The Global Component of Inflation Volatility

Andrea Carriero Queen Mary, University of London

> Francesco Corsello Bank of Italy

Massimiliano Marcellino Bocconi University, IGIER and CEPR

2nd Forecasting at Central Banks Conference

London, November 15-16, 2018

How much **global** is the **Inflation** process?

- Rogoff (2003), Rogoff (2006), Carney (2017), Miles, Paniza, Reis and Ubide (2017): Globalisation, Inflation and Central Banks.
- Borio and Filardo (2007), Bianchi and Civelli (2015) and Auer, Borio and Filardo (2017): effects of global economic conditions on inflation.
- Ciccarelli and Mojon (2010), Mikolajun and Lodge (2016): a substantial amount of variation in a large set of national inflation rates is explained by global factors that capture the most persistent component (slow moving trends).
- Engle (1982), Stock and Watson (2007), Mumtaz and Surico (2008): including changing volatility when modeling inflation.

CPI INFLATION RATES AND PCA

Data for 20 OECD countries. The first PC explains almost 75%

CARRIERO, CORSELLO, MARCELLINO

CPI INFLATION RATES SVS FROM UNIVARIATE AR-SV Data for 20 OECD countries. The first PC explains almost 60%

CARRIERO, CORSELLO, MARCELLINO

What this paper does

- We include Stochastic Volatility in modeling multi-country inflation rates (20 OECD countries since the 1960s).
- We investigate cross-country commonality not only in inflation levels, but also in inflation volatilities.
- We build a Multivariate Autoregressive Index model with Autoregressive components and Stochastic volatility (MAI-AR-SV), and derive a fully-fledged Bayesian MCMC algorithm.
- We decompose both levels and volatilities so to disentangle contributions of a single global component and the idiosyncratic components.
- We run a point and density forecasting evaluation to test the out of sample performance of the model.

MAIN RESULTS

- The estimated global factor explains roughly 70% of the variability of CPI inflation levels.
- Significantly time-varying global inflation volatility since the 1960s.
- Important evidence of commonality in volatilities, increased in the last two decades. A large fraction of headline CPI inflation volatility can be attributed to the global factor.
- The same decompositions conducted on Non-Food&Non-Energy inflation show a smaller and more stable degree of commonality.
- Point and density forecasting evaluation shows that the MAI-AR-SV model has very good out of sample performance for inflation rates.

The MAI-ar-sv model

Introducing SV in the Multivariate Autoregressive Index with AR components

Reinsel (1983), Carriero Kapetanios and Marcellino (JoE, 2016)

$$\underbrace{y_t}_{n \times 1} = \sum_{\ell=1}^p \underbrace{A_\ell \cdot B_0}_{\downarrow} \cdot y_{t-\ell} + \sum_{\ell=1}^q \Gamma_\ell \cdot y_{t-\ell} + u_t$$
$$\underbrace{A_\ell}_{n \times r} \cdot \underbrace{B_0}_{r \times n}$$

Rank reduction from n to r

$$F_t \equiv \underbrace{B_0}_{} \cdot y_t$$

r×n

F_t, i.e. the "Index", will be interpreted as Global Inflation (r = 1)

The mai-AR-sv model

Introducing SV in the Multivariate Autoregressive Index with AR components

Cubadda and Guardabascio (2017)

$$\underbrace{y_{t}}_{n \times 1} = \sum_{\ell=1}^{p} A_{\ell} \cdot B_{0} \cdot y_{t-\ell} + \sum_{\ell=1}^{q} \underbrace{\Gamma_{\ell}}_{\downarrow} \cdot y_{t-\ell} + u_{t}$$
$$\underbrace{\Gamma_{\ell}}_{n \times n} = \begin{bmatrix} \gamma_{1,\ell} & 0 & \dots & 0 \\ 0 & \gamma_{2,\ell} & \ddots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \gamma_{n,\ell} \end{bmatrix}$$

■ *q* Univariate AutoRegressive Coefficients (*q* potentially larger than *p*) in diagonal Γ_{ℓ}

