -289 -27.2
PLS (3 components) 264 9.09 17.09 2598 -38.7 -295 -278 -26.2
Autoencoder 256 8.82 16.51 25.05 -347 -25.7 -234 -21.7
Panel B: Simple and Penalized Linear Regressions

OLS 269 9.21 17.25 26.17 -415 -31.3 -289 -27.2
Ridge 259 892 16.80 2535 -356.8 -27.2 -25.6 -23.2
Lasso 194 6.95 1343 20.46 -1.8 1.0 -0.4 0.6
Elastic Net 195 7.01 1352 20091 -2.5 0.0 -1.1 -1.6
Panel C: Regression Trees and Neural Networks

Boosted Regression Tree 216 737 1417 21.15 -133 50 59 -28
Random Forests 213  6.99 1261 20.58 -121 04 5.7 0.0
NN - 2 layer (5 nodes) 194 6.45 1190 17.80 -1.9 8.1 11.0 135
NN - 2 layer (3 nodes) 182 641 11.79 17.53 43 87 118 1438
NN - 3 layer (5 nodes each) 175 592 1072 1595 79 156 199 225
NN - 3 layer (3 nodes each) 182 6.10 11.36 16.56 46 13.0 151 196
NN - 4 Layer (3 nodes each) 1.76 597 11.00 16.20 7.4 150 178 213

NN - 4 Layer (4,3,2 nodes each) 1.69 5.91 10.83 16.07 11.0 157 190 219




Bond Return Predictability and the Yield Curve

Table: Out-of-Sample Results with Forward Rates, Long Sample

Mean Squared Prediction Error R2 (%)

) (3) [©) (5) ) (3) (©)
Xey1 t41 el e Xey1 e41 e

rx rx rx ©)
t+1

Panel A: PCA, PLS and Autoencoder

PCA (5 components) 239 8.06 1493 2249 -78.7 -62.3 -482 -38.38
PCA (3 components) 206 6.92 1294 19.26 -54.0 -39.2 -284 -18.8
PLS (5 components) 239 8.06 1493 2249 -78.7 -62.3 -482 -38.8
PLS (3 components) 221 754 1387 20.85 -64.7 -519 -376 -28.6
Autoencoder 201 6.68 1229 18.37 -50.4 -345 -22.0 -133
Panel B: Simple and Penalized Linear Regressions

OoLS 239 8.06 1493 2249 -78.7 -62.3 -482 -38.38
Ridge 215 7.21 1347 20.28 -60.4 -451 -336 -25.1
Lasso 1.34 5.00 10.10 15.97 -0.5 -0.6 -0.2 1.4
Elastic Net 136 504 10.17 16.35 -15  -15 -09 -09
Panel C: Regression Trees and Neural Networks

Boosted Regression Tree 149 528 1059 16.67 -11.4 64 50 -2.8
Random Forests 1.44 471 9.12 13.42 -7.5 5% 9.5 17.2
NN - 2 layer (5 nodes) 149 480 8.99 13.59 -11.3 34 108 16.1
NN - 2 layer (3 nodes) 147 482 9.03 13.56 -101 29 104 163
NN - 3 layer (5 nodes each) 137 458 831 1250 22 78 175 229
NN - 3 layer (3 nodes each) 148 477 875 13.03 -10.7 40 132 196
NN - 4 Layer (3 nodes each) 146 467 855 12.84 -89 6.0 152 208

NN - 4 Layer (4,3,2 nodes each) 1.28 437 821 13.07 4.6 119 186 193




Bond Return Predictability and the Yield Curve

Table: Out-of-Sample Results with Forward Rates, Long Sample

Mean Squared Prediction Error R2.(%)

R A )
Panel A: PCA, PLS and Autoencoder
PCA (5 components) 239 8.06 1493 2249 -78.7 -62.3 -482 -38.38
PCA (3 components) 206 6.92 1294 19.26 -54.0 -39.2 -284 -188
PLS (5 components) 239 8.06 1493 2249 -78.7 -62.3 -482 -38.38
PLS (3 components) 221 754 1387 2085 -64.7 -51.9 -37.6 -28.6
Autoencoder 201 6.68 1229 18.37 -50.4 -345 -22.0 -133
Panel B: Simple and Penalized Linear Regressions
OLS 239 8.06 1493 2249 -78.7 -62.3 -48.2 -38.38
Ridge 215 7.21 13.47 2028 -60.4 -451 -33.6 -25.1
Lasso 134 500 10.10 15.97 -05 -06 -0.2 14
Elastic Net 136 504 10.17 16.35 -15  -15 -09 -09
Panel C: Regression Trees and Neural Networks
Boosted Regression Tree 149 528 1059 16.67 -11.4 64 50 -2.8
Random Forests 1.44 471 9.12 13.42 -7.5 5.2 9.5 17.2
NN - 2 layer (5 nodes) 149 480 899 13.59 -11.3 34 108 161
NN - 2 layer (3 nodes) 147 482 9.03 13.56 -101 29 104 163
NN - 3 layer (5 nodes each) 137 458 831 1250 22 78 175 229
NN - 3 layer (3 nodes each) 148 477 875 13.03 -10.7 40 132 196
NN - 4 Layer (3 nodes each) 146 467 855 12.84 -89 6.0 152 208

