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Heterogeneous effects

Economists are interested in how effects vary over individuals.

• Our example: the marginal propensity to consume (MPC)

• How do different individuals respond to a transfer?

• Currently a very important object for policy questions

We could just split into groups and estimate effects...

• But the literature disagrees on determinants of MPC.

• Maybe the true determinants are unobservable.

We would like to classify and estimate “endogenously”.
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Clustering algorithms

One way to do this is clustering algorithms – widely studied in statistics

• Gaussian mixture models, K-means, etc.

• Most frequently, simply estimate group means.

Recently, Bonhomme and Manresa (2015) extend K-means to regression
problems.

• Possibly heterogeneous slopes as well as fixed effects

Clustering fits our goal: group assignment is determined by (unobservable)
relationship between outcome and independent variable alone.
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A good fit for macro data?

K-means has two parts: estimate group assignment, estimate parameters.

• The first stage needs to be consistent.

• This requires a long panel structure, T →∞, and fixed type.

In most economic settings, T is not very large...

• T = 7 in Bonhomme and Manresa (2015)

In fact, we often have cross sectional data, T = 1.

Bonhomme and Manresa (2015) have small-T asymptotics, but how does
K-means do in practice?
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Fuzzy C-means

The Fuzzy C-means algorithm (FCM) was introduced by Dunn (1973) in
computer science.

• Instead of binary assignment, individuals are given weights.

• Membership no longer needs to be consistently estimated.

• Can be thought of as a non-parametric Bayesian interpretation.

• T does not need to tend to infinity.

• Uncertainty in group assignment with small T explicitly
accommodated.

• Up to now, only used for clustering with mean parameter.
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What we do

In this paper, we

• Extend FCM to regression (and IV) problems,

• Show iterative FCM equivalent to one-step GMM problem,

• Derive asymptotic distributions for FCM regressions,

• Show advantages of FCM in simulations,

• Recover the distribution of heterogeneous MPCs using the 2008 tax
rebate,

• Assess the determinants of an individual’s MPC.
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Roadmap

1 Introduction

2 The FCM algorithm

3 Asymptotics (and other theory)

4 Simulations & performance

5 Heterogeneity in MPCs

6 / 30



The K-means algorithm

• The K means algorithm minimizes the objective function

L1 (P, ψ) =

∫
min
g
‖y − ψg‖2 P (dy) ,

y ∈ RT are outcomes with probability measure P, g ∈ {1, 2, . . . ,G}
indexes groups, and ψ ∈ RG×T .

• “Hard” K-means (HKM) can be rewritten using weights:

L1 (P, ψ) =

∫ G∑
g=1

wg ‖y − ψg‖2 P (dy) ,

where wg = 1
[
‖y − ψg‖2 ≤ ‖y − ψh‖2 ∀ h 6= g

]
.
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The Fuzzy C-means algorithm

FCM generalizes HKM by adjusting the weight wg :

Jm (P, µ, φ) =

∫ G∑
g=1

µmg (y) ‖y − φg‖2 P (dy) ,

and in particular setting optimal weights

µg (y , φ) =

(
G∑

h=1

‖y − φg‖2/(m−1)

‖y − φh‖2/(m−1)

)−1

, g = 1, . . . ,G ,

where m > 1.

• m represents the degree of uncertainty over assignment.

• As m→ 1, Jm (P, µ, φ)→ L1 (P, ψ): HKM limiting case!
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From two steps to one

HKM and FCM are generally applied iteratively in practice:

1 Calculate weights using parameter estimates

2 Estimate parameters for each group

3 Repeat until convergence.

This makes it difficult to characterize asymptotic properties.

Yang and Yu (1992) show FCM can be rewritten without weights:

Jm (P, µ (φ) , φ) = Lm (P, φ)

=

∫  G∑
g=1

‖y − φg‖−2/(m−1)

1−m

P (dy) .

This is just another nonlinear objective function!
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Our regression problem

• We study the model

yi =
G∑

g=1

1 [i ∈ g ] θgxi + εi , i = 1, . . . ,N (1)

where yi ∈ RT , xi ∈ Rk , and θg is a T × k matrix.

• Accordingly, we consider the objective function

J regm (Π, µreg , θ) =

∫ ∫ G∑
g=1

µreg ,m
g (y | x) ‖y − θgx‖2 Πy |x (dy | x) Π (dx) ,

where θ ∈ Θ ⊂ RG×T×k , and

µreg
g (y | x ; θ) =

(
G∑

h=1

‖y − θgx‖2/(m−1)

‖y − θhx‖2/(m−1)

)−1

, g = 1, . . . ,G .
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Equivalence

Our theoretical development extends Yang and Yu (1992); Yang (1994).

