

Simone Manganelli European Central Bank

Selecting Models with Judgment

2nd "Forecasting at Central Banks" conference

Bank of England and King's College London, 15 November, 2018

Disclaimer: Any views expressed are only the author's own and do not necessarily reflect the views of the ECB or the Eurosystem

Question

Start from a judgmental forecast. How can it be statistically improved?

The frequentist statistical decision rule

Model selection under misspecification

- Empirical illustration
 - Preliminaries
 - Results

 1) $X \sim N(\theta, 1)$ 2) $L(\theta, a) = 0.5(\theta - a)^2$

 3) Judgment: $\{\tilde{a}, \alpha\}$ 4) X = x

FOC: $H_0: \nabla_a L(\theta, \tilde{a}) = -\theta + \tilde{a} = 0$

1) $X \sim N(\theta, 1)$

1)
$$X \sim N(\theta, 1)$$
 2) $L(\theta, a) = 0.5(\theta - a)^2$

1)
$$X \sim N(\theta, 1)$$

3) Judgment: { \tilde{a}, α }
2) $L(\theta, a) = 0.5(\theta - a)^2$

1)
$$X \sim N(\theta, 1)$$
 2) $L(\theta, a) = 0.5(\theta - a)^2$

 3) Judgment: { \tilde{a}, α }
 4) $X = x$

1)
$$X \sim N(\theta, 1)$$
 2) $L(\theta, a) = 0.5(\theta - a)^2$

 3) Judgment: $\{\tilde{a}, \alpha\}$
 4) $X = x$

FOC: $H_0: \nabla_a L(\theta, \tilde{a}) = -\theta + \tilde{a} = 0$

 1) $X \sim N(\theta, 1)$ 2) $L(\theta, a) = 0.5(\theta - a)^2$

 3) Judgment: $\{\tilde{a}, \alpha\}$ 4) X = x

 1) $X \sim N(\theta, 1)$ 2) $L(\theta, a) = 0.5(\theta - a)^2$

 3) Judgment: $\{\tilde{a}, \alpha\}$ 4) X = x

 1) $X \sim N(\theta, 1)$ 2) $L(\theta, a) = 0.5(\theta - a)^2$

 3) Judgment: $\{\tilde{a}, \alpha\}$ 4) X = x

 1) $X \sim N(\theta, 1)$ 2) $L(\theta, a) = 0.5(\theta - a)^2$

 3) Judgment: $\{\tilde{a}, \alpha\}$ 4) X = x

 1) $X \sim N(\theta, 1)$ 2) $L(\theta, a) = 0.5(\theta - a)^2$

 3) Judgment: $\{\tilde{a}, \alpha\}$ 4) X = x

FOC: $H_0: \nabla_a L(\theta, \tilde{a}) = -\theta + \tilde{a} = 0$

The frequentist decision

Frequentist decision rule: $\delta(X) = (x + c_{1-\alpha}) \cdot I(-X + \tilde{a} > c_{1-\alpha}) + (x + c_{\alpha}) \cdot I(-X + \tilde{a} < c_{\alpha}) + \tilde{a} \cdot I(c_{\alpha} \le -X + \tilde{a} \le c_{1-\alpha})$

Economic interpretation: $P_{\theta} \left[L(\theta, \delta(X)) > L(\theta, \tilde{a}) \right] \leq \alpha$

The frequentist statistical decision rule **Model selection under misspecification**

- Empirical illustration
 - Preliminaries
 - Results

Assumptions so far:

1) Quadratic loss function Easy to generalise to convex loss functions

2) A single observation normally distributed Easy to generalise, appealing to asymptotic approximations

3) Correctly specified model This is hard...

Halbert L. White, Jr., 1950-2012

Theory for misspecified models

www.ecb.europa.eu ©

Quasi-maximum likelihood estimation

$$\max_{\theta} n^{-1} \sum_{t=1}^{n} \log f_t(X^t, \theta)$$
$$B^{*-\frac{1}{2}} A^* \sqrt{n} (\hat{\theta}(X^n) - \theta^*) \xrightarrow{A} N(0, I_p)$$

Quasi-maximum likelihood estimation

$$\max_{\theta} n^{-1} \sum_{t=1}^{n} \log f_t(X^t, \theta)$$
$$B^{*-\frac{1}{2}} A^* \sqrt{n} (\hat{\theta}(X^n) - \theta^*) \xrightarrow{A} N(0, I_p)$$

Econometrics boils down to the choice of $f_t(X^t, \theta)$.

Special cases:

- Macroeconometrics (VAR, DSGE, ...)
- Financial econometrics (GARCH, CAViaR, ...)
- Machine learning (neural nets, random forests, ...)