NN - 4 Layer (4,3,2 nodes each) 1.28 437 821 13.07 4.6 119 186 193




Bond Return Predictability and the Yield Curve

Summary of the results:
1. Data compression methodologies show similar performances.

2. Sparse linear regressions, e.g., elastic-net, may help improve the
forecasts of bond excess returns.

3. Non-linearity matters: Deep neural networks exploit non-linearities
which are overlooked by using a simple linear combination of yields.

» Deep networks tend to outpeform shallow networks, especially at the
short/medium term of the term structure and more so when the ZLB
binds.



Bond Return Predictability and Macro Variables

Table: OOS Results with Macro Variables and Fwd Rates, Short Sample

Mean Squared Prediction Error R2, (%)

’Xz(+)1 ”X».$+)1 ’Xt(i)l ’Xﬁ)l ’X§+)1 ’XS)l rxt(i)l rxii)l
Panel A: PCA, PLS and Autoencoder
PCA as in LN 1.98 747 15.02 2291 -3.8 -6.5 -123 -113
PLS (macro + fwd rates) 238 881 17.23 26.12 -25.0 -25.6 -28.8 -26.9
Autoencoder + CP factor 211 788 1550 23.17 -10.6 -12.3 -158 -12.6
Panel B: Simple and Penalized Linear Regressions
oLsS 238 877 1747 2716 -25.2 -251 -30.6 -31.9
Ridge (macro + fwd rates) 3.04 1095 21.80 34.62 -59.7 -56.0 -62.9 -68.2
Lasso (macro + fwd rates) 196 723 1391 20.84 27 30 -40 -12
Elastic Net (macro + fwd rates) 196 716 1328 20.11 -28 20 07 23
Panel C: Regression Trees and Neural Networks
Boosted Regression Trees 1.63 554 1124 16.35 144 210 159 206
Random Forests 1.42 4.85 9.52 14.61 25,7 289 288 29.0
NN 2 Layer, ensemble macro and fwd 1.41 5.04 9.41 14.32 257 282 297 304
NN 3 Layer, ensemble macro and fwd 140 4.99 9.39 14.31 266 289 298 305
NN 4 Layer, ensemble macro and fwd 139 502 948 1441 271 284 292 300
NN 2 Layer, groups ensembling and fwd 1.37  5.00 9.52 14.67 278 287 288 287




Bond Return Predictability and Macro Variables

Table: OOS Results with Macro Variables and Fwd Rates, Long Sample

Mean Squared Prediction Error R2,(%)

’Xc(ﬂ ’Xc(ﬂ ’Xt(i)1 rXt(i)l rxﬁ,l ’Xg)l ’Xr(i)l ’Xr(i)l
Panel A: PCA, PLS and Autoencoder
PCA as in LN 146  5.00 9.78 14.79 -9.3 -0.7 29 8.7
PLS (macro + fwd rates) 2.17 670 1250 19.14 -62.5  -348 -240 -18.1
Autoencoder + CP factor 151 537 11.05 17.02 -12.6 -8.1 -9.6 -5.0
Panel B: Simple and Penalized Linear Regressions
OoLS 3.04 10.19 19.76 29.87 -127.2 -105.2 -96.0 -84.3
Ridge (macro + fwd rates) 249 858 16.84 26.67 -85.9 727 -67.1 -64.6
Lasso (macro + fwd rates) 139 5.08 10.01 15.78 -3.8 =22 0.7 2.6
Elastic Net (macro + fwd rates) 1.39 5.00 10.09 16.40 -3.8 -0.7 -0.1 -1.2
Panel C: Regression Trees and Neural Networks
Boosted Regression Trees 151 428 836 1326 -12.8 13.8 171 18.2
Random Forests 126 387 7.24 1317 5.7 22.1 28.1 187
NN 2 Layer, ensemble macro and fwd 1.88 4.94 8.10 11.96 -40.7 0.6 196 262
NN 3 Layer, ensemble macro and fwd 1.17 4.17 7.33 10.94 12.3 13.8 272 325
NN 4 Layer, ensemble macro and fwd 1.04 376 681 10.28 223 22.1 325 36.6
NN 2 Layer, groups ensembling and fwd 1.19 361 6.98 11.05 11.0 27.3 308 318




