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economy y based on an information set X .

A standard approach is

yt = β′X t−1 + εt , εt ∼ N(0, νt)

The information in X may be incomplete:

− Macroeconomic information is often delayed, i.e., publication
lags, and only available on a lower frequency basis.

− Instead, alternative data, i.e., big data, may be more granular.

Question:

− Can we exploit big data to assess the state of the economy?...
without losing economic intuition
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− Data are sampled at different frequencies.

− Asynchronous data publications.

− Outliers, trends, cycles and low signal-to-noise ratio.

The authors build on Scott and Varian
(2014) to “nowcast” variables of interest

yt = µt + β′x t + εt ,

µt = µt−1 + ωt

i.e., linear local-level model + regression

This paper:
The predictors in x t

could be at 6=
frequencies
(U-MIDAS,
Foroni and
Marcellino 2014).
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− Google search query data offers a quasi-real time view into the
topics of greatest interest to the public.

− This could be useful when searches are directly related to the
variables of interest, for e.g.,

− “file for unemployment” correlates with unemployment rate.

− “Sales/shopping” correlates with monthly retail sales.

Comments:

− What is the causal nexus between searching for “real GDP
growth” and the actual growth rate?

− Where is the true source of information?

− Shall we look at “web search” or “news search”?
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Figure: Foreclosure and Bankruptcy search

(a) Web Search

(b) News Search
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βi |γi ∼ (1− γi )N
(
0, τ 2

)
+ γiN

(
0, c2τ 2

)
γi |π ∼ Bernoulli (π) , i = 1, . . . , p

π ∼ p (dπ)

Pros:

− No assumption of sparsity;
the parameter π is
estimated from the data

− Easy to interpret

− Embeds model and
parameter uncertainty.

Cons:

− crucial the choice of N
(
0, τ 2

)
vs t-student, inverse-Gamma,
Laplace, etc.

− crucial the choice of p (dπ);
uniform, Beta, etc.

− it is static.



Comment 2: Spike-and-Slab prior

In the paper:

1. π is fixed

2. Slab distribution N
(
0, c2τ 2

)
3. Parameters are not recursively estimated.



Comment 2: Spike-and-Slab prior

That is:

1. Sparsity is assumed a priori (!?)

2. Slab distribution N
(
0, c2τ 2

)
3. Parameters are not recursively estimated.



Comment 2: Spike-and-Slab prior

That is:

1. Sparsity is assumed a priori (!?)

2. Normal prior is not robust to large and noisy signals.
(see Carvalho et al. 2010, Biometrika)

3. Parameters are not recursively estimated.



Comment 2: Spike-and-Slab prior

That is:

1. Sparsity is assumed a priori (!?)

2. The prior is not robust to large and noisy signals.
(see Carvalho et al. 2010, Biometrika)

3. Sparsity is assumed constant OOS.



Comment 2: Spike-and-Slab prior

That is:

1. Sparsity is assumed a priori (!?)

2. The prior is not robust to large and noisy signals.
(see Carvalho et al. 2010, Biometrika)

3. Sparsity is assumed constant OOS.

Comments:

− Why not fully exploit the hierarchical structure?
e.g., π ∼ Beta (a0, b0).



Comment 2: Spike-and-Slab prior

That is:

1. Sparsity is assumed a priori (!?)

2. The prior is not robust to large and noisy signals.
(see Carvalho et al. 2010, Biometrika)

3. Sparsity is assumed constant OOS.

Comments:

− Why not fully exploit the hierarchical structure?
e.g., π ∼ Beta (a0, b0).

− Alternative mixtures could deliver different results, e.g.,
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That is:

1. Sparsity is assumed a priori (!?)

2. The prior is not robust to large and noisy signals.
(see Carvalho et al. 2010, Biometrika)

3. Sparsity is assumed constant OOS.

Comments:

− Why not fully exploit the hierarchical structure?
e.g., π ∼ Beta (a0, b0).

− Alternative mixtures could deliver different results, e.g.,
Frühwirth-Schnatter and Wagner (2010, JoE).

− Dynamic spike-and-slab
(e.g., Korobilis and Koop 2019, Bianchi et al. 2019).



Conclusion

Very interesting paper, recommended reading!!


