Combining Survey Long-Run Forecasts and Nowcasts with BVAR Forecasts using Relative Entropy<sup>1</sup>

> Ellis W. Tallman Federal Reserve Bank of Cleveland

Saeed Zaman Federal Reserve Bank of Cleveland University of Strathclyde

2nd Conference on Forecasting at Central Banks

ELE NOR

Disclaimer: The views expressed herein are those of the authors and do not necessarily reflect those of the Federal Reserve Bank of Cleveland or of the Federal Reserve System.

ELE DOG

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

### Introduction

- VARs are popular tools for forecasting; produce accurate forecasts
- Banbura, Giannone, and Reichlin (2010) showed large VARs work ok
  - Resurgence in use of VARs for forecasting and policy analysis
- Fancier VARs: time-varying parameters, regime switching
  - Good forecasting properties but not necessarily better
    - Competitive to fixed-parameter VARs est.1985+ sample e.g. Aastveit, Carriero, Clark, and Marcellino, 2017
    - Outperforms simple VARs est. 1960+ for inflation and interest rates; mixed-evidence for real variables
       e.g. D'Agostino, Gambetti, and Giannone, 2013; Barnett, Mumtaz, and Theodoridis. 2014: Aastveit et al. 2014
  - Additional computational demands and complexity
- Constant parameter VARs remain popular for forecasting

(日) (同) (三) (三) (三) (○) (○)

# Introduction

- Unrestricted long-run forecasts converge to ergodic mean of sample
  - Problematic as at times ergodic mean overlooks external forces (e.g. inflation target; demographic factors) that informs economists' view
  - Poses communication challenge for Monetary Policy, e.g. inflation 3-year out 3.5% from a model estimated with 1960+ data
- Beyond 4 quarters, forecasts increasingly influenced by model's implied steady-state (Clements and Hendry, 1999; Clark and McCracken, 2008)
  - Inflation forecasts 1 to 3 years out likely biased upwards
  - Why not then estimate using a shorter sample that provides more reasonable trend forecast? One possible route
- Some may prefer longer-sample when interest in **forecasts of multiple** variables using a single multivariate model
  - Recent popular papers on VAR (e.g. Banbura et al, 2010; Koop, 2013; Carriero et al, 2015) all focused on longer sample

## Introduction

- Survey Long-horizon projections reasonable proxy for underlying trends, such as potential growth, natural rate of unemployment, r-star (e.g. Faust and Wright, 2013)
  - adjust more rapidly in response to changes in underlying fundamentals such as demographic factors not featured in VARs
  - knowledge of inflation target, central bank communications

ELE SQA

# In this paper

- Propose a systematic approach to influence forecasts of implied trends from VAR models to values informed from external surveys
- Utilize the technique of relative entropy
  - To tilt the long-horizon VAR forecast of **select** variables towards the long-horizon survey expectations
  - fixed-parameter VARs (short and long sample) and time-Varying VAR
  - Survey of Professional Forecasters (SPF) as it is publicly available
- Implications on forecast accuracy of **all** VAR variables over forecast horizon of interest to monetary policy makers (i.e. 1 to 12 quarters)
- Previous research highlights role of nowcasts to improve multi-horizon forecast accuracy (Kruger et al. 2017; Knotek and Zaman, 2017)
  - also tilt VAR one-quarter ahead forecasts to survey nowcasts

# Preview of results

- Improvements in forecast accuracy of VAR forecasts tilted to survey long-run forecasts and nowcasts (hybrid forecast)
  - All models benefit; gains largest for fixed-parameter VAR est. with longer sample and smallest for time-varying VAR
- Time-Varying VAR: significant gains for inflation but small for others
- Constant parameter VAR with longer sample
  - Notable improvements for many variables with biggest gains for price inflation, wage inflation, and interest rates
  - Forecast accuracy for inflation competitive to univariate benchmarks
  - And rivals forecast accuracy from time-varying VAR
- These gains are made possible because our proposal mitigate misspecification issues arising from structural breaks

# Related Research

- Incorporating Survey Long-Run Projections into VAR models
  - Wright (2013) uses steady-state VAR of Villani (2009) and sets prior values for steady states informed from Blue Chip survey; stationary VAR and MCMC
  - Modeling in Gaps, i.e. deviation from time-varying trends informed from survey (e.g. Clark and McCracken, 2010; Clark, 2011, Zaman, 2013)
    - Requires the history of survey as long as the estimation sample
- Relative Entropy (RE) to Combine Survey information
  - Applied to forecasting by Robertson, Tallman and Whiteman (2005)
  - Altavilla, Giacomini and Ragusa (2017) tilt segments of term-structure forecasts to survey expectations
  - Kruger, Clark, and Ravazzolo (2017) tilt one-step ahead forecasts from TVP-VAR toward survey nowcasts
- This paper: uses RE to tilt VAR forecasts toward survey Long-Run projections in addition to survey nowcasts

