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predictors z .

A canonical approach is
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A decision maker D wants to predict some quantity y based on a set of
predictors z .

A canonical approach is

yt = β′z t−1 + εt , εt ∼ π(0, νt)

Data-rich environments:

− Availability of many predictors.

− E.g., FRED-MD for macro, firm’s
characteristics for finance.

Limitations of conventional approaches:

− OLS, MLE, Bayes with flat priors fail out-of-sample.

− Curse of dimensionality (over-fitting).
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Forecasting with many predictors:

Sparse Modeling
(regularization/shrinkage)

Selection of few variables with
the highest explanatory power

− E.g., Lasso, Elastic-Net,
SSVS (spike-and-slab).

Pros:

− Interpretability of the output.

− Parsimony.

Cons:

− Illusion of sparsity
(see Giannone et al. 2018).

− Unstable over time.

− Could shrink variables that
matter (for decision making).
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Forecasting with many predictors:

Dense Modeling
(factor models)

Few common components
capture statistical features of a
large set of predictors

− E.g., PCA/Factor Analysis.
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Forecasting with many predictors:

Dense Modeling
(factor models)

Few common components
capture statistical features of a
large set of predictors

− E.g., PCA/Factor Analysis.

Pros:

− Widely used for predictions.

− Works well out-of-sample.

Cons:

− Lacks of interpretability
(ex-post heuristics).

− Lacks of decision insight
(un-supervised learning).
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Sparse Modeling
(regularization/shrinkage)

Dense Modeling
(factor modeling)

Both approaches mitigate
over-fitting by reducing model
complexity, i.e., reducing
model’s variance.
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Sparse Modeling
(regularization/shrinkage)

Dense Modeling
(factor modeling)

Both approaches mitigate
over-fitting by reducing model
complexity, i.e., reducing
model’s variance.

Balance bias-variance trade-off
through cross-validation or
using information criteria.
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What we do: we propose a large-scale predictive strategy:

− based on ensembling smaller models (aggreg. of weak/biased learners).

Low variance and bias sequentially corrected.

− does not assume/impose sparsity (we retain all the data).

− keeps some economic interpretability (relative “weights” of predictors).
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What we do: we propose a large-scale predictive strategy:

− based on ensembling smaller models (aggreg. of weak/biased learners).

Low variance and bias sequentially corrected.

− does not assume/impose sparsity (we retain all the data).

− keeps some economic interpretability (relative “weights” of predictors).

Application(s): (1) forecasting U.S. inflation
based on macro variables, and (2) forecasting
stock returns based on firms’ characteristics.

Results: better out-of-sample predictability compared to conventional
sparse/dense predictive strategies,

− Substantial economic gains when forecasting stock returns.

− Results are rationalized in simulation.



Outline

1. Modeling Framework

− Decouple-Recouple Predictive Strategy.

2. Estimation (Markov Chain Monte Carlo)

3. Empirical Study

− Forecasting U.S. inflation.

− Forecasting stock returns across U.S. industries.

4. Simulation Study

5. Conclusion
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Decoupling-Recoupling Predictive Strategy

yt = β′1z t−1,1 + ...+ β′jz t−1,j + ...+ β′Jz t−1,J + εt

yt = β′1z t−1,1 + εt,1 yt = β′jz t−1,j + εt,j yt = β′Jz t−1,J + εt,J

p(y |H)

h1(x1) = p(yt+k |A1) hj(xj) = p(yt+k |Aj) hJ(xJ) = p(yt+k |AJ)

ŷt+k
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Issues :

− Predictions are biased and
correlated.

− You may have your
own prior p (y).



Bayesian Predictive Synthesis

Bianchi, McAlinn Large-Scale Dynamic Predictive Regressions 20/ 53

General result:

p(y |H) =

∫
α(y |x)h(x)dx where h(x) =

J∏
j=1

hj (xj)

Lindley (1983,1985), Genest and Schervish (1985),
Crosse and West (1992), West (1991,1992)
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General result:

p(y |H) =
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! Necessary condition !
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General result:

p(y |H) =

∫
α(y |x)h(x)dx where h(x) =

J∏
j=1

hj (xj)

N.B: The functional form of
α(y |x) is left unspecified by
the theory.

