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Introduction

Little agreement on ‘best’ models for real-world forecasting in
wide-sense non-stationary settings facing shifts.

Forcasting models used range from very parsimonious to large
systems, machine learning and model or forecast averaging.

Many criteria proposed to select models with ‘optimal’ properties for
forecasting in stationary processes, e.g. Akaike (1973).

Yet even less agreement on selecting models in practice.

Explanation: distributional shifts differentially affect alternative
formulations: (Clements and Hendry, 2001).
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Introduction

Contribution of this paper:

In stationary static setting, strongly exogenous stochastic
regressors, constant parameters implies retain regressors for
forecasting if non-centralities ψ > 1.
Does this trade-off hold if breaks?

What is the ‘optimal’ nominal significance level α when selecting
linear regression models for forecasting in data subject to breaks.

Generic trade-off between inconsistency and estimation uncertainty
based on observed statistical significance.
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Motivation: forecasting inflation

Annual UK Inflation (∆4CPI) 

2000 2005 2010 2015

2

4

Annual UK Inflation (∆4CPI) 
UK Unemployment rate 
Step Indicator Saturation fitted mean (α=0.1%) 

2000 2005 2010 2015

6

8

UK Unemployment rate 
Step Indicator Saturation fitted mean (α=0.1%) 

What α minimises MSFE?

M1 : πt+1 − πt = µ+ βπ∆πt + βUrUr,t + ν1,t+1

M2 : πt+1 − πt = µ+ γπ∆πt + ν2,t+1

H0 : βUr = 0. Retain Ur,t for forecasting if t2βUr
> c2α.

Allow for breaks/outliers, and additional covariates: in practice
add dynamics & non-linearities in non-congruent models.
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Route map

1 No breaks: forecasting with a stationary DGP

2 Out-of-sample break – what is the impact of selection?

3 End-of-sample break – the impact of selection on different
forecasting devices

4 Simulation evidence

5 Conclusions

(1) No breaks

(2) Breaks:
Out-of-sample (break at T + 1) End-of-sample (break at T )

(i) known regressors
(ii) in-sample mean forecast (ii) in-sample mean forecast
(iii) random walk forecast (iii) random walk forecast
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Introducing notation

DGP given by VAR: 1 −β1 −β2
0 1 0
0 0 1

 yt
x1,t
x2,t

 =

 β0
µ1
µ2

+

 εt
η1,t
η2,t



where yt = (yt : x1,t : x2,t)
′ ∼ IN3 [µ,Σ] and Σ =

 σ2ε 0 0
0 1 ρ
0 ρ 1


Let µ̂i be sufficiently precise to neglect sampling variation so that
E[yt] = µy = β0 + β1µ1 + β2µ2, and µ = (µy : µ1 : µ2)

′.
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The conditional model

When to drop a regressor from the forecasting model?

M1 : yt = β0 + β1x1,t + β2x2,t + εt

M2 : yt = φ0 + γ1x1,t + νt

Choice between M1 and M2 depends on test of significance of x2,t,

where ψ2 =
Tβ2

2(1−ρ2)
σ2
ε

is squared population non-centrality of tβ2=0,

under H0 : β2 = 0.

Compare 1-step ahead MSFE for known future regressors:

MSFE1 = σ2ε
(
1 + 3

T

)
v MSFE2 = σ2ν

(
1 + 2

T

)
where σ2ν = σ2ε

(
1 + T−1ψ2

)
≥ σ2ε and σ2ν → σ2ε as T increases for a

given ψ.

M2 has one fewer parameter to estimate, traded off against a
larger equation variance.
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Comparing MSFEs

When does parsimony pay in forecasting?

For MSFE2 ≤ MSFE1 requires:

σ2ν

(
1 +

2

T

)
− σ2ε

(
1 +

3

T

)
=
σ2ε
T

[
ψ2

(
1 +

2

T

)
− 1

]
≤ 0

which occurs when ψ2 ≤ T/ (T + 2) (independent of ρ).

If ψ > 1, information content of x2,t outweighs parameter estimation
cost for 1-step forecasts, regardless of |ρ| < 1 between x1 and x2.

1.0

1.2

MSFE T=50

0 1 2 3 4 ψβ2
→

√(T/T+2)=0.981
←

M1 (theory) M1 (simulation) M2 (theory) M2 (simulation) 

1.0

1.2

MSFE T=100

0 1 2 3 4

√(T/T+2)=0.990
←

ψβ2
→

1.0

1.2

MSFE T=500

0 1 2 3 4 ψβ2
→

√(T/T+2)=0.998
←

But DGP never known, so in practice need to select between M1 & M2.
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Model selection

Forecasts from selected model, called M3, based on a mixture of M1

and M2 in repeated sampling depending on ψ2 and α.

MSFE for model selection

MSFE3 = pα[ψ]MSFE1 + (1− pα[ψ]) MSFE2

= MSFE1 + (1− pα[ψ]) (MSFE2 −MSFE1)

where pα[ψ] = Pr
(

t2β2=0 ≥ c2α
)

MSFE3 ≈ MSFE1 + σ2εT
−1 (1− pα[ψ])

(
ψ2 − 1

)
MSFE3 ≤ MSFE1 whenever ψ2 ≤ 1.