In our examination, we consider following quarterly VAR models:

- Small VAR consisting of five variables (i.e. n=5)
  - Core variables of interest to monetary policy makers: Real GDP growth, CPI Inflation, unemployment rate, federal funds rate
  - Add a financial variable: credit spread (BAA rate 10yr Treasury rate)
  - Several papers on VAR forecasting employ it as a benchmark VAR
- Medium VAR consisting of ten variables (builds on Small VAR by five additional variables; *n*=10)
  - Productivity growth, wage inflation, nonfarm payroll employment growth, real consumption growth, core CPI inflation
  - Shown to be useful in improving forecasts of core variables
  - Forecasts of these additional variables maybe of their own interest
- Time-Varying VAR (real GDP growth, CPI inflation, unemployment rate); along the lines of Primiceri (2005)

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The usefulness of Stochastic Volatility

- We also evaluate results of allowing for stochastic volatility (SV) in our Small and Medium VARs
  - past research provides strong evidence of the importance of SV (e.g. Clark, 2011; D'Agostino, Giannone, and Gambetti, 2013)
  - implements the computationally convenient approach of Carriero, Clark, and Marcellino (2016); a phenomenal contribution
  - SV helps significantly improve the calibration of the density forecasts
  - But gains in relative accuracy are marginal because density forecasts from hybrid approach are centered around a more accurate mean
- Presentation focus on results from Small VAR without stochastic volatility

- High-dimensional VARs susceptible to overfitting, estimate using Bayesian methods
  - Employ conjugate Normal-Inverse Wishart prior
  - Prior has computational advantage and competitive forecasting properties (Koop, 2013; Carriero et al, 2015)
  - Allows us to conveniently generate multi-step predictive densities
  - Hyper parameters that govern the tightness of Minnesota and Sum of Coefficients prior are set based on optimizing the marginal likelihood over the pre-forecast evaluation sample

Forecast details

- Forecasts generated recursively with real-time data and evaluated with real-time data (third release); robust to using revised data
- Estimation start 1959.Q4; and 1985.Q1
- Real-time vintages as of SPF date
- Forecasts 1 to 40 quarters ahead but focus on 1 to 12 quarters ahead
- Forecast evaluation samples: 1994.Q1 to 2016.Q4 (and 1994 2006)
- MSE for point forecasts and CRPS metric for density forecasts
- Following Kruger, Clark, and Ravazzolo (2017) statistical significance using Diebold, Mariano and West test using two-sided tests of standard normal
  - HAC variance estimator with lag h-1 truncation parameter; finite sample correction proposed by Harvey et al (1997)

(日) (同) (三) (三) (三) (○) (○)

# Methodology: Relative Entropy

- Start with a predictive density **p(Y)** corresponding to an n-dimensional random variable Y generated by our VAR model
- Modify it to obtain a new predictive density **g(Y)** such that it satisfies a given set of moment conditions (e.g. survey forecasts)
- But in doing so minimizes the relative entropy (i.e. Kullback-Liebler Information Criterion) between the two predictive densities; that is g(Y) is as close as possible to the original density p(Y) in the information-criterion sense
- Density g(Y) is essentially a re-weighted original density p(Y)
  - to work there needs to be support in p(Y) for the moment conditions

# Methodology: Relative Entropy

- An effective and flexible conditional forecasting method (KCR, 2017)
  - allows to combine both mean condition and the confidence in it
  - an important advantage if the interest is in density forecasts
- In a VAR, conditioning or tilting on some future horizon will influence the forecast starting from the jumping-off point all the way to the tilted horizon
  - e.g. tilt real GDP growth at h=6 then tilting it will impact the forecast trajectory from h=1 to h=5 for all the variables
  - simultaneously tilting on multiple variables result in forecast trajectories that reflect cumulative effect of those conditions
- Easily adapted to any VAR that is able to generate predictive densities

# Determining the forecast horizon for tilting

- Natural inclination to combine at some very distant future horizon
- Some macroeconomic variables more persistent than others
  - Unemployment rate very persistent while GDP growth on other extreme
  - Inflation is in between
- Accounting for this is important when combining the forecasts
- **Proposed approach: Informed from the BVAR model estimates** At each forecast origin *t*, retrieve the persistence estimates (i.e. slope parameters), corresponding to variable *i* from equation *i* of the VAR.

$$\rho_{i,t}^{+,BVAR} = \sum_{l=1}^{p} \bar{A}_{i,l}^{(i,i)}$$

where  $\bar{A}_{i,l}^{(i,i)}$  is posterior estimate of the slope coefficient of variable *i* in equation *i* of the VAR system.