Assumption 1. Observations (yi , xi ) are generated according to (1), jointly i.i.d.

with probability measure Π, G is finite, and E [εi | xi ] = 0.

Theorem 1. (Equivalence) Under Assumption 1, J regm (Π, µreg , θ) = Lregm (Π, θ),
where

Lregm (Π, θ) =

∫ ∫ ( G∑
g=1

‖y − θgx‖−2/(m−1)

)1−m

Πy |x (dy | x) Π (dx) ; (2)

a minimizer θ∗ ∈ Θ of Lregm (Π, θ) is also a minimizer of J regm (Π, µreg , θ) over Θ

and weights µreg .

We henceforth focus on the one-step objective function Lregm .
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Existence

Assumption 2. The second moments of y and x are finite under Π, x is
not collinear, and Θ is compact.

Theorem 2. (Existence) If Assumptions 1-2 hold, then for any G =
1, 2, . . . , there exists a solution θ∗ such that

Lregm (Π, θ∗) = inf
θ
Lregm (Π, θ) .

How does θ∗ related to a true value, θ0 in equation (1)?

• Our objective function is technically misspecified, so θ∗ is a
pseudo-true parameter.

• We’ll see these pseudo-true estimates can be better than estimates
from HKM!

• HKM is well-specified but minimizer is pseudo-true for small T .
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GMM
Theorem 3. (Moments) The solution θ∗ satisfies the moment equations

E

( G∑
h=1

‖yi − θgxi‖2/(m−1)

‖yi − θhxi‖2/(m−1)

)−m (
yit − θg ,(t)xi

)
xi

 ≡ ρ (θ, yi , xi ) = 0

for g = 1, . . . ,G and t = 1, . . . ,T , where t indexes dimensions of yi
and rows of θg ; FCM is a GMM problem.

• This means that we can apply standard GMM results to characterize
the FCM algorithm.

• Define θ̂ as the solution to

SN (θ) =
1

N

N∑
i=1

ρ (θ, yi , xi )
′

N∑
i=1

ρ (θ, yi , xi ) .
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Consistency

Assumption 3. θ∗ is the unique solution to E [ρ (θ, yi , xi )] = 0.

We can easily argue this in limiting cases (just OLS); otherwise, less
obvious.

Theorem 4. (Consistency) Under Assumptions 1-3, θ̂
p→ θ∗ as N →∞.
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Asymptotic normality (1)

Assumption 4. Additionally

1 θ∗ is in the interior of Θ,

2 H = E

[
∂ρ(θ,yi,,xi)

∂θ′

]
is full rank,

3 E

[
supθ∈N

∥∥∥∥∂ρ(θ,yi,,xi)∂θ′

∥∥∥∥] <∞ in a neighbourhood N of θ∗,

4 E
[
ρ (θ∗, yi ,, xi ) ρ (θ∗, yi ,, xi )

′] is positive definite.

Theorem 5. (Asymptotic Normality) Under Assumptions 1 - 4,√
N
(
θ̂ − θ∗

)
d→ N

(
0,H−1VH−1

)
, where

V = E
[
ρ (θ, yi , xi ) ρ (θ, yi , xi )

′] ,
and H is the Hessian of (2).
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Asymptotic normality (2)

• We provide explicit expressions for this Hessian.

• We also provide expressions for two special cases:
I Coefficients are common across groups
I Coefficients constant within groups across time when T > 1

• Our results never assume that the groups are well-separated - a
challenge posed by Bonhomme and Manresa (2015).

• In our empirical application, it is doubtful that the groups are
well-separated for higher G .
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Two-stage least squares

We extend all of our results to TSLS. Let xe be endogenous regressor, ω
exogenous, with instrument z .

• Estimate homogeneous first stage:

xei = γzi + τωi + ui .

• Use predicted values in FCM objective function: only exploit
exogenous variation.

• Moments can be stacked into a one-stage problem to derive GMM
asymptotics.

• Could also use FCM for first stage, stacking xe into y .

• ML techniques have primarily been employed on first-stage (e.g.,
Chernozhukov et al (2010)), but we show a novel way they can be
exploited in the second-stage.

17 / 30



Selecting G

Choosing G is a difficult problem in clustering in general.

• More groups, better fit! (perfect as G → N)

• Most model selection approaches (BIC, AIC...) are based on large T .

• FCM objective does not align with a standard likelihood.

We adapt the non-parametric Gap Statistic of Tibshirani et al. (2001):

• Compute fit (within group weighted sum of squares) of G ≤ Gmax

group model in a homogeneous reference distribution.

• Find G that maximizes the difference in fit between reference
distribution and actual data.

