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Introduction

The use of instrumental variables to identify causal effects is common
practice in empirical economics.

Setup: binary experiment case
a single binary (endogenous) treatment
a binary instrumental variable

Examples: Vietnam draft lottery (Angrist, 1990); preference for
opposite-sex children (Angrist and Evans, 1998); 401(k) savings
program (Poterba et al., 1996); Oregon health insurance experiment
(Finkelstein et al., 2012)

Treatment has heterogeneous effects on our outcome variable

Under certain assumptions our instrument identifies a local average
treatment effect (Imbens and Angrist, 1994)

Presentation is about testing these assumptions, i.e., testing IV validity
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Background

Overidentification test are not applicable as our model is just-identified
and we consider heterogeneous treatment effects.

Recently, Kitagawa (2015), Huber and Mellace (2015) and Mourifié and
Wan (2017) derived tests for the joint assumptions behind local average
treatment effects (LATEs).

Tests necessary conditions of IV validity in the data, i.e., nonrejection
does not imply IV validity while rejection points to an invalid instrument.

In the full sample local IV violations may be diluted or could cancel out.
Power to detect violations may be larger in subpopulations.

Main contribution of paper: procedure to detect and test local violations
of LATE assumptions
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Background

Source: Huber (2015) - Testing the Validity of the Sex Ratio IV

Our contribution:

Data-driven identification of promising subgroups
Account for multiple testing
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Framework and IV assumptions

Notation:

Y is outcome variable; D is binary (endogenous) treatment indicator; Z
is binary instrumental variable; X are pre-treatment variables.

Potential variables: Y dz and Dz , where d , z ∈ {0, 1}.
Observed variables: Y = DY 1z + (1− D)Y 0z and D = zD1 + (1− z)D0

Usually, parameter of interest are

ATE= E(Y 1 − Y 0)

ATT= E(Y 1 − Y 0|d = 1)

LATE= E [Y 1 − Y 0|D1 − D0 = 1]

We want to test the assumptions necessary to identify a LATE.
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Framework and IV assumptions

The following assumptions are sufficient for the identification of LATEs
(Imbens and Angrist, 1994):

1 A1 (Exclusion restriction): Y d1 = Y d0 = Y d for d ∈ {0, 1}
→ Instrument has no direct effect on the outcome.

2 A2 (Random Assignment):
(Y 11,Y 10,Y 01,Y 00,D1,D0) ⊥ Z

→ Instrument is randomly distributed

3 A3 (Monotonicity): D1 ≥ D0

→ Instruments affects participation in a uniform/monotone way
(no defiers).

More
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Framework and IV assumptions

The following assumptions are sufficient for the identification of LATEs
(Imbens and Angrist, 1994):

1 A1 (Exclusion restriction): Y d1 = Y d0 = Y d for d ∈ {0, 1}
→ Instrument has no direct effect on the outcome.

2 A2 (Unconfoundedness):
(Y 11,Y 10,Y 01,Y 00,D1,D0) ⊥ Z |X (hold only within subpopulations)

→ Instrument is randomly distributed (at least conditional on X).

3 A3 (Monotonicity): D1 ≥ D0

→ Instruments affects participation in a uniform/monotone way
(no defiers).

More
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IV validity tests

Under Assumptions A1-A3 it must hold that

P(Y ∈ B,D = 1|Z = 1)− P(Y ∈ B,D = 1|Z = 0) ≥ 0 (1)

P(Y ∈ B,D = 0|Z = 0)− P(Y ∈ B,D = 0|Z = 1) ≥ 0. (2)

where B is an interval on the support of Y (if Y continuous) or a point
from its support (if Y discrete). See Imbens and Rubin (1997) and
Heckman and Vytlacil (2005)

Under A1-A3, differences in (1) and (2) can be interpreted as
P(Y 1 ∈ B,C) and P(Y 0 ∈ B,C), which have to be positive.

Inequalities must hold conditional on X as well.

Chance to detect violations may be larger in subpopulations because of
varying shares of compliers and (potential) defiers and/or
violation of exclusion restriction stronger

in subpopulations.

