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Introduction

• Institutional analysts and policy makers demand early estimates of key
economic variables (GDP, Inflation, IP) due to publication lags

• Early estimates are based more and more on information of Big Data
sources such as Google Trends (GT)

• Especially GT have received a lot of attention in nowcasting literature
(see Choi and Varian, 2012)
• Big data issues in forecasting:

i) Mixed Frequency (MF)
ii) Asynchronous data publications (ragged edges)
iii) High dimensionality (HD)
iv) Parameter changes
v) Degree of Sparsity
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Purpose and Contribution

• This paper: offers methodology which handles econometric issues
(i)-(v) while remaining computationally simple and allowing for
tractability of high frequency Big Data through
• Marginal inclusion probabilities
• Unrestricted intra-period dynamics

• We use a prior which stays agnostic about the underlying sparsity
representation by separating variable selection from shrinkage

• Methodology is showcased by using Google Trends to augment
nowcasts of real US GDP growth
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Mixed Frequency Estimators

• Bańbura et al. (2013) classify mixed frequency estimators into (i) full
system and (ii) partial system estimators
• Main difference: full system models jointly estimate all regressors
• Findings from the mixed frequency nowcasting literature:

1 Direct partial system methods with Bayesian shrinkage can perform as
well as full-system models (Carriero et al., 2015)

2 When the frequency mismatch is low, U-MIDAS performs better than
MIDAS methods (Foroni et al., 2014) Detail MIDAS

• Findings from broader forecasting literature:

1 There is uncertainty over the degree sparsity (Giannone et al., 2018)
• Traditional in macroeconomics: variants of factor estimation (e.g.

Stock & Watson, 2002)
• Common for Big Data sources: variants of sparse estimation (e.g.

Tibshirani, 1996)
2 Allowing for model uncertainty in correlated designs can improve

forecasts (Steel, 2018)
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Bayesian Structural Time Series augmented U-MIDAS

• The BSTS-U-MIDAS estimator seeks to combine these 4 findings into
1 model

• The proposed estimator consists itself of three distinct parts:
1 ”Structural” time series model (Harvey, 2006) augmented with mixed

frequency regressors
• Can flexibly handle time series features (seasonality, long term trends,

unobserved components)

2 Spike and Slab priors (George & McCulloch, 1997)
• Two-component prior which allows for parsimony and controls model

complexity

3 Bayesian model averaging (Raftery et al., 2005)
• Allows for model uncertainty and makes predictive inference more

robust
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Bayesian Structural Time Series augmented U-MIDAS

yt = µt + zt + vt , vt ∼ N(0, σ2) (1)

µt = µt−1 + wt ,wt ∼ N(0,W ) (2)

zt = β′Xt,m (3)

• y = (y1, · · · , yT ) are the observations of the dependent variable at
quarterly frequency

• Xt,m = [x1,t,m, · · · , xK ,t,m], m ∈ {1, 2, 3} are a monthly variables,
transformed to quarterly frequency

• X is a T × K matrix, where the original dimension of X before
skip-sampling is TM × K/M Detail

• Adding regressors in (3) increases dimensionality of state system only
by 1

• States are estimated by Kohn & Carter (1994) algorithm
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Spike and Slab Priors I

• We apply Spike and Slab priors to: yt − µt
p(β, σ−2, γ) = p(βγ |γ, σ−2)p(σ−2|γ)p(γ) (4)

• Prior for β is a mixture of two normals with c = 0

βj |γ ∼ γjN(0, g(X ′γXγ)−1) + (1− γj)N(0, cg(X ′γXγ)−1) (5)

David Kohns & Arnab Bhattacharjee BSTS-U-MIDAS November 04, 2019 9 / 29



Spike and Slab Priors II

• The latent indicator variable γ is modelled as a Bernoulli random
variable

γ ∼
∏
j

π
γj
j (1− πj)1−γj (6)

• Conditional on knowing γ, we can apply conjugate priors which will
significantly speed up computation

• We use a non-informative prior for the standard deviation of the
measurement σ

p(σ) ∝ 1/σ (7)
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Posterior Simulation

• Parameters to estimate θ = {β, σ, φ,W1,W2}
• States to estimate α = {µt}
• Using Bayes’ rule, the full posterior is:

p(θ,α|y) = p(θ)p(α0)
T∏
t=1

p(yt |αt , θ)p(αt |αt−1, θ) (8)

• Since the conditional posteriors all take well known standard forms,
we can rely on standard Gibbs MCMC sampling
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Posterior Marginal Inclusion Probability

• The dirac prior creates a reducible Markov chain, so we need to
marginalise over the regression parameters to conduct variable
selection

• Conditional on the states and state variances, the marginal posterior
is analytically available:

p(γ|y) ∝ (1 + g)−qγ/2S(γ)−T/2
K∏
j

π
γj
j (1− πj)1−γj (9)

• qγ is defined as the length of a given βγ and S(γ) is a simple function
of y and Xγ
• All information needed for variable selection is in (9).
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Bayesian Model Averaging

• Sampling algorithm explores the posterior model space which
produces with each iteration a different model

