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Pros & Cons of machine learning (ML) relative to econometric approach

Advantages

• Often higher accuracy

• Lower risk of misspecification

• Return richer information set,

e.g. non-linear functional form

Disadvantages

• Higher model complexity

⇒ “black box critique”

• Less analytical guarantees,

e.g. risk of overfitting

• Often larger data requirement
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Example of toy DGP: Degree-4 polynomial with 500 noisy observations
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This paper

Synopsis: Build accurate non-linear macroeconomic forecasting models (ANN) and

tools to understand them.

Why it matters: Good decisions, need good advise. E.g. macroeconomic projections

should be accurate and transparent: Fundamental trade-off between structural and

non-structural modelling ⇒ ML may provide better trade-off!

What’s being done: Out-of-bag[?] predictions and [later] expanding window forecasts

of US/UK GDP, market returns, inflation and the policy rate (find non-linear[?] Taylor

rule) and dynamic calculation of partial derivative and impulse response functions

(novel!) to understand changing input-output relations:

PD : I kj ,t =
∂gk(X, θ)

∂xj ,t

∣∣∣ xi,t ,i 6=j , IRFt+h? = E [Y k
t++h?|νt ,Ωt−1]−E [Y k

t++h?|Ωt−1]

Is it worth it? Definitely!
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Some results: Dynamic PD of ANN for modelling UK inflation
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Main comment: Do not reinvent the wheel but build on existing ML literature

There are a large number of explanatory approaches in ML, many very similar to yours:

• Partial dependence (general)

• Gain, Saabas, permutation (tree models)

• LIME (General) [Ribeiro et al. (2016)]

• Integrated gradient (ANN) [Sundararajan et al. (2017)]

• DeepLift (ANN) [Shrikumar et al. (2017)]

• Shapley values & regressions (general) [Strumbelj and Kononenko (2010); Joseph

(2019)]
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Shapley values have the best properties

ΦS
(
f̂ (xi )

)
= φ0 +

m∑
k=1

φSik
lin. model

= xi β̂

Desirable properties: Efficiency/accuracy, missingness, symmetry, strong

monotonicity/consistency and linearity.

Proposition: PD can be defined using Shapley values

Iφkj ,t ≡ lim
∆xj→0

φk(xj + ∆xj | xi , i 6= j , t)− φk(xj | xi , i 6= j , t)

∆xj

Surely this will inherit some nice properties.
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Shapley regression inflation forcasting using ANN (US) [Joseph (2019)]

variable rank ΓS
k βS tβS

Inflation−4q 1 +0.22 -0.17 -1.13

Private debt 2 +0.15 0.01 0.06

ERI 3 −0.11∗∗∗ 0.31 2.79

Policy rate 4 +0.10∗∗ 0.37 1.65

Broad money 5 −0.10 -0.25 -2.43

GDP 6 −0.09 0.13 0.76

Labour prod 7 +0.07 -0.32 -2.07

CA 8 +0.07 0.16 0.66

GDHI 9 −0.05 0.04 0.33

Unemployment 10 −0.04 0.12 0.73

Significance levels: ∗ (10%), ∗∗ (5%), ∗∗∗ (1%). Source: Author’s calculation.
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ANN functional form and derivative using Shapley values
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Additional comments

• Modelling setup not clear. VAR-like MIMO structure would leverage most on

ANN advantages

• Quantifying information content of changes in PD very interesting:

E.g. PD change ⇐⇒ change in structural parameters?

• Discuss high-dim. Cholesky decomposition in more detail

• Cross-validation, training & test setup not clear, especially sample splitting

strategy. Watch out for information leakage (data standardisation)

• Suggest using bagged model, instead of single “best” model & calculate PD

within ensemble instead of separate bootstrap

• Clearer presentation of results, e.g. NO 3-D plots

Overall, very interesting approach with lots of potential applications. Thanks!
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