More
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Local IV validity test

For every B and x it must hold that

P(Y ∈ B,D = 1|Z = 1,X = x)− P(Y ∈ B,D = 1|Z = 0,X = x) ≥ 0

P(Y ∈ B,D = 0|Z = 0,X = x)− P(Y ∈ B,D = 0|Z = 1,X = x) ≥ 0

To model the joint probabilities, we construct two pseudo variables

Qd =

{
Q1 = −1{Y ∈ B}D
Q0 = 1{Y ∈ B}(1− D)

Define

τ(d , x) = E [Qd |Z = 1,X = x ]− E [Qd |Z = 0,X = x ]

⇒ Now, positive signs for τ(d , x) correspond to violations of A1-A3.

Essentially, we are looking for (sign) heterogeneity in the (observed)
relation between the instrument and the treatment in subpopulations
(Y ∈ B, X = x).
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Local IV validity test

τ(d , x) = E [Qd |Z = 1,X = x ]− E [Qd |Z = 0,X = x ]
?

≤ 0

We split the sample randomly into two equally-sized parts (sample 1/2).
Using Assumption A2 (random assignment) we then fit

(sample 1) a single, well-tuned Causal Tree to find promising
subgroups w.r.t heterogeneity in the sign of τ(d , x) ,
(sample 2) a Causal Forest to estimate magnitude of violations.
Then switch roles b/w sample 1 & 2
and combine all results to test Assumption A1 and/or A3.

For CT & CF to be valid, we need Assumption A2. So, A2 itself cannot
be tested. However, this assumption is often satisfied by design. For
instance, in the Vietnam draft lottery (Angrist, 1990).
Often in applied work the most controversial assumption is A1
(exclusion restriction). See, e.g., Imbens (2014) for a discussion.
We have those applications in mind.

More on CTs More on CFs
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Testing IV violations in subgroups

Our data consists of i.i.d. observations (Yi ,Di ,Zi ,Xi) for i = 1, . . . , n.

For every combination of (B, d) ∈ BY × {0, 1}

Qd =

{
Q1 = −1{Y ∈ B}D
Q0 = 1{Y ∈ B}(1− D)

we get leaf indicators 1{Xi ∈ Lj} from a causal tree
we obtain estimates of τi from a causal forest

We construct the efficient score

ζi = τi(d ,Xi) + Zi
Qd,i − µd(Xi , 1)

e(Xi)
− (1− Zi)

Qd,i − µd (Xi , 0)
1− e(Xi)

where µd (x , z) = E [Qd,i |Xi = x ,Zi = z] and e(x) = P(Zi = 1|Xi = x),

and consider the expectation in the leaves

ζj = E [ζi1{Xi ∈ Lj}]

We collect the leaves over all causal trees.
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Testing IV violations in subgroups

We have p moments/leaves (j = 1, . . . , p)

ζj = E [ζi1{Xi ∈ Lj}]

that should not be positive.

As p could be potentially large (depending in particular on the depth of
the causal trees), we use the moment inequalities test by
Chernozhukov, Chetverikov and Kato (2019)

We test the following null hypothesis

H0 : ζj ≤ 0 for all j = 1, . . . , p ,

H1 : ζj > 0 for some j = 1, . . . , p .

Rejecting the null means that the IV assumptions are violated.

We presume that any violation of the LATE assumptions in a
subgroup/leaf casts doubt on the IV validity in the entire sample (as we
cannot rule out further violations in subpopulations).
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Testing IV violations in subgroups

We want to test the following null hypothesis

H0 : ζj ≤ 0 for all j = 1, . . . , p ,

H1 : ζj > 0 for some j = 1, . . . , p .

Following Chernozhukov et al. (2019) we use

T = max
1≤j≤p

√
nζ̂j

σ̂j
,

with ζ̂j the sample analogue of ζj = E [ζi1{Xi ∈ Lj}].
The test statistic takes large values when at least one ζj is large
(points to a violation of A.1 and/or A.3).

Chernozhukov et al. (2019) propose several procedures to derive the
critical value c∗(α) for the test with nominal size α.

So far, we use critical values from an empirical bootstrap.

More
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Monte Carlo simulation

Data generating process

Y = D + γ(X )Z +
3∑

k=1

βk Xk + u

D = 1{α(X )Z + v}

where Xk ∼ N(0, 1), βk = (0, 0.5, 0.5), (u, v) ∼ N
(

0,
(

1 0.3
0.3 1

))
,

Z ∼ Bernoulli(0.5), n = 2000.