The mai-ar-SV model

INTRODUCING SV IN THE MULTIVARIATE AUTOREGRESSIVE INDEX WITH AR COMPONENTS

■ Cogley and Sargent (2005) and Primiceri (2005)

$$\underbrace{\mathbf{y}_{t}}_{n \times 1} = \sum_{\ell=1}^{p} A_{\ell} \cdot B_{0} \cdot \mathbf{y}_{t-\ell} + \sum_{\ell=1}^{q} \Gamma_{\ell} \cdot \mathbf{y}_{t-\ell} + \underbrace{\mathbf{u}_{t}}_{\swarrow}$$
$$u_{t} \stackrel{i}{\sim} \mathcal{MN}(\mathbf{0}, \Omega_{t}), \qquad \underbrace{\Omega_{t}}_{n \times n} = G^{-1} \Sigma_{t} \Sigma_{t} (G^{-1})^{\prime}$$

Log-volatilities law of motion

$$\Sigma_{t} = Diag(\sigma_{t}), \qquad \log \sigma_{t} = \log \sigma_{t-1} + \nu_{\sigma,t}, \qquad \nu_{\sigma,t} \stackrel{iid}{\sim} \mathcal{MN}\left(\mathbf{0}, \underbrace{Q_{\sigma}}_{n \times n}\right)$$

Decomposition of SVs and levels

Decompose innovations in two orthogonal sets of components:

$$u_{t} = \Omega_{t} B_{0}^{\prime} \Xi_{t}^{-1} \cdot \underbrace{\omega_{t}}_{\text{Common}} + B_{0\perp}^{\prime} \Xi_{\perp,t}^{-1} \cdot \underbrace{\psi_{t}}_{\text{Idiosyncratic}}$$
$$\begin{bmatrix} \omega_{t} \\ \psi_{t} \end{bmatrix} = \begin{bmatrix} B_{0} u_{t} \\ B_{0\perp} \Omega_{t}^{-1} u_{t} \end{bmatrix} \stackrel{i}{\sim} \mathcal{M} \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \Xi_{t} & \mathbf{0} \\ \mathbf{0} & \Xi_{\perp,t} \end{bmatrix} \right)$$

Exploit the orthogonality of ω_t and ψ_t to decompose the SV...

$$\Omega_{t} = \Omega_{t}^{com} + \Omega_{t}^{idio} \iff \begin{cases} \Omega_{t}^{com} = \Omega_{t}B_{0}^{\prime}\Xi_{t}^{-1}B_{0}\Omega_{t} \\ \Omega_{t}^{idio} = B_{0\perp}^{\prime}\Xi_{\perp,t}^{-1}B_{0\perp} \end{cases}$$

 ...and the observables y_t by regressing on contemporaneous and lagged values of ω_t:

$$y_t = B_1(L)\omega_t + B_2(L)\psi_t.$$

Specification and Dataset

- CPI inflation: Consumer Price Index, year on year growth
- The analysis is performed for both headline and core CPIs changes
- Source: OECD Main Economic Indicators
- Quarterly frequency dataset:
 - All Items: 228 observations, $1960-Q1 \rightarrow 2016-Q4$
 - Non-food & non-energy items: 152 observations, $1979-Q1 \rightarrow 2016-Q4$
- Data for 20 OECD countries: USA, Australia, Austria, Belgium, Canada, Finland, France, Germany, Greece, Italy, Japan, Luxembourg, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, UK
- Single Index (global common factor), as Ciccarelli and Mojon (2010)
- 4 lags used

DATA VS GLOBAL FACTOR, POSTERIOR BANDS

GLOBAL INFLATION FACTOR VS OIL, CHINESE PPI, OECD OUTPUT GAP

Carriero, Corsello, Marcellino

Projections on the Common Component ω_t

Global Inflation Volatility, $\mathbb{E}\left(\omega_t^2\right)$

GLOBAL INFLATION SV & OIL AND CHINESE PPI SVs

Global Inflation SV is correlated with: Oil SV (0.6), Chinese PPI SV (0.8) and Global Output Gap SV (0.6).