• Bayes’ Law provides a formal probabilistic way of conducting
predictive inference over the drawn models

• Define φ = (θ, α), y∗ as the forecast of yt where Mj is a model
selected from a set of K possible models and φj ∈ Φj groups the
unknown parameters in Mj :

p(y∗|y) =
K∑
j=1

[∫
Φj

p(y∗|φj , y ,Mj)p(φj |y ,Mj)dφj

]
P(Mj |y) (10)

• Each forecast is weighted by its respective marginal likelihood
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Data

• The dependent variable is real quarterly US GDP growth (second
vintage as in Croushore, 2006)

• The independent variable set contains 13 macroeconomic indicators
based on Giannone et al. (2016) and a selection of 27 GT

• GT are selected based on root term methodology

• In total 120 variables and 60 real growth observations

• Time frame: 01/04-03/19

• Training sample time frame: 01/04-07/14

• Pseudo Real Time calendar used for nowcasting includes 30 vintages
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Cumulative Absolute Error
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Marginal Inclusion Probabilities
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Naive vs. Unrestricted Mixed Frequency
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Posterior Model Sizes

(a) π = 12 (b) π = 18

• Prior expected model sizes below 12 result in heavily shrunk models
• Prior expected model sizes above 18 result in bi-modal posterior
• Larger models include far larger proportion of macro variables, while

Google Trends remain largely the same
• Completely hierarchical prior does not explore large models due to

fixed global shrinkage
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Pseudo Real Time Calendar

Vintage Timing Release Variable Name Pub. lag Transformation FRED Code

1 First day of month 1 - - - - -
2 Last day of month 1 Fed fund & BAA fedfunds & baa m 3 FEDFUNDS & BAAY10
3 Last day of month 1 Google Trends m 4 -
4 1st bus. day of month 2 Economic Policy Index uncertainty m-1 1 USEPUINDXM
5 1st Friday of month 2 Employment situation hours & unrate m-1 2 AWHNONAG & UNRATE
6 Middle of month 2 CPI cpi m-1 2 CPI
7 15th-17th of month 2 Industrial Production indpro m-1 2 INDPRO
8 3rd week of month 2 Credit & M2 loans & m2 m-1 2 LOANS & M2
9 Later part of month 2 Housing starts housst m-1 1 HOUST

10 Last week of month 2 PCE & PCEPI pce & pce2 m-1 2 PCE & PCEPI
11 Last day of month 2 Fed fund & BAA fedfunds & baa m 3 FEDFUNDS & BAAY10
12 Last day of month 2 Google Trends m 4 -
13 1st bus. day of month 3 Economic Policy Index uncertainty m-1 1 USEPUINDXM
14 1st bus. day of month 3 Construction starts construction m-2 1 TTLCONS
15 1st Friday of month 3 Employment situation hours & unrate m-1 2 AWHNONAG & UNRATE
16 Middle of month 3 CPI cpi m-1 2 CPI
17 15th-17th of month 3 Industrial Production indpro m-1 2 INDPRO
18 3rd week of month 3 Credit & M2 loans & m2 m-1 2 LOANS & M2
19 Later part of month 3 Housing starts housst m-1 1 HOUST
20 Last week of month 3 PCE & PCEPI pce & pce2 m-1 2 PCE & PCEPI
21 Last day of month 3 Fed fund & BAA fedfunds & baa m 3 FEDFUNDS & BAAY10
22 Last day of month 3 Google Trends m 4 -
23 1st bus. day of month 4 Economic Policy Index uncertainty m-1 1 USEPUINDXM
24 1st bus. day of month 4 Construction starts construction m-2 1 TTLCONS
25 1st Friday of month 4 Employment situation hours & unrate m-1 2 AWHNONAG & UNRATE
26 Middle of month 4 CPI cpi m-1 2 CPI
27 15th-17th of month 4 Industrial Production indpro m-1 2 INDPRO
28 3rd week of month 4 Credit & M2 loans & m2 m-1 2 LOANS & M2
29 Later part of month 4 Housing starts housst m-1 1 HOUST
30 Last week of month 4 PCE & PCEPI pce & pce2 m-1 2 PCE & PCEPI
31 Later part of month 5 Construction starts const m-2 1 TTLCONS
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Real Time MSFE
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Density Nowcasts: Last Vintage

(a) U-BSTS (b) M-BSTS (c) F-BSTS

• Full Model provides best density forecasts

• Noise in Google search terms results in greater uncertainty around the
the full model forecasts
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Discussion

1 Google Trends improve nowcasts of GDP. Act as an early warning
signal & uncertainty index akin to financial variables

2 GT improve nowcasts early in the quarter prior to release of official
information

3 Marginal inclusion probabilities & unrestricted MIDAS sampling help
to uncover the mechanisms through which GT improve forecasts

4 Marginal inclusion probabilities also show limitations of the model:
Reverse causality

5 Posterior model space includes regions of smaller & larger models
when allowing for informative priors. However, large models suffer
from estimation uncertainty.