Quasi-maximum likelihood estimation

$$\max_{\theta} n^{-1} \sum_{t=1}^{n} \log f_t(X^t, \theta)$$
$$B^{*-\frac{1}{2}} A^* \sqrt{n} (\hat{\theta}(X^n) - \theta^*) \xrightarrow{A} N(0, I_p)$$

The asymptotic VC matrix is consistently estimated by: $\hat{A}^{-1}\hat{B}\hat{A}^{-1}$ $\hat{A} = n^{-1}\sum_{t=1}^{n} \nabla^{2}\log f_{t} \left(X^{t}, \hat{\theta}(X^{n})\right)$ $\hat{B} = n^{-1}\sum_{t=1}^{n} \nabla\log f_{t} \left(X^{t}, \hat{\theta}(X^{n})\right)\nabla'\log f_{t} \left(X^{t}, \hat{\theta}(X^{n})\right)$

Judgment and asymptotics

The decision problem for inflation forecasting:

$$\min_{a} L(\theta, a) = 0.5(x_{n,h}(\theta) - a)^2$$

Judgment and asymptotics

The decision problem for inflation forecasting:

$$\min_{a} L(\theta, a) = 0.5(x_{n,h}(\theta) - a)^2$$

Null hypothesis that the judgment is optimal:

$$H_0: \nabla L(\theta^*, \tilde{a}) = -x_{n,h}(\theta^*) + \tilde{a} = 0$$

Use classical Wald, LR or LM tests.

Back to the simple case

1)
$$x_{n,h}(\hat{\theta}(X^n)) \sim N(x_{n,h}(\theta^*), \sigma^2)$$

2) $L(\theta^*, a) = 0.5(x_{n,h}(\theta^*) - a)^2$
3) Judgment: { \tilde{a}, α }
4) $X^n = x^n$

FOC: $H_0: \nabla_a L(\theta^*, \tilde{a}) = -x_{n,h}(\theta^*) + \tilde{a} = 0$

Select the least misspecified model.

Select the least misspecified model. Minimise the Kullback-Leibler distance:

$$\Pi(a^0:\delta^m) = n^{-1} \sum_{t=1}^n (L(\delta_t^m(x^n)) - L(a_t^0)) \ge 0$$

Select the least misspecified model. Minimise the Kullback-Leibler distance:

$$\Pi(a^0:\delta^m) = n^{-1} \sum_{t=1}^n (L(\delta_t^m(x^n)) - L(a_t^0)) \ge 0$$

Asymptotic approximation:

$$\hat{L}^{m} = n^{-1} \sum_{t=1}^{n} 0.5(\delta_{t}^{m}(x^{n}) - x_{t,h})^{2}$$

Select the least misspecified model. Minimise the Kullback-Leibler distance:

$$\Pi(a^0:\delta^m) = n^{-1} \sum_{t=1}^n (L(\delta_t^m(x^n)) - L(a_t^0)) \ge 0$$

Asymptotic approximation:

$$\hat{L}^m = n^{-1} \sum_{t=1}^n 0.5(\delta_t^m(x^n) - x_{t,h})^2$$

Best model:

$$m^+ = \arg\min_m \hat{L}^m$$

The frequentist statistical decision rule Model selection under misspecification Empirical illustration – Preliminaries

Results

Ingredients for forecasting

- 1) Judgment
- 2) Loss function
- 3) Data
- 4) Functional form for the asymptotic approximation

Ingredients for forecasting

1) Judgment

2) Loss function

3) Data

4) Functional form for the asymptotic approximation

Judgment – Inflation forecast

Trusting that the ECB will deliver on its mandate:

$$\tilde{a} \equiv 24^{-1}E(\sum_{i=1}^{24} \pi_{n+i} | X^n) = 1.9\%$$

Judgment – Confidence level

 $\alpha = 10\%$

Ingredients for forecasting

1) Judgment

- 2) Loss function
- 3) Data
- 4) Functional form for the asymptotic approximation

Quadratic loss function

$$L(a) = 0.5E((\pi_{n,24} - a)^2 | X^n)$$

where

$$\pi_{n,24} \equiv 24^{-1} \sum_{i=1}^{24} \pi_{n+i}$$

Ingredients for forecasting

1) Judgment

2) Loss function

3) Data

4) Functional form for the asymptotic approximation

Data

- 1) HICP Overall index, Annual rate of change, Eurostat
- 2) HICP All-items excluding energy and unprocessed food, Annual rate of change, Eurostat
- 3) Unemployment, Eurostat
- 4) Industrial Production Index, Eurostat

Source: <u>https://sdw.ecb.europa.eu</u>

Annualised inflation

Unemployment

Industrial production

Ingredients for forecasting

- 1) Judgment
- 2) Loss function
- 3) Data
- 4) Functional form for the asymptotic approximation

VAR model

$$\begin{aligned} X_t &= v + A_1 X_{t-1} + \dots + A_p X_{t-p} + u_t \\ u_t \sim iid(0, \Sigma) \end{aligned}$$

with zero restrictions:

 \rightarrow ratio of parameters to data not too large

Choice of $f_t(X^t, \theta)$:

$$f_t(X^t, \theta) = \exp(-0.5u_t'\Sigma^{-1}u_t)$$

Example

0 1 0 0 0 0

The frequentist statistical decision rule Model selection under misspecification **Empirical illustration**

- Preliminaries
- Results

Euro area inflation forecast as of February 2018

In sample performance of AR model

In sample performance of 4-VAR model

Average in sample loss

1. Separation b/w judgment and econometric modelling

- 1. Separation b/w judgment and econometric modelling
- 2. Methodology to incorporate judgment and select the least mis-specified model

- 1. Separation b/w judgment and econometric modelling
- 2. Methodology to incorporate judgment and select the least mis-specified model

3. Pay attention to unemployment, rather than core inflation