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Purpose

Study the forecast performance of various Phillips curve
specifications for the euro area starting the early-90s.

Analyse how it has changed over time (relative to naïve benchmarks)

Investigate the role of:

• Slack measures

• External variables

• Inflation trends

• Time variation in the coefficients

• Functional form



On the episodic performance of the Phillips curve

It would be extraordinarily useful to discover a specification of the
Phillips curve that fits the data reliably ... as Stock and Watson (2010)
observe, the history of the Phillips curve ‘is one of apparently stable
relationships falling apart upon publication.’ Ball and Mazumder
(2011) is a poignant example. Nonetheless, because of the practical
importance of the Phillips curve, researchers must continue to search
for better specifications.

from [Ball and Mazumder, 2014]



Motivation
After the Great Recession, there was a revival of interest
in the relevance of the Phillips curves, as this key
relationship seemed to break down

Puzzling nature of inflation and Large forecast errors led to:

A quest for the ‘right’ specification:
• Alternative measures of slack (short term unemployment

[Gordon, 2013], unemployment recession gap
[Stock and Watson, 2010], broad labour underutilisation
measures [Bell and Blanchflower, 2018])

• Time variation in the PC slope ([IMF, 2013],
[Blanchard et al., 2015])

• Oil via inflation expectations
([Coibion and Gorodnichenko, 2015], [Hasenzagl et al., 2018])

• Shifting inflation end point ([Kozicki and Tinsley, 2001],
[Clark and Doh, 2014])

No systematic investigation of how all these proposals fare in forecasting.



Overview of the results

• Relative performance compared to naïve benchmarks
(Slightly) better relative performance after the onset of the EMU but
worse more recently.

• Slack measures
Principal components and output gaps work OK compared to
alternatives. Including financial variables in a composite measure of
slack does not seem to help.

• External variables
Do not seem to help much (out-of-sample)

• Inflation trends
Important to account for changing inflation trend in the run-up to the
EMU. More recently it appears less relevant. Although small
improvement can be made by e.g. using long term survey expectations.



Overview of the results

• Time variation in the coefficients
Occasionally helps

• Functional form
Does not appear to be a key factor.



Literature

Vast literature for the US

See e.g. [Fuhrer et al., 2009]. On forecasting inflation:

[Stock and Watson, 2009], [Faust and Wright, 2013],
[Chan et al., 2016],[Dotsey et al., 2018],[Hasenzagl et al., 2018]

Few studies on the euro area on the forecasting
performance

[Rünstler, 2002], [Hubrich, 2005], [Canova, 2007],
[Marcellino and Musso, 2010], [Buelens, 2012].
[Bereau et al., 2018], [Lenza and Jarocinski, 2016],
[Moretti et al., 2018]

Often with a different focus, smaller evaluation sample.



Phillips curve, autoregressive distributed lag model
Benchmark model

We forecast annualised h-period inflation rate:
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Direct forecast from:

π̃h
t+h = α(L)π̃t + βh(L)yt + γh(L)zt + νh

t+h

• π̃t : de-meaned (in the benchmark model) or de-trended inflation rate

• yt : a measure of slack (de-meaned or gap)

• zt : “external” variable (de-meaned)



Out-of-sample forecast evaluation
• Focus on quarterly HICP excluding energy

• Focus on 1-year-ahead forecast

• Disregarding data revisions

• Evaluations based on RMSFE

• Evaluation sample: 1994-2017
Rolling RMSFEs and over sub-samples 1994-2000, 2001-08, 2009-17

• Rolling window estimation.
Models allowing for time variation in the parameters have been
estimated recursively.

• Benchmark models
• Random walk (RW) of [Atkeson and Ohanian, 2001]:

πh
t+h|h = π4

t

• Unobserved component trend-cycle model with stochastic
volatility (UCSV) of [Stock and Watson, 2007]



Benchmark results
Relative rolling RMSFE
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Note: The RMSFEs have been computed over a rolling window of 20 quarters.



Benchmark results
The fluctuation test

Benchmark: UCSV Benchmark: RW
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Note: [Giacomini and Rossi, 2010] fluctuation test for a rolling window of 20 quarters.
Dashed line shows the critical values.



Benchmark results
Actual vs forecast
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Measures of slack

• Product market:
Output gap
GDP growth, Industrial production growth, Industrial production gap,
Capacity utilisation, Economic sentiment

• Labour market:
Unemployment gap
Unemployment rate, Unemployment recession gap
[Stock and Watson, 2010], Employment growth, Employment gap,
Short-term unemployment rate, U6 unemployment rate, U6
unemployment gap

• Composite:
(First) principal component of all variables (PCA)
Output gap with financial measures

Gaps have been computed recursively using the Christiano and Fitzgerald
filter.



Measures of slack
Relative rolling RMSFE

Slack in product market Slack in labour market
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Note: The RMSFEs have been computed over a rolling window of 20 quarters. ’*’
represent the RMSFEs of models with other measures of slack from a given group.
Benchmark: UCSV.



Measures of slack
The fluctuation test

Slack in the product market Slack in the labour market
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Note: Rolling window of 20 quarters. ’*’ represent the RMSFEs of models with other
measures of slack from a given group. Dashed line shows the critical values. Bench-
mark: UCSV.