MSFE3 highly non-linear function of ψ2 and α.
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Costs/benefits of selection
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figure plots (1+(T+3)−1(1−pα(ψ))(ψ2−1))

α=0.05↓
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Costs/benefits of selection
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Costs/benefits of selection
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Costs/benefits of selection
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What significance level to use?

Trade-off: tighter α lowers MSFE for ψ2 < 1 by eliminating x2 more
frequently; looser α preferred for ψ2 > 1 as x2 more likely retained.

Two inequalities:

x2,t omitted if t2β2=0 < c2α, which occurs when β̂22 <
c2ασ

2
ε

T (1−ρ2) .

x2,t omitted if ψ2 < 1 for smaller MSFE.

Equating the two inequalities =⇒ c2α ≤ 2 and:

E[t2β2=0] = 2 =⇒ α = 0.16

AIC: LR χ2 test, 2 nested models, 1df, penalty=2, → α = 16%.

Results close to implied significance level for AIC in Campos, Hendry,
and Krolzig (2003), Pötscher (1991), Leeb and Pötscher (2009).
Will also increase adventitious retention of irrelevant variables.
Trade-off dependent on how many likely to be relevant/irrelevant.
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Route map

1 No breaks: forecasting with a stationary DGP

2 Out-of-sample break – what is the impact of selection?

3 End-of-sample break – the impact of selection on different
forecasting devices

4 Simulation evidence

5 Conclusions

(1) No breaks

(2) Breaks:
Out-of-sample (break at T + 1) End-of-sample (break at T )

(i) known regressors
(ii) in-sample mean forecast (ii) in-sample mean forecast
(iii) random walk forecast (iii) random walk forecast
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Location shift out-of-sample

Location shift in x2 at T + 1 with the forecast origin of T :

x1,t = µ1 + η1,t t = 1, . . . , T + 1.

x2,t =

{
µ2 + η2,t t = 1, . . . , T
µ2 + δ + η2,t t = T + 1

Known future values of regressors

Break in µ2 does not affect choice of forecasting model as break is
captured in x2,T+1.

Trade-off at ψ = 1 holds regardless of break:

always (never) include for ψ2 ≥ 1 (ψ2 < 1).
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Break at T + 1, known regressors

M1  
M2 

1

2

3

4

5

6

7

8

MSFE

ψ2→

MSFE

0 1 4 9 16

MSFEMSFE Break at T+1 of δ=4, Known regressors, T=50

M1  
M2 
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Break at T + 1, known regressors

M1  
M2 
M3 at α=0.001 
M3 at α=0.05 
M3 at α=0.16 
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Break at T + 1, known regressors

M1  
M2 
M3 at α=0.001 
M3 at α=0.05 
M3 at α=0.16 

1

2

3

4

5

6

7

8

MSFE

ψ2→

MSFE

0 1 4 9 16

MSFEMSFE Break at T+1 of δ=4, Known regressors, T=50

α=0.001

α=0.05
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Cut-off still at ψ2
β   2

=1.
 
Should still use α=16% regardless of break

M1  
M2 
M3 at α=0.001 
M3 at α=0.05 
M3 at α=0.16 
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Unknown xt+1, in-sample mean forecast

Unknown future values of regressors

Link between y and xi stays constant, but shift at T + 1 not
anticipated, inducing shift in yT+1 =⇒ forecast failure.

In-sample mean forecast: µy shifts to (µy + β2δ) at T + 1, but
forecast to be µy.
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Unknown xt+1, in-sample mean forecast

M1: known xT+1 
M2: known xT+1 

2

4

6

8

10

12
Break at T+1 of δ=4, T=50MSFE

0 1 4 ψ2→9 160

M1: known xT+1 
M2: known xT+1 
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Unknown xt+1, in-sample mean forecast

M1: unknown x̂T+1|T 
M2: unknown x̂T+1|T 
M3: unknown x̂T+1 for any α 

2

4

6

8

10

12
MSFE

0 1 4 ψ2→9 160

Unknown xT+1 using in-sample mean forecast →

Break at T+1 of δ=4, T=50

M1: unknown x̂T+1|T 
M2: unknown x̂T+1|T 
M3: unknown x̂T+1 for any α 

MSFE trajectories very similar: unanticipated break dominates any
forecast error resulting from model mis-specification.
Selection has little effect. Parsimony neither helps nor hinders.
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Unknown xt+1 RW forecast

Unknown future values of regressors using random walk
forecast

Forecasts for exogenous variables: xi,T+1|T = xi,T , i = 1, 2.