# Determining the forecast horizon for tilting

• The corresponding metric that roughly determines the number of quarters it takes to revert back to BVAR's implied steady state

$$h_{i,t}^{+, BV\!AR} = rac{1}{1-
ho_{i,t}^{+, BV\!AR}}$$

The horizon,  $h_{i,t}^*$  at which the survey long-run forecast is combined with the BVAR forecast for variable *i* is set as

$$h_{i,t}^* = \max \{P_t^Q, h_{i,t}^{+,BVAR}\}$$

- $P_t^Q$  provide control to override  $h_{i,t}^{+,BVAR}$
- $P_t^Q = 5$  to reflect our preference to have a VAR forecast from h=2 to h=4
- $P_t^Q = 0$  similar results because this choice only binds on real GDP growth

# Hybrid Forecast: Components



#### **Forecast Accuracy Comparison**

Hybrid VAR Forecasts

versus

### **Baseline VAR Forecasts**

**Baseline forecast** tilts Raw BVAR on survey nowcasts only **Hybrid forecast** tilts Raw BVAR on both survey nowcasts and long-run forecasts

(日) (同) (三) (三) (三) (○) (○)

## Results I: Point Forecast Accuracy

### Full Sample (1994.Q1 - 2016.Q4) Small BVAR (est. 1960+)

|                                         | h=1Q         | h=4Q          | h=6Q             | h=8Q            | h=10Q           | h=12Q           |
|-----------------------------------------|--------------|---------------|------------------|-----------------|-----------------|-----------------|
| Relative MSE: Hybrid                    | d / Base     | line          |                  |                 |                 |                 |
| Real GDP<br>CPI Inflation               | 1.00<br>1.00 | 1.01<br>0.83* | 0.77*<br>0.78*** | 0.80*<br>0.70** | 0.88<br>0.60*** | 0.93<br>0.62*** |
| Unemployment rate<br>Federal funds rate | 1.00<br>1.00 | 1.16<br>0.92  | 1.07<br>0.90     | 0.98<br>0.84*   | 0.94<br>0.75**  | 0.92<br>0.69*** |
| Credit Spread                           | 1.00         | 0.94          | 0.90***          | 0.84***         | 0.81***         | 0.79***         |

Baseline forecast tilts Raw BVAR on survey nowcasts only

Hybrid forecast tilts Raw BVAR on both survey nowcasts and long-run forecasts

EL OQO

# Results II: Density Forecast Accuracy

### Full Sample (1994.Q1 - 2016.Q4) Small BVAR (est. 1960+)

|                                                                                       | h=1Q                                 | h=4Q                                     | h=6Q                                            | h=8Q                                            | h=10Q                                             | h=12Q                                              |
|---------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| Relative CRPS: Hybr                                                                   | id - Bas                             | eline                                    |                                                 |                                                 |                                                   |                                                    |
| Real GDP<br>CPI Inflation<br>Unemployment rate<br>Federal funds rate<br>Credit Spread | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.02<br>-0.10*<br>0.02<br>-0.01<br>-0.01 | -0.17*<br>-0.12***<br>0.02<br>-0.03<br>-0.04*** | -0.11*<br>-0.19**<br>-0.01<br>-0.07<br>-0.07*** | -0.08<br>-0.28***<br>-0.03<br>-0.16**<br>-0.09*** | -0.05<br>-0.24***<br>-0.04<br>-0.27***<br>-0.10*** |

