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Heterogeneous Effects in Randomized Experiments

Let Y (1) and Y (0) be the potential outcomes in the treatment state 1 and
the non-treament state 0. Let Z be a vector of of covariates. The main
causal functions are the baseline conditional average:

b0(Z ) := E[Y (0) | Z ],

and the conditional average treatment effect (CATE):

s0(Z ) := E[Y (1) | Z ]− E[Y (0) | Z ].

Suppose the treatment variable D is randomly assigned conditional on Z ,
with probability of assignment depending only on a subvector of stratifying
variables Z1 in Z , namely D ⊥⊥ (Y (1),Y (0)) | Z , and the propensity score is
known and is given by

p(Z ) := P[D = 1 | Z ] = P[D = 1 | Z1].
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We assume that the propensity score is bounded away from zero or unity:

p(Z ) ∈ [p0, p1] ⊂ (0, 1).

The observed outcome is given by Y = DY (1) + (1− D)Y (0). Under the
stated assumption, the causal functions coincide with the components of the
regression function of Y given D,Z :

Y = b0(Z ) + Ds0(Z ) + U, E[U | Z ,D] = 0,

that is,
b0(Z ) = E[Y | D = 0,Z ]

and
s0(Z ) = E[Y | D = 1,Z ]− E[Y | D = 0,Z ].

We observe Data = (Yi ,Zi ,Di )
N
i=1, consisting of i.i.d. copies of random

vector (Y ,Z ,D) having probability law P.
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Why Not Use Machine Learning to Estimate s0(Z )?

A collection of constantly evolving statistical learning methods: Random
Forest, Boosted Trees, Neural Networks, Penalized Regression, Ensembles,
and Hybrids. Branded ”Machine Learning”.

Work well in practice for prediction purposes and pattern recognizition,
much better than classical methods in high-dimensional settings.

We can apply ML methods to try to learn and approximate the CATE
function

s 7→ s0(z)

It is fundamentally difficult to obtain consistency and even harder to get
credible inference for CATE using ML.
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Fundamental Limitations for ML

Impossibility for Consistency (Stone, 82): If z 7→ s0(z) is known to be
smooth with p bounded derivatives and d = dim(z) is modest, d > logN,
then there exists no consistent ML estimator of z 7→ s0(z).

By the way, log(100, 000) = 5.

Consistency is possible under structured forms of sparsity, but

Sparsity is untestable, so must be used with caution

Valid Adaptive Confidence Sets Do Not Exist (Low, 97; Genovese and
Wasserman, 08) because adaptive estimators have non-negligible biases.

Can construct partly adaptive confidence sets using self-similarity (Gine and
Nickl, 11; Chernozhukov, Chetverikov, Kato, 13), bias-bounding or
undersmoothing, but

It remains unclear how to apply these methods to high-dimensional
problems with structured sparsity
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A Fundamental Theory-Practice Gap for ML

Suppose we are willing to make strong assumptions for ML consistency and
valid inference

Many tuning parameters. Real implementations produced by a huge
engineering effort. Have to trust the software engineers knowing statistics.

Justification is very often heuristic and practice based. Theoretical
justification is available in some cases, existence type results. There exist
tuning parameters that make some of these methods work under
assumptions that are hard to verify in practice.

Even cross-validation remains unjustified in high-dimensional cases
(exception:Lasso)

Very often there are no theoretical guarantees for real implementations with
the real tuning parameters (exception: Lasso)
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Geometric Illustration of Impossibilities and Existing Gaps

Source: en.kueez.com

Deep Learning?
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Our (Agnostic and Generic) Approach

Motivated by limitations, we proceed agnostically: we will treat ML tools as
providing us with predictor proxies for CATE.

We don’t assume they are consistent or unbiased.

We will post-process the ML proxies to perform inference on key features of
CATE.

Our approach is generic with respect to the Machine Learning method
being used

In essence, continuation of work with Whitney on Double/De-biased
Machine Learning.
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We shall rely on random data splitting into a main sample, indexed by M,
and an auxiliary sample, indexed by A. Here (A,M) form a random partition
of {1, ...,N}.

From the auxiliary sample A, we obtain Generic ML estimates of the
baseline and treatment effects, which we call proxy predictors

z 7→ B(z) = B(z ;DataA)

and
z 7→ S(z) = S(z ;DataA).