Last in-sample observation imprecise measure of out-of-sample mean,
but unbiased when no location shifts (with no dynamics).
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Unknown xt+1 RW forecast

M1: random walk x̂T+1 
M2: random walk x̂T+1 
M3: random walk x̂T+1 α=0.16 

2

4

6

8

10

12
MSFE

0 1 4 9 160

MSFE

0 1 4 ψ2→9 160

Unknown xT+1 using 
random walk forecast 
              ↓

Break at T+1 of δ=4, T=50

M1: random walk x̂T+1 
M2: random walk x̂T+1 
M3: random walk x̂T+1 α=0.16 

MSFE1 and MSFE2 very similar using random walk forecasts.
Worse than in-sample mean as both x̂1,T+1 and x̂2,T+1 incur cost.
For selection, trade-off as before but switch point can be smaller than
ψ2 = 1, depending on the values of ρ and T – but impact very small.
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Route map

1 No breaks: forecasting with a stationary DGP

2 Out-of-sample break – what is the impact of selection?

3 End-of-sample break – the impact of selection on different
forecasting devices

4 Simulation evidence

5 Conclusions

(1) No breaks

(2) Breaks:
Out-of-sample (break at T + 1) End-of-sample (break at T )

(i) known regressors
(ii) in-sample mean forecast (ii) in-sample mean forecast
(iii) random walk forecast (iii) random walk forecast
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Break at end of sample, mean forecast

Location shift in x2 at T with the forecast origin of T

M1: unknown x̂T+1|T 
M2: unknown x̂T+1|T 
M3: unknown x̂T+1|T α=0.16 
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ψ2→

Break at T of δ=4, T=50

Break at T+1 →

    ↑
Break at T

M1: unknown x̂T+1|T 
M2: unknown x̂T+1|T 
M3: unknown x̂T+1|T α=0.16 

Similar to out-of-sample break.
Impact of break on estimated mean of x2,t small unless δ very large.
Cost of omitting x2 rises with (β2δ)

2, but increased ψ2 increases
probability of retaining x2, unconnected with magnitude of δ.
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Break at end of sample, random walk

Unknown future values of regressors using random walk

Random walk is now a ‘robust forecasting device’: improved
forecasting properties following location shift.

Forecasts for exogenous variables: xi,T+1|T = xi,T , i = 1, 2.

E [x1,T ] = µ1, E [x2,T ] = µ2 + δ; E [∆x1,T+1] = 0, E [∆x2,T+1] = 0.

Unbiased forecasts for both x1,T+1 and x2,T+1 but inefficient forecast
for x1,T+1 relative to in-sample mean forecast as no shift.
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Break at end of sample, random walk

M1: unknown x̂T+1|T 
M2: unknown x̂T+1|T 
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Unknown xT+1 using
random walk forecast 
               ↓

MSFE Break at T of δ=4, T=50

    ↑
Unknown xT+1 using
in-sample mean forecast 

M1: unknown x̂T+1|T 
M2: unknown x̂T+1|T 

Extra cost relative to mean forecast for small ψ2 as robust x̂1,T+1 not
needed – if known which regressors subject to break could improve.
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Break at end of sample, random walk

M1: unknown x̂T+1|T 
M2: unknown x̂T+1|T 
M3 at α=0.001 
M3 at α=0.05 
M3 at α=0.16 
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Unknown xT+1 using
random walk forecast 
               ↓

Break at T of δ=4, T=50

α=0.001

α=0.05

α=0.16

M1: unknown x̂T+1|T 
M2: unknown x̂T+1|T 
M3 at α=0.001 
M3 at α=0.05 
M3 at α=0.16 

Selection can be beneficial – retains relevant/eliminates irrelevant
regressors that shift. Close to M1 at α = 0.16 for ψ2 > 1 and to M2

for ψ2 < 1.
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Summary of analytic results

σ2
ε = 1, β0 = 5, β1 = 1, µ1 = µ2 = 2, δ = 4, ρ = 0.5

Case ψ2
β2

= 0 ψ2
β2

= 1 ψ2
β2

= 4 ψ2
β2

= 16

Stationary M2 1.001
(δ = 0) M3 1.000

Out of sample shift

Known future regressors M2 1.014
M3 1.009

Unknown future regressors
mean forecast M2 1.000

M3 1.000
random walk forecast M2 1.004

M3 1.002

In-sample shift

mean forecast M2 1.021
M3 1.014

random walk forecast M2 0.990
M3 0.993

Figures reported are MSFE2
MSFE1

and MSFE3
MSFE1

for T = 50 and α = 0.16.

Supports ψ = 1 as cut-off. Ratios very close to 1.

Castle, Doornik and Hendry (Oxford) Selecting a Model for Forecasting BoE 2018 20 / 25



Summary of analytic results

σ2
ε = 1, β0 = 5, β1 = 1, µ1 = µ2 = 2, δ = 4, ρ = 0.5

Case ψ2
β2

= 0 ψ2
β2

= 1 ψ2
β2

= 4 ψ2
β2

= 16

Stationary M2 0.981 1.001
(δ = 0) M3 0.984 1.000

Out of sample shift

Known future regressors M2 0.709 1.014
M3 0.756 1.009

Unknown future regressors
mean forecast M2 1.000 1.000

M3 1.000 1.000
random walk forecast M2 0.993 1.004

M3 0.994 1.002

In-sample shift

mean forecast M2 1.020 1.021
M3 1.017 1.014

random walk forecast M2 0.871 0.990
M3 0.892 0.993

Figures reported are MSFE2
MSFE1

and MSFE3
MSFE1

for T = 50 and α = 0.16.

