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Key Summary

Key Summary

We provide an alternative toolbox to interpret deep neural networks in the context of macroeconomic modelling. In this

presentation, we

propose the use of partial derivates to enhance model interpretability.

introduce a non-linear and time-varying impulse response analysis.

provide a first and preliminary empirical example (US economy).

One of the key criticisms of (deep) neural networks is the limited scope for model interpretability. With this project, we

aim to shed some light on this black-box.

In particular, first preliminary results look quite interesting, so that we pursue this idea further. For example, we find that

for certain dependent variables, input variable influence only changes during specific points in time (e.g.times of

increased volatility) while it remains constant otherwise. For other dependent variables, this variable influence seems

to change more frequently.

non-linear impulse responses can be supported by economic theory.
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Introduction

Interpretability in AI or ML in general (1/2)

No clear definition for interpretability, but can be summarised as: the degree to which a human can understand the cause

of a decision, see [Miller, 2018].

Why do we care at all about interpretability if accuracy is competitive? Single metric such as OOS-MSE is an incomplete

description, e.g. see [Doshi-Velez and Kim, 2017].

There are, however, many other reasons, why interpretability is relevant (e.g. see [Molnar, 2019]), including:

scientific research

safety measure

detecting biases

debugging

Bank of England (04 - 05.11.2019) King’s College London 4 / 26



Introduction

Interpretability in AI or ML in general (2/2)

There already exist different approaches to generally enhance model interpretability in ML, examples include

Partial Dependence, e.g. see [Friedman, 2001].

Individual Conditional Expectation, e.g. see [Goldstein et al., 2015].

Accumulated Local Effect, e.g. see [Apley, 2016].

Shapley Values, e.g. see [Joseph, 2019].

In this project, we turn our focus explicitly to neural networks in macroeconomics.
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Motivation

Motivation

The central motivation for this research is two-fold:

1 Universal approximation:

We know that multilayer feed-forward networks are universal approximators, e.g. see [Hornik et al., 1989]

2 Time-varying effects:

Through their inherent non-linearity, neural networks can display time-varying effects, e.g. see
[Kapetanios, 2007]

We therefore hope to make meaningful contributions to current debates by offering time-varying analysis tools.
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Methodology Neural Network

Neural Network Setup (1/3)

In its most fundamental form, we describe an arbitrary economic process as

yt = E(yt |xt−1) + εt , (1)

where

E(yt |xt−1) = g (xi ,t−1, θ), (2)

is a (non-)linear approximation for the true but unknown DGP. Note the lag in x which is supported by the fact of

publication delays but also by idiosyncratic persistence. Moreover, we allow x to include lags of y . All model parameters

including the weights and biases as well as hyper-parameters are denoted by θ.

What is g (·)?
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Methodology Neural Network

Neural Network Setup (2/3)

We investigate the case where we approximate g (·) with a neural network.

In general, for feedforward networks, g (·) takes the form

g (X, Θ) = σL(...σ2(W2
T σ1(W1

T X + b1) + b2)), (3)

where σ are activation functions, l = 1, 2, ...,L denotes the number of layers. While the weights W and biases b are

summarised in Θ, all model parameters, including weights, biases and all other hyper-parameters, are denoted by θ, e.g.

see [Goodfellow et al., 2016]. The considered loss function is

L̃(Y, X, Θ) = L(Y, X, Θ) + λΩ(Θ), (4)

with

L(Y, X, Θ) = (g (X, Θ)−Y)T (g (X, Θ)−Y). (5)

Moreover, with L1, respectively L2 regularisation, the loss function becomes

L̃(Y, X, Θ) = (g (X, Θ)−Y)T (g (X, Θ)−Y) + λ||Θ||1 (6)

L̃(Y, X, Θ) = (g (X, Θ)−Y)T (g (X, Θ)−Y) +
1

2
λΘT Θ (7)
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Methodology Neural Network

Neural Network Setup (3/3)

In this first preliminary draft, we consider:

one-layer networks

non-linear activation functions (e.g. tanh, relu)

stochastic gradient descent

90%-10% training-test split, with 20% validation split

fixed window (other alternatives such as rolling or expanding are considered for future drafts)

random grid search for hyperparameter tuning

L1 and/or L2 regularisation for the weights

Many other specifications are imaginable!
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Methodology Variable Importance

Variable Influence (1/2)

We propose the usage of partial derivatives at each point in time to evaluate variable influence over time.

Iij ,t =
∂gj (X, θ)

∂xi ,t−1
(8)

Note that in this preliminary draft, each target variable j (j = 1, 2, ...,N) has its own g (·). Alternatives are also

imaginable, where the network output could be multidimensional.

Due to the inherent non-linearity of the neural network we expect the derivative to vary over time.