! Necessary condition !

p (y) =

∫
α(y |x)m(x)dx

m(x) = E

 J∏
j=1

hj (xj)



Lindley (1983,1985), Genest and Schervish (1985),
Crosse and West (1992), West (1991,1992)



Dynamic Synthesis Function

Bianchi, McAlinn Large-Scale Dynamic Predictive Regressions 24/ 53

We follow McAlinn and West (2018) and
McAlinn et al. (2018) and assume

p(yt |Φt ,Ht) =

∫
α(yt |x t ,Φt)ht(x t)dx t

x t = (x1, . . . , xJ)′ vector of
latent states at time t



Dynamic Synthesis Function

Dynamic Latent Factor Model

Bianchi, McAlinn Large-Scale Dynamic Predictive Regressions 25/ 53

We follow McAlinn and West (2018) and
McAlinn et al. (2018) and assume

p(yt |Φt ,Ht) =

∫
α(yt |x t ,Φt)ht(x t)dx t

yt = F ′tθt + νt , νt ∼ N(0, vt),

θt = θt−1 + ωt , ωt ∼ N(0, vtW t),

Φt = (θt , vt)

F t = (1, x ′t)
′ and θt = (θt0, θt1, ..., θtJ)′

x t = (x1, . . . , xJ)′ vector of
latent states at time t
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Two-component block Gibbs sampler:

Block 1:
(bias and interdependencies)

Conditional on the “latent states”
x t , the parameters θt , vt and W t

are sampled from a Forward
Filtering Backward Sampler (FFBS)
algorithm.
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Two-component block Gibbs sampler:

Block 1:
(bias and interdependencies)

Block 2:
(“latent states”)

Conditional on the “latent states”
x t , the parameters θt , vt and W t

are sampled from a Forward
Filtering Backward Sampler (FFBS)
algorithm.

Conditional on θt , vt and W t , the
“latent states” x t are sampled from

∝ N (yt |F′tθt , vt)
∏
j=1:J

htj(xtj)dxtj

N.B: With htj(xtj) Student-t density, we use a
scale mixture of normals which allows for
conjugate updating.
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Two (regression-based) forecasting exercises:

− Forecasting U.S. inflation based on
macroeconomic variables.

− Forecasting stock returns based on firms’
characteristics.
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Each hj (xj) = p (y |Aj) is generated
by a TVP + SV for j = 1, . . . , J.
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βtj = βt−1,j + utj , utj ∼ N(0, νtjU tj),
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Two (regression-based) forecasting exercises:

− Forecasting U.S. inflation based on
macroeconomic variables.

− Forecasting stock returns based on firms’
characteristics.

Each hj (xj) = p (y |Aj) is generated
by a TVP + SV for j = 1, . . . , J.

yt = β′tjz tj + εtj , εtj ∼ N(0, νtj),

βtj = βt−1,j + utj , utj ∼ N(0, νtjU tj),
Comparison based on the
cumulative Log Predictive Density
Ratios (LPDR),

LPDRt(k) =
t∑

i=1

log{p(yi+k |y1:i ,Ms)/p(yi+k |y1:i ,M0)},

where M0 is our strategy and Ms

denotes the competitor.



Empirical Study (Setting)

N.B: The J groups are
selected based on their
economic meaning.
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Two (regression-based) forecasting exercises:

− Forecasting U.S. inflation based on
macroeconomic variables.

− Forecasting stock returns based on firms’
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Forecasting U.S. inflation using a large panel of
macroeconomic variables (FRED-MD, p = 128)

− 1,3, and 12 months ahead
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Forecasting U.S. inflation using a large panel of
macroeconomic variables (FRED-MD, p = 128)

− 1,3, and 12 months ahead

J = 8 groups of predictors

− Output and income

− Labor market

− Consumption

− Inventories

− Money and credit

− Interest rates and FX

− Prices

− Stock market
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Forecasting U.S. inflation using a large panel of
macroeconomic variables (FRED-MD, p = 128)

− 1,3, and 12 months ahead

J = 8 groups of predictors

− Output and income

− Labor market

− Consumption

− Inventories

− Money and credit

− Interest rates and FX

− Prices

− Stock market

Compare against:

− Sequential BMA

− TVP factor model (k chosen by IC)

− Lasso (leave-one-out cross-validation)

− Linear pooling (equal-weight)

− Sub-group predictions



Empirical Study 1: Forecasting U.S. Inflation

Figure: Out-of-sample log predictive density ratio

This figure shows the dynamics of the out-of-sample Log Predictive Density Ratio
(LPDR) obtained for each competing specification. The sample period is 01:2001-
12:2015, monthly. The objective function is the one-step ahead density forecast of
annual inflation.
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Empirical Study 1: Forecasting U.S. Inflation

Figure: Posterior means of rescaled interdependencies.

(a) 1-month ahead (b) 3-month ahead

θ̃jt =
exp

(
θ̂jt

)
∑J

j=1 exp
(
θ̂jt

) , j = 1, . . . , J s.t. θ̃jt ∈ (0, 1),
J∑

j=1

θ̃jt = 1.
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Empirical Study 1: Forecasting U.S. Inflation

Figure: Qualitative vs. Random Paritioning

(a) LPDR Comparison
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(b) Inputs Correlations

This figure shows a comparison between qualitative and random partitioning. Purple
line is DRS using qualitative partitioning and black lines are DRS results using partitions
chosen at random (computed over random partitions)
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Empirical Study 2: Forecasting Industry Stock Returns
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Forecast of the annual stock returns for different U.S. industries based
on 63 pre-calculated financial ratios and 14 macroeconomic variables.

