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A decision maker D wants to predict some quantity y based on a set of
predictors z.

A canonical approach is

ve =Bz, 1 + e, er ~ (0, 1)

Data-rich environments:
— Availability of many predictors.

— E.g., FRED-MD for macro, firm's
characteristics for finance.

Limitations of conventional approaches:
— OLS, MLE, Bayes with flat priors fail out-of-sample.

— Curse of dimensionality (over-fitting).
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Set the Stage

Forecasting with many predictors:

Pros:
Sparse Modeling

(regularization /shrinkage) — Interpretability of the output.

— Parsimony.

Selection of few variables with Cons:

the highest explanatory power _ lllusion of sparsity

— E.g., Lasso, Elastic-Net, (see Giannone et al. 2018).
SSVS (spike-and-slab). — Unstable over time.

— Could shrink variables that
matter (for decision making).
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Set the Stage

Forecasting with many predictors:

Pros:
Dense Modeling

— Widely used for predictions. (factor models)

— Works well out-of-sample.

Cons: Few common components
capture statistical features of a

— Lacks of interpretability large set of predictors

(ex-post heuristics).
— Lacks of decision insight — E.g., PCA/Factor Analysis.
(un-supervised learning).
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Sparse Modeling

(regularization/shrinkage)

Both approaches mitigate
over-fitting by reducing model
complexity, i.e., reducing
model’s variance.

Balance bias-variance trade-off
through cross-validation or
using information criteria.

Error

Dense Modeling
(factor modeling)

Optimum Model Complexity

Total Error

Variance

Model Complexity
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What we do: we propose a large-scale predictive strategy:
— based on ensembling smaller models (aggreg. of weak/biased learners).
Low variance and bias sequentially corrected.

— does not assume/impose sparsity (we retain all the data).

— keeps some economic interpretability (relative “weights” of predictors).

Application(s): (1) forecasting U.S. inflation
based on macro variables, and (2) forecasting
stock returns based on firms' characteristics.

Results: better out-of-sample predictability compared to conventional
sparse/dense predictive strategies,

— Substantial economic gains when forecasting stock returns.

— Results are rationalized in simulation.



QOutline

1. Modeling Framework

— Decouple-Recouple Predictive Strategy.

N

. Estimation (Markov Chain Monte Carlo)

w

. Empirical Study
— Forecasting U.S. inflation.

— Forecasting stock returns across U.S. industries.
4. Simulation Study

5. Conclusion
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Decoupling-Recoupling Predictive Strategy

Ye = 5/121:—1,1 + .+ IBJ/'Zt—l,j + ...+ ﬁljzt—l,J + €

ve=PB1Zi—11 + €1 Ve =Bjze_1j+ € ve=B8)ze15+ €y
hi(x1) = p(yesk| A1) hi(x) = p(ye+&lA;) hy(xs) = p(YerklAJ)
Issues : p(y|H)
— Predictions are biased and
correlated.
— You may have your Ptk

own prior p(y).
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Bayesian Predictive Synthesis

General result:

J

pyIH) = [ alylmtx)dx  where () =[] by ()

j=1

I' Necessary condition !

N.B: The functional form of _ | d
a(y|x) is left unspecified by p(y) = | alylx)m(x)dx
the theory.

J
m(x) = £ | ] (x)

Lindley (1983,1985), Genest and Schervish (1985),
Crosse and West (1992), West (1991,1992)
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McAlinn et al. (2018) and assume
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Dynamic Synthesis Function

We follow McAlinn and West (2018) and
McAlinn et al. (2018) apd-asst

p(ye|®:, He) = / t(xt)dx;

x; = (x1,...,x5) vector of
latent states at time t

Dynamic Latent Factor Model

yi = F0;+vy, v~ N, v,),

0, =01 +w;, we~ NO,v:W,),

P, = (0t7 Vt)

F.=(1,x}) and 0:= (6:w0,0:1,....,0)
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Estimation Strategy

Two-component block Gibbs sampler:

Block 1:
(bias and interdependencies)

Conditional on the “latent states”
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are sampled from a Forward
Filtering Backward Sampler (FFBS)
algorithm.
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Estimation Strategy

Two-component block Gibbs sampler:

Block 1: Block 2:

(bias and interdependencies) (“latent states")
Conditional on the “latent states” Conditional on 8;, v; and W4, the
X¢, the parameters 0, v; and W, “latent states” x; are sampled from
are sampled from a Forward
Filtering Backward Sampler (FFBS) o< N (y:|F.0:, vt) H hi (e ) dxg
algorithm. j=1:J

N.B: With hyj(x;j) Student-t density, we use a
scale mixture of normals which allows for
conjugate updating.
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N.B: The J groups are

selected based on their

— Forecasting U.S. inflation based on economic meaning.
macroeconomic variables.

