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this paper

I This paper contributes to the literature on nowcasting
economic activity

I We propose a bayesian dynamic factor model (DFM), which
takes seriously the features of the data:

1. Low-frequency variation in the mean and variance

2. Heterogeneous responses to common shocks (lead-lags)

3. Outlier observations and fat tails

4. Endogenous modeling of seasonality (not today)

I We evaluate the performance of the model and its new
features in a comprehensive out-of-sample evaluation exercise
using fully real-time, unrevised data for a number of countries

I The project builds on our earlier work: Antolin-Diaz, Drechsel,
and Petrella (2017 ReStat)



preview of results

I The real-time nowcasting performance is substantially
improved across a variety of metrics (point and density)

1. Capturing trends and SV improves nowcasting performance
significantly across countries

2. Heterogeneous dynamics deliver substantial additional
improvement

3. Fat tails:

I Successfully capture outlier observations in an automated way
I Improve density forecasts of the monthly variables

I Today’s talk will present a selection of results



the model



the model
specification of baseline model

We start from the familiar specification of a DFM
(see, e.g. Giannone, Reichlin, and Small, 2008 and Banbura,
Giannone, and Reichlin, 2010)

Consider an n-dimensional vector of quarterly and monthly
observables yt, which follows

∆(yt) = c + λft + ut (1)

(I − Φ(L))ft = εt (2)

(1− ρi(L))ui,t = ηi,t, i = 1, . . . , n (3)

εt
iid∼ N(0,Σε) (4)

ηi,t
iid∼ N(0, σ2

ηi), i = 1, . . . , n (5)



the model
why explicitly model low frequency variation? the us case
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the model
specification of trend

Consider n-dimensional vector of observables yt, which follows

∆(yt) = ct + λft + ut, (6)

with

ct =

[
B 0
0 c

] [
at
1

]
, (7)

and

(I − Φ(L))ft = εt, (8)

(1− ρi(L))ui,t = ηi,t, i = 1, . . . , n (9)



the model
why model changes in volatility? the us case
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I SV in the common factor captures both secular (McConnell
and Perez-Quiros, 2000) and cyclical (Jurado et al., 2014)
movements in volatility.

The UK case



the model
specification of sv

Consider n-dimensional vector of observables yt, which follows

∆(yt) = ct + λft + ut, (10)

with

ct =

[
B 0
0 c

] [
at
1

]
, (11)

and

(I − Φ(L))ft = σεtεt, (12)

(1− ρi(L))ui,t = σηi,tηi,t, i = 1, . . . , n (13)

where the time-varying parameters will be specified as a random
walk processes. TVP processes



the model
why allow for heterogeneous dynamics?
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the model
specification of heterogeneous dynamics

∆(yt) = ct + Λ(L)ft + ut, (14)

where Λ(L) contains the loadings on the contemporaneous and
lagged common factors.

I Camacho and Perez-Quiros (2010) first noticed that survey
data was better aligned with a distributed lag of GDP.

I D’Agostino et al. (2015) show that adding lags improves
performance in the context of a small model.



the model
what do the heterogeneous dynamics achieve?
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the model
why model fat tails?
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the model
specification

∆(yt − ot) = ct + Λ(L)ft + ut, (15)

where the elements of ot follow t-distributions:

oi,t
iid∼ tνi(0, ω2

o,i), i = 1, . . . , n (16)



the model
specification of outliers

The laws of motion of the various components are specified as

(I − Φ(L))ft = σεtεt, (17)

(1− ρi(L))ui,t = σηi,tηi,t, i = 1, . . . , n (18)

ηi,t
iid∼ N(0, 1), i = 1, . . . , n (19)

εt
iid∼ N(0, I) (20)

oi,t
iid∼ tνi(0, ω

2
o,i), i = 1, . . . , n (21)

The degrees of freedom of the t-distributions, νi, are estimated
jointly with the other parameters of the model.



the model
news decompositions
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the model
what do the fat tails achieve?
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estimation



estimation
data sets

I For each country, we construct a data set comprising quarterly
and monthly time series.

I We use both hard and soft indicators and the choice is guided
by timeliness and coincidence with GDP. We use only
indicators of real economic activity, excluding prices and
financial variables.

I In each economic category we include series at the highest
level of aggregation.