6 Uncertainty over sparsity calls for priors which are able to handle
dense and sparse model components
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Way Forward

• The prior does not give us direct answers to whether regressors
belong into a dense or sparse model part
• Using a multi-layer Spike and Slab algorithm could sort into dedicated

dense and sparse model parts (under active investigation of the
co-authors)

• Further extensions to improve fit:
• Tighter prior on state component so as to reduce noise in early

vintages: the inverse-Gamma distribution biases the state variance
away from zero.

• Stochastic volatility
• Prior which allows for varying degrees of shrinkage: e.g. global local

priors
• Pre-screening approach akin to Fan & Lv (2008) could help with noise

reduction in ultra high dimensional settings such as using larger
unstructured Big Data sources
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MIDAS Style Skip-Sampling

• Suppose yt is observed quarterly, and xM is observed monthly


y1stquarter | xMar xFeb xJan
y2ndquarter | xJun xMay xApr

. | . . .

. | . . .

. | . . .

 (11)

• Skip sampling is flexible enough to handle any kind of frequency
mismatch and ragged edges

• ragged egdes are handles either through setting values to zero prior to
release, or by re-aligning the vectors

• Higher frequency mismatch merely expands the column space of the
design

Back to main .
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Partial System Estimators I

• The rationale of Ghysels’ et al. (2004) MIDAS style estimators is to
take data driven averages of high frequency observations

• Kernel functions of these averages are usually parsimonious

• Define yt as the dependent low frequency variable, where
t ∈ {1, · · · ,T}, xm,t as the higher frequent regressors observed M
times more frequent than t, where m ∈ {1, · · · ,M}
• Additive Distributed Lag (ADL)-MIDAS:

yt+1 = α +

py−1∑
i=0

ρi+1yt−i + β

px−1∑
i=0

M−1∑
j=0

wM−j+i∗M(θ)xM−j ,t−i + εt

• wm(θ) is a low-polynomial weighting function such as the Almon lag
kernel:

wm(θ) =
exp(θ1m + θ2m

2)∑M
j=1 exp(θ1j + θ2j2)

Back to main .
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Partial System Estimators II

• The Unrestricted (U-)-MIDAS estimator instead estimates each
higher frequent observation separately:

yt+1 = α + β1x1,t + · · ·+ βMxm,t + εt

• Factor-ADL-MIDAS extracts first principal components of the higher
frequent cross-section and applies a low-polynomial weighting
function to the resulting higher frequent factors:

yt+1 = α +

ρy−1∑
i=0

ρi+1yt−i +

ρf−1∑
i=0

φi+1F
q
t−i + εt

• F q
t−i is aggregated according to F q

t =
∑L−1

j=0 wL−j(θ)fL−j ,t .

Back to main .
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Full System Estimators

• In the Full-system approach of Banbura et al. (2013) and Koop et al.
(2018) is to treat the low frequency variable as being higher frequent
with missing observations
• Missing observations are then treated as latent states
• Banbura et al. (2013) estimate a mixed frequency dynamic factor

model (MF-DFM) via Mariano & Murasawa’s (2010) EM algorithm:

Ym
t = ΛmFm

t + Em
t

Fm
t = A(L)Fm

t−1 + Um
t

• Define yqt , y
{m, t}, zt as the quarterly, monthly unobserved

observations and a stacked vector respectively Koop et al. (2018)
estimate a mixed frequency VAR as:

yt = φ0 + φ1yt−1 + ...+ φpyt−p + ut

yqt = Mq
t Λqzt

Back to main .
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Top 10 Models

Variables 1 2 3 4 5 6 7 8 9 10

Constant 3.8943 3.8943 3.8943 3.8943 3.8943 3.8943 3.8943 3.8943 3.8943 3.8943
Baa0 0 -0.086643 0 0 0 0 -0.086643 -0.086643 0 0
Baa1 0 0 0 0 0 -0.20575 0 0 0 -0.20575

Loans2 0.012742 0.012742 0.012742 0 0 0 0 0.012742 0 0
M20 -0.011817 -0.011817 -0.01181 -0.011817 -0.011817 -0.011817 -0.011817 -0.011817 -0.011817 -0.011817
M21 0 -0.00030418 0 0 0 0 0 0 0 0

Const0 0 0 1.03E-07 0 0 0 0 0 0 0
Const2 0 0 0 0 0 0 8.32E-07 0 0 0

Uncertainty2 0 0 0 0 0 0 9.23E-06 0 0 0
Bankruptcy0 0 0 0 0 0 0.00080785 0 0 0 0
GDPgrowth2 0 0 0 -0.00082407 0 -0.00082407 0 0 -0.00082407 0

Industrialproduction1 0.012386 0.012386 0.012386 0.012386 0.012386 0 0.012386 0.012386 0.012386 0.012386
Industrialproduction2 -0.00032733 0 -0.00032733 0 -0.00032733 0 -0.00032733 0 0 -0.00032733

Recession2 0 0 0 0 -0.000656 -0.000656 0 0 -0.000656 -0.000656
Stockmarket0 0 -0.0264 -0.0264 -0.0264 0 0 -0.0264 -0.0264 0 0

USdefault1 0 0 0 -2.33E-05 0 0 0 0 0 0

Table 1: Posterior coefficients of the top 10 models by marginal likelihood
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