External variables

• Import prices and PPI:
Import deflator
Import deflator from outside the euro area
Producer Price Index for total industry less construction
US CPI

• Commodity prices:
Oil price in EUR
ECB commodity price index in USD (total non-energy)

• Exchange rates:
EER12
EUR/USD

[Bereau et al., 2018]: HICPX inflation forecast in the euro area cannot
be improved by considering global factors



External variables
Relative rolling RMSFE

Output gap Unemployment gap
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Note: The RMSFEs have been computed over a rolling window of 20 quarters. ’*’
represent the RMSFEs of models with different external variables. Benchmark: UCSV.



De-trending
Forecast gains when accounting for a long-term inflation trend
(see e.g., [Clark and McCracken, 2010], [Faust and Wright, 2013], [Clark and Doh, 2014], [Zaman, 2013])

In the Phillips curve inflation we take π̃t = πt − πTR
t with πTR

t :∗

• Long-term inflation expectations from surveys

6-10 year inflation forecasts from Consensus Economics.
Available for the euro area as of 2003; backdated to 1990 using the forecast for the largest euro area

countries (see [Castelnuovo et al., 2003])

• UCSV
• Exponentially weighted moving average

Equivalent to UCSV with constant ratio of variances of temporary and
permanent shocks.

• [Stock and Watson, 1999] unit root formulation
For one-quarter-ahead horizon equivalent to taking πTR

t = πt−1

• Endogenous trend
πTR

t = πTR
t−1 + ut estimated simultaneously with the coefficients of the

Phillips curve
∗ related to the shifting endpoint concept of [Kozicki and Tinsley, 2001]; see also
[Clark and Doh, 2014].



De-trending
Relative RMSFE
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Note: The RMSFEs are relative to the model with constant mean (trend).



Slope

Slope Considered TVP models
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• á la [Primiceri, 2005]
π̃t = πt , intercept is included in
the equation and all coefficients
follow random walks

• [Chan et al., 2016]

Inflation trend, natural rate of
unemployment and coefficients
follow random walks (bounded
for inflation trend)

Note: The slope chart shows the sum of slack

coefficients with a rolling window of 40Q



Fixed versus TV parameters
Relative rolling RMSFE
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Note: The RMSFEs have been computed over a rolling window of 20 quarters.



Functional form

We compare the direct forecasts from the ADL model presented
above with indirect (iterated) forecasts from:

• ADL model for one-quarter-ahead inflation

π̃t+1 = α(L)π̃t + β(L)yt + γ(L)zt + νt+1

Forecasts for the explanatory variables are obtained from univariate AR
models.

• VAR

Xt = µ+ Φ(L)Xt−1 + νt , Xt = [π̃t yt zt ]
′

See e.g. [Hubrich, 2005], [Garratt et al., 2010], [Benkovskis et al., 2011],
[Clark and Doh, 2014].



Functional form
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Note: The RMSFEs have been computed over a rolling window of 20
quarters.



Further work

• Parameter shrinkage
AIC sometimes selects many lags and the coefficients are not reliably
estimated on a relatively short estimation window. Particularly
problematic for the VAR versions.

• Forecast combinations
Relative performance changes over time.

• Density forecasts (combinations)
Could also improve point forecasts (e.g. [Aastveit et al., 2014])

• Conditional forecasts
Scenarios often considered at central banks and other institutions (e.g.
inflation forecasts conditional on certain path for output gap or
commodity prices).



Summary of the results

• In general, univariate benchmarks are hard to beat

• Euro area inflation was particularly hard to forecast in the run-up
to the EMU and in the aftermath of the twin recessions

• The performance of the Phillips curve is episodic also for the
euro area. Some specifications manage to improve upon the
UCSV but the relative performance of various models changes.

• Among all “dimensions” (slack / external variables / de-trending /
time variation / functional form), the most important seems to be
de-trending/time variation (at the beginning of the sample). The
latter deserves further research.

• Among all the exogenous slack measures, the output gap and
the PCA perform well.



Finding the Phillips curve is like finding a needle in a haystack.
But it is hidden there somewhere!

[Reichlin, 2018]



THANK YOU
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De-trending - Stock and Watson (1991) formulation

• Stock and Watson (1999,2009) unit root formulation:

πh
t+h − πt = µh + α(L)∆πt + βh(L)yt + γh(L)zt + νh

t+h

For h = 1 this is equivalent to formulation above with πTR
t = πt−1.



De-trending - EWMA

Local level model:

πt = πTR
t + ηt , ηt ∼ N(0, σ2

η)

πTR
t = πTR

t−1 + εt , εt ∼ N(0, σ2
ε)

then

πTR
t|t = (1 − λ)

∞∑
i=0

λiπt−i

where λ = f (σ2
η/σ

2
ε).

Alternatively, πt has an IMA(1,1) representation:

∆πt = (1 − θL)ut

and λ = θ.

We consider λ = 0.95, 0.85 and 0.75.



De-trending - Endogenous trend

πh
t+h − π̄h

t+h = α(L)(πt − π̄t ) + β(L)xt + εh
t+h

π̄t = π̄t−1 + ut

πh
t+h = 1

h

∑h−1
i=0 πt+h−i and π̄h

t+h = 1
h

∑h−1
i=0 π̄t+h−i