To construct

Qd =

{
Q1 = −1{Y ∈ B}D
Q0 = 1{Y ∈ B}(1− D)

we split Y into four equally-sized intervals.
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Monte Carlo simulation

Data generating process

Y = D + γ(X )Z +
3∑

k=1

βk Xk + u

D = 1{α(X )Z + v}

DGP0: γ(X ) = 0 & α(X ) = 0 (exogenous but uninformative IV)

DGP1: γ(X ) = 0 & α(X ) = 0.3 (exogenous and relevant IV case).

DGP2: γ(X ) = 0 & α(X ) = −1.5 if X1 < 0 & X2 > 0 (≈ 25% of sample),
and otherwise α(X ) = 1
(local violation of monotonicity, defiers exist in subpopulation).

DGP3: γ(X ) = 2 & α(X ) = 0 if X1 < −1 & X2 > 0 (≈ 8% of sample),
and otherwise γ(X ) = 0 & α(X ) = 0.4
(local violation of exclusion restriction)

DGP4: γ(X ) = 0.6 & α(X ) = 0.3 (global violation of exclusion
restriction)

Helmut Farbmacher (joint work with Raphael Guber) Instrument Validity Tests with Causal Forests



Monte Carlo simulation

Table: Simulation results (1000 simulations)

n=2000 RF
CF HM

DGP 0 (exog but uninformative) 0.027 –
DGP 1 (exog and relevant) 0.001 0.000
DGP 2 (≈ 25% defiers) 0.863 0.001
DGP 3 (≈ 8% direct effects) 0.505 0.000
DGP 4 (global violation of exclusion) 0.494 0.345

Table displays rejection frequencies for α = 5%.
HM refers to mean test of Huber and Mellace (2015).

CF to our method.
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Still to do

Allow for unconfoundedness instead of randomization of Z , i.e.,

(Y 11,Y 10,Y 01,Y 00,D1,D0) ⊥ Z |X (hold only within subpopulations)

Could get rid of baseline effects and effects on propensity via
orthogonalization as in Robinson (1988), Chernozhukov et al. (2018),
Athey et al. (2019) or Nie and Wager (2019).

Is there an optimal way to construct B (intervals if Y is continuous).

Apply to real application: Vietnam draft lottery (Angrist, 1990);
preference for opposite-sex children (Angrist and Evans, 1998);
Oregon health insurance experiment (Finkelstein et al., 2012)
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Framework and IV assumptions - Appendix
In our application to the data from Angrist and Evans (1998):

Y is the number of days the mother worked last week (0 to 7 days).
D equals one if a mother has three or more children, zero if two.
Z equals one if first two children have same sex, zero if opposite sex.
X variables are mothers current age, age at first birth, education,
ethnicity, sex of first and second child.

There exist four compliance types:

Type Potential treatment Interpretation in application
variable

Compliers (C) D1 = 1,D0 = 0 > 2 children only if same sex
Defiers (F) D1 = 0,D0 = 1 > 2 children only if opposite sex
Always-takers (A) D1 = 1,D0 = 1 > 2 children in any case
Never-takers (N) D1 = 0,D0 = 0 2 children in any case

Which are distributed in the data as

Z=1 Z=0

D=1 C,A F,A
D=0 F,N C,N

Back
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Framework and IV assumptions - Appendix

There exist three compliance types under Assumption 3:

Type Potential treatment Interpretation in application
variable

Compliers (C) D1 = 1,D0 = 0 > 2 children only if same sex
Defiers (F) D1 = 0,D0 = 1 > 2 children only if opposite sex
Always-takers (A) D1 = 1,D0 = 1 > 2 children in any case
Never-takers (N) D1 = 0,D0 = 0 2 children in any case

Which are distributed in the data as

Z=1 Z=0

D=1 C,A A
D=0 N C,N

Back
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IV validity tests - Appendix

Abbreviation: Compliers (C), Defiers (F), Always-taker (A) and Never-takers
(N). Consider the difference in equation (1):

P(Y ∈ B,D = 1|Z = 1)− P(Y ∈ B,D = 1|Z = 0)
A1,A2
= P(Y 1 ∈ B|C)P(C) + P(Y 1 ∈ B|A)P(A)

− [P(Y 1 ∈ B|A)P(A) + P(Y 1 ∈ B|F )P(F )]

A3
=P(Y 1 ∈ B|C)P(C) = P(Y 1 ∈ B,C) ≥ 0

Examples for violations:

A1 does not hold: P(Y11 ∈ B|A,Z = 1) 6= P(Y10 ∈ B|A,Z = 0)
A2 does not hold: P(A|Z = 1) 6= P(A|Z = 0)
A3 does not hold: P(F) 6= 0

Back
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Searching for promising subgroups - Appendix

Athey and Imbens (2016) discuss several methods to search for
heterogeneity in causal effects of a randomized treatment on an
outcome, i.e., heterogeneity in

E [Y |W = 1,X = x ]− E [Y |W = 0,X = x ] ,

using recursive partitioning.