The motivation for using the partial derivative is that the derivative can be interpreted as the marginal influence each

input variable has on the process at each point in time. It can therefore be understood as a sensitivity to changes in the

input variables, where we would assign relatively greater influence to larger absolute values of the partial derivative and

relatively smaller influence if the absolute value is also smaller.
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Methodology Variable Importance

Variable Influence (2/2)

Moreover, we propose the usage of confidence bands in extension to equation (8). In particular, we propose using the

moving-block bootstrap methodology, where we draw T − b+ 1 overlapping blocks from the original data, where T is the

total number of observations per variable and b denotes the block-length. From these blocks, T/b blocks are drawn at

random with replacement and aligned following the order they were drawn with to build the bootstrapped observations,

e.g. see [Kunsch, 1989].

For each bootstrapped dataset, we fit a neural network as described before. We then calculate the partial derivatives, but

with respect to the original input data:

IijB,t =
∂gj ,B (·)
∂xi ,t−1

, (9)

where B indicates the respective bootstrap.

We report the 95% confidence interval of the centred partial derivatives.
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Methodology Impulse Responses

Non-linear impulse response functions

Similarly to the methodology applied in a linear setting, we propose the usage of impulse response functions (IRF) in the

context of neural networks. Generally, we apply the framework

IRF (h, ν, Ω) = E [yt+h|νt , Ωt−1]− E [yt+h|Ωt−1], (10)

where νt denote structural shocks at time t, e.g. see [Pesaran and Shin, 1998]. Given

yt = g (xi ,t−1, θ) + εt , (11)

with

E [εtε′t ] = Σ (12)

being a symmetric and positive definite covariance matrix whose off-diagonals are non-zero. We apply a Cholesky

Decomposition of the covariance matrix such that Σ = PP ′, where P is a lower-triangular matrix. It follows

νt = Put (13)

with ut being reduced form residuals, e.g. see [Sims, 1980].
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Empirical Study

US Economy – Overview

We consider the US economy as an empirical example with GDP, inflation, unemployment, export prices, S&P500 returns

and Fed Fund rates as our dependent, with their lagged values as explanatory variables. The dataset ranges from Q4 1984

to Q2 2019.

In particular, we include export prices as another price variable to avoid encountering price puzzle (e.g. see [Sims, 1992],

[Buch et al., 2014], [Balke et al., 1994]). However, we find that an impulse response analysis (e.g. using VAR) is

occasionally still displaying the price puzzle dependent on where we split the data.

We perform variable transformation to make them stationary.

In this draft, we feed the network the already transformed data. However, in next steps we will experiment with

standardised and / or raw data.

Since the Cholesky Decomposition is sensitive to variable ordering we use the following ordering:

GDP → CPI → Unemployment → Export Prices → S&P 500 → Rates
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Empirical Study

US Economy – Predictions

Figure: Full Sample (in- and out-of-sample) predictions
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Empirical Study

US Economy – Variable Influence (CPI)

Figure: Partial Derivatives: CPI
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Empirical Study

US Economy – Variable Influence (GDP)

Figure: Partial Derivatives: GDP
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Empirical Study

US Economy – Variable Influence (Rates)

Figure: Partial Derivatives: Rates
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Empirical Study

US Economy – Variable Influence Interpretation

We find, that variable influence as displayed by the partial derivative is sensitive to time. We can therefore confirm

our initial hypothesis.

In particular, we find that characteristic variable influences vary for each dependent variable.

In the case of GDP, for example, the network is most sensitive to changes in lagged values of GDP most of the

time. It is only during times of increased volatility that the network also becomes more sensitive to changes in other

explanatory variables.

For rates, on the other hand, the neural network seems to be much more sensitive to changes in almost all variables.

In absolute values, CPI and Unemployment seem to have the largest influence.
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Empirical Study

US Economy – Impulse Responses (Shock in Rates, Response in CPI)

We find that negative shocks

in rates lead to positive

responses in CPI as supported

by economic theory.

The magnitude of the

response is time-dependent.

During the GFC, a negative

shock in rates cannot offset

the effect of the crisis and CPI

falls despite reduced rates.
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Empirical Study

US Economy – Impulse Responses (Shock in GDP, Response in Rates)

We find that rates respond

negatively to a negative

shocks in GDP as expected by

economic theory.

We find that a shock prior the

GFC leads to a lower level in

rates than post the crisis.
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Empirical Study

US Economy – Impulse Responses (Shock in CPI, Response in Rates)

We find that rates respond

negatively to a negative shock

in CPI.

This is supported by economic

theory.

In particular, the effects of a

shock in CPI seem to be more

distinct prior the GFC.
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Conclusion

Conclusion

We find that both partial derivatives and non-linear impulse responses can help to shed some light on economic theory.

First preliminary results look somewhat interesting, so we will pursue this project further.

There is room for further improvement, in particular with regard to model tuning and selection.
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