Bond Return Predictability and Macro Variables
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NN 2 Layer, ensemble macro and fwd 1.88 4.94 8.10 11.96 -40.7 0.6 196 262
NN 3 Layer, ensemble macro and fwd 1.17 4.17 7.33 10.94 12.3 13.8 272 325
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Bond Return Predictability and Macro Variables

Summary of the results:

1. We confirm that macroeconomic variables carry information that is
not contained in the yield curve (Duffee 2011, Joslin et al. 2014).

2. Elastic-net substantially outperforms alternative penalized
regressions such as Lasso and Ridge.

3. Non-linearity matters: both shallow and deep neural networks
outperforms competing strategies, especially for the longer sample.

» For the longer sample the depth of the network matters, whereas for
the short sample shallow and deep networks are almost equivalent.

» Groups ensembling could compensate the depth of the network.

> Separate networks for macro and fwd rates substantially improves
the predictive performance.



Relative Importance of Macroeconomic Variables

It is instructive to understand what variables might drive the
results within the context of neural networks.



Relative Importance of Macroeconomic Variables

It is instructive to understand what variables might drive the
results within the context of neural networks.

We investigate at each time t the marginal

( ) relevance of single variables based on the
8Xrt_|_1 partial derivative of the target variable
ayit o with respect to the sample average of each
Yit=Yi  input.

where ¥; represents the in-sample mean of the input variable i.



Relative Importance of Macroeconomic Variables

It is instructive to understand what variables might drive the
results within the context of neural networks.

We investigate at each time t the marginal

(n) relevance of single variables based on the
Oxr - dertuan -
t+1 partial derivative of the target variable
ayit with respect to the sample average of each

Yit=Yi  input.

where y; represents the in-sample mean of the input variable .

This allows to compute the sensitivity conditional on the network
structure and the average value of the other input variables.



Relative Importance of Macroeconomic Variables

It is instructive to understand what variables might drive the
results within the context of neural networks.

We investigate at each time t the marginal

9 ( ) relevance of single variables based on the
Xrt_|_1 partial derivative of the target variable
ayit R Yvith respect to the sample average of each
Yit=Yi input.

where y; represents the in-sample mean of the input variable .
This allows to compute the sensitivity conditional on the network

structure and the average value of the other input variables.

N.B: Results are averaged throughout the OOS period; benchmark
specification is a deep neural network with four layers.



Relative Importance of Macroeconomic Variables

Figure: Relative Importance Averaged Across Maturities
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This figure shows the relative importance of each input variable obtained from a four-layer neural
network. Variables are labeled according to McCracken and Ng (2016). The results are further
averaged across the bond maturities. The left panel shows the results for the short sample period
from 1964:01 to 2008:12, whereas the right panel shows the results for the long sample period from
1964:01 to 2016:12.
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We further investigate:

1. The maturity-specific effect of macro and financial variables.

2. Both the average and the maturity-specific effect of groups of
predictors.
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Maturity-specific effect:

» Short-end of the curve: S&P
price, term and credit spread
matter more.

» Long-end of the curve: housing
starts and prices matter more.



Relative Importance of Macroeconomic Variables

We further investigate:

1. The maturity-specific effect of macro and financial variables.

2. Both the average and the maturity-specific effect of groups of

predictors.
Maturity-specific effect: Groups of variables:
» Short-end of the curve: S&P » Short-end of the curve: financial
price, term and credit spread variables matter more.

matter more.
» Long-end of the curve:

» Long-end of the curve: housing output&income, consumption
starts and prices matter more. matter more.

Such heterogeneity is confirmed for the short and the long sample.



The Value of Neural Networks
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Forecasting PCs of Yields and Macroeconomic Variables

PCiii120— PCii=by+ b P+ by x; +¢ 31 for i=1,2,3

PC; ¢+ is the ith principal component extracted from the yield curve or
macroeconomic variables.



Forecasting PCs of Yields and Macroeconomic Variables
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PC; + is the ith principal component extracted from the yield curve or
macroeconomic variables.
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Pt = (Pcl,ta PC2,t, PC3,t)
Level, slope and curvature if from yields.

