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“
I do not define time, space, place and motion, as being well known
to all

”
— Sir Issac Newton (1687)
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Overview

The yield curve has a well-performing ability to forecast the
real GDP growth in the US, c.f. professional forecasters and
pure ARIMA models.
Results depend largely on the estimation and forecasting
techniques employed.
Statistical learning methods play a role in validating and
choosing which particular model to use.
Remark: this talk is leaning towards the statistical methods
instead of the current concerns on recession. For this reason
the motivation part contains a hands-on example which helps
to motivate and introduce the methodology. (Click here to see
an example)
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Motivation

1 Macro & Finance Literature:

gt,t+k = α + βSt + εt

Which k fits / forecasts better?
How to define St? — Variable selection

2 Time Series Literature:
Window-based estimation & forecasting

3 Statistical Learning Literature:
Bias-Variance trade-off in estimation
Model selection
Loss / learning function
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An example: asymptotic analysis

Consider a Data Generating Process (DGP) over time
{1, ...,T2} = {1, ...,T1} ∪ {T1 + 1, ...,T2}, with ergodic time series
xt , yt ∈ R ∀t with the following evolution:

∀t, ∀j ∈ {1, 2} εj ,t ∼ iidN(0, 1) (1a)
When 1 ≤ t ≤ T1 yt = α1 + β1xt + σ1ε1,t (1b)

When T1 + 1 ≤ t ≤ T2 yt = α2 + β2xt + σ2ε2,t (1c)

We concern about the forecast
yt+1|t := E[yt+1|xt+1, yt , xt , yt−1, xt−1, ...].
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We write the pooled OLS estimation at time t as βt . When t < T1,
we have E[β̂t ] = β1 and conveniently E[(yt+1 − yt+1|t)] = 0 and
E[(yt+1 − yt+1|t)

2] = σ2
1. However, when t > T1, we have

E[β̂t ] =
β1
∑T1

τ=1(xτ − x̄)2 + β2
∑t

τ=T1+1(xτ − x̄)2∑t
τ=1(xτ − x̄)2

(2)

Thus

E[(yt+1 − yt+1|t)] = E[α2 − α̂t ] + E[β2 − β̂t ]xt+1 (3)

Now suppose T2 →∞ with the process description 1, then
E[β̂t ]→ β2, assuming ergodicity. Thus E[(yt+1 − yt+1|t)]→ 0 and
E[(yt+1 − yt+1|t)

2]→ σ2
2.



Overview Motivation Data, Methodology and Result Conclusion

However, if we expand T2 by admitting the change in the
frequency of switching between regimes, then we probably
would still have significant bias and larger-than-desired MSE.
For example, let T →∞ with the set {1, ...,T} = A ∪ B
where A contains some of the points and B contains the
remaining of the points. While in A we have the DGP evolving
equation 1b, and in B we have equation 1c as the evolution of
the datapoint, then β̂t

p→ aβ1 + (1− a)β2 where |A|T
p→ a is

assumed to exist.
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Small window estimation:
Transition Period TP(w) := {T1 + 1, ...,T1 + w}
Stable Period SP(w) := {T1 + w + 1, ...,T2}
When t ∈ TP(w), we get

E[β̂t ] =
β1
∑T1

τ=t−w (xτ − x̄)2 + β2
∑t

τ=T1+1(xτ − x̄)2∑t
τ=t−w (xτ − x̄)2

(4)

When t ∈ SP(w) we get E[β̂t ] = β2.
Large window estimation:

TP(w) covers almost all time.
SP(w) covers little time.
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If we now expand T by admitting the change in the frequency of
switching as previously described, then (with regularity assumption)(

nw

Tn

)−1

max(|β̂t − β1|, |β̂t − β2|)
p→ |β1 − β2| (5)

While the pooled OLS can only achieve

(max (a, 1− a))−1 max(|β̂t − β1|, |β̂t − β2|)
p→ |β1 − β2| (6)



Overview Motivation Data, Methodology and Result Conclusion

An example: simulation

Consider {xt , yt}Tt=1 to be drawn from the following distribution
and relationship:

xt ∼ N(5, 1) ∀t (7a)
εj ,t ∼ N(0, 1) ∀j , t (7b)
yt = α1 + β1xt + σ1ε1,t when t ∈ A (7c)

yt = α2 + β2xt + θx2
t + σ2ε2,t when t ∈ B (7d)

yt = α3 + δx3
t + σ3ε3,t when t ∈ C (7e)

Here A,B,C are partition sets for {1, ...,T}.
Consider the following specific parameters: T = 600,
α = (2,−2,−1), β = (1,−1), θ = 3, δ = 1, σ = (10, 20, 20).
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Figure: Partition of the dataset
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We consider five models:

yt =α + βxt + σε1,t (pooled OLS) (8a)
yt =α + βxt + σε2,t (w = 20) (8b)
yt =α + βxt + σε3,t (w = 50) (8c)

yt =α + βxt + θx2
t + σε4,t (w = 20) (8d)

yt =α + βxt + θx2
t + σε5,t (w = 50) (8e)

At every time t ∈ {100, ...,T − 1}, we estimate the five models and
record their forecasts yt+1|t . MAE and MSE are then recorded after
the iterative process.
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Figure: Forecasting result
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Figure: Forecasting result (models b and c)
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Figure: Forecasting result (models d and e)
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Model selection over time
For each t ≥ 100, repeat:

Run the five models, collect the output of loss function for
each model.
Pick the model which minimises the loss function at time t
and call such a forecast the forecast from the learning model
at time t.