Baseline forecast tilts Raw BVAR on survey nowcasts only

Hybrid forecast tilts Raw BVAR on both survey nowcasts and long-run forecasts

EL OQO

# Results III: Point Forecast Accuracy

#### Full Sample (1994.Q1 - 2016.Q4) Small BVAR (est. 1985+)

|                      | h=1Q     | h=4Q    | h=6Q  | h=8Q    | h=10Q  | h=12Q  |
|----------------------|----------|---------|-------|---------|--------|--------|
| Relative MSE: Hybrid | d / Base | line    |       |         |        |        |
| Real GDP             | 1.00     | 1.04    | 0.95  | 0.86*   | 0.87   | 0.90   |
| CPI Inflation        | 1.00     | 0.98    | 0.92* | 0.91*** | 0.87** | 0.85** |
| Unemployment rate    | 1.00     | 1.16    | 1.22  | 1.21    | 1.15   | 1.08   |
| Federal funds rate   | 1.00     | 0.88*** | 0.85  | 0.83    | 0.79   | 0.73   |
| Credit Spread        | 0.98     | 1.00    | 0.93  | 0.87    | 0.83*  | 0.80*  |

Baseline forecast tilts Raw BVAR on survey nowcasts only

Hybrid forecast tilts Raw BVAR on both survey nowcasts and long-run forecasts

EL OQO

## Results IV: Density Forecast Accuracy

### Full Sample (1994.Q1 - 2016.Q4) Small BVAR (est. 1985+)

|                     | h=1Q     | h=4Q    | h=6Q   | h=8Q     | h = 10Q | h=12Q   |
|---------------------|----------|---------|--------|----------|---------|---------|
| Relative CRPS: Hybr | id - Bas | eline   |        |          |         |         |
| Real GDP            | 0.00     | 0.01    | -0.05  | -0.12**  | -0.11*  | -0.09** |
| CPI Inflation       | 0.00     | -0.02   | -0.06* | -0.06*** | -0.10** | -0.12** |
| Unemployment rate   | 0.00     | 0.02    | 0.04   | 0.05     | 0.04    | 0.03    |
| Federal funds rate  | 0.00     | -0.03** | -0.06  | -0.11    | -0.17   | -0.24*  |
| Credit Spread       | 0.00     | 0.00    | -0.02  | -0.04*   | -0.06*  | -0.08*  |

Baseline forecast tilts Raw BVAR on survey nowcasts only

Hybrid forecast tilts Raw BVAR on both survey nowcasts and long-run forecasts

EL OQO

### Results V: Time-Varying VAR

### Full Sample (1994.Q1 - 2016.Q4) TVP-VAR SV

|                                                               | h=1Q     | h=4Q  | h=6Q    | h=8Q     | h=10Q     | h=12Q   |  |
|---------------------------------------------------------------|----------|-------|---------|----------|-----------|---------|--|
| Relative MSE: MSE Hybrid TVP-VAR SV / MSE Baseline TVP-VAR SV |          |       |         |          |           |         |  |
| Real GDP                                                      | 1.00     | 0.93  | 0.88    | 0.86     | 0.90      | 1.00    |  |
| CPI Inflation                                                 | 1.00     | 1.00  | 0.87*** | 0.81***  | 0.78***   | 0.81*** |  |
| Unemployment rate                                             | 1.00     | 1.02  | 1.04    | 1.05     | 1.06      | 1.08    |  |
|                                                               |          |       |         |          |           |         |  |
|                                                               | h=1Q     | h=4Q  | h=6Q    | h=8Q h=  | =10Q h=   | 12Q     |  |
| Relative CRPS: CRP                                            | S Hybrid | TVP-V | AR SV - | CRPS Bas | eline TVP | -VAR SV |  |
| Real GDP                                                      | 0.00     | -0.05 | -0.06   | -0.07 -0 | .04 0.0   | 2       |  |
| CPI Inflation                                                 | 0.00     | -0.01 | -0.03   | -0.05 -0 | .06 -0.   | 04      |  |
| Unemployment rate                                             | 0.00     | -0.01 | -0.01   | -0.01 -0 | .01 -0.   | 01      |  |

Baseline forecast tilts TVP-VAR SV on survey nowcasts only Hybrid forecast tilts TVP-VAR SV on both survey nowcasts and long-run

(日) (同) (三) (三) (三) (○) (○)

**Forecast Accuracy Comparison** 

Hybrid VAR Forecasts

versus

**Univariate Benchmarks** 

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

### Results VI: Horse race 1

CPI Inflation Forecast Accuracy: Hybrid 1960+ vs. Univariate Benchmarks

Point Accuracy (1994.Q1 - 2016.Q4)

|                           | h=2Q     | h=4Q    | h=6Q    | h=8Q    | h=10Q  | h=12Q   |
|---------------------------|----------|---------|---------|---------|--------|---------|
| Relative MSE: MSE Hybrid  | from Mee | dium BV | AR / MS | E Univa | riate  |         |
| RW (Atkeson and Ohanian)  | 0.82**   | 0.87**  | 0.86**  | 0.77    | 0.82*  | 0.90*** |
| UCSV (Stock and Watson)   | 0.96     | 0.99    | 0.97    | 0.94    | 0.91   | 1.00    |
| AR Gap (Faust and Wright) | 1.02     | 0.98    | 0.98    | 0.94**  | 0.94** | 0.94**  |
| SPF                       | 1.00     | 1.03    |         |         |        |         |