Gap Statistic “normalizes” for the fact that fit always improves with G
since fit also improves in the reference distribution.
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Taking stock

We’ve shown that results derived for FCM in the cluster mean case extend
to regression problems, as well as IV.

• Analytical inference is easy.
I formulas for both heterogeneous and homogeneous coefficients

• FCM can be implemented as GMM.
I delivers computational advantage

• The approach is well-suited to any clustering problem.
I short panels and cross-sectional data

• Asymptotic properties hold even when data is not well-separated.
I pseudo-true parameters may differ from truth.
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Simulations and performance
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Computational improvements

We believe we are the first to exploit the Yang and Yu (1992) equivalence
result to support a one-stage (GMM) estimator.

• This estimator is considerably faster than standard iterative procedure.

• This estimator finds global minima more reliably (fewer start values).

Bonhomme and Manresa (2015) propose two HKM algorithms.

• Their full algorithm (2) is infeasible in “medium data” as it scales
rapidly with N.

• We adopt a mixed version of their simpler algorithm with a partial
version of algorithm 2.

We characterize FCM as “flexible, feasible, and fast”.
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Simulation study

We calibrate our simulations to our empirical application:

• 2008 tax rebate: households receive rebate of value ∼$1000 with
random timing, N ≈ 17, 000.

I we observe cross-section of households over 16-month period.

• Baseline: regress quarterly change in total consumption on rebate
value and a constant, with group-specific coefficients.

I common coefficients on time dummies, simple covariates

• We consider both G = 5 and G = 10.

• We consider Gaussian and empirical noise distributions.

• We examine distribution of point estimates and rejection rates of
tests.
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G = 5, Gaussian noise

Truth FCM HKM
m = 1.8 m = 1.1 Algo. 1 Algo. 1.5

0.651 0.650 0.650 0.648 0.647
0.423 0.422 0.420 0.424 0.424
0.245 0.245 0.248 0.247 0.247
0.516 0.514 0.516 0.515 0.515
0.289 0.291 0.291 0.289 0.288

Table: Mean point estimates across S = 500 samples
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G = 5, Gaussian noise

Truth FCM HKM
m = 1.8 m = 1.1 Algo. 1 Algo. 1.5

0.651 0.054 0.054 0.053 0.053
0.423 0.025 0.025 0.026 0.026
0.245 0.017 0.016 0.017 0.017
0.516 0.023 0.023 0.025 0.024
0.289 0.052 0.052 0.054 0.053

Table: RMSE across S = 500 samples
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G = 5, Gaussian noise

Truth FCM HKM
m = 1.8 m = 1.1 Algo. 1 Algo. 1.5

0.651 0.056 0.060 0.032 0.032
0.423 0.048 0.040 0.020 0.020
0.245 0.060 0.048 0.040 0.040
0.516 0.036 0.040 0.020 0.020
0.289 0.040 0.036 0.068 0.064

0.036 0.044 0.016 0.012

Table: Rejection rates, nominal size 0.05, across S = 500 samples
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G = 5, empirical noise

Truth FCM HKM
m = 1.8 m = 1.1 Algo. 1 Algo. 1.5

0.651 0.723 0.583 0.695 0.638
0.423 0.348 0.222 0.308 0.263
0.245 0.238 0.161 0.188 0.174
0.516 0.501 0.358 0.397 0.375
0.289 0.306 0.189 0.203 0.183

Table: Mean point estimates across S = 500 samples
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G = 5, empirical noise

Truth FCM HKM
m = 1.8 m = 1.1 Algo. 1 Algo. 1.5

0.651 0.802 0.802 0.795 0.805
0.423 0.315 0.447 0.392 0.429
0.245 0.106 0.148 0.138 0.147
0.516 0.472 0.431 0.413 0.416
0.289 0.481 0.479 0.475 0.478

Table: RMSE across S = 500 samples
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G = 10, Gaussian noise

Truth FCM HKM
m = 1.8 m = 1.1 Algo. 1 Algo. 1.5

0.844 0.802 0.748 -4.876 -0.125
0.986 1.025 4.090 13.122 7.429
0.795 0.797 0.802 -1.029 1.287
0.646 0.646 0.402 -0.344 0.605
0.496 0.490 0.370 0.287 0.306
0.468 0.478 0.500 0.741 0.354
0.496 0.479 0.319 0.397 0.839
0.268 0.267 0.339 0.381 0.348
0.340 0.341 0.492 0.067 0.164
0.257 0.265 0.506 0.440 0.483

Table: Mean point estimates across S = 500 samples
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G = 10, Gaussian noise

Truth FCM HKM
m = 1.8 m = 1.1 Algo. 1 Algo. 1.5

0.844 0.685 5.888 10.373 9.024
0.986 0.803 18.294 20.452 16.586
0.795 0.032 3.833 6.864 5.243
0.646 0.021 2.549 4.379 3.289
0.496 0.119 1.665 1.896 1.772
0.468 0.139 3.520 2.215 2.142
0.496 0.151 1.739 2.139 2.047
0.268 0.017 0.327 0.475 0.597
0.340 0.039 0.840 1.332 1.371
0.257 0.061 0.403 0.418 0.459

Table: RMSE across S = 500 samples
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2008 tax rebate

• Receipt timing determined by final two digits of recipient’s Social
Security Number: random assignment.