We treat B(Z ) and S(Z ) agnostically as possibly biased and noisy predictors
of b0(Z ) and s0(Z ).

We condition on the auxiliary sample, so we consider these maps as frozen
in the main sample.
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Target Parameters

We target and develop valid inference on key features of CATE and
not the CATE itself:

(1) Best linear predictor (BLP) of CATE s0(Z ) using ML proxy S(Z );

(2) Group average treatment effects sorted (GATES) by the groups
induced by ML proxy S(Z );

(3) Classification Analysis (CLAN): Average characteristics of the
units in most and least affected groups.
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BLP of CATE by ML Proxy

Consider the weighted linear projection:

Y = α′X1 + β1(D − p(Z )) + β2(D − p(Z ))(S − ES) + ε, E[w(Z )εX ] = 0,

where w(Z ) = {p(Z )(1− p(Z ))}−1, X := (X1,X2), X1 := X1(Z), e.g.

X1 = (1,B(Z)), X2 := (D − p(Z), (D − p(Z))S(Z)).

X The interaction (D − p(Z ))(S − ES) and the weights w(Z ) creates
necessary orthogonality with other variables.

Theorem 1: Projection coefficients identify the BLP of CATE:

β1 + β2(S(Z )− ES) = BLP[s0(Z ) | S(Z )],

in particular β1 = ES0(Z ) and β2 = Cov(s0(Z ),S(Z ))/Var(S(Z )).
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Special Cases

If S(Z ) is a perfect proxy for s0(Z ), then

β2 = 1.

In general, β2 6= 1, correcting for noise in S(Z ).

If S(Z ) is complete noise, uncorrelated to s0(Z ), then β2 = 0

If there is no heterogeneity, that is s0(Z ) = s, then

β2 = 0.

Rejecting the hypothesis
β2 = 0

means that there is both heterogeneity and S(Z ) is its relevant predictor.
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BLP Estimation

Estimation is done through the empirical analog:

Yi = α̂′X1i + β̂1(Di − p(Zi )) + β̂2(Di − p(Zi ))(Si − EN,MSi ) + ε̂i , i ∈ M,

EN,M [w(Zi )ε̂i X̂i ] = 0,

where EN,M denote the empirical expectation with respect to the main
sample.

What is nice here is that fixed effects and clustered standards are easily
accommodated in this stage!
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Post Processing ML Proxies with BLP
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Figure: Left: CATE s0(Z ) = 0; Right: CATE s0(Z ) = Z ; ML proxy S(Z ) is
produced by Random Forest, shown by green line, BLP is shown by black line,
and estimated BLP is shown by blue line.
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Digression: Naive Strategy that is not Quite Right

Recall that
E[Y | Z ,D] = b0(Z ) + Ds0(Z ),

and

BLP[Y − b0(Z ) | D,S(Z )]

= BLP{E[Y | Z ,D]− b0(Z ) | D,S(Z )} = D BLP[s0(Z ) | S(Z )]

It might be tempting and “more natural” to estimate

Y = α̃1 + α̃2B + β̃1D + β̃2D(S − ES) + ε,

Good for predicting the conditional expectation of Y given Z and D.

But, β̃2 6= β2, and β̃1 + β̃2(S − ES) is not the BLP of s0(Z ).
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GATES: Group Average Treatment Effects Sorted by ML
Proxy

The target parameters are
E[s0(Z ) | Gk ],

where Gk is an indicator of a group membership.

We build the groups to explain as much variation in s0(Z ) as possible

Gk = {S ∈ Ik}, k = 1, ...,K ,

where Ik = [`k−1, `k) are non-overlaping intervals that divide the
support of proxy S into regions [`k−1, `k) with equal masses:

−∞ = `0 < `1 < . . . < `K = +∞.
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Can impose the shape restriction

E[s0(Z ) | G1] 6 ... 6 E[s0(Z ) | GK ]

which holds asymptotically if S(Z ) is reasonably close to s0(Z ) and the
latter has an absolutely continuous distribution.

Homogeneous effects, if s0(Z ) = s, then

E[s0(Z ) | G1] = ... = E[s0(Z ) | GK ]
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GATES Estimation

Consider the weighted linear projection:

Y = α′X1 +
K∑

k=1

γk · (D − p(Z)) · 1(Gk) + ν, E[w(Z)νW ] = 0,

W = (X ′1, {(D − p(Z ))1(Gk)}Kk=1)′.

