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Jobs First Welfare Experiment

I In 1996, Connecticut implemented the “Jobs First” welfare scheme
to replace the Aid for Families with Dependent Children (AFDC)

I During the implementation phase, a randomized experiment was
conducted among low-income single parents in New Haven and
Manchester

I 2,396 individuals are assigned to Jobs First (treatment)
I 2,407 individuals are assigned to AFDC (controls)

I Outcome is earnings during each of the first 7 quarters following the
random assignment

I Sample contains in total 33,621 observations

References: Bloom et al., 2002, Bitler, Gelbach, and Hoynes, 2006, 2017, Kline and
Tartari, 2016
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Earnings and Welfare Transfers

W: Maximum welfare amount. FPL: Federal poverty line. B: Earnings amount disregarded under AFDC. E: Earnings
amount that terminates welfare transfers under AFDC. Graph not drawn to scale.
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Research Questions

1. Can causal machine learning uncover more effect
heterogeneity than conventional approaches?

2. Does the uncovered effect heterogeneity provide supporting
evidence for the theoretical labour supply predictions?
I Understanding how covariates and model flexibility matter

3. Is the entire effect heterogeneity uncovered?
I Proposing a falsification test for hidden effect heterogeneity
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Results of Previous Studies

Fully interacted model with treatment dummy D:

Y = β0 + X · β1 + D · δ0 + D · X · δ1 + u

Target parameters are δ0 and δ1

Bitler, Gelbach, and Hoynes (2017) test many different specifications

Data stratified by previous earnings and quarters elapsed since RA:
I zero earnings, earnings below the median among those with positive

earnings, and earnings above the median
I Overall 21 groups

⇒ Best evidence so far!
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Predicted Heterogeneity of Conventional Approach

Note: The gray area reports the 95% confidence intervals that are estimated using an individual-level clustered
bootstrap approach (with 1,999 replications). The figure is truncated at 6,000 US dollars.

Formal Test Results
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Potential Caveats of the Conventional Approach

1. Including covariates
I Conventional:

→ Too few covariates vs. overfitting
I Machine learning:

→ Balancing the bias-variance trade-off
→ No precoding required

2. Model flexibility
I Conventional:

→ group structure
I Machine learning:

→ non-parametric continuous distribution of effects
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Prediction vs. Causal Effect
Notation:
I Yi (1): potential earnings under Jobs First
I Yi (0): potential earnings under AFDC
I Di : dummy for assignment to Jobs First
I Xi : exogenous pre-treatment covariates/features/attributes that are

potentially responsible for effect heterogeneity

Prediction: Yi = DiYi (1) + (1− Di )Yi (0)

γ̄(x) = E [Yi |Xi = x ]

Causal Effect: δi = Yi (1)− Yi (0)

δ̄(x) = E [δi |Xi = x ] = E [Yi (1)− Yi (0)|Xi = x ]

→ ”Conditional Average Treatment Effect” (CATE), ”individualized” or
”personalized” treatment effects
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Causal Machine Learning Designs

⇒ Knaus, Lechner, Strittmatter (2018) provide a comparison of all
approaches
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Modified Outcome Method
Augmented Inverse Probability Weighting:
(Chernozhukov et al., 2017, Robins and Rotnitzky, 1995)

Y ∗
i = µ1(Xi )− µ0(Xi ) + Di (Yi − µ1(Xi ))

p(Xi )
− (1− Di )(Yi − µ0(Xi ))

1− p(Xi )

with nuisance parameters µd (x) = E [Yi (d)|Xi = x ] and
p(x) = Pr(Di = 1|Xi = x)

⇒ Predicted CATEs: δ̄(x) = E [Y ∗
i |Xi = x ]

(Lee, Okui, and Whang, 2017)

⇒ Machine learning estimators:
I Regression tree Explanation

I Random forest Explanation

⇒ Cross-fitting

More Details
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Heterogeneity Variables
Baseline: elapsed quarters since RA, earnings seven quarters prior RA
Decent: age, education, number of children, age of the youngest child,

amount of AFDC received seven quarters prior RA, amount of food
stamps received seven quarters prior RA, dummy variable indicating
a positive amount of earnings in at least one of the seven quarter
prior RA, dummy variable indicating a positive amount of AFDC in
at least one of the seven quarter prior RA, dummy variable indica-
ting a positive amount of food stamps in at least one of the seven
quarter prior RA

Kitchen sink: ethnicity, marital status, city of residence, information on living in a
publicly subsidised home, information on relocations, participation
in different types of education and labour market programmes in
the 12 months prior to random assignment (e.g., English Secondary
Language (ESL), Adult Basic Education (ABE), General Education
Development (GED), job readiness skills, work experience, vocatio-
nal education, post secondary education, high school), earnings for
each of the seven quarters prior to the RA, amount of AFDC re-
ceived for each of the seven quarters prior to the RA, amount of
food stamps received for each of the seven quarters prior to the RA,
number of quarters on AFDC, dummy variable whether family re-
ceived AFDC during childhood, dummy variable whether work was
never recorded, dummy variable whether work is recorded at RA

Descriptive Statistics
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Predicted Heterogeneity of CML Approach

Note: The gray area reports the 95% confidence intervals that are estimated using an individual-level clustered
bootstrap approach (with 1,999 replications). The figure is truncated at 6,000 US dollars.

