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How much global is the Inflation process?

� Rogoff (2003), Rogoff (2006), Carney (2017), Miles, Paniza, Reis and
Ubide (2017): Globalisation, Inflation and Central Banks.

� Borio and Filardo (2007), Bianchi and Civelli (2015) and Auer, Bo-
rio and Filardo (2017): effects of global economic conditions on

inflation.

� Ciccarelli and Mojon (2010), Mikolajun and Lodge (2016): a sub-

stantial amount of variation in a large set of national inflation
rates is explained by global factors that capture the most persis-
tent component (slow moving trends).

� Engle (1982), Stock and Watson (2007), Mumtaz and Surico (2008):
including changing volatility when modeling inflation.
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CPI inflation rates and PCA

Data for 20 OECD countries. The first PC explains almost 75%
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CPI inflation rates SVs from univariate AR-SV

Data for 20 OECD countries. The first PC explains almost 60%
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What this paper does

� We include Stochastic Volatility in modeling multi-country infla-

tion rates (20 OECD countries since the 1960s).

� We investigate cross-country commonalitynot only in inflation lev-

els, but also in inflation volatilities.

� We build a Multivariate Autoregressive Index model with Autore-
gressive components and Stochastic volatility (MAI-AR-SV), and de-
rive a fully-fledged Bayesian MCMC algorithm.

� We decompose both levels and volatilities so to disentangle contri-

butions of a single global component and the idiosyncratic com-
ponents.

� We run a point and density forecasting evaluation to test the out
of sample performance of the model.
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Main Results

� The estimated global factor explains roughly 70% of the variabil-
ity of CPI inflation levels.

� Significantly time-varying global inflation volatility since the 1960s.

� Important evidence of commonality in volatilities, increased in

the last two decades. A large fraction of headline CPI inflation
volatility can be attributed to the global factor.

� The same decompositions conducted onNon-Food&Non-Energy in-

flation show a smaller and more stable degree of commonality.

� Point and density forecasting evaluation shows that the MAI-AR-
SV model has very good out of sample performance for inflation
rates.
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The MAI-ar-sv model

Introducing SV in the Multivariate Autoregressive Index with AR components

� Reinsel (1983), Carriero Kapetanios and Marcellino (JoE, 2016)

yt︸︷︷︸
n×1

=

p∑
`=1

A` ·B0︸︷︷︸
↓

· yt−` +
q∑
`=1

Γ` · yt−` +ut

A`︸︷︷︸
n×r

· B0︸︷︷︸
r×n

� Rank reduction from n to r

Ft ≡ B0︸︷︷︸
r×n

· yt

� Ft , i.e. the "Index", will be interpreted as Global Inflation (r = 1)
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The mai-AR-sv model

Introducing SV in the Multivariate Autoregressive Index with AR components

� Cubadda and Guardabascio (2017)

yt︸︷︷︸
n×1

=

p∑
`=1

A` ·B0 · yt−` +
q∑
`=1

Γ`︸︷︷︸
↓

· yt−` +ut

Γ`︸︷︷︸
n×n

=



γ1,` 0 . . . 0

0 γ2,`
. . . 0

0
. . .

. . . 0

0 . . . 0 γn ,`


� q Univariate AutoRegressive Coefficients (q potentially larger than p) in

diagonal Γ`
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The mai-ar-SV model

Introducing SV in the Multivariate Autoregressive Index with AR components

� Cogley and Sargent (2005) and Primiceri (2005)

yt︸︷︷︸
n×1

=

p∑
`=1

A` ·B0 · yt−` +
q∑
`=1

Γ` · yt−` + ut︸︷︷︸
↙

ut
i∼MN ( 0, Ωt ) , Ωt︸︷︷︸

n×n

= G−1ΣtΣt

(
G−1

)′
� Log-volatilities law of motion

Σt = Diag(σt ), logσt = logσt−1 + νσ,t , νσ,t
iid∼ MN

 0, Qσ︸︷︷︸
n×n
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Decomposition of SVs and levels

� Decompose innovations in two orthogonal sets of components:

ut =ΩtB
′
0Ξ
−1
t · ωt︸︷︷︸

Common

+B ′0⊥Ξ
−1
⊥,t · ψt︸︷︷︸

Idiosyncraticωt

ψt

=
 B0ut

B0⊥Ω
−1
t ut

 i∼MN

 0,
Ξt 0

0 Ξ⊥,t




� Exploit the orthogonality of ωt and ψt to decompose the SV...

