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Monitoring Opportunities and Threats in Real-Time

* Opportunities and Threats — from geo-political to economic, finance to climate
* Risk perspectives — multiple stakeholders from different departments are involved

* Mass movements — people are interested to monitor large shifts in prices, behavioral
fluctuations, social and economic trends

* Monitoring Technologies — Al is transforming how business is done but little application
to complex dynamic systems and policy-making has not yet been deployed

* Executive Decision-Making — Executives need applications to help them make informed-
decisions about their investments and policy moves



Data-driven identification of Opportunities and Threats
Cross Sector Risk Domains and Impacts

Geopolitics .
opportunities: defense negotiations, trade agreements
threats: terror attacks, revolutions, protests

Economics
opportunities: fast economic growth, decrease in public debt, job growth
threats: financial crisis, economic contraction, rising unemployment

Finance
opportunities: stock index or ticker growth, stable EXR, bitcoin price growth
threats: stock market crash, exchange rate instability, cryptocurrency crash



Methods

. CIusteri_ngr_ . - - -
Dynamic Time Warping, Hierarchical Clustering, K-means, t-SNE, MDS, UMAP

. ConvertinF Time-Series to Class Labels
Z-threshold peak detection algorithm, Bayesian change-point detection,

 Classification
Naive Bayes Classifier, Support Vector Machines (SVMs), Convolutional Neural Networks (CNNs)

* Time-Series Sequence Prediction
ARMA, ARIMA, VAR, Kalman Filter, Particle Filter, Recurrent Neural Networks (RNNs), Long-Short
Term Memory (LSTM)

e Uncertainty Quantification (UQ)
MVE, Bootstrap, Bayesian, MC Dropout, MQ-RNN, Tilt Loss Function



Difference between Dynamic Time Warping (DTW)
distance and Euclidean distance

(green lines represent mapping between points of time series Tand S ).
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Hierarchical Clustering Analysis (HCA)

HCA example for
macroeconomic variables, USA

Industrial Production, constant 2010 USS, seas. adj.(t-1) ]

Imports Merchandis, Customs, constant 2010 LSS, millions, seas. adj. (-1}

(GDP at market prices, constant 2010 USS, millions, seas. ad). (1)

Exparts Merchandise, Customs, constant 2010 USS, millions, seas. adj.(t-1) ]
CPI Price, seas. ad)..(t-1)

Real Effective Exchange Rate (t-1)

Nominal Effecive Exchange Rate (t-1)

Stock Markets, USS.(t-1)

Unemployment Rate, seas. adj. (t-1)
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Shallow learning

Deep learning

Supervised Learning

Unsupervised Learning

LASSO, Ridge,
KNN, Spline,
XGBoost

Logistic, SVM,
Random Forest,
Hidden Markov

Dynamic Time
Warp, K-means,
Hierarchial
Clustering,
Spectral
Clustering

PCA, ICA, NMF

Multilayer Perceptron (MLP)
Convolutional Neural Networks (CNN)
Recurrent Neural Networks (RNN)
Long-Short Term Memory (LSTM)
Restricted Boltzmann Machine (RBM)

Reinforcement Learning (RL)
Generative Adversarial Networks (GANs)

STACKS

Multilayer Perceptron (MLP)
Convolutional Neural Networks (CNN)
Recurrent Neural Networks (RNN)
Long-Short Term Memory (LSTM)
Bi-Directional LSTM (BLSTM)

Gated Recurrent Unit (GRU)

Restricted Boltzmann Machine (RBM)
Reinforcement Learning (RL)

Generative Adversarial Networks (GANs)




Database

3d Database Abstraction of entity, time, and features
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20000

15000

10000

Volume ($ bn)

Bitcoin Price ($)

Long-Short Term Memory Neural Network

|

® ©
|

—

A E; A

3) ®

The repeating module in an LSTM contains four toyer Opsation)  TTaneler

interacting layers.

Source: Cohl Blog 2015.

é 0O — > <

Neural Network Pointwise Vector Concatenats Copy

Sign Denotation in LSTM RNN

Simple example of LSTM in bitcoin price prediction

Raw Bitcoin Closing Dat Price data

N
N
/.1-/
4‘/‘«/“’\«/
ool g0
Jan 2016 Jul 2016 Jan 2017 Jul 2017 Jan 2018
1400
1300
1200
Training Set 1100 /!
Training Set: Single Timepoint Pred 8
2500
Actual MaE: /0211
Predicted
2000 I
1500 | /
W%
1000 / f
P e
Pl
50071 s

Jan 2016 May 2016 Sep 2016 Jan 2017 May 2017

Bitcoin Price ($)

Split in Training and Test Set

0050
Training
1500 Test
15000
% uso0
g
£ 10000
£ 7500
®
5000
200
0 |
Jon 3016 i 2016 Jon 30 )4 201 jon 2018
Test Set
Test Set: Single Timepoint Prediction
— Actual
20 . MAR|0.0475
Predicted
17500