Economic activity, interest rate spreads,
inflation if from macro variables
(see Ludvigson and Ng 2009).
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PC; + is the ith principal component extracted from the yield curve or
macroeconomic variables.

P: = (PCy¢, PGy, PC3,t)/ x; are the factors extracted
from the last hidden layer of a
neural network (either using
Economic activity, interest rate spreads, yields or macro variables).
inflation if from macro variables

(see Ludvigson and Ng 2009).

Level, slope and curvature if from yields.



Forecasting PCs of Yields and Macroeconomic Variables

PCi,t+12 — PC,‘yt = b() + bIPt —+ b;xt + €[7t+1 fOr I = ]., 2,3

PC; + is the ith principal component extracted from the yield curve or
macroeconomic variables.

P = (PCyt, PCot, PCs ) x; are the factgrs extracted
from the last hidden layer of a

Level, slope and curvature if from yields. neural network (either using

Economic activity, interest rate spreads, yields or macro variables).

inflation if from macro variables

(see Ludvigson and Ng 2009). . _ )
Question: What is the incremental

explanatory power (w.r.t. PCs) of
the hidden factors extracted from a
neural network?



Forecasting PCs of Yields

Panel A: Predicting changes in PCs of yields from yields.

Short Sample Long Sample
PC#1 PC#2 PC#3 PC#1 PC#2 PC#3
PCA 16.83 28.08 58.78 11.38 26.38 55.79
NN 2 Layer + PCA = 22.22 29.21 59.23 17.47 30.30 56.57
NN 3 Layer + PCA ~ 23.06 28.78 59.46 19.39 29.26 56.90
NN 4 Layer + PCA  24.82 28.88 59.41 19.54 20.16 56.97

This table reports the in-sample R? (%) of a predictive regression where the dependent variable is
the year-on-year growth rate of the first three principal components extracted from the cross-section
of forward rates. The independent variables are the first three principal components extracted from
the term structure. In addition to the PCA we also compute the in-sample R? obtained by adding
the factors extracted from the same information sets obtained by a set of shallow and deep neural
networks (3 nodes for each layer).



Forecasting PCs of Yields

Panel B: Predicting changes in PCs of yields from macro variables.

Short Sample Long Sample
PC#1 PC#2 PC#3 PC#1 PC#2 PC#3
PCA 15.47 39.61 3.26 6.75 35.84 2.92
NN 2 Layer + PCA 52.00 58.98 16.16 22.94 48.40 11.19
NN 3 Layer + PCA 62.03 57.18 14.05 20.07 44.43 7.34
NN 4 Layer + PCA  55.07 53.19 10.86 22.91 42.72 5.58

This table reports the in-sample R? (%) of a predictive regression where the dependent variable is
the year-on-year growth rate of the first three principal components extracted from the cross-section
of forward rates. The independent variables are the first three principal components extracted from
macroeconomic variables. In addition to the PCA we also compute the in-sample R? obtained by
adding the factors extracted from the same information sets obtained by a set of shallow and deep
neural networks.



Forecasting PCs of Macroeconomic Variables

Panel C: Predicting changes in PCs of macroeconomic variables.

Short Sample Long Sample
PC#1 PC#2 PC#3 PC#1 PC#2 PC#3
PCA 38.97 37.73 52.28 39.20 39.67 50.06
NN 2 Layer + PCA 42.20 47.16 62.63 42.95 45.74 57.46
NN 3 Layer + PCA 40.59 42.87 61.95 40.54 43.56 55.37
NN 4 Layer + PCA  40.18 42.39 60.86 40.42 43.48 56.98

This table reports the in-sample R? (%) of a predictive regression where the dependent variable is
the year-on-year growth rate of the first three principal components extracted from a large panel
of macroeconomic variables. The independent variables are the first three principal components
extracted from macroeconomic variables. In addition to the PCA we also compute the in-sample
R? obtained by adding the factors extracted from the same information sets obtained by a set of

shallow and deep neural networks.



Conclusion

We show that machine learning techniques can
lead to a more accurate out-of-sample forecast
of bond excess returns.

In particular, we provide evidence that the
functional form of the mapping between
current yields, macroeconomic information
and future bond excess returns might not
be linear.

Open issues/next steps:

— Monthly returns in addition to one-year holding period
returns.

— Additional methodologies, e.g., group Lasso, predictive
Lasso, slice-inverse regressions, etc.