CARRIERO, CORSELLO, MARCELLINO

Residuals Volatility Decomposition

total (green), common (red), idio (blue)

Carriero, Corsello, Marcellino

Residuals Volatility Decomposition, % shares COMMON (RED), IDIO (BLUE)

404 10Q4

04Q4 10Q4 16Q4

2Q4

Canada

CARRIERO, CORSELLO, MARCELLINO

CPI Inflation Pseudo Out of Sample Forecasting

- Recursive Estimation and Out of Sample Forecasting
- 101 Quarterly Vintages (estimation window endpoint spanning from 1989Q4 to 2014Q4)
- From 1 quarter to 2 years ahead: $h \in \{1, \dots 8\}$
- Specifications with 4 lags
- Six Models Evaluated: MAI-AR-SV (benchmark), MAI-AR, Univariate AR, Univariate AR-SV, VAR, VAR-SV
- Prior distributions calibrated as Univariate Random Walks across models
- **Extensive usage of parallelization** to perform MCMC estimation of several vintages simultaneously

Forecasting Point and Density Diagnostics

- Forecasting diagnostics framework of Clark and Ravazzolo (2015)
- For each model $m \in \{1, \dots, M\}$, variable $j \in \{1, \dots, n\}$ and horizon $h \in \{1, \dots, H\}$
 - Root Mean Squared Forecast Error (RMSFE):

$$RMSE_{j,h}^{m} = \sqrt{\frac{1}{T^{*}} \sum_{t=T+1}^{T+T^{*}} \left(y_{j,t+h} - \widehat{y}_{j,t+h}^{m}\right)^{2}}$$

Log Predictive Scores obtained via non-parametric kernel smoothing density estimators:

$$\overline{logScore}_{j,h}^{m} = \frac{1}{T^{*}} \sum_{t=T+1}^{T+T^{*}} \log \left(\frac{1}{\widehat{\mathcal{H}} \cdot L_{c}} \sum_{i=1}^{L_{c}} \mathcal{K}_{\mathcal{N}} \left(\frac{y_{j,t+h} - \widehat{\mathcal{Y}}_{j,t+h}^{m,i}}{\widehat{\mathcal{H}}} \right) \right)$$

- Continuous Ranked Probability Score (CRPS): $\overline{CRPS}_{j,h}^{m} = \frac{1}{T^{*}} \sum_{t=T+1}^{T+T^{*}} \left(\frac{1}{L_{c}} \sum_{i=1}^{L_{c}} \left| \widehat{y}_{j,t+h}^{m,i} - y_{j,t+h} \right| - \frac{1}{2 \cdot L_{c}} \sum_{i=1}^{L_{c}} \left| \widehat{y}_{j,t+h}^{m,i} - \widehat{y}_{j,t+h}^{m,i'(i)} \right| \right)$
- To test for significantly different performances: Diebold and Mariano (1995) t-tests for equality are computed for all diagnostics.

Relative RMSFE (ratios with mai-ar-sv)

Relative Log-Scores (differences with mai-ar-sv)

Norway Spain

Portugal Sweden Switzerland

Netherlands

Я

Canada Finland France

Germany Greece Italy Japan Luxembourg NewZealand

-1.5

USA

Australia Austria Belgium

Relative CRPS (ratios with mai-ar-sv)

THANK YOU

Carriero, Corsello, Marcellino

Extras&Appendix

1 Extras and Appendix

Multivariate Autoregressive Index + AR components + SV

 Reinsel (1983), Carriero Kapetanios and Marcellino (2016), Cubadda and Guardabascio (2017)

$$\underbrace{y_t}_{n \times 1} = \sum_{\ell=1}^{p} \underbrace{A_\ell}_{n \times r} \cdot \underbrace{B_0}_{r \times n} \cdot y_{t-\ell} + \sum_{\ell=1}^{q} \Gamma_\ell \cdot y_{t-\ell} + u_t$$

- A Global Inflation "Index" $(r = 1) \rightarrow F_t = B_0 \cdot y_t$
- Cogley and Sargent (2005) and Primiceri (2005)

$$\begin{split} u_t \stackrel{i}{\sim} \mathcal{MN} \left(\mathbf{0}, \Omega_t \right), \qquad \Omega_t = G^{-1} \Sigma_t \Sigma_t \left(G^{-1} \right)' \\ \Sigma_t = Diag(\sigma_t), \qquad \log \sigma_t = \log \sigma_{t-1} + \nu_{\sigma,t}, \qquad \nu_{\sigma,t} \stackrel{iid}{\sim} \mathcal{MN} \left(\mathbf{0}, Q_{\sigma} \right) \end{split}$$