M2 correct model, but selection not costly.

In some cases gains over M1 very large.
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Summary of analytic results

σ2
ε = 1, β0 = 5, β1 = 1, µ1 = µ2 = 2, δ = 4, ρ = 0.5

Case ψ2
β2

= 0 ψ2
β2

= 1 ψ2
β2

= 4 ψ2
β2

= 16

Stationary M2 0.981 1.001 1.060 1.295
(δ = 0) M3 0.984 1.000 1.016 1.001
Out of sample shift

Known future regressors M2 0.709 1.014 1.927 5.582
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Unknown future regressors
mean forecast M2 1.000 1.000 1.000 1.000

M3 1.000 1.000 1.000 1.000
random walk forecast M2 0.993 1.004 1.020 1.043

M3 0.994 1.002 1.006 1.000
In-sample shift

mean forecast M2 1.020 1.021 1.022 1.024
M3 1.017 1.014 1.006 1.000

random walk forecast M2 0.871 0.990 1.273 2.078
M3 0.892 0.993 1.075 1.005

Figures reported are MSFE2
MSFE1

and MSFE3
MSFE1

for T = 50 and α = 0.16.

Costs of selection are usually small, irrespective of ψ.

Model selection reduces risk relative to worst model.
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Route map

1 No breaks: forecasting with a stationary DGP

2 Out-of-sample break – what is the impact of selection?

3 End-of-sample break – the impact of selection on different
forecasting devices

4 Simulation evidence

5 Conclusions

(1) No breaks

(2) Breaks:
Out-of-sample (break at T + 1) End-of-sample (break at T )

(i) known regressors
(ii) in-sample mean forecast (ii) in-sample mean forecast
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Simulation design

Large simulation study looking across:

Varying non-centralities and DGP sizes

Varying numbers of relevant/irrelevant regressors

Varying sample size & break magnitude

Breaks in relevant/irrelevant/all regressors

Breaks in mean/persistence

Breaks in/out-of sample

Range of forecasting models including in-sample mean & robust

Selection by Autometrics for α = (0.001, 0.01, 0.05, 0.1, 0.16, 0.32, 0.5)

Results:

2142 distinct MSFE observations, MSFE = 5.15 and σ = 7.50.
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Is selection costly?
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Knowing DGP infeasible – selection must be undertaken.
Incurs almost no cost relative to DGP if α not too tight.
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Summary

Theory: retain if ψ > 1 =⇒ t2 > 2, regardless of location shifts.
Looser than conventional significance levels:

fewer relevant variables excluded contributing to forecast accuracy
more irrelevant variables retained by chance, but coefficient
estimates driven towards zero when updating

Simulation evidence provides guidance for forecasting

Support for selecting models ≈ 10%, N = 15 or 16% at N = 2.
Knowing DGP but forecasting x rarely delivered best MSFE.
In-sample mean for x: worst model for end-of-sample breaks in
relevant/all regressors, but best out-of-sample.
RW with difference robust forecast for x: best for end-of-sample
breaks in relevant/all regressors, poor if breaks out-of-sample.
Direct AR(1) forecast for y: best if breaks in irrelevant variables.
Simulation highlighted complexity of selection rule for forecasting
– highly non-linear with many interaction terms. Results
depended on all aspects of experimental design especially
retention probability given ψ.
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Conclusions

Take-aways for the forecaster:

Analytic results: trade-off at ψ2 = 1 regardless of breaks. ∴ α = 16%
for N = 2 in all settings.

Breaks in form of location shifts dominate with selection decision of
second order importance. Essential to handle breaks to avoid forecast
failure.

Selection is not costly – when unknown future xs similar MSFE to
known DGP.

Simulation evidence suggest pooling works well across many settings:
combination across ‘non-poisonous methods’ provides insurance policy.
But even methods not nesting DGP also performed well.

For practitioners uncertain of the nature of the unknown DGP, a
moderate selection significance level of α = 10%–16% insures against
the extremes, although there will be cases when such a choice is not
optimal, and updating will reveal these.
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Bagging

Bergmeir and Hyndman (2016) – Bagging:

1 Box–Cox transformation with λ ∈ [0, 1].

2 Decomposition into trend and remainder using LOESS.

3 Create M remainder series using moving-block bootstrap, add the
trend back in, and undo the Box–Cox transformation.

4 Construct M forecasts using exponential smoothing (using AIC to
select from all available models, called ETS).

5 Output the median forecast.

Their method improves on ETS in M3 on all frequencies (yearly,
quartely, monthly).
But Hyndman and Billah (2003): Theta also an exponential smoothing
method, and bagging only improves on Theta(2) in monthly data.
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Bagging