Density Accuracy (1994.Q1 - 2016.Q4)

|                   | h=2Q   | h=4Q    | h=6Q     | h=8Q    | h=10Q   | h=12Q  |
|-------------------|--------|---------|----------|---------|---------|--------|
| Relative CRPS: CI | RPS Me | dium BV | AR - CRP | s ucsv  |         |        |
| Baseline - UCSV   | 0.05   | 0.15**  | 0.15***  | 0.19*** | 0.24*** | 0.24** |
| Hybrid - UCSV     | 0.00   | 0.03    | 0.03     | 0.01    | 0.04    | 0.10** |

### Results VII: Horse race 2

Forecast Accuracy: Hybrid 1960+ vs. TVP-VAR SV

#### Point Accuracy (1994.Q1 - 2016.Q4)

|                   | h=1Q     | h=4Q     | h=6Q    | h=8Q       | h = 10Q  | h=12Q  |
|-------------------|----------|----------|---------|------------|----------|--------|
| Relative MSE: MSE | Hybrid S | Small BV | AR / MS | E Baseline | • TVP-VA | AR SV  |
| Real GDP          | 1.00     | 1.03     | 0.93    | 0.93*      | 0.95     | 1.03   |
| CPI Inflation     | 1.00     | 0.99     | 0.94*** | 0.87***    | 0.83**   | 0.82** |
| Unemployment rate | 1.00     | 1.06     | 1.05    | 1.02       | 1.02     | 1.02   |

#### Density Accuracy (1994.Q1 - 2016.Q4)

|                    | h=1Q       | h=4Q    | h=6Q    | h=8Q     | h=10Q     | h=12Q   |
|--------------------|------------|---------|---------|----------|-----------|---------|
| Relative CRPS: CRP | S Hybrid S | mall BV | AR - CF | RPS Base | eline TVP | -VAR SV |
| Real GDP           | 0.11***    | 0.08*   | 0.02    | 0.02     | 0.04      | 0.07**  |
| CPI Inflation      | -0.05***   | 0.01    | 0.03    | -0.01    | -0.03     | -0.03   |
| Unemployment rate  | 0.01***    | -0.01   | -0.04   | -0.06    | -0.08     | -0.08   |

Tallman and Zaman ()

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Additional Benefits

- Compare and assess implications on forecast of a range of values
  - Across surveys including with shorter history e.g. Summary of Economic Projections (SEP); median and range as mean and variance restrictions
  - These days policy makers communicate their view of the underlying trend rates
  - Compare how model's forecast of core variables change, Policymaker A vs. B
- Does not require survey history to match estimation sample
  - Could be beneficial for developing and emerging countries
- Interpolate survey forecasts for missing quarters
  - Well-established survey forecasts hard to outperform (e.g. Croushore, 2010)
  - But they cover smaller number of variables and forecast horizons; infrequent
  - SPF and Blue Chip report forecast values for five quarters and 10-year out
- Taylor-rule restriction over the forecast horizon (e.g. Robertson et al, 2005)

# Conclusion

- Approach to construct Hybrid forecast consisting of survey nowcast, VAR forecast, and long-run survey forecast
  - Use Relative Entropy; easily adapt to existing VARs
- Meaningful gains in forecast accuracy in all VAR models
  - Gains largest for fixed parameter VARs estimated with longer sample
  - An important practical result; lends credibility to the use of simple VARs for production of forecasts under strict time constraints
- Inflation hybrid forecasts rival univariate benchmark models
  - A useful practical contribution for monetary policy makers
- Hybrid forecasts' accuracy from simple VARs rivals TVP-VARs
- Extent of improvements suggest a post-estimation method to accommodating structural change and moving end points