MAI-AR-SV, GIBBS SAMPLER

- **1** Draw the AR coefficients $\gamma | A, B_0, G, (\sigma_t)_{t=1}^T$ Transform the model, standardize, and perform a Bayesian Regression.
- 2 Draw the loadings $A | B_0, G, \gamma, (\sigma_t)_{t=1}^T$ Bayesian Multivariate Regression with heteroskedastic innovations. Use the orthogonalization approach of CCM (2016) to handle large *n*.
- 3 Draw the factor weights elements in $B_0 | \gamma, A, G, (\sigma_t)_{t=1}^T$ Metropolis step similar to CKM2016 but adapted to take into account SV.
- **4** Draw the off-diagonal elements in $G | \gamma, A, B_0, (\sigma_t)_{t=1}^T$ Transform the model as in Primiceri (2005) and perform a Bayesian Regression with heteroskedastic innovations.
- 5 Draw a history of volatilities $(\sigma_t)_{t=1}^T | \gamma, A, B_0, G$ As amended by Del Negro and Primiceri (2013), and using the Omori, Chib, Shephard and Nakajima (2007) approximation for the $\log \chi_1^2$.

Prior on B_0

Block structure, *r* blocks of variables

$$\underbrace{y_t}_{n \times 1} = \begin{bmatrix} y_t^{1'} & y_t^{2'} & \dots & y_t^{r'} \end{bmatrix}', \quad \forall j \in \{1, \dots, r\} \underbrace{y_t^j}_{n_j \times 1}, \quad n = \sum_{j=1}^r n_j$$

Normalization of the first variable of each block (identifying restriction)

$$\underbrace{B_{0}}_{r \times n} = \begin{bmatrix} 1 & \widetilde{B}_{0,1} & 0 & \mathbf{0}_{1 \times (n_{2}-1)} & \dots & 0 & \mathbf{0}_{1 \times (n_{r}-1)} \\ 0 & \mathbf{0}_{1 \times (n_{1}-1)} & 1 & \widetilde{B}_{0,2} & \dots & 0 & \mathbf{0}_{1 \times (n_{r}-1)} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \mathbf{0}_{1 \times (n_{1}-1)} & 0 & \mathbf{0}_{1 \times (n_{2}-1)} & \dots & 1 & \widetilde{B}_{0,r} \end{bmatrix}, \quad \forall j \underbrace{\widetilde{B}_{0,j}}_{1 \times (n_{j}-1)}$$

• n - r separate univariate regressions to calibrate independent priors of $B_{0,j,k}$ using the first principal components of each j-th block $(S_t^j)_{i=1}^r$

$$\forall j \in \{1, \dots, r\}, \quad \forall k \in \left\{2, \dots, n_j\right\}, \quad S_t^j = B_{0, j, k} \cdot y_{t, k}^j + u_{j, k, t}, \quad u_{j, k, t} \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{j, k}^2\right)$$

Prior on other elements

The prior on
$$a = vec(A')$$
 is $a \sim MN(0, V_a)$:

$$V_{a} = \begin{bmatrix} \widehat{\sigma}_{y,1}^{2} & 0 & \dots & 0 \\ 0 & \widehat{\sigma}_{y,2}^{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \widehat{\sigma}_{y,n}^{2} \end{bmatrix} \otimes \begin{bmatrix} \Upsilon_{1} & 0 & \dots & 0 \\ 0 & \Upsilon_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \Upsilon_{p} \end{bmatrix}, \quad \Upsilon_{\ell} = \frac{\lambda_{a}^{2}}{\ell^{d}} \cdot I_{r}$$

- Prior on SV are calibrated as in Primiceri(2005).
- Prior on the AR coefficients

$$\bar{\gamma} = \begin{bmatrix} \bar{\gamma}_1 \\ \bar{\gamma}_2 \\ \vdots \\ \bar{\gamma}_q \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{n \times 1} \\ \mathbf{0}_{n \times 1} \\ \vdots \\ \mathbf{0}_{n \times 1} \end{bmatrix}, \qquad V_{\gamma} = \lambda_{\gamma} \cdot \begin{bmatrix} 1^{-d} & 0 & \dots & 0 \\ 0 & 2^{-d} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & q^{-d} \end{bmatrix} \otimes I_n$$