Yearly Quarterly Monthly
M3 sMAPE MAPE sMAPE MAPE sMAPE MAPE

Theta(2).log 16.07 2.69 9.14 1.10 13.57 0.85
Theta(2) 16.72 2.77 9.24 1.12 13.91 0.86
Theta(2)∗ 16.97 2.81 8.96 1.09 13.89 0.86
Bagging∗ 17.89 3.15 10.13 1.22 13.64 0.85
Bagging2∗ 17.56 2.93 9.89 1.17 13.62 0.84

∗ results taken from published papers.
Dantas and Oliviera (2018) extends to involve clustering (Bagging2)
[M4 competition: ranked 19th, just above Theta at 20th. Card
uniformly better.]
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Bagging

M4 Y Q M W D H Y Q M W D H
sMAPE MASE

Card 13.91 10.00 12.78 6.74 3.05 8.91 3.26 1.16 0.93 2.30 3.28 0.80
Theta(2).log 13.30 10.13 13.05 7.86 3.04 18.25 2.99 1.19 0.97 2.54 3.25 2.48
Bagging2 14.75 10.25 13.46 8.87 3.25 16.94 3.29 1.17 0.95 2.53 3.43 1.60
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Potency and Gauge Back

Retention Rate: p̃i = 1
M

∑M
j=1 1(β̃i,j 6=0), i = 1, . . . , N .

Gauge: 1
N−n

∑N
i=n+1 p̃i

Potency: 1
n

∑n
i=1 p̃i
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Selecting variables

yt = β′xt + νt where νt ∼ IN
[
0, σ2ν

]
for t = 1, . . . , T and

xt ∼ INk [0,Ω].

Minimum 1-step MSFE when β and xT+1 known is conditional
expectation: E

[
ν2T+1|xT+1

]
= σ2ν .

When β estimated; β̂ ∼ Nk

[
β, σ2ν (X′X)−1

]
, σ̂2ν ∼ σ2ν

χ2
T−1

(T−k) :

T β̂′Ω̂β̂

kσ̂2
ν

∼ FkT−k

(
ψ2
β=0

)
with ψ2

β=0 = Tβ′Ωβ
σ2
ν

.

Replace Ω̂ with Ω = E
[
Ω̂
]

and for T > k + 2, see Johnson and Kotz

(1970, Ch.30): E
[
FkT−k

(
ψ2
β=0

)]
=

(T−k)(k+ψ2
β=0)

k(T−k−2) ' 1 +
ψ2
β=0

k

When k = 1, T β̂2σ̂2
x

σ̂2
ν

= t2T−1 (·), so:

E
[
t2T−1

(
ψ2
β=0

)]
> c2 =⇒ 1 + ψ2

β=0 > c2.
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Selecting variables Back

Let β′ = (β′1 : β′2) and x′t =
(
x′1,t : x′2,t

)
.

Look at relative loss between inclusion and exclusion of x2,t.
Relative loss defined by difference in conditional MSFE relative to

innovation variance: Rl(ν̃,ν̂,1) =
(E[ν̃2T+1|IT ]−E[ν̂2T+1|IT ])

σ2
ν

Fk2T−k-test of β2 = 0 has non-centrality parameter ψ2
β2=0 =

Tβ′2Ω22.1β2
σ2
ν

such that: Rl(ν̃,ν̂,1) = T−1k2

((
1 + T−1k1

)
Ψ2
β2=0 − 1

)
.

When k2 = 1: Rl(ν̃,ν̂,1) ' T−1
(
ψ2
β2=0 − 1

)
.

If non-centrality ψ2
β2=0 > 1 or expected t2 > 2 improved forecast

accuracy from inclusion.
Back
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Simulation design

DGP:

yt = β0 + βyyt−1 + β′xt + εt, εt ∼ IN
(
0, σ2ε

)
xt

(N×1)
=

{
ι+ λxt−1 + ηt for t = 1, . . . , T
(ι+ ν∇ι) + (λ+ ν∇λ) xt−1 + ηt for t = T + 1, T + 2

ηt ∼ INN [0, I]

σ2ε = 1, β0 = 5 βy = 0.5, N = 15 and n = no. relevant variables

ν for shift in relevant, irrelevant, or all regressors.
ι = 1N ∇ι: 4σ mean shift in xt at T + 1.
λ = 0.5IN and ∇λ = 0.45: persistence increases from 0.5 to 0.95.

Three experiments, N = 15, n = 5 or 8:

ψ
(N×1)

=


(0, 0, 0, 0, 0, 0, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4)′ .
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4)′ .
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)′ .
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Simulation design

GUM:

yt = β0 + βyyt−1 +
∑1

i=0

∑N
j=1 βijxj,t−i + εt

Selection by Autometrics for α = (0.001, 0.01, 0.05, 0.1, 0.16, 0.32, 0.5)
T = 100, M = 1, 000, 1-step MSFEs for yT+1|T and yT+2|T+1.