X D − p(Z ) in the interaction (D − p(Z ))1(Gk) orthogonalizes this regressor
relative to all other regressors that are functions of Z .

X X1, e.g. B, is included to improve precision, but can be omitted.

Theorem 2: Projection coefficients identify GATES

γk = E[s0(Z ) | Gk ].
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Examples of γk with s0(Z ) = 0 and s0(Z ) = Z
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Figure: Left: s0(Z ) = 0; Right: s0(Z ) = Z ; S(Z ) is produced by random forest,
whose averages over groups are shown in red, the true averages by groups are
shown by black dots, and estimated averages are shown by blue dots.
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Classification Analysis (CLAN)

Focus on the “least affected group” G1 and “most affect group” GK .

Let g(Y ,Z ) be a vector of characteristics of a unit, typically

g(Y ,Z ) = (Y ,Z ′)′

The parameters of interest are the average characteristics of the most and
least affected groups:

δ1 = E[g(Y ,Z ) | G1] and δK = E[g(Y ,Z ) | GK ].

Compare δK and δ1 to quantify differences between the most and least
affected groups.

δK and δ1 are identified because they are directly observed.
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Inference: Target

Let θ denote a generic target parameter or functional, e.g.,

θ = β2 is the heterogeneity loading parameter;

θ = β1 + β2(S(z)− ES) is the personalized BLP of CATE;

θ = γk is GATE for the group {S ∈ Ik};

θ = γK − γ1 is the difference in GATEs between the most and least affected
groups;

θ = δK − δ1 is the difference CLAN parameters
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Quantification of Uncertainty: Two Sources

Two sources:

(I) Estimation uncertainty regarding the parameter θ, conditional on the
data split;

(II) Uncertainty induced by data splitting.

Conditional on the data split, (I) is standard.

To account for (II), will do many splits and aggregate (how?).
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Inference Conditional on a Data Split: Trivial

Parameters implicitly depend on A, the auxiliary sample, used to create the
ML proxies B = BA and S = SA.

Make dependence explicit: θ = θA. Unconditionally, this is a random
variable.

All of the examples admit an estimator θ̂A such that

θ̂A | DataA ∼a N(θA, σ̂
2
A),

Conditional on the split, the confidence interval (CI)

[LA,UA] = [θ̂A ± Φ−1(1− α/2)σ̂A]

covers θA with approximate probability 1− α:

P[θA ∈ [LA,UA] | DataA] = 1− α− o(1).
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Unconditional Inference

Different partitions (A,M) of {1, ...,N} yield different targets θA and

estimators θ̂A with different distributions.

Splitting risks:

(malevolent) researchers may choose to use a favorable split/seed

(benevolent) researchers who have honestly fixed the seed in advance
are subjected to the risk that the split may be non-typical

(arbitrariness) two researchers can draw different conclusions from the
same data

To avoid various risks arising by taking a single split we will rely on multiple
splits and take medians over the splits.

Quantify the uncertainty induced by the random splitting
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Accounting for Splitting Uncertainty

Report the median of θ̂A across random partitions:

θ̂ := Median[θ̂A | Data].

Report the median CI

[l , u] := [Median[LA | Data],Median[UA | Data]]

and discount the confidence level from 1− α to 1− 2α.

X Unlike θ̂A and [LA,UA], θ̂ and [l , u] are non-random conditional on Data
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Main Inference Result

We assume that θ̂A and [LA,UA] behave regularly for most realizations of the
data and random data splits.

Theorem 3: Under a mild regularity condition,

P(θA ∈ [l , u]) > 1− 2α− o(1),

where P is probability measure over data and random partitions.

Splitting uncertainty is reflected in discounting the nominal level of the
confidence interval from 1− α to 1− 2α.