### **Extra Slides**



#### Figure: Real-Time Long Run Forecasts: GDP and Unemployment Rate

3

三日 のへの

・ロト ・日下・ ・ ヨト・



#### Figure: Real-Time Long Run Forecasts: CPI and Short-Term Interest Rate

BoE Forecasting 2018 31 / 28



#### Figure: Cumulative Squared Error

BoE Forecasting 2018 32 / 28

#### Figure: Cumulative CRPS



1

1 → 4

## Appendix Result: Point Forecast Accuracy

### Full Sample (1994.Q1 - 2006.Q4) Small BVAR (est. 1960+)

|                      | h=1Q     | h=4Q   | h=6Q    | h=8Q    | h=10Q   | h=12Q   |
|----------------------|----------|--------|---------|---------|---------|---------|
| Relative MSE: Hybrid | d / Base | eline  |         |         |         |         |
| Real GDP             | 1.00     | 0.96   | 0.91    | 1.02    | 1.05    | 1.07    |
| CPI Inflation        | 1.00     | 0.86** | 0.68*** | 0.63*** | 0.46*** | 0.49*** |
| Unemployment rate    | 1.00     | 1.01   | 0.94    | 0.87    | 0.90    | 0.95    |
| Federal funds rate   | 1.00     | 1.11*  | 1.07    | 0.92    | 0.79    | 0.73    |
| Credit Spread        | 1.02     | 1.10   | 0.93*   | 0.82*   | 0.78*   | 0.79*   |

Baseline forecast tilts Raw BVAR on survey nowcasts only

Hybrid forecast tilts Raw BVAR on both survey nowcasts and long-run forecasts

ELE SQA

## Appendix Result: Point Forecast Accuracy

### Full Sample (1994.Q1 - 2006.Q4) Small BVAR (est. 1985+)

|                      | h=1Q     | h=4Q    | h=6Q   | h=8Q    | h = 10Q | h=12Q  |
|----------------------|----------|---------|--------|---------|---------|--------|
| Relative MSE: Hybrid | d / Base | line    |        |         |         |        |
| Real GDP             | 1.00     | 0.98    | 1.00   | 0.86**  | 0.88**  | 0.92   |
| CPI Inflation        | 1.00     | 0.89**  | 0.79** | 0.85*** | 0.80*   | 0.92   |
| Unemployment rate    | 1.00     | 0.91    | 1.00   | 1.03    | 0.98    | 0.92   |
| Federal funds rate   | 1.00     | 0.88*** | 0.83   | 0.81*   | 0.79*   | 0.78** |
| Credit Spread        | 1.00     | 1.03    | 0.94   | 0.89*   | 0.86*   | 0.89*  |

Baseline forecast tilts Raw BVAR on survey nowcasts only

Hybrid forecast tilts Raw BVAR on both survey nowcasts and long-run forecasts

ELE SQA

#### Figure: More on Shock Uncertainty

Knotek and Zaman (2017, IJF forthcoming)



BoE Forecasting 2018 36 / 28

<ロ> <四> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

## Methodology: Relative Entropy

- Start with a predictive density **p(Y)** 
  - *D* draws each with a weight  $w_i = 1/D$ , where i = 1, ... D
- Modify it to obtain a new predictive density g(Y)
  - such that it satisfies a given set of moment conditions ḡ (e.g. survey forecasts)

     Eg(Y) = ∑<sup>D</sup><sub>i=1</sub> w<sup>\*</sup><sub>i</sub> p(Y<sub>i</sub>) = ḡ
- Minimizes the relative entropy (i.e. Kullback-Liebler Information Criterion)
  - g(Y) as close as possible to p(Y) in the information-criterion sense
  - equivalent to solving for new weights

$$\mathcal{K}(w^*:w) = \sum_{i=1}^{D} w_i^* \log(\frac{w_i^*}{w_i})$$

satisfies the following constraints

$$w_i^* \ge 0, \ \sum_{i=1}^D w_i^* = 1, \ \sum_{i=1}^D w_i^* p(Y_i) = \bar{g}$$

## Methodology: Relative Entropy

- Density g(Y) is essentially a re-weighted original density p(Y)
  - to work there needs to be support in p(Y) for the moment conditions
- The solution to the minimization problem using method of Lagrange

$$w_i^* = \frac{w_i \exp(\gamma \ p(Y_i))}{\sum_{i=1}^D w_i \ \exp(\gamma \ p(Y_i))}$$

where  $\gamma$  is the vector of Lagrange multipliers associated with the constraints

•  $\gamma$  can be obtained as a solution to the following minimization problem

$$\gamma = arg \min_{\tilde{\gamma}} \sum_{i=1}^{D} w_i \exp(\hat{\gamma} [p(Y_i) - \bar{g}])$$