A range of forecasting models used:

known future exogenous regressors as infeasible benchmark
unknown future exogenous regressors, forecasts obtained from:

in-sample mean;
selected model from ADL GUM for exogenous regressors;
robust forecasting devices including RW and RW with difference;
AR(1);
univariate forecasts of yT+h using RW or AR(1); and
pooling various forecasting models.

Results:

2142 distinct MSFE observations, MSFE = 5.15 and σ = 7.50.
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Simulation design

GUM:

yt = β0 + βyyt−1 +
∑1

i=0

∑N
j=1 βijxj,t−i + εt

Selection by Autometrics for α = (0.001, 0.01, 0.05, 0.1, 0.16, 0.32, 0.5)
T = 100, M = 1, 000, 1-step MSFEs for yT+1|T and yT+2|T+1.

A range of forecasting models used:

known future exogenous regressors as infeasible benchmark
unknown future exogenous regressors, forecasts obtained from:

in-sample mean;
selected model from ADL GUM for exogenous regressors;
robust forecasting devices including RW and RW with difference;
AR(1);
univariate forecasts of yT+h using RW or AR(1); and
pooling various forecasting models.
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Gauge Link to Definition
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Gauge Link to Definition

Average gauge across experiments 
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Potency
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Potency
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Potency

Average potency across experiments 
Minimum potency 
Maximum potency 
1st quartile 
3rd quartile 
Theoretical retention for ψ 
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ψ= 0.5;1;1.5;2;2.5;3;3.5;4

Null rejection frequency close to α and non-null rejections close to
powers of one-off t-tests with same ψ.
∴ use Autometrics to evaluate theoretical results by simulation,
without concern that selection algorithm influences results relative to
single t-test approach.
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Rankings at α = 10%

All experiments [3 ψ’s, breaks out/end-of-sample, no breaks/breaks in
relevant/irrelevant/all regressors]
Rankings at α = 10%: (1 = smallest MSFE, 8 = largest MSFE ranking)

1 Forecast pooling over: selection, RW for x, direct AR(1) for y
2 Direct AR(1) forecast for y
3 RW robust forecast for x
4 Selecting from ADL GUM for x
5 In-sample mean for x
6 RW with difference robust forecast for x
7 Direct RW forecast for y
8 AR(1) forecast for x

In-sample mean for x: Worst model for end-of-sample breaks in
relevant/all regressors but best out-of-sample.

RW with difference robust forecast for x: Best for end-of-sample
breaks in relevant/all regressors, poor if breaks out-of-sample.

Direct AR(1) forecast for y: best if breaks in irrelevant variables.
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Choice of significance level

Features that matter across specifications:

potency

gauge

theoretical retention probability given ψ

Small variation in MSFE across α relative to variation across break
types/DGP designs.
Too tight or too loose α (0.1% or 50%) can worsen MSFE

substantially.
Selection at 5% preferred for ψ = 4, but 16% often dominates for
ψ = 1 or mixed ψ.
Choice of α interacts with whether break occurs in the relevant or
irrelevant regressors.
Knowing the DGP only preferred in 4 of 14 cases, irrespective of
ψ, although also knowing future values of regressors (and hence
breaks) always dominates.
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Summary of analytic results

Table below summarises MSFEs for ψ2
β2

= 0 and ψ2
β2

= 16

[σ211 = σ222 = σ2ε = 1, β0 = 5, β1 = 1, µ1 = µ2 = 2, ∇µ2 = 4, ρ = 0.5]

Costs of selection are usually small, irrespective of ψβ2 .

Model selection reduces risk relative to worst model.

Costs of unmodelled shifts are large, up to almost 8-fold greater
than baseline stationary case.

Even facing breaks, trade-off for selecting variables in forecasting
models (retain if ψ > 1) still applies =⇒ looser significance
levels than typically used.

But when many β2,i = 0 subject to location shifts, erroneously
including x2 in model costly. Loose significance levels increase the
chance that irrelevant variables with ψβ2,i = 0 are retained by
chance significance for a given draw.
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Results: Case 1

Break type & case Out: T + 1|T In: T + 2|T + 1
DGP α = 0.05 α = 0.16 DGP α = 0.05 α = 0.16

No break
(i) known 1.13 1.38 1.40 1.09 1.30 1.36
(ii) sample mean 1.59 1.63 1.64 1.57 1.59 1.62
(iv,b) RW with diff. 2.12 2.26 2.30 2.02 2.11 2.18
(vii) pooling 1.52 1.52 1.49 1.53

Break Relevant
ι (i) known 1.55 2.55 2.22 1.66 2.79 2.45

(ii) sample mean 17.56 17.58 17.54 39.50 40.40 41.28
(iv,b) RW with diff. 18.61 18.77 18.96 2.53 3.91 3.46
(vii) pooling 17.75 17.79 17.99 16.54

λ (i) known 1.25 1.67 1.59 1.33 1.92 1.78
(ii) sample mean 4.46 4.51 4.50 11.96 12.12 12.35
(iv,b) RW with diff. 4.38 4.62 4.66 2.43 3.40 3.11
(vii) pooling 4.16 4.16 7.07 6.76