Ωt =Ωcom
t +Ωidio

t ⇔

Ω
com
t =ΩtB

′
0Ξ
−1
t B0Ωt

Ωidio
t = B ′0⊥Ξ

−1
⊥,tB0⊥

� ...and the observables yt by regressing on contemporaneous and
lagged values of ωt :

yt = B1(L)ωt +B2(L)ψt .
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Specification and Dataset

� CPI inflation: Consumer Price Index, year on year growth

� The analysis is performed for both headline and core CPIs changes

� Source: OECD Main Economic Indicators

� Quarterly frequency dataset:

� All Items: 228 observations, 1960-Q1→ 2016-Q4
� Non-food & non-energy items: 152 observations, 1979-Q1→

2016-Q4

� Data for 20 OECD countries:
USA, Australia, Austria, Belgium, Canada, Finland, France, Germany, Greece,
Italy, Japan, Luxembourg, Netherlands, New Zealand, Norway, Portugal,
Spain, Sweden, Switzerland, UK

� Single Index (global common factor), as Ciccarelli and Mojon (2010)

� 4 lags used
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Data Vs Global Factor, Posterior bands
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Global Inflation Factor Vs Oil, Chinese PPI, OECD Output Gap
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Projections on the Common Component ωt
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Global Inflation Volatility, E

(
ω2

t

)
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Global Inflation SV & Oil and Chinese PPI SVs

Global Inflation SV is correlated with: Oil SV (0.6), Chinese PPI SV (0.8) and
Global Output Gap SV (0.6).
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Residuals Volatility Decomposition

total (green), common (red), idio (blue)
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Residuals Volatility Decomposition, % shares

common (red), idio (blue)
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CPI Inflation Pseudo Out of Sample Forecasting

� Recursive Estimation and Out of Sample Forecasting

� 101 Quarterly Vintages

(estimation window endpoint spanning from 1989Q4 to 2014Q4)

� From 1 quarter to 2 years ahead: h ∈ {1, . . .8}

� Specifications with 4 lags

� Six Models Evaluated:
MAI-AR-SV (benchmark), MAI-AR, Univariate AR, Univariate AR-SV,
VAR, VAR-SV

� Prior distributions calibrated as Univariate Random Walks across models

� Extensive usage of parallelization to perform MCMC estimation of sev-
eral vintages simultaneously
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Forecasting Point and Density Diagnostics

� Forecasting diagnostics framework of Clark and Ravazzolo (2015)

� For each modelm ∈ {1, . . . ,M }, variable j ∈ {1, . . . ,n} and horizon h ∈ {1, . . . ,H }
� Root Mean Squared Forecast Error (RMSFE):

RMSEmj ,h =

√√√√
1
T ∗

T+T ∗∑
t=T+1

(
yj ,t+h − ŷmj ,t+h

)2

� Log Predictive Scores obtained via non-parametric kernel smoothing
density estimators:

logScore
m
j ,h =

1
T ∗

T+T ∗∑
t=T+1

log

 1

Ĥ · Lc

Lc∑
i=1

KN

yj ,t+h − ŷ
m ,i
j ,t+h

Ĥ




� Continuous Ranked Probability Score (CRPS):

CRPS
m
j ,h =

1
T ∗

T+T ∗∑
t=T+1

 1
Lc

Lc∑
i=1

∣∣∣∣̂ym ,ij ,t+h − yj ,t+h

∣∣∣∣− 1
2 · Lc

Lc∑
i=1

∣∣∣∣∣̂ym ,ij ,t+h − ŷ
m ,i ′(i)
j ,t+h

∣∣∣∣∣


� To test for significantly different performances: Diebold and Mariano (1995)
t-tests for equality are computed for all diagnostics.
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Relative RMSFE (ratios with mai-ar-sv)
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Relative Log-Scores (differences with mai-ar-sv)
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Relative CRPS (ratios with mai-ar-sv)
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THANK YOU
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Extras&Appendix

1 Extras and Appendix
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Extras&Appendix

Multivariate Autoregressive Index + AR components + SV

� Reinsel (1983), Carriero Kapetanios and Marcellino (2016),
Cubadda and Guardabascio (2017)

yt︸︷︷︸
n×1

=

p∑
`=1

A`︸︷︷︸
n×r

· B0︸︷︷︸
r×n

· yt−` +
q∑
`=1

Γ` · yt−` +ut

� A Global Inflation "Index" (r = 1)→ Ft = B0 · yt

� Cogley and Sargent (2005) and Primiceri (2005)

ut
i∼MN ( 0, Ωt ) , Ωt =G−1ΣtΣt

(
G−1

)′
Σt = Diag(σt), logσt = logσt−1 + νσ,t , νσ,t

iid∼ MN ( 0, Qσ )
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Extras&Appendix

MAI-AR-SV, Gibbs Sampler

1 Draw the AR coefficients γ
∣∣∣A ,B0,G ,(σt )

T
t=1

Transform the model, standardize, and perform a Bayesian Regression.

2 Draw the loadings A
∣∣∣B0,G ,γ,(σt )

T
t=1

Bayesian Multivariate Regression with heteroskedastic innovations. Use
the orthogonalization approach of CCM (2016) to handle large n .

3 Draw the factor weights elements in B0

∣∣∣γ,A ,G ,(σt )Tt=1

Metropolis step similar to CKM2016 but adapted to take into account SV.