I For the US case, for example, this results in a panel of 28
series. For the UK we use 18 series.



estimation
model settings and priors

I Our methods are Bayesian

I We use conservative priors that shrink the model towards the
benchmark

I This has the appeal that we can let the data speak about to
what extent the additional components are required

More details



estimation
overview of algorithm

I Mixed frequency: Model is specified at monthly frequency.
Observed growth rates of quarterly variables are related to the
unobserved monthly growth rate using a weighted mean (see
Mariano and Murasawa, 2003)

I We use a hierarchical implementation of a Gibbs Sampler
algorithm (Moench, Ng, and Potter, 2013) which iterates
between a small DFM on the outlier adjusted data and the
univariate measurement equations. This leads to large
computational gains due to parallelisation of this step.

I SVs are sampled following Kim et al. (1998), the Student-t
component is sampled following Jacquier et al. (2004).

I Vectorized implementation of the Kalman filter



real-time out of sample evaluation



real-time out of sample evaluation
details of data base construction

I We construct a real-time data base for the US and other G7
countries: Germany, France, Italy, Canada, UK, and Japan

I For each vintage, sample start is Jan 1960, appending missing
observations to any series which starts after that date

I Sources: (1) ALFRED, (2) OECD Original Release and
Revisions Data

I Use appropriate deflators for nominal-only vintages

I Splice data for series with methodological changes

I Apply seasonal adjustment in real time for survey data



real-time out of sample evaluation
implementation of the exercise

I The model is fully re-estimated every time new data is
released/revised.

I The out of sample exercise starts in January 2000 and ends in
December 2015. For the US, on average there is a data
release on 15 different dates every month. This means 2744
vintages of data.

I Thanks to efficient implementation of the code, it takes just
20 min to run 8000 iterations of the Gibbs sampler on a single
computer. But this would mean 5 months of computations for
just one country!

I Made feasible by using Amazon Web Services cloud
computing platform.



selected evaluation results



evaluation results
what we show

I In the following slides, we compare four models

1. Baseline DFM
2. Trend + SV
3. Trend + SV + heterogeneous dynamics
4. Trend + SV + heterogeneous dynamics + fat tails

I We will consider the following metrics

1. Point forecasts: Root mean squared error (RMSE) and mean
absolute error (MAE)

2. Density forecasts: Continuous rank probability score (CRPS)
and log score

I Results are shown for US, UK, France GDP (third estimate)



evaluation results
forecasts vs. actual over time (us)

GDP : Model forecasts vs realizations, day before release
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I The addition of the long run trend eliminates the upward bias
in GDP forecasts after the crisis...



evaluation results
forecasts vs. actual over time (uk)

GDP: Model forecasts vs realizations, day before release
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I Stochastic Volatility makes a HUGE difference for density
forecasting.



evaluation results
forecasts vs. actual over time (france)

GDP : Model forecasts vs realizations, day before release
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evaluation results
forecasts vs. actual over time (us)

GDP : Model forecasts vs realizations, day before release
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I Heterogeneous dynamics capture recoveries more accurately



evaluation results
forecasts vs. actual over time (france)

GDP : Model forecasts vs realizations, day before release
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I Heterogeneous dynamics capture recoveries more accurately



results: point forecasting (usa)
gdp: rmse across horizons
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Note: Results with MAE very similar.



results: point forecasting (usa)
gdp: rmse over time
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Note: Results with MAE very similar.



results: point forecasting (uk)
gdp: mae across horizons
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results: point forecasting (france)
gdp: rmse across horizons
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results: density forecasting (usa)
gdp: crps across horizons
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results: density forecasting (uk)
gdp: crps across horizons
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results: density forecasting (france)
gdp: crps across horizons

-180 -150 -120  -90  -60  -30    0

NowcastForecast Backcast

0.6

0.8

1

1.2

1.4

1.6

Baseline Trend + SV Lags Fat tails



results
forecasts of monthly indicators (30 days before release)