• CEX data:
I Quarterly interviews, rotating panel of around 8k households, at most 4

quarters each.

I Quarterly consumption reported; rebate data added to the survey.

• Identification: compare spending of households that received
payments in a given period to the spending of households that did
not.
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Econometric Specification: homogeneous MPC

Parker et al. (2013): 12-30 percent of rebate spent on average on
nondurables, 50-90 on total consumption.

∆Cj = β′Wj + θRj + α + εj

• Rj : amount of rebate received by household i at time t

• Wj : a vector of demographic controls and month dummies

• θg : MPC is group-specific

• Ij∈g : indicator function for observation j in group g

• αg : group-specific fixed effects. Control for unobserved group-specific
shocks that might spuriously correlate with MPC.

• And estimate this ”hard” regression equation using FCM!
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Econometric Specification: heterogenous MPC

∆Cj = β′Wj +
∑
g∈G

(θg Ij∈gRj + αg Ij∈g ) + εj (3)

• Rj : amount of rebate received by household i at time t

• Wj : a vector of demographic controls and month dummies

• θg : MPC is group-specific

• Ij∈g : indicator function for observation j in group g
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The MPC distribution: total consumption

gapstat mode
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Distribution of maximum weights
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What drives MPC heterogeneity?
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What drives MPC heterogeneity?
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Conclusion

We find the FCM clustering approach to be better-suited to many
economics contexts than alternatives

• We generalize it from cluster means to regression and IV.

• We derive desirable asymptotic properties.

• It performs very well in simulation.

• It has computational advantages.

We uncover considerable latent heterogeneity in the MPC.

• We don’t have to assume correlates to do so.

• Robust relationship with income, mortgages, past spending

• We find a positive correlation across spending categories.

• Recent theoretical work shows important policy implications.
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The distribution of marginal propensity to consume

back
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Inference on heterogeneous MPC
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Gap statistic
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The MPC distribution: TSLS

confidence bands gapstat drop never-rebaters
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Inference on heterogeneous MPC: 2sls

back

30 / 30



Gap statistic: TSLS

0 5 10 15

number of clusters

0.8

1

1.2

1.4

1.6

1.8

2

g
a

p
 s

ta
ti
s
ti
c

back

30 / 30



Drop households that never get the rebate

back
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The MPC distribution: nondurables

confidence bands distribution
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The distribution of MPC: durables

confidence bands distribution
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Inference on heterogeneous MPC: non-durables
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Inference on heterogeneous MPC: durables
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The distribution of MPC: nondurables at G*
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The distribution of MPC: durables at G*
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Additional results

Additional household characteristics unconditionally correlate with the
MPC, but are not robust to inclusion of controls:

• Liquid wealth is positive correlated with MPC...
I ...but liquid wealth to income ratio is not.

• saving in an educational savings plan is associated with higher MPC
(Campbell and Hercowitz (2018)).

I Households receiving a larger rebate display greater MPCs (also in
TSLS).

I Married households have a larger MPC.

back
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Robustness

• Results are confirmed with TSLS MPCs and modal MPC distribution
I Most of the correlations with observables are confirmed with

non-durable MPCs, except for mortgage.
I Results are confirmed if we disregard households associated with a

MPC that is not statistically different from 0.
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Total income and the MPC

• 1% in total income increases MPC by 0.02.

• Aligns with Shapiro and Slemrod (2010), Misra and Surico (2014).
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Mortgages and the MPC
• Households with a mortgage have a 0.03 higher MPC.

I Parker et al. (2017), Misra and Surico (2014)

• 1 percentage point higher mortgage to income ratio increases MPC
by 0.09.
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APC and MPC
• APC is computed with lagged average expenditures to avoid

mechanical correlation.
• Households spending 1 percentage point more of their income have a

0.04 higher MPC.
I There appears to be a “spender” type.
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APC and MPC

• Positive correlation is present at different ages and income levels.

• Life-cycle consumption savings model can generate the positive
correlation:

I Constrained households have APC = 1 and high MPC.
I As they become less constrained, they build up assets (APC < 1) and

have lower MPC.
I Unconstrained households might have higher APC (no precautionary

savings) and low MPC...
I ...but effective discount factor can increase MPC
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