X Similar logic extends to simultaneous confidence bands and p-values (e.g.,
Median[2pA | Data] is sample-splitting adjusted p-value)

X Key inferential result, could be of interest in other ML applications.
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Application to Immunization Incentives in India

RCT in the state of Haryana for improving immunization coverage

3 treatments cross randomized in 903 villages from Dec-16 to Apr-18

Incentives: parents/caregivers received mobile phone credit upon
bringing children for vaccinations

Seeds: information about immunization camps was diffused through
key members of a social network

Reminders: a fraction of parents/caregivers received phone reminders
for pending vaccinations for the children
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Experimental Setting

Most effective program is a ’package’ of treatments combining incentives,
seeds and reminders

Look for heterogeneity in the ’package’ treatment effect on immunization

Y is the number of immunizations per village per month

D is an indicator of the ‘package’ treatment

Z are 36 baseline village level characteristics, including religion, caste,
financial status, marriage and family status, education, and baseline
immunization

Propensity score is constant, 25 treated villages and 78 control villages
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Descriptive Statistics for Selected Variables

All Treated Control

Number of immunizations per village per month 4.48 5.84 4.04

Financial status of households 1-10 scale 3.45 3.23 3.52
Scheduled Caste-Scheduled Tribes households 0.22 0.22 0.22
Other Backward Caste households 0.24 0.17 0.26
Hinduism households 0.92 0.88 0.93
Islam households 0.05 0.06 0.05
Highest level of education nursery 0.15 0.15 0.15
Highest level of education class 4 0.08 0.08 0.08
Highest level of education class 9 0.16 0.16 0.16
Highest level of education class 12 0.25 0.23 0.25
Highest level of education graduate or other diploma 0.09 0.08 0.09
Num vaccines administered to pregnant mother 2.34 2.34 2.34
Num vaccines administered to kids since birth 4.40 4.57 4.34
Num of polio drops 2.99 2.99 2.98
Kids receiving immunization card YN 0.92 0.93 0.91

Number of Observations 1,321 320 1,001
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Implementation Details

Four ML methods: Elastic Net, Boosted Trees, Neural Networks with
Feature Extraction, and Random Forest

Elastic net uses regression specification that includes all two-way
interactions between the variables

Model parameters are tuned by 2-fold cross validation for all ML methods
except Random Forest.

District-time fixed effects and standard errors clustered at the village level

250 random splits by half

Unconditional Inference with α = 0.05 → 10% significance level
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Choosing Best ML producing best BLP of CATE

We propose the measure:

Λ := |β2|2Var(S(Z )) ∝ Corr2(s0(Z ),S(Z ))

which is proportional to the correlation of CATE and ML proxy.

Maximizing Λ gives us the best ML proxy.

Can construct similar measure based on GATES

Elastic Net Boosting Neural Network Random Forest

Best BLP (Λ) 55.83 24.86 35.67 15.83
Best GATES (Λ̄) 7.16 4.63 5.28 3.77

Notes: Medians over 250 splits in half.

The winners are Elastic Net and Neural Network
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BLP of package treatment CATE

Elastic Net Nnet
ATE (β1) HET (β2) ATE (β1) HET (β2)

3.07 1.09 1.90 0.92
(1.79, 4.30) (0.87, 1.29) (0.75, 3.02) (0.73, 1.11)

[0.000] [0.000] [0.003] [0.000]

Notes: Medians over 250 splits. 90% confidence interval in parenthesis. P-values for the
hypothesis that the parameter is equal to zero in brackets.

Package treatment increases number of immunizations by 2-3 on average

There is detectable strong heterogeneity CATE
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GATES by Quintiles of ML Proxies
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GATES of 20% Most and Least Affected Groups

Most Affected Least Affected Difference
(γ5) (γ1) (γ5 − γ1)

Elastic Net
12.31 -7.96 20.32

(8.43, 16.00) (-12.03, -3.76) (14.08, 26.35)
[0.000] [0.000] [0.000]

Nnet
8.72 -6.34 15.04

(6.38, 11.15) (-9.07, -3.56) (11.18, 18.73)
[0.000] [0.000] [0.000]

Notes: Medians over 250 splits. 90% confidence interval in parenthesis. P-values for the
hypothesis that the parameter is equal to zero in brackets.