− 10 industries: Durbl, NonDurbl, Manuf, Energy, HiTech, Health,
Shops, Telcm, Utils, Other.
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Forecast of the annual stock returns for different U.S. industries based
on 63 pre-calculated financial ratios and 14 macroeconomic variables.

− 10 industries: Durbl, NonDurbl, Manuf, Energy, HiTech, Health,
Shops, Telcm, Utils, Other.

J = 10 groups of predictors

− Value

− Profitability

− Capitalization

− Financial Soundness

− Solvency

− Liquidity

− Efficiency

− Other

− Agg. Financials

− Macro
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Forecast of the annual stock returns for different U.S. industries based
on 63 pre-calculated financial ratios and 14 macroeconomic variables.

− 10 industries: Durbl, NonDurbl, Manuf, Energy, HiTech, Health,
Shops, Telcm, Utils, Other.

J = 10 groups of predictors

− Value

− Profitability

− Capitalization

− Financial Soundness

− Solvency

− Liquidity

− Efficiency

− Other

− Agg. Financials

− Macro

Compare against:

− Sequential BMA

− TVP factor model (k chosen by IC)

− Lasso (leave-one-out cross-validation)

− Linear pooling (equal-weight)

− Sub-group predictions

− Historical Average



Empirical Study 2: Forecasting Industry Stock Returns

Figure: Out-of-sample log predictive density ratio

(a) Durable (b) Manufacturing

This figure shows the latent interdependencies across groups of predictive densities used
in the recoupling step. Left panel the posterior mean estimates for Durable and right
panel for the Manufacturing industry.
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Empirical Study 2: Forecasting Industry Stock Returns

Figure: Posterior means of rescaled interdependencies.

(a) Durable (b) Manufacturing

θ̃jt =
exp

(
θ̂jt

)
∑J

j=1 exp
(
θ̂jt

) , j = 1, . . . , J s.t. θ̃jt ∈ (0, 1),
J∑

j=1

θ̃jt = 1.
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Simplified setting:

− Representative investor with power utility and
moderate risk aversion who wants to allocate wealth
between stocks and a risk-less asset.
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Question: Any economic insight using our predictive strategy?

Simplified setting:

− Representative investor with power utility and
moderate risk aversion who wants to allocate wealth
between stocks and a risk-less asset.

Two scenarios:

− Short sales are allowed
(unconstrained investor).

− Short sales are not allowed, i.e., wit ≥ 0
(constrained investor).
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Question: Any economic insight using our predictive strategy?

Simplified setting:

− Representative investor with power utility and
moderate risk aversion who wants to allocate wealth
between stocks and a risk-less asset.

Two scenarios:

− Short sales are allowed
(unconstrained investor).

− Short sales are not allowed, i.e., wit ≥ 0
(constrained investor).

N.B: Performance is evaluated
based on Certainty Equivalent
Returns (CERs).

CERiτ =

[
Ûτ,i

Ûτ

] 1
1−γ

− 1,



Empirical Study 2: Economic Significance

CCERit =
t∑

τ=1

log (1 + CERiτ )

(c) Durable (d) Manufacturing

Figure: OOS cumulative CER for an unconstrained investor

Bianchi, McAlinn Large-Scale Dynamic Predictive Regressions 50/ 53



Empirical Study 2: Economic Significance

CCERit =
t∑

τ=1

log (1 + CERiτ )

(a) Durable (b) Manufacturing

Figure: OOS cumulative CER for an constrained investor
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We consider a simple – yet relevant – simulation
study to illustrate the properties of our model.

Data are simulated from

y = −2z1 + 3z2 + 5z3 + ε, ε ∼ N(0, 0.01),

z1 =
1

3
z3 + ν1, ν1 ∼ N

(
0,

2

3

)
,

z2 =
1

5
z3 + ν2, ν2 ∼ N

(
0,

4

5

)
,

z3 = ν3, ν3 ∼ N(0, 0.01),
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We consider a simple – yet relevant – simulation
study to illustrate the properties of our model.

Data are simulated from

y = −2z1 + 3z2 + 5z3 + ε, ε ∼ N(0, 0.01),

z1 =
1

3
z3 + ν1, ν1 ∼ N

(
0,

2

3

)
,

z2 =
1

5
z3 + ν2, ν2 ∼ N

(
0,

4

5

)
,

z3 = ν3, ν3 ∼ N(0, 0.01),

Setting:

− z3 is omitted

− We assume 6= sub-sampling and
procedures.

Results:

− In small samples DRS improves w.r.t other methods by ≈ 60%.

− In long samples gains are smaller but persistent.



Conclusions
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We propose a decouple-recouple strategy
(DRS) for dynamic predictive regressions with a
(relatively) large number of covariates.

Application to macro and finance:

− DRS outperforms typical competitors
both statistically and economically.

Open issues/next steps:

− Can we group better the predictors?

− Hierarchical structure for larger dimensions?

− More sophisticated benchmarks?