Specification of the learning function L({|yτ+1|τ − yτ |}100≤τ≤t−1):

L({xτ}100≤τ≤t−1) =
∑

100≤τ≤t−1

λt−1−τ l(xτ ) (9)

where

l(x) = lδ,ε(x) =


(ε− δ)x + δ2−ε2

2 if x > ε
(x−δ)2

2 if δ < x ≤ ε
0 if x ≤ δ

(10)
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Figure: Model selection over time
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Results:

Model 8a 8b 8c 8d 8e
MAE 40.3 19.6 28.6 20.2 29.0
MSE 2828.4 817.2 1662.0 848.7 1706.5

Model λ = 0.9, δ = 20, ε = 50 λ = 0.7, δ = 5, ε = 25
MAE 19.0 16.8
MSE 728.5 574.3
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Data

Time indexing: {1976Q3, ..., 2019Q1} ∼= {1, ...,T} with
T = 171.
Interest rate vector xt ∈ R9 contains:

Effective Federal Funds Rate and 3-month US Interbank Rate.
US Treasury yields of the following durations: 3, 12, 24, 36,
60, 84, and 120 months.

Growth rate of GDP defined as: k ∈ {1, ..., 12},

gt,t+k =
GDPt+k − GDPt

GDPt
× 400

k

For a given k , an information set up to time t is
Φt = {xτ |1 ≤ τ ≤ t} ∪ {gτ,τ+k |1 ≤ τ ≤ t − k}.
Dickey-Fuller Test (individually) checked for stationarity.
Comparing the results against SPF forecasts. (k up to 5)
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General setting

Ultimate aim: ĝt,t+k = f (Φt ; θt , ηt)

M = {f (·; θ, η)|θ ∈ Θ, η ∈ H} is then a collection of functions
that f can choose from.

Model groups 1 to 6: H is a singleton and Θ = Rn

Model groups 7 to 9: H finite and Θ depends on the
specification of η ∈ H

Estimation (M1 to M6): OLS to estimate the fit

gτ,τ+k = f (θ) + ετ , ετ ∼ iidN(0, σ2), p ≤ τ ≤ t − k

Then take the estimated θ as θt .
N.B. p depends on the window method specification.
Assess the forecasts by MAE and MSE.
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Methodology (M1 & M2,w)

Equation of interest for model groups 1 and 2:

f (Φt ;αt , βt) = αt + βtSt (11)

M1 : expanding window size estimation & forecast for t ≥ 61.
M2,w : fixed window size estimation for
w ∈ {20, 28, ..., 124, 132}, and forecast during
t ∈ {w + k + 1, ..., 171− k}.
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Result (M1 & M2,w)

Figure: MAE (top) and MSE (bottom) for different window sizes (w) and
lags (k) in the model group 2.
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k MAE (M1) MAE (M2) MSE (M1) MSE (M2)

minimum mean minimum mean
1 1.77 1.36 1.72 6.10 3.19 5.94
2 1.67 1.17 1.47 5.29 2.16 4.53
3 1.64 1.08 1.38 5.23 1.82 3.94
4 1.67 1.03 1.33 5.28 1.53 3.48
5 1.72 0.98 1.32 5.19 1.34 3.19
6 1.69 0.94 1.31 4.98 1.30 3.01
7 1.64 0.89 1.32 4.65 1.14 2.88
8 1.55 0.84 1.32 4.15 0.97 2.74
9 1.45 0.83 1.31 3.61 0.91 2.61
10 1.37 0.81 1.30 3.13 0.81 2.52
11 1.27 0.82 1.28 2.68 0.79 2.45
12 1.19 0.86 1.26 2.30 0.80 2.35

Table: MAE (columns 2 to 4) and MSE (columns 5 to 7) for different k
from model group 1 and 2. Columns 3 and 6 take the minimum over 15
window sizes and columns 4 and 7 take the mean over 15 window sizes in
model group 2.



Overview Motivation Data, Methodology and Result Conclusion

Methodology (M3,i ,j ,w to M6,i ,j ,w)

Define vector shortt as a vector of short term interest rates, in
particular, the Federal Funds Rate, 3-month Interbank Rate,
3-month, 12-month, and 24-month Treasury yields.
Define vector longt as a vector of long term interest rates
consisted of 120-, 84-, 60-, and 36-month Treasury yields.



