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Motivation

- Recent surge in data collection (Big Data era).
- Different types of Big data: textual data, financial transactions, selected internet

searches, surveys.
- Big Data may be able to aid in improving economic forecasts.
- Traditional forecasting tools cannot handle the size and complexity inherent in Big

Data.
- Econometricians have refined numerous techniques from different disciplines to digest

the ever-growing amount of data, avoid overfitting and improve forecast accuracy.
−→ e.g. Factor models.

- But many issues remain. An important issue is that macroeconomic forecasts need
time series models that possibly allow for structural change and that side of big data
methods remains relatively underdeveloped.
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A Time Series Model for Unstructured Data
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A simple model

- Recently researchers use big unstructured datasets to improve inference on
unobserved variables and forecasting.

- Eg payroll data to improve unemployment analysis.
- But they construct summaries of the big dataset rather than use all of it.
- Let

Xi = F + εi , i = 1, ...,N

where Xi are observed, F and εi are unobserved, F ∼ niid(0, σ2
f ), and εi ∼ niid(0, σ2

i ).
We are interested in Var (F |X1, ...,XN). Is Var (F |X̄ ), X̄ = 1

N ∑i Xi a good enough
alternative?

- Yes but only under restrictive assumptions - σ2
i = σ2 for all i . see details

- We suggest a state space model that uses the full big dataset.
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Ratio Var (F |X1, ...,XN) / Var (F |X̄ )
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Factor Analysis: a (very) general overview

Xt
N×1

= Λ Ft
r×1

+ εt t = 1 . . . T

[
ut∗
εt

]
∼ N

([
0
0

]
,

[
Ir 0
0 ψ

])

- Static: Xt depends only on Ft (Stock and Watson, 2002)
- Dynamic:* Further include: Ft = A1Ft−1 + ApFt−p + ut . (Doz, Giannone and

Reichlin, 2011, 2012; Forni et al., 2000, 2005)
- Exact: ψ is diagonal and εt time invariant
- Approximate (Some) cross-sectional & temporal dependence in εt
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The model

The N dimensional balanced dataset:

Xt = ΛFt + ξt (1)

The unstructured data set:
Zt = BtFt + εt (2)

- Zt : kt × 1, zt = (z1t , . . . zkt t )
′, where kt >> T see example

- Importantly, kt has a time-varying dimension. There can be a different number of
events at every period and each event can be represented by a vector of different
dimension. (e.g number of newspaper articles or employees in a payroll, at each t)

Ft = CFt−1 + ηt (3)