4 Draw the off-diagonal elements in G
∣∣∣γ,A ,B0,(σt )

T
t=1

Transform the model as in Primiceri (2005) and perform a Bayesian Re-
gression with heteroskedastic innovations.

5 Draw a history of volatilities (σt )
T
t=1

∣∣∣γ,A ,B0,G

As amended by Del Negro and Primiceri (2013), and using the Omori, Chib,
Shephard and Nakajima (2007) approximation for the logχ2

1.
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Extras&Appendix

Prior on B0

� Block structure, r blocks of variables

yt︸︷︷︸
n×1

=
[
y1
t
′

y2
t
′

. . . yrt
′
]′
, ∀j ∈ {1, . . . ,r} y jt︸︷︷︸

nj×1

, n =
r∑

j=1

nj

� Normalization of the first variable of each block (identifying restriction)

B0︸︷︷︸
r×n

=



1 B̃0,1 0 01×(n2−1) . . . 0 01×(nr−1)

0 01×(n1−1) 1 B̃0,2 . . . 0 01×(nr−1)

...
...

...
. . .

. . .
. . .

...

0 01×(n1−1) 0 01×(n2−1) . . . 1 B̃0,r


, ∀j B̃0,j︸︷︷︸

1×(nj−1)

� n − r separate univariate regressions to calibrate independent priors of B0,j ,k using the first

principal components of each j-th block
(
S j
t

)r
j=1

∀j ∈ {1, . . . ,r} , ∀k ∈
{
2, . . . ,nj

}
, S j

t = B0,j ,k · y
j
t ,k +uj ,k ,t , uj ,k ,t

iid∼ N
(
0,σ2

j ,k

)
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Extras&Appendix

Prior on other elements

� The prior on a = vec (A ′) is a ∼MN ( 0, Va ):

Va =



σ̂2
y ,1 0 . . . 0

0 σ̂2
y ,2

. . .
...

...
. . .

. . . 0

0 . . . 0 σ̂2
y ,n


⊗



Υ1 0 . . . 0

0 Υ2
. . .

...

...
. . .

. . . 0

0 . . . 0 Υp


, Υ` =

λ2
a
`d
· Ir

� Prior on SV are calibrated as in Primiceri(2005).

� Prior on the AR coefficients

γ̄ =



γ̄1

γ̄2
...

γ̄q


=



1n×1

0n×1
...

0n×1


, Vγ = λγ ·



1−d 0 . . . 0

0 2−d
. . .

...

...
. . .

. . . 0

0 . . . 0 q−d


⊗ In
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Extras&Appendix

An Alternative Representation (1)

� Borrowing from Johansen (1995), construct matrix B0⊥ orthogonal to B0:

B0︸︷︷︸
r×n

· B ′0⊥︸︷︷︸
n×(n−r)

= 0r×(n−r)

� Consider then the TV decomposition (CKM16) that divides R
n into the sub-

spaces spanned onto the rows of B0 ·Ω1/2
t and B0⊥Ω

−1/2
t :

In =ΩtB
′
0

(
B0ΩtB

′
0

)−1
B0 +B ′0⊥

(
B0⊥Ω

−1
t B ′0⊥

)−1
B0⊥Ω

−1
t

� Using this decomposition, we can rewrite the model as a FAVAR:

yt =
max(p ,q)∑
`=1

(Γ`ΩtB
′
0Ξ
−1
t +A`)F t−` +

q∑
`=1

Γ`B
′
0⊥Ξ

−1
⊥,tG t−` +ut

where Ft = B0 · yt , Gt = B0⊥Ω
−1
t yt , Ξt = B0ΩtB

′
0 and Ξ⊥,t = B0⊥Ω

−1
t B ′0⊥
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Extras&Appendix

An Alternative Representation (2)

� Multiplying both sides of the previous representation by B0 and B0⊥Ω
−1
t :

Ft =
q∑
`=1

B0Γ`B
′
0⊥Ξ

−1
⊥,tG t−` +

max(p ,q)∑
`=1

B0(Γ`ΩtB
′
0Ξ
−1
t +A`)F t−` +ωt

Gt =

q∑
`=1

B0⊥Ω
−1
t Γ`B

′
0⊥Ξ

−1
⊥,tG t−` +

max(p ,q)∑
`=1

B0⊥Ω
−1
t (Γ`ΩtB

′
0Ξ
−1
t +A`)F t−` +ψt

where

ωt

ψt

=
 B0ut

B0⊥Ω
−1
t ut

 i∼MN

 0,
Ξt 0

0 Ξ⊥,t




� so that

FtGt

 evolves as VAR with block uncorrelated errors, since

E(ωtψ
′
t ) = E(B0utu

′
t Ω
−1
t B

′
0⊥) = B0ΩtΩ

−1
t B

′
0⊥ = 0r×(n−r)
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