12500

10000 /

M

15000 Vv \ [\r /[\H
, \

Wiyt

w00 X o

Ao
PRI
" W

%00 N

Jun 01 2017 jul 01 2017 Aug 01 2017 Sep 01 2017 Oct 01 2017 Nov 01 2017Dec 01 2017 jan 01 2018 Feb 01 2018

11



Research Objectives

e Structure Domain Logic for Training Data: Use unsupervised machine learning models to
build training data

* Establish the proposed model framework in context of multi-variate time-series
sequence prediction problem for domains of interest

 Establish in which cases proposed model framework works better than others

* Try to go beyond Black Box and provide examples to assess viability of proposed model
framework through:
- Uncertainty Quantification (UQ)
- Benchmark Assess Model Reliability (MR)
- Simulations/External Shocks
- Alert System



Proposed Model Framework

Ground Truth Extraction

Domain Knowledge

Ensemble Sequence Learning

Complex Behavior Mapping

Structured Output

Ingestion of data from multiple information sources

Algorithmic processing of data: Entropy (Geoplitical),
Economic Complexity, growth rates (Economics),
Sharpe Ratio, Vortex, VIX (Finance)

Clustering System (Knowledge Abstraction Layer)

Prediction System (Sequence Learning Gate)
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Preprocessing Domain Knowledge and

Structured Logic Approachto T

FINANCE TRAINING SETS

Stock Price

Technical Similar
Features Companies

Similar Global and
Macro Features

ECONOMIC AND GEOPOLITICAL TRAINING SETS

Country
Measure

Technical Similar
Features Countries

Similar Country
Features

ralning Groups



Processing Domain Knowledge

Take given input data stream, using domain-specific methods can be extremely valuable to
extract many new features, for example

* Macroeconomics: Economic Diversification Measures, Production Sophistication Measures,
Income Inequality, etc.

* Geopolitics: Tone, Volume, Goldstein Score, etc.

* Finance: Technical Features (30+), Similar Indices, Economic Foundations, Sentiments



Sequence Learning Pre

Knowledge Abstraction

post-processed

data with domain
knowledge

Sequence Learning Gate
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Go Beyond Black Box to Provide Structure

Output

Control Experimental
Group Group

Time-Series
Output
Forecast

Ensemble
LSTM

Entity E2
or
Domain D2

|

|

Ensembling

Monte Carlo
Simulations (MCS)

Time Label
Assignment (TLA)

~~

Uncertainty
Quantificaiton (UQ)

Output

Structured
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Monte Carlo Simulation (MCS) for a more
controlled-environment for stress-testing

Control Experimental
Group Group
Simulated training data
obtained from a different
prediction model for
another variable
Prediction based Prediction based
on ground-truth on simulated

training data training data



Uncertainty Quantification

Mean Variance Estimation

Bootstrap

Bayesian Methods
MC Dropout method

MQ-RNN

Pinball Loss Function

Papers

Methods

Summary

Gal, Y. and Z. Ghahramani,
2015;

Gal, Y. and Z. Ghahramani,
201643;

Gal, Y. and Z. Ghahramani,
2016b;

Gal,Y, 2016

Combining modern deep
learning and Bayesian
techniques for uncertainty
quantification, variational
inference, MC Dropout asa
Bayesian approximator

Bayesian method is
computationally expensive, but
MC dropout framework can
estimated for almost free to
obtain prediction intervals

Wen, Torkkola,
Narayanaswamy, 2017

Multi-horizon Quantile
Recurrent Forecaster
(MQ-RNN), large-scale time-
series forecasting at Amazon

Nonparametric nature of Quantile
Regression and the efficiency of
Direct Multi-Horizon Forecasting is
scalable but computationally
expensive in network framework

Khosravi et al. 2014

Delta, Classical, MVE, Bootstrap,
Bayesian methods comparisons,
Genetic

Algorithm for ensembling
various UQ methods

Comprehensive reviewand
comparison, ensemble method is
promising and important for
system architecture UQ
modularity

Solimum 2014

Empirical comparison of
Classical, Bayesian and
Bootstrap methodsfor UQ

Bootstrap method hasthe
smallest width confidence
interval, thereby more precise
than Bayesian and Classical
methods

Zhu, L., and N. Laptev,
2017

Deep and Confident Prediction
for Time Series at Uber, real-
time anomaly detection across
millions of metrics, Bayesian
deep LSTM for time-series
prediction and uncertainty

Computationally expensive and
useful for anomaly detection,
method is essentially the same as
Gal 2015, Gal and Ghahramani
2016, however,a computationally
intensive encoder-decoder neural
network framework

Abeywardana
and Ramos 2015

Quantile Regression Loss
Function application MLP, our
application appliesto RNN and
LSTMs

Non-parametric method of
inferring quantiles and derivation
a novel Variational Bayesian (VB)
approximation to the marginal
likelihood, similar to Gal 2015, Gal
and Ghahramani 2016, however
using a tilt (pinball) loss function,
easier implementation




Clustering and Prediction System for Stock
Price data
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Input