GATEs are significantly different for Most and Least Affected Groups.
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Classification Analysis: Baseline Immunization Variables

Elastic Net Nnet
20% Most 20% Least Difference 20% Most 20% Least Difference

(δ5) (δ1) (δ5 − δ1) (δ5) (δ1) (δ5 − δ1)
Num vaccines to pregnant mother 2.12 2.31 -0.10 2.20 2.29 -0.09

(2.15, 2.25) (2.26, 2.35) (-0.17, -0.04) (2.15, 2.24) (2.25, 2.33) (-0.15,-0.04)
- - [0.003] - - [0.003]

Num vaccines to kids since birth 4.11 4.65 -0.51 4.33 4.70 -0.37
(3.97, 4.25) (4.52, 4.78) (-0.70, -0.32) (4.22, 4.44) (4.58, 4.81) (-0.53, -0.22)

- - [0.000] - - [0.000]
Num of polio drops 2.95 2.99 -0.05 2.96 3.00 -0.04

(2.93, 2.96) (2.98, 3.01) (-0.07, -0.03) (2.95, 2.97) (2.99, 3.01) (-0.06, -0.03)
- - [0.000] - - [0.000]

Kids with immunization card YN 0.81 0.93 -0.12 0.91 0.93 -0.03
(0.78, 0.84) (0.90, 0.95) (-0.16, -0.08) (0.89, 0.92) (0.91, 0.95) (-0.05,-0.01)

- - [0.000] - - [0.019]

Villages with low levels of pretreatment immunization are most affected by
the incentives
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Classification Analysis: Socioeconomic Variables

Elastic Net Nnet
20% Most 20% Least Difference 20% Most 20% Least Difference

(δ5) (δ1) (δ5 − δ1) (δ5) (δ1) (δ5 − δ1)
Financial status of households 1-10 scale 3.345 3.683 -0.341 3.459 3.750 -0.255

(3.167, 3.513) (3.513, 3.854) (-0.565, -0.107) (3.304, 3.616) (3.598, 3.903) (-0.479, -0.038)
- - [0.009] - - [0.043]

Scheduled Caste-Scheduled Tribes households 0.174 0.126 0.050 0.189 0.139 0.047
(0.148, 0.201) (0.100, 0.151) (0.013, 0.087) (0.162, 0.217) (0.114, 0.164) (0.011, 0.086)

- - [0.014] - - [0.023]
Other Backward Caste households 0.276 0.154 0.124 0.335 0.168 0.169

(0.243, 0.309) (0.123, 0.185) (0.078, 0.170) (0.305, 0.367) (0.139, 0.196) (0.126, 0.212)
- - [0.000] - - [0.000]

Islam households 0.165 0.026 0.135 0.020 0.020 0.005
(0.119, 0.210) (-0.014, 0.066) (0.071, 0.198) (0.009, 0.037) (0.003, 0.046) (-0.010, 0.020)

- - [0.000] - - [1.000]
Highest level of education nursery 0.152 0.170 -0.017 0.133 0.168 -0.033

(0.144, 0.162) (0.162, 0.178) (-0.029, -0.005) (0.127, 0.140) (0.162, 0.175) (-0.043, -0.024)
- - [0.014] - - [0.000]

Highest level of education class 4 0.079 0.090 -0.011 0.079 0.090 -0.011
(0.074, 0.084) (0.085, 0.095) (-0.018, -0.005) (0.074, 0.084) (0.085, 0.094) (-0.018, -0.004)

- - [0.002] - - [0.004]
Highest level of education class 9 0.171 0.160 0.010 0.161 0.155 0.006

(0.164, 0.179) (0.153, 0.167) (0.000, 0.021) (0.155, 0.168) (0.148, 0.162) (-0.004, 0.015)
- - [0.095] - - [0.451]

Highest level of education class 12 0.208 0.224 -0.013 0.246 0.225 0.020
(0.195, 0.220) (0.213, 0.235) (-0.029, 0.003) (0.235, 0.257) (0.215, 0.235) (0.006, 0.034)

- - [0.219] - - [0.009]

The most affected group is more likely to live in “poorer” villages with
higher proportion of muslim and backward cast households
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Literature

I. Orthogonalized/Double ML:

Chernozhukov, Chetverikov, Demirer, Duflo, Newey, Robins (17,
Econometrics Journal)

Belloni, Chernozhukov, Hansen (14, ReStud): double selection

Belloni, Chernozhukov, Wang (14, Annals): partialling out

II. Heterogenous Effects:

Using Trees: Athey and Imbens (15, PNAS) – like ours, assumption
free, but limited to ATE for tree leaves; no accounting for splitting
uncertainty; Wager and Athey (16) on forests, restricted only to low-d
cases.