AN ALTERNATIVE REPRESENTATION (1)

Borrowing from Johansen (1995), construct matrix $B_{0\perp}$ orthogonal to B_0 :

$$\underbrace{B_{0}}_{r\times n} \cdot \underbrace{B_{0\perp}'}_{n\times (n-r)} = \mathbf{0}_{r\times (n-r)}$$

Consider then the TV decomposition (CKM16) that divides \mathbb{R}^n into the subspaces spanned onto the rows of $B_0 \cdot \Omega_t^{1/2}$ and $B_{0\perp} \Omega_t^{-1/2}$:

$$I_{n} = \Omega_{t} B_{0}' (B_{0} \Omega_{t} B_{0}')^{-1} B_{0} + B_{0\perp}' (B_{0\perp} \Omega_{t}^{-1} B_{0\perp}')^{-1} B_{0\perp} \Omega_{t}^{-1}$$

Using this decomposition, we can rewrite the model as a FAVAR:

$$y_{t} = \sum_{\ell=1}^{\max(p,q)} (\Gamma_{\ell} \Omega_{t} B_{0}' \Xi_{t}^{-1} + A_{\ell}) F_{t-\ell} + \sum_{\ell=1}^{q} \Gamma_{\ell} B_{0\perp}' \Xi_{\perp,t}^{-1} G_{t-\ell} + u_{t}$$

where $F_t = B_0 \cdot y_t$, $G_t = B_{0\perp} \Omega_t^{-1} y_t$, $\Xi_t = B_0 \Omega_t B_0'$ and $\Xi_{\perp,t} = B_{0\perp} \Omega_t^{-1} B_{0\perp}'$

AN ALTERNATIVE REPRESENTATION (2)

• Multiplying both sides of the previous representation by B_0 and $B_{0\perp}\Omega_t^{-1}$:

$$\begin{split} F_{t} &= \sum_{\ell=1}^{q} B_{0} \Gamma_{\ell} B_{0\perp}^{'} \Xi_{\perp,t}^{-1} G_{t-\ell} + \sum_{\ell=1}^{\max(p,q)} B_{0} (\Gamma_{\ell} \Omega_{t} B_{0}^{'} \Xi_{t}^{-1} + A_{\ell}) F_{t-\ell} + \omega_{t} \\ G_{t} &= \sum_{\ell=1}^{q} B_{0\perp} \Omega_{t}^{-1} \Gamma_{\ell} B_{0\perp}^{'} \Xi_{\perp,t}^{-1} G_{t-\ell} + \sum_{\ell=1}^{\max(p,q)} B_{0\perp} \Omega_{t}^{-1} (\Gamma_{\ell} \Omega_{t} B_{0}^{'} \Xi_{t}^{-1} + A_{\ell}) F_{t-\ell} + \psi_{t} \\ \text{where} \qquad \begin{bmatrix} \omega_{t} \\ \psi_{t} \end{bmatrix} = \begin{bmatrix} B_{0} u_{t} \\ B_{0\perp} \Omega_{t}^{-1} u_{t} \end{bmatrix}^{i} \sim \mathcal{MN} \left(\mathbf{0}, \begin{bmatrix} \Xi_{t} & \mathbf{0} \\ \mathbf{0} & \Xi_{\perp,t} \end{bmatrix} \right) \\ \text{so that} \begin{bmatrix} F_{t} \\ G_{t} \end{bmatrix} \text{ evolves as VAR with block uncorrelated errors, since} \\ \mathbb{E}(\omega_{t} \psi_{t}^{'}) = \mathbb{E}(B_{0} u_{t} u_{t}^{'} \Omega_{t}^{-1} B_{0\perp}^{'}) = B_{0} \Omega_{t} \Omega_{t}^{-1} B_{0\perp}^{'} = \mathbf{0}_{r \times (n-r)} \end{split}$$