Break Irrelevant
ι (i) known 1.13 1.55 1.70 1.09 1.61 1.84

(ii) sample mean 1.59 1.63 1.64 1.57 1.59 1.60
(iv,b) RW with diff. 2.11 2.25 2.31 2.01 2.21 2.30
(vii) pooling 1.52 1.54 1.54 1.57

λ (i) known 1.13 1.44 1.49 1.09 1.39 1.56
(ii) sample mean 1.59 1.63 1.64 1.57 1.59 1.61
(iv,b) RW with diff. 2.12 2.25 2.31 2.02 2.11 2.20
(vii) pooling 1.52 1.53 1.51 1.55

Break All
ι (i) known 1.54 2.73 2.50 1.66 2.84 2.67

(ii) sample mean 17.88 17.90 17.86 40.01 40.93 41.69
(iv,b) RW with diff. 18.86 18.99 19.12 2.53 3.76 3.46
(vii) pooling 18.02 18.00 17.30 15.50

λ (i) known 1.25 1.71 1.67 1.33 1.92 1.89
(ii) sample mean 4.50 4.55 4.55 12.06 12.23 12.45
(iv,b) RW with diff. 4.40 4.63 4.68 2.42 3.37 3.15
(vii) pooling 4.19 4.18 6.99 6.64

Table: Simulation summary for 8 relevant variables with non-centralities of 0.5; 1; 1.5; 2; 2.5; 3; 3.5; 4
and 7 irrelevant variables. Shaded cells indicate minimum MSFE for selection across methods listed;
bold where knowing the DGP, but not the future values of the regressors, would have dominated.
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Results: Case 2

Break type & case Out: T + 1|T In: T + 2|T + 1
DGP α = 0.05 α = 0.16 DGP α = 0.05 α = 0.16

No break
(i) known 1.09 1.24 1.33 1.06 1.19 1.30
(ii) sample mean 1.90 1.96 1.97 1.89 1.93 1.95
(iv,b) RW with diff. 2.59 2.68 2.77 2.51 2.62 2.71
(vii) pooling 1.73 1.77 1.76 1.80

Break Relevant
ι (i) known 1.32 1.62 1.69 1.43 1.78 1.86

(ii) sample mean 21.22 21.20 21.22 47.18 48.42 49.52
(iv,b) RW with diff. 22.60 22.77 22.78 2.92 3.37 3.41
(vii) pooling 21.51 21.56 20.13 19.51

λ (i) known 1.16 1.34 1.40 1.19 1.43 1.51
(ii) sample mean 5.46 5.52 5.54 14.52 14.80 15.11
(iv,b) RW with diff. 5.17 5.35 5.44 2.87 3.20 3.28
(vii) pooling 4.91 4.96 8.04 7.99

Break Irrelevant
ι (i) known 1.09 1.45 1.70 1.06 1.67 2.01

(ii) sample mean 1.89 1.95 1.96 1.88 1.92 1.94
(iv,b) RW with diff. 2.57 2.67 2.75 2.49 2.73 2.90
(vii) pooling 1.74 1.78 1.82 1.94

λ (i) known 1.09 1.30 1.42 1.06 1.35 1.48
(ii) sample mean 1.90 1.96 1.97 1.89 1.93 1.95
(iv,b) RW with diff. 2.58 2.67 2.77 2.51 2.62 2.65
(vii) pooling 1.73 1.77 1.79 1.84

Break All
ι (i) known 1.32 1.79 2.03 1.43 2.04 2.41

(ii) sample mean 21.88 21.88 21.89 48.27 49.58 50.64
(iv,b) RW with diff. 23.14 23.30 23.32 2.94 3.43 3.59
(vii) pooling 22.10 22.14 18.92 17.70

λ (i) known 1.16 1.39 1.49 1.19 1.52 1.66
(ii) sample mean 5.55 5.60 5.64 14.71 15.01 15.28
(iv,b) RW with diff. 5.21 5.40 5.47 2.87 3.17 3.29
(vii) pooling 4.98 5.01 7.88 7.77

Table: Simulation summary for 5 relevant variables with non-centralities of 4 and 10 irrelevant
variables. Shaded cells indicate minimum MSFE for selection across methods listed.
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Results: Case 3

Break type & case Out: T + 1|T In: T + 2|T + 1
DGP α = 0.05 α = 0.16 DGP α = 0.05 α = 0.16

No break
(i) known 1.10 1.24 1.31 1.07 1.22 1.30
(ii) sample mean 1.06 1.09 1.09 1.06 1.08 1.08
(iv,b) RW with diff. 1.19 1.29 1.37 1.20 1.23 1.33
(vii) pooling 1.11 1.12 1.08 1.10

Break Relevant
ι (i) known 1.32 2.02 1.89 1.44 2.49 2.07

(ii) sample mean 2.32 2.34 2.34 4.07 4.22 4.26
(iv,b) RW with diff. 2.52 2.61 2.73 1.53 2.60 2.18
(vii) pooling 2.39 2.42 3.09 2.73