We use a Causal Tree to search for heterogeneity in

τ(d , x) = E [Qd |Z = 1,X = x ]− E [Qd |Z = 0,X = x ]

We construct one tree for every combination of B and d .

Back
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Searching for promising subgroups - Appendix

Goal of tree: maximize effect heterogeneity across unobserved
partitions (greedy algorithm)
Economic considerations may already allow us to inspect the promising
areas in the covariate space (identified by the tree)
For instance, young men from wealthy families could have been more
likely to avoid the Vietnam draft by extending their educational career or
temporarily leaving the country (potential violation of exclusion
restriction)

Back
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Estimating magnitude of violations - Appendix

To study potential violations in a systematic way, we estimate τ(d , x) in
the leaves of the causal tree LB,d(x) using a causal forest

τ(d , x) = E [Qd |Z = 1,X = x ]− E [Qd |Z = 0,X = x ]

Wager and Athey (2018) and Athey et al. (2019) show pointwise
consistency and normality of τ̂(d , x).

Back
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Main Idea of the Causal Forest - Appendix

Regression tree example

Goal: maximize effect
heterogeneity across
(unobserved) partitions

To do so, build trees on random
subsamples of the data

Many trees make the forest :-)

Main idea: The more often
observation i is in same leaf as
x , the more weight i receives in
estimating τ(x) = E(τi |Xi = x)

Back
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Causal Forest Method - Appendix

Causal forest estimator:

τ̂(x) =
∑
{i:Di=1}

αi(x)∑
{i:Di=1} αi(x)

Yi −
∑
{i:Di=0}

αi(x)∑
{i:Di=0} αi(x)

Yi .

Yi : outcome for individual i
Di : treatment indicator for individual i
αi(x): similarity weights

Wager and Athey (2018) and Athey et al. (2019) show pointwise
consistency and normality of τ̂(d , x) under the following assumptions

E (Qz
d |X = x) are Lipschitz continuous

0 < P (Z = 1|X = x) < 1 (overlap)
→ Instrument is available everywhere in the covariate space;
Instrument must not be deterministic in X

(Y 11,Y 10,Y 01,Y 00,D1,D0) ⊥ Z |X (unconfoundedness)
→ Part of the IV validity assumptions→ Thus cannot be tested!

We use the package grf by Tibshirani et al. in R do conduct our
analysis: 2,000 trees with at least two observations per leaf

Back
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Similarity Weight Calculation - Appendix

For set of trees b = 1, . . . ,B, weight αi(x) for individual i is computed
as follows

αi(x) =
1
B

B∑
b=1

1{i ∈ Ib(x)}
nb(x)

Ib(x): Set of indices for all individuals that are in same leaf as point x in
tree b

nb(x): Number of individuals that fall into same leaf as x in tree b

Back
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Honesty and Our Parameter Settings - Appendix

CF incorporates subsample splitting technique called honesty
Data is either used to estimate the within-leaf treatment effect or
to decide where to place the splits of the tree (but not for both);
sample splitting satisfies the honesty porperty
Implies that similarity weights αi(x) are as if exogenously given in
estimation of τ(x)
Guards against estimating spuriously large effects due to data
driven estimation approach

Back
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CCK moment inequalities test

Chernozhukov et al. (2019) use that we have under the H0

T ≤ max
1≤j≤p

√
n
(
ζ̂j − ζj

)
σ̂j

.

Hence, finding the (1− α)-quantile of max
1≤j≤p

√
n(ζ̂j−ζj)
σ̂j

is sufficient to keep

the actual size of the test at or below α.

We also exclude moments for which ζ̂j is strongly negative, i.e.,

Tj =
√

nζ̂j
σ̂j

falls below some threshold.

Back
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