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Outline

• The problem
• State (and metro) data in the US are subject to substantial revisions

• Example: Illinois employment growth in 2015

• Our solution
• Forecast the state employment data by

• Modeling the revision process

• Incorporating external data

• We find
• We can successfully forecast the revisions for most states

• Both components of  the model contribute
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State employment data are revised substantially

• For Illinois in 2015, 
employment growth 
was revised from 
−3,000 to +51,000
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State employment data are revised substantially

• Once-a-year revision is 
known as the 
“rebenchmark”

• Survey data are revised 
using administrative 
data

Illinois Nonfarm Payroll Employment
Thousands
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Is it possible to forecast big revisions like these? Yes.

• We develop a state-space model that incorporates
• An explicit model of  the revision process

• Incorporates releases of  closely-related administrative data called the QCEW

• External indicators of  state employment growth

• Via a dynamic factor model



A full timeline of  the revision process

• 1st release 3 weeks after 
reference period

• 2nd release 1 month 
after 1st release

• QCEW 5–7 months 
after reference period

• Data benchmarked 5–
13 months after 
reference period

Data releases for April 2016



QCEW usually close, 2nd release can be quite far

• 2nd release misses 
can be quite 
persistent

Endpoints of Demeaned Illinois Payroll Employment Series
Thousands



A state-space model of  the revision process

• Spliced series of  realtime values for each release version

• Target is 𝐸𝑡, the benchmarked employment value

𝐶𝐸𝑆𝑃𝑜𝑠𝑡𝑡 = 𝐸𝑡 ∆𝐸𝑡 = 𝛼 + σ𝑖 𝛾𝑖∆𝐸𝑡−𝑖 + 𝜒𝑖𝑡
𝑄𝐶𝐸𝑊𝑡 = 𝐸𝑡 +𝑊𝑡 𝑊𝑡 = 𝛿 + σ𝑖 𝜆𝑖𝑊𝑡−𝑖 + 𝜈𝑡
𝐶𝐸𝑆𝑅𝑒𝑣𝑡 = 𝐸𝑡 + 𝐵𝑡 𝐵𝑡 = 𝜅 + 𝜌𝐵𝑡−1 + 𝜂𝑡
𝐶𝐸𝑆𝐼𝑛𝑖𝑡𝑡 = 𝐸𝑡 + 𝐵𝑡 + 𝑅𝑡 𝑅𝑡 = 𝜔𝑡



Standard approach to estimating and evaluating the model

• Estimation
• Maximum likelihood with the Kalman Filter

• Evaluation
• Test out-of-sample forecast of  a series’s level

• Sample period: March 2005–September 2017



By itself, the revision model makes a difference
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By itself, the revision model makes a difference

Distribution of difference in mean absolute percent errors (Model − 1st Release)
Number of states

Difference in mean 

absolute percent error 
(Model − 1st Release)

10th Percentile −0.025

Median −0.007

90th Percentile 0.008

Number of states better 39/50

Statistically significantly better 22/50



Incorporating external data via a dynamic factor model

• 𝑌𝑖𝑡 (all realtime vintages)
• National CES

• Shift-share CES (based on a state’s industrial composition)

• Household employment from the CPS

• Unemployment Insurance Claims

𝐶𝐸𝑆𝑃𝑜𝑠𝑡𝑡 = 𝐸𝑡 𝛥𝐸𝑡 = 𝛼 + 𝑓𝑡 + 𝜁𝑡 𝑓𝑡 = 𝜃𝑓𝑡−1 + 𝜀𝑡
𝛥𝑌𝑖𝑡 = 𝛾𝑖 + 𝛤𝑖𝑓𝑡 + 𝜐𝑖𝑡 𝜐𝒊𝑡 = 𝜓𝑖𝜐𝒊𝑡−1 + 𝜗𝒊𝑡



Incorporating external data helps in most states (before)
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Incorporating external data helps in most states (after)
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Incorporating external data helps in most states

Distribution of difference in mean absolute percent errors (Model − 1st Release)
Number of states

Difference in mean 

absolute percent error 
(Model − 1st Release)

10th Percentile −0.036

Median −0.012

90th Percentile 0.015

Number of states better 35/50

Statistically significantly better 27/50



What if  we pick a state’s best result?

Distribution of difference in mean absolute percent errors (Model − 1st Release)
Number of states

Difference in mean 

absolute percent error 
(Model − 1st Release)

10th Percentile −0.036

Median −0.014

90th Percentile 0.005

Number of states better 40/50

Statistically significantly better 33/50



Contributions of  external data are widespread

Decomposition of Factor for Colorado
Standard Deviations



Next steps

• Evidence that the lag structure of  the factor differs across states
• Should increase the performance gains from the factor model

• Take into account later benchmark revisions?

• Incorporate unstructured data?