Using Sparsity: Hansen Kozbur, Misra (17); Belloni, Chernozhukov,
Kato (14, Biometrika, high-dimensional treatments); restrictive
assumptions;

Partial Sparsity: D. Small et al. (17); Chernozhukov, Goldman,
Semenova, Taddy (17); somewhat less restrictive assumptions.
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Concluding Remarks

Propose generic, assumption-free strategies to make inference on key
features of heterogeneous effects in randomized experiments.

Key features include BLP, GATEs, and CLAN.

Estimation and inference relies on repeated data splitting to avoid
overfitting.

Valid inference quantifies uncertainty coming from parameter estimation and
data splitting.

We are talking to the government about the immunization experiment.
They are considering using the results to implement a program
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Application to Micro-Credit in Morocco

Randomized experiment in Morocco to measure the impact of microfinance
on outcomes (Crépon et al (2015))

162 villages with N ≈ 5000 households in rural areas are divided into 81
pairs.

One treatment and one control village were randomly assigned within each
pair. In treated villages a microfinance institution opened branches

Introduced in 2006, outcomes from follow-up surveys in 2009.

Y is profit; D is indicator of offering access to microfinance services; Z are
22 household characteristics including the number of household members,
number of adults, head age and 81 village pair fixed effects.

Standard errors are clustered at the village level.
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Choosing Best ML producing best BLP of CATE

We propose the measure:

Λ := |β2|2Var(S(Z )) ∝ Corr2(s0(Z ),S(Z ))

which is proportional to the correlation of CATE and ML proxy.
Maximizing Λ gives us the best ML proxy.

Elastic Net Boosting Nnet Random Forest

Profit (Λ) 32,462,874 16,674,642 13,411,383 43,184,732

Notes: Medians over 1,000 splits.

The winners are the Elastic Net and Random Forest.
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BLP of the Effect of Microfinance on Profits

Table: BLP of the Effect of Microfinance on Profits

Elastic Net Random Forest

ATE (β1) HET (β2) ATE (β1) HET (β2)

Profit 1,554 0.243 1,625 0.275
(-1,344, 4,388) (0.079, 0.416) (-1,332, 4,576) (0.036,0.510)

[0.584] [0.008] [0.577] [0.045]

Median estimates, CIs, and p-values computed over 1000 splits.

There is detectable heterogeneity in Profits.
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GATES of Microfinance on Profits

Elastic Net Random Forest

Most Affected Least Affected Difference Most Affected Least Affected Difference
(γ5) (γ1) (γ5 − γ1) (γ5) (γ1) (γ5 − γ1)

Profit 10,707 -1,227 11,768 12,000 -2,130 14,056

(1,628, 19,032) (-7,273, 5,003) (1,186, 22,485) (2,911, 20,638) (-9,135, 4,853) (2,292, 25,698)

[0.028] [1.000] [0.059] [0.018] [1.000] [0.035]

GATEs are Dramatically Different for Most and Least Affected Groups.
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ATE and GATES of Microfinance on Profits
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CIs simultaneous across groups.
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Classification Analysis for Microfinance Effects

Elastic Net Random Forest

20% Most 20% Least Difference 20% Most 20% Least Difference

(δ5) (δ1) (δ5 − δ1) (δ5) (δ1) (δ5 − δ1)

Profit

Non-agricultural self-emp. 0.198 0.103 0.086 0.186 0.108 0.074
(0.169, 0.227) (0.073, 0.132) (0.046, 0.127) (0.156, 0.215) (0.079, 0.138) (0.033, 0.115)

- - [0.000] - - [0.001]
Animal Husbandry self-emp. 0.321 0.570 -0.243 0.378 0.483 -0.113

(0.280, 0.361) (0.529, 0.610) (-0.300, -0.186) (0.336, 0.419) (0.442, 0.525) (-0.171, -0.054)
- - [0.000] - - [0.000]

Head Age 34.11 39.99 -6.08 31.83 35.77 -4.20
(32.06, 36.18) (37.90, 42.06) (-9.05, -3.10) (29.56, 34.14) (33.52, 37.99) (-7.29, -1.10)

- - [0.000] - - [0.017]

The Most Affected Group tends to be Younger Households with Less
Borrowing Experience.
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