Two (regression-based) forecasting exercises:

— Forecasting stock returns based on firms'
characteristics.

Each h; (x;) = p(y|A)) is generated

— 3 . . .~ J,
Comparison based on the e =Byzy + €y, N(O.#y).

cumulative Log Predictive Density By = Bi_1j +uy, ug~NO,v;Uy),
Ratios (LPDR),

LPDR.(k) = Zlog{p Viek|yri, Ms)/p(Vick |y, Mo)},

i=1

where My is our strategy and M
denotes the competitor.
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Empirical Study 1: Forecasting U.S. Inflation

Forecasting U.S. inflation using a large panel of
macroeconomic variables (FRED-MD, p = 128)

— 1,3, and 12 months ahead
J = 8 groups of predictors

— Output and income

Compare against: _ Labor market
— Sequential BMA — Consumption
— TVP factor model (k chosen by IC) — Inventories
— Lasso (leave-one-out cross-validation) — Money and credit
— Linear pooling (equal-weight) — Interest rates and FX
— Sub-group predictions — Prices

Stock market



Empirical Study 1: Forecasting U.S. Inflation

Figure: Out-of-sample log predictive density ratio
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This figure shows the dynamics of the out-of-sample Log Predictive Density Ratio
(LPDR) obtained for each competing specification. The sample period is 01:2001-
12:2015, monthly. The objective function is the one-step ahead density forecast of
annual inflation.



Empirical Study 1: Forecasting U.S. Inflation

Figure: Posterior means of rescaled interdependencies.
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Empirical Study 1: Forecasting U.S. Inflation

Figure: Qualitative vs. Random Paritioning
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This figure shows a comparison between qualitative and random partitioning. Purple
line is DRS using qualitative partitioning and black lines are DRS results using partitions
chosen at random (computed over random partitions)
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Empirical Study 2: Forecasting Industry Stock Returns

Forecast of the annual stock returns for different U.S. industries based
on 63 pre-calculated financial ratios and 14 macroeconomic variables.

— 10 industries: Durbl, NonDurbl, Manuf, Energy, HiTech, Health,

Shops, Telcm, Utils, Other.

Compare against:

— Sequential BMA
TVP factor model (k chosen by IC)
— Lasso (leave-one-out cross-validation)

— Linear pooling (equal-weight)
— Sub-group predictions
— Historical Average

J =10 groups of predictors

Value
Profitability
Capitalization

— Financial Soundness
— Solvency

Liquidity
Efficiency
Other

Agg. Financials
Macro



Empirical Study 2: Forecasting Industry Stock Returns

Figure: Out-of-sample log predictive density ratio
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This figure shows the latent interdependencies across groups of predictive densities used

in the recoupling step. Left panel the posterior mean estimates for Durable and right
panel for the Manufacturing industry.



Empirical Study 2: Forecasting Industry Stock Returns

Figure: Posterior means of rescaled interdependencies.
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Empirical Study 2: Economic Significance

Question: Any economic insight using our predictive strategy?
Simplified setting:

— Representative investor with power utility and
moderate risk aversion who wants to allocate wealth
between stocks and a risk-less asset.

N.B: Performance is evaluated
based on Certainty Equivalent

Two scenarios: Returns (CERs).

1

— Short sales are allowed .17
(unconstrained investor). CER;r = 0’ -1
A

— Short sales are not allowed, i.e., w; >0
(constrained investor).
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Figure: OOS cumulative CER for an unconstrained investor
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Simulation Study

We consider a simple — yet relevant — simulation
study to illustrate the properties of our model.

Data are simulated from
y=-2z21+32+5z+¢ €~ N(0,0.01),

1 2
zy = -z3 + 11, V1NN(O,§),

3 Setting:
1 4 ) .
=gt 2 N {0, 5) — Zz3 is omitted
23 =13, vs~ N(0,0.01), — We assume # sub-sampling and
procedures.

Results:
— In small samples DRS improves w.r.t other methods by ~ 60%.

— In long samples gains are smaller but persistent.



Conclusions

We propose a decouple-recouple strategy
(DRS) for dynamic predictive regressions with a
(relatively) large number of covariates.

Application to macro and finance:

— DRS outperforms typical competitors
both statistically and economically.

Open issues/next steps:

— Can we group better the predictors?
— Hierarchical structure for larger dimensions?
— More sophisticated benchmarks?