Overview Motivation Data, Methodology and Result Conclusion

Models 3 to 6:

f (Φt ;αt , β1,t , β2,t) =αt + β1,t longt,j + β2,tshortt,i

f (Φt ;αt , β1,t , β2,t , φt) =
αt(1− φkt )

1− φt

+
k−1∑
l=0

(
β1,tφ

l
t longt−l ,j + β2,tφ

l
tshortt−l ,i

)
+φkt gt−k,t

f (Φt ;αt , β1,t , β2,t) =αt + β1,t longt−1,j + β2,tshortt−1,i

f (Φt ;αt , β1,t , β2,t , φt) =
αt(1− φkt )

1− φt

+
k−1∑
l=0

(
β1,tφ

l
t longt−l−1,j + β2,tφ

l
tshortt−l−1,i

)
+φkt gt−k,t
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Results (M3,i ,j ,w to M6,i ,j ,w)

Present minι,i ,j MAE (Mι,i ,j ,w ) for each k,w ; likewise for MSE.

Figure: MAE (top) and MSE (bottom) for different window sizes and
different k for the best models in model groups 3 to 6.
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Comparison against model group 2.

Figure: Proportional comparison of the MAE (top) and MSE (bottom)
obtained by models in groups 2 and 3-6, across different k and w . A
negative number means the model from groups 3-6 yields lower MAE or
MSE compared to group 2, and vice versa.
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Comparison against SPF.

Figure: Proportional comparison of the MAE (top) and MSE (bottom)
obtained by the best model in groups 3-6 and the SPF, across different k
and w .
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Methodology (M7 to M9)

Two main questions:
How to ensure we pick the "right" or "almost right" model so
that we achieve the minimum?
Can we do better? Dynamically picking up models that do well
historically?

For any given (k ,w), at any time t ≥ w + 2k + 1, there are 4
model groups available, each containing 20 models given by
(i , j). Now, for these total of 80 models which generate
forecasts, an assessment is made at time t. Call such
assessment L({gτ,τ+k − ĝτ,τ+k}w+k+1≤τ≤t−k) a loss function.
Optimisation is then done through minimising the loss
function, and thereafter forecast.
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Algorithm for the models. (Labelled as Algo 3.3 in the paper)
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M7: A relatively naïve way:

L({gτ,τ+k − ĝτ,τ+k}w+k+1≤τ≤t−k) = |gt−k,t − ĝt−k,t |

M8: Full-history learning:

L(...) =
∑

w+k+1≤τ≤t−k
l(|gτ,τ+k − ĝτ,τ+k |)

M9: Discounted-history learning:

L(...) =
∑

w+k+1≤τ≤t−k
λt−k−τ l(|gτ,τ+k − ĝτ,τ+k |)

where λ ∈ (0, 1]
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The design of l(·):
Vapnik (2000): j ∈ {1, 2}

l(x) = lε(x) = 1[x > ε](x − ε)j

Huber (1964):

l(x) = lH,ε(x) =

{
εx − ε2

2 if x > ε
x2

2 if x ≤ ε

Another way (introduced in the motivation section):

l(x) = lδ,ε(x) =


(ε− δ)x + δ2−ε2

2 if x > ε
(x−δ)2

2 if δ < x ≤ ε
0 if x ≤ δ
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Results (M9)

M7 and M8 work badly, minor achievement can be seen
occasionally.
Let M9,1,w (λ, ε) to be the model which employs lH,ε as the
specification of l .
Let M9,2,w (λ, ε, δ) to be the model which employs lδ,ε as the
specification of l .
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Left to right: Proportional comparison of the MAE (left) and MSE
(right) obtained by each model and the best model from groups
3-6, across different k and w .
Top to bottom: M9,1(0.5, 0.5) and M9,1(0.9, 0.5).
Note: three outliers in the top right plot are dropped.
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Left to right: Proportional comparison of the MAE (left) and MSE
(right) obtained by each model and the best model from groups
3-6, across different k and w .
Top to bottom: M9,2(0.75, 2.5, 0.5) and M9,2(0.7, 2, 0.7).
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Improvement counts
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Example output

Figure: From top to bottom: ĝt,t+2 from different models and the actual
gt,t+2; the corresponding model that model 9 chooses over time; R2 for
the estimations of different models at each time.
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Conclusion

1 Which k?
The larger the k, the less forecasting error it makes.
Small k can well outperform SPF forecasts.
Learning functions help to reduce "structural break" in the
betterment.

2 Estimation and forecasting methods:
Variety in variable selection & window size methods bear fruit
to the improvement.
Workhorse to the learning algorithms.

3 Future:
Engagement with macro & finance literature for variable
selection and functional forms.
Asymptotics for learning function choices. (Harder ones than
the initial example).
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“
The only function of economic forecasting is to make astrology look
respectable.

”
— Professor Ezra Solomon (1985)
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