RMSE LogScore CRPS

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3

INDPRO 0.54 1 0.99 0.99 -0.85 -0.27 -0.15 0.06*** 0.3 1 0.99 0.98
NEWORDERS 2.98 1 0.98*** 1 -2.73 0.19*** 0.21*** 0.15*** 1.82 0.92*** 0.9*** 0.93***
CARSALES 7.13 1 1 1 -3.54 -0.28 0.16 0.24** 3.73 1 1.01 0.99
INCOME 0.83 1 1 1 -2.04 0.2 1* -0.36 0.37 0.98 0.97 0.93***
RETAILSALES 0.98 1 0.99 0.98 -2.09 -2.56 -2.23 0.9 0.5 0.94*** 0.94*** 0.92***
EXPORTS 2.48 0.99 0.99 0.99 -2.63 0.25*** 0.25*** 0.28*** 1.6 0.88*** 0.89*** 0.88***
IMPORTS 2.57 1 1.01 1.02 -2.64 0.22*** 0.2*** 0.24*** 1.63 0.89*** 0.91*** 0.9***
PERMIT 5.89 1 1.01 1.01 -3.2 -0.01 -0.01 -0.01 3.32 1 1.01 1.01
HOUSINGSTARTS 8.18 1 1 1 -3.52 0.03 0.02 0.01 4.58 0.99 1 1
NEWHOMESALES 8.38 1 1.01 1.01 -3.63 0.05 0.05 0.08 4.62 1.01 1.01 1.01
PAYROLL 0.12 0.95*** 0.88*** 0.83*** 0.64 0.23*** 0.26*** 0.26*** 0.07 0.89*** 0.84*** 0.8***
EMPLOYMENT 0.26 1 0.99* 0.99* -0.06 -0.14 -0.05 -0.02 0.14 1 0.99 0.99
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results: daily tracking of economic activity
the t distribution leads more stable factor
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conclusion



conclusion

I We propose a bayesian DFM, which incorporates:

1. Low-frequency variation in the mean and variance

2. Heterogeneous responses to common shocks

3. Outlier observations and fat tails

I The real-time nowcasting performance is substantially
improved across a variety of metrics

I Overall, we provide a thorough assessment of novel model
features for the nowcasting process across many countries and
variables, and demonstrate how they contribute to improving
point and density nowcasts in real time.
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dynamic vs. static factors
an alternative benchmark?

I A dynamic factor model (with 1 lag and 1 factor) can be
always rewritten as a static factor model (with 2 static
factors, with a rank restriction on the variance of the
transition equation).

I So the question is: How close to rank deficient is the static
factor representation?

I To answer this question we look at the relative size of the
eigenvalues of the variance in the transition equation of the
(unrestricted) static factor representation of the model (a)
using real data and (b) from data simulated from a (s=1,
r=1) dynamic factor model (with parameters chosen so as to
be in line with the estimation of our model).



dynamic vs. static factors
an alternative benchmark?

I Two static factors:[
F 1
t

F 2
t

]
=

[
φ11 φ12

φ21 φ22

] [
F 1
t−1

F 2
t−1

]
+

[
ε1,t
ε2,t

]
,

I One Dynamic factor:[
ft
ft−1

]
=

[
φ11 φ12

1 0

] [
ft−1

ft−2

]
+

[
1
0

]
ηt,

I The latter specification implies 2 static factors representation,
with a reduced rank covariance matrix restriction on the
shocks εt

I A static factor model can always be rotated into a dynamic
factor provided that the rank restriction is satisfied.



which specification is preferred by the data?
evidence that single dynamic factor is preferred
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the model
why explicitly model low frequency variation? the uk case
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the model
why model changes in volatility? the uk case
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the model
specification

The model’s time-varying parameters are specified to follow
driftless random walks:

aj,t = aj,t−1 + vaj,t , vaj,t
iid∼ N(0, ω2

a,j) j = 1, . . . , r

log σεt = log σεt−1 + vε,t, vε,t
iid∼ N(0, ω2

ε)

log σηi,t = log σηi,t−1 + vηi,t , vηi,t
iid∼ N(0, ω2

η,i) i = 1, . . . , n

Back to main slides



the model
news decompositions

Banbura and Modugno (2014) show in a Gaussian model that the
impact of a new release on the nowcasts can be written as a linear
function of the news:

E(yk,tk|Ω2)− E(yk,tk|Ω1) = wj (yj,tj − E(yj,tj |Ω))

wj =
ΛkE

(
(ftk − ftk|Ω)(ftj − ftjΩ)