Abstraction of Ensemble Prediction Model
Framework

Domain Knowledge and
Knowledge Abstraction

Ensemble Sequence Learning

declare the prediction problem

Algorithmic processing of data:
Clustering System (Knowledge
Abstraction Layer)

Prediction System (Sequence Learning Gate)
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Applying DTW and then Hierarchical

Clustering

Calculate DTW distances for Sharpe Ratio of
each ticker over 500 days

Make a Matrix of obtained DTW Distance

Based on the DTW matrix obtained apply
Hierarchical Clustering with linkage=‘ward’

Here, using distance correlation matrix we
create a cluster heat map
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Cluster 2, 4, and 5 for selected companies,
stock tickers are identified

Cluster 2:

208 210 2 24 218
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Hierarchical Clust
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Incorporating different models

LSTM Long-Short Term Memory

Bi directional LSTM Bi-directional LSTM

GRADIENT BOOSING REGRESSOR Gradient boosting regressors are a type
of inductively generated tree ensemble
model. At each step, a new tree is
trained against the negative gradient of
the loss function, which is analogous to
(or identical to, in the case of least-
squares error) the residual error.

ENSEMBLE Ensemble learning is the process by
which multiple models, such as
classifiers or experts, are strategically
generated and combined to solve a
particular computational intelligence
problem.
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TEST: RNN PREDICTIONS
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Ensembling
different models

Wealth Generated, S&P500

Test Data

--- XGBR Pred
== LSTM Pred
== RNN Pred

== RNN + CNN Pred

==~ Bidirectional RNN LSTM
— Real Value

075

Model Parameters and Performance Summary
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RNN [256 |2 | 0.0201327350773 | 0.912609408797
RNN+CNN 256 k] 0.0387413479889 0.738036205928
GRU 256 |2 | 0.0374665681995 | 0.912609408797
Gradient learning rate: 0.1, max_depth: 6, 0.0486210309978 -
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Hyper-parameter tuning
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Investment Strategy Based Wealth Balance

MODEL Dataset BALANCE (After 100
Days)

LST™M SHARPERATIO 10550.840

Gradient Boosting Regressor Technical Indicators | 13140.57

LST™M Technical Indicators 14968.01

RNN Technical Indicators | 1411171

LST™M SP500 Cluster 13745.5

ENSEMBLE 1 (LSTM+XGBR) SP500 Cluster | 14072.96

ENSEMBLE 2 (ENSEMBLE 1 + Technical Indicators, SP 14151.22

LST™) 500 Cluster
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S&P500
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GBP/USD Exchange Rate Example

Im 6m all

35

day 2017  Jul 2017 Sep 2017

GBP/USD Exchange Rate

Nov 2017

Jan 2018

Mar 2018

May 2018

Jul 2018

Sep 2018

Nov 2018

Bot 1

2018-11-22 02:20 AM UTC
95% Confidence Higher Bound

95% Confidence Lower Bound

Bot 2

2018-11-22 02:20 AM UTC
95% Confidence Higher Bound

95% Confidence Lower Bound

Bot 3
2018-11-22 02:20 AM UTC

1.2931
0.0151 (1.1668%) +
1.5301
1.0561

1.2875
0.0095 (0.7394%) +
1.4849
1.0901

1.2724
-0.0056 (0.4425%) *
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Benchmarking

Reliabi

Model Reliabili
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Simulation table to develop trust:
which model to trust?

Date Close actual_change Botl_change Bot2_change Bot3_change
2018-09-15 1.3076
17:03:00
2018-09-16 1.3149
17:03:00
2018-09-17 1.3164
17:03:00
2018-09-18 1.3138
17:03:00
2018-09-19 1.3271
17:03:00
2018-09-20 1.3067
17:03:00
2018-09-22 1.3077
name Direction % average change
Bot 1 50 0.0042
Bot 2 58 -0.0032
Bot 3 82 -0.002




Monitoring multiple assets
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Research Contributions

* Promising new application of deep learning to new domains of financial
time series predictions

* Structured logic approach for training data in complex environments

* The novel controlled experiment scenario for neural networks, provided
new ideas to go beyond just black box — Ensembling, Model Reliability
Matrix (MRM), Uncertainty Quantification (UQ), Simulation Tables

* Risk Management Framework: Application of foresight monitoring
technologies i.e. integrating of predictions from different domains and
time-horizons



Future Research

* Wider testing of models and benchmarking model reliability across
domains; automation of hyper-parameter tuning

* Deeper Ensembling techniques with probabilistic and parametric
model integration, Causal reasoning; Alert Systems

* Developing standards for data reliability and big data architecture in
these domains

* Human Centered Al: Psychology, Cognition, Visualizations, how
decision-makers react to forecasts



Conclusions

* Proposed model framework has proven to be scalable across domains

e Uncertainty Quantification and accuracy benchmarking is helpful to
bring transparency

e Use cases for informing daily forecast monitor for risk management
for trading, policy and mega-project investments

* Applications for geo-politics monitor, macro-and-micro economy —
scalability to apply high-and-low frequency data



Thank you!
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