Formal Test Results
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Conclusions

I Causal machine learning has the potential to uncover more effect
heterogeneity than conventional approaches

I The uncovered effect heterogeneity can provide supporting evidence
for the theoretical labour supply predictions of Jobs First

I Flexible machine learning approaches are more promising
I Just machine learning without many relevant covariates does not

show a better performance than conventional approaches
I There is still hidden effect heterogeneity
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Thank you for your attention!

Comments and suggestions are very welcome!

www.anthonystrittmatter.com

anthony.strittmatter@unisg.ch

Paper is available at arXiv:1812.06533
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Causal Machine Learning
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Descriptives of (Some) Variables
Jobs First AFDC SD

Mean St. Dev. Mean St. Dev.
(1) (2) (3) (4) (5)

Earnings per quarter (in $) 1173 1789 1125 1868 2.6
Share of participants with

no earnings 0.49 0.50 0.55 0.50 13.3
earn. below FPL 0.39 0.49 0.31 0.46 17.0
earn. above FPL 0.13 0.33 0.14 0.35 4.1

Baseline control variables
Quarters since RA 4.0 2.0 4.0 2.0 0.0
Earnings in pre-Q7 (in $) 682 1552 774 1781 5.5

Decent control variables
Age categories

< 20 years 0.09 0.28 0.09 0.28 1.2
20-24 years 0.20 0.40 0.21 0.41 2.7
25-34 years 0.41 0.49 0.42 0.49 1.5
35-45 years 0.25 0.43 0.23 0.42 4.1
> 44 years 0.05 0.22 0.06 0.23 1.2

Education categories
No degree 0.33 0.47 0.31 0.46 3.8
High school 0.55 0.50 0.57 0.50 3.2
More than high school 0.06 0.24 0.06 0.23 1.9

Age youngest child (in years) 4.6 4.7 4.5 4.8 2.2
Number of children 1.6 1.0 1.5 1.0 6.0
AFDC pre-Q7 (in $) 920 925 865 896 6.0
Food stamps pre-Q7 (in $) 306 319 293 301 4.4
Any earnings pre-Q1/7 0.33 0.37 0.36 0.38 7.9
Any AFDC pre-Q1/7 0.57 0.45 0.54 0.45 6.5
Any food stamps pre-Q1/7 0.61 0.44 0.60 0.43 2.1
Participants 2,396 2,406
Observations 16,772 16,842
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Propensity Score

Go Back
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Augmented Inverse Probability Weighting

I Generic approach
I Accounts for observable (weak) confounders
I Double robustness property
I Less sensitive to extreme values of the propensity score than (some)

other approaches
I ATE can be

√
N-consistently estimated and is asymptotically

normal even when nuisance parameters converge at 4√N
I Predicted CATEs have good finite sample properties

References: Chernozhukov et al., 2017, 2018, Robins and Rotnitzky,
1995, Zhang et al., 2012, Knaus, Lechner, Strittmatter, 2018
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Cross-Fitting

I Sample splitting is required to remove the bias induced by overfitting
I Cross-fitting avoids efficiency losses because of smaller sample sizes
I Procedure:

1. Estimate nuisance parameters and CATEs in different partitions
2. Extrapolate the predicted CATEs to the entire sample
3. CATE = 1/2 · (CATE1 + CATE2)

References: Chernozhukov et al., 2017, 2018
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Simple Example of Modified Outcome Method
I Randomized experiment with 50% treated and 50% control

Pr(Di = 1) = 0.5
I Modified Outcome:

Y ∗
i = (4Di − 2) · Yi

I Expectation of Modified Outcome:

E [Y ∗
i ] =E [(4Di − 2) · Yi ]

LIE= E [(4Di − 2) · Yi |Di = 1] · Pr(Di = 1)
+ E [(4Di − 2) · Yi |Di = 0] · Pr(Di = 0)

=E [2 · Yi |Di = 1] · 0.5− E [2 · Yi |Di = 0] · 0.5
OR= E [Yi (1)|Di = 1]− E [Yi (0)|Di = 0]
RE=E [Yi (1)]− E [Yi (0)] = ATE

I Conditional Expectation of Modified Outcome:

E [Y ∗
i |Xi = x ] = E [Yi (1)− Yi (0)|Xi = x ] = δ̄(x) = CATE
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Modified Outcome Method
I Unbalanced Experiment:

Y ∗
i = Di − p

p · (1− p)Yi

I Inverse Probability Weighting:

Y ∗
i = Di − p(Xi )

p(Xi ) · (1− p(Xi ))Yi

I Augmented Inverse Probability Weighting:

Y ∗
i = µ1(Xi )− µ0(Xi ) + Di (Yi − µ1(Xi ))

p(Xi )
− (1− Di )(Yi − µ0(Xi ))