)
Λ′j

ΛjE
(

(ftj − ftj |Ω)(ftj − ftjΩ)
)

Λ′j + σ2
ηj,tj

Back to main slides



the model
news decompositions

We show that with the Student-t distribution the weights are no
longer linear, but depend on the value of the forecast error itself:

E(yk,tk|Ω2)− E(yk,tk|Ω1) = wj(yj,tj) (yj,tj − E(yj,tj |Ω))

wj(yj,tj) =
ΛkE

(
(ftk−ftk|Ω)(ftj−ftjΩ)

)
Λ′j

ΛjE
(

(ftj−ftj |Ω)(ftj−ftjΩ)
)

Λ′j+σ
2
ηj,tj

δj,tj

δj,tj = (((yj,tj − E(yj,tj |Ω))2/σ2
ηj,tj + vo,j)/(vo,i + 1)

Large errors are discounted as outlier observations containing less
information.
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estimation
details on model settings and priors (1/2)

I Number of lags in polynomials Λ(L), φ(L), and ρ(L): Set to
m = 1, p = 2, and q = 2

I “Minnesota”-style priors applied to coefficients in Λ(L), φ(L)
and ρi(L).

I Variance on priors set to τ
h2 , where τ governs tightness of

prior, and h ranges over lag numbers 1 : p, 1 : q, 1 : m+ 1.

I Following D’Agostino et al. (2015), we set τ = 0.2, a value
which is standard in the Bayesian VAR literature.

I Shrink ω2
a, ω2

ε and ω2
η,i towards zero (standard DFM). For ω2

a

set IG prior with one d.f. and scale 1e-3. For ω2
ε and ω2

η,i set
IG prior with one d.f. and scale 1e-4 (see Primiceri, 2005).
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estimation
details on model settings and priors (2/2)

I For AR coefficients of factor dynamics, φ(L), prior mean is set
to 0.9 for first lag, and zero in subsequent lags. Reflects a
belief that factor captures highly persistent but stationary
business cycle process.

I For factor loadings, Λ(L), prior mean is set to 1 for first lag,
and zero in subsequent lags. Shrinks model towards factor
being the cross-sectional average, see D’Agostino et al.
(2015).

I For AR coefficients of idiosyncratic components, ρi(L) prior is
set to zero for all lags, shrinking model towards no serial
correlation in ui,t.
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additional evaluation results for usa,
uk and france



results: point forecasting (usa)
gdp: mae across horizons
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results: point forecasting (usa)
gdp: log score across horizons
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evaluation results
forecasts vs. actual over time (uk)

GDP : Model forecasts vs realizations, day before release
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results: density forecasting (uk)
gdp: log score across horizons
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results: point forecasting (france)
gdp: mae across horizons
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results: density forecasting (france)
gdp: log score across horizons
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evaluation results for other
countries



results
forecasts vs. actual over time (canada)

GDP: Model forecasts vs realizations, day before release
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results: point forecasting (canada)
gdp: rmse across horizons
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results: point forecasting (canada)
gdp: mae across horizons
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results: density forecasting (canada)
gdp: log score across horizons
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results: point forecasting (canada)
gdp: crps across horizons
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evaluation results
forecasts vs. actual over time (germany)

GDP: Model forecasts vs realizations, day before release
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results: point forecasting (germany)
gdp: rmse across horizons
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results: point forecasting (germany)
gdp: mae across horizons
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results: density forecasting (germany)
gdp: log score across horizons
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results: density forecasting (germany)
gdp: crps across horizons
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evaluation results
forecasts vs. actual over time (italy)

GDP: Model forecasts vs realizations, day before release
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results: point forecasting (italy)
gdp: rmse across horizons
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results: point forecasting (italy)
gdp: mae across horizons
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results: density forecasting (italy)
gdp: log score across horizons
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results: density forecasting (italy)
gdp: crps across horizons
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evaluation results
forecasts vs. actual over time (japan)

GDP: Model forecasts vs realizations, day before release
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results: point forecasting (japan)
gdp: rmse across horizons
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results: point forecasting (japan)
gdp: mae across horizons
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results: density forecasting (japan)
gdp: log score across horizons
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results: density forecasting (japan)
gdp: crps across horizons
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