λ (i) known 1.16 1.42 1.45 1.21 1.64 1.62
(ii) sample mean 1.30 1.33 1.33 1.88 1.93 1.94
(iv,b) RW with diff. 1.38 1.53 1.60 1.28 1.70 1.63
(vii) pooling 1.35 1.36 1.70 1.62

Break Irrelevant
ι (i) known 1.10 1.41 1.66 1.07 1.60 1.93

(ii) sample mean 1.06 1.09 1.09 1.06 1.07 1.08
(iv,b) RW with diff. 1.19 1.28 1.37 1.20 1.40 1.62
(vii) pooling 1.11 1.12 1.10 1.14

λ (i) known 1.10 1.28 1.38 1.07 1.37 1.49
(ii) sample mean 1.06 1.09 1.09 1.06 1.08 1.08
(iv,b) RW with diff. 1.19 1.29 1.38 1.20 1.27 1.34
(vii) pooling 1.11 1.12 1.10 1.10

Break All
ι (i) known 1.32 2.23 2.15 1.44 2.71 2.59

(ii) sample mean 2.36 2.38 2.38 4.14 4.28 4.34
(iv,b) RW with diff. 2.56 2.66 2.74 1.53 2.71 2.33
(vii) pooling 2.43 2.45 3.05 2.67

λ (i) known 1.16 1.47 1.49 1.21 1.74 1.74
(ii) sample mean 1.31 1.34 1.34 1.90 1.94 1.95
(iv,b) RW with diff. 1.39 1.53 1.59 1.28 1.72 1.66
(vii) pooling 1.35 1.36 1.70 1.61

Table: Simulation summary for 5 relevant variables with non-centralities of 1 and 10 irrelevant
variables. Shaded cells indicate minimum MSFE for selection across methods listed.
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Results: Rankings

(ii) (iii) (iva) (ivb) (v) (via) (vib) (vii)

No Break
(1) Out 3 4 5 7 8 6 1 2

In 3 4 5 7 8 6 1 2
(2) Out 4 3 5 7 8 6 2 1

In 3 4 5 7 8 6 2 1
(3) Out 2 4 5 6 8 7 1 3

In 2 4 5 6 8 7 1 3

Break Relevant
(1) Out 1 3 6 7 8 5 2 4

ι In 8 3 2 1 6 5 7 4
(2) Out 1 4 5 7 8 6 2 3

In 8 4 2 1 6 5 7 3
(3) Out 1 4 5 6 8 7 2 3

In 8 4 2 1 7 3 6 5
(1) Out 5 2 4 7 8 6 3 1

λ In 8 4 2 1 6 5 7 3
(2) Out 7 3 2 6 8 5 4 1

In 8 4 2 1 6 5 7 3
(3) Out 2 4 5 6 8 7 1 3

In 7 4 3 2 8 5 6 1
Break Irrelevant

(1) Out 3 4 5 7 8 6 1 2
ι In 3 6 4 7 8 5 1 2

(2) Out 3 4 5 7 8 6 2 1
In 3 6 5 7 8 4 1 2

(3) Out 2 5 4 6 8 7 1 3
In 2 6 4 7 8 5 1 3

(1) Out 3 4 5 7 8 6 2 1
λ In 3 4 5 7 8 6 1 2

(2) Out 4 3 5 7 8 6 2 1
In 3 6 4 7 8 5 1 2

(3) Out 2 4 5 6 8 7 1 3
In 2 5 4 6 8 7 1 3

Break All
(1) Out 1 4 5 7 8 6 2 3

ι In 8 3 2 1 6 5 7 4
(2) Out 1 4 5 7 8 6 2 3

In 8 3 2 1 6 5 7 4
(3) Out 1 4 5 6 8 7 2 3

In 8 5 2 1 7 3 6 4
(1) Out 5 2 4 7 8 6 3 1

λ In 8 3 2 1 6 5 7 4
(2) Out 7 3 2 6 8 5 4 1

In 8 4 2 1 6 5 7 3
(3) Out 2 4 5 6 8 7 1 3

In 7 4 3 2 8 5 6 1

Average 4.2 4.0 3.9 5.1 7.6 5.6 3.1 2.5

Table: Simulation summary rankings for α = 10%. ‘Out’ refers to forecasts for T + 1|T , i.e. the break
is out-of-sample. ‘In’ refers to forecasts for T + 2|T + 1 where the break is in-sample. (1) is for the
case with ψ = (0, 0, 0, 0, 0, 0, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4)′, (2) is case
ψ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4)′, and (3) is for ψ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)′. Lower
case Roman numerals respectively denote forecasting the unknown future exogenous regressors by: (ii)
the in-sample mean; (iii) selecting from the GUM (??); (iva) a random walk; (ivb) that with the added
difference; (v) an AR(1); (via) a direct random walk forecast of y; (vib) a direct AR(1) forecast of y;
and (vii) pooling.
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