1− p(Xi )

with nuisance parameters µd (x) = E [Yi (d)|Xi = x ] and
p(x) = Pr(Di = 1|Xi = x)

⇒ Predicted CATEs: δ̄(x) = E [Y ∗
i |Xi = x ]

More Details
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Regression Tree

I Trees add recursive sample splits to the tree without anticipating
later splits

I Trees select splits that minimize the MSE with regard to Y ∗
i

I Within leave group averages approximate the CATEs

Go Back
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Honest Tree

References: Zeileis, Hothorn, Hornik, 2008, Athey and Imbens, 2016
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Random Forest

References: Breiman, 2001, Athey, Tibshirani, and Wager, 2018 Go Back
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Theoretical Hypotheses

H1: The Jobs First program has non-negative earnings effects for
individuals with zero earnings under AFDC.

H2: There is a mix of positive and negative earnings effects in the group
of individuals with positive earnings below the FPL under AFDC.

H3: Jobs First has non-positive earnings effects for individuals with
earnings above the FPL under AFDC.
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Local Constant Model

Under AFDC
Full Pos. earn. Earn.

Sample All Unempl. below above
FPL FPL

(1) (2) (3) (4) (5)
Positive CATEs 82% 82% 90% 79% 56%
Negative CATEs 18% 18% 10% 21% 44%
p-value H+

0 0.29 0.29 0.56 0.12 0.00
p-value H−

0 0.00 0.00 0.00 0.00 0.00
Observations 33,621 16,842 8,988 4,967 2,313

Note: H+
0 is the null hypothesis that all CATEs are non-negative. H−

0 is the null hypothesis that all CATEs are
non-positive. P-values are calculated with an individual-level clustered bootstrap procedure (with 1,999 replications).
References: Anderson, 1996, Barrett and Donald, 2003

Go Back
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Random Forest with Kitchen Sink Covariates

Under AFDC
Full Pos. earn. Earn.

Sample All Unempl. below above
FPL FPL

(1) (2) (3) (4) (5)
Positive CATEs 75% 75% 94% 71% 15%
Negative CATEs 25% 25% 6% 29% 85%
p-value H+

0 0.00 0.00 0.12 0.00 0.00
p-value H−

0 0.00 0.00 0.00 0.00 1.00
Observations 33,621 16,842 8,988 4,967 2,313

Note: H+
0 is the null hypothesis that all CATEs are non-negative. H−

0 is the null hypothesis that all CATEs are
non-positive. P-values are calculated with an individual-level clustered bootstrap procedure (with 1,999 replications).
References: Anderson, 1996, Barrett and Donald, 2003

Go Back
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Hidden Effect Heterogeneity?

I Are the predicted CATEs significantly different from the individual
causal effects? → Yes

I Do the predicted CATEs and quantile treatment effects contain
significantly different information (Bitler, Gelbach, and Hoynes,
2006)? → Yes

I What could reduce the hidden effect heterogeneity?
I More observations
I More relevant covariates
I More sophisticated machine learning approaches (i.e., more

flexibility → deep neural nets, etc.)

Test Description
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Simulated Outcome Distribution
Potential outcome distributions

FY (1)(y) = Pr(Yi (1) ≤ y) = Pr(Yi (0) + δi ≤ y), and
FY (0)(y) = Pr(Yi (0) ≤ y) = Pr(Yi (1)− δi ≤ y)

with Yi (1) = Yi (0) + δi

Quantile treatment effects (QTE)

δQTE (τ) = F −1
Y (1)(τ)− F −1

Y (0)(τ)

Simulated outcome distributions

F s
Y (1)(y) = Pr(Yi (0) + δ(Xi ) ≤ y), and

F s
Y (0)(y) = Pr(Yi (1)− δ(Xi ) ≤ y)
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Quantile Treatment Effects

Replication of main results from Bitler, Gelbach, and Hoynes (2006). Own calculations. Shaded area is 95%
confidence interval calculated with heteroskedasticity robust standard errors.
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Example Simulated Outcome Distribution

Under AFDC, random forest, kitchen sink controls.
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Kolmogorov-Smirnov Test

Joint test Under Jobs First Under AFDC
test stat. p-value test stat. p-value test stat. p-value

(1) (2) (3) (4) (5) (6)
Local constant model

Baseline 0.461 0.000 0.461 0.000 0.093 0.059
Tree

Baseline 0.462 0.033 0.462 0.033 0.081 0.066
Decent 0.190 0.000 0.190 0.000 0.148 0.000
Kitchen sink 0.168 0.000 0.168 0.000 0.139 0.000

Random forest
Baseline 0.434 0.000 0.434 0.000 0.096 0.001
Decent 0.393 0.000 0.393 0.000 0.209 0.000
Kitchen sink 0.434 0.000 0.434 0.000 0.170 0.000

Causal forest
Kitchen sink 0.439 0.000 0.439 0.000 0.130 0.000

Forest without confounder adjustment
Kitchen sink 0.400 0.000 0.400 0.000 0.163 0.000

Note: The p-values are bootstrapped with 1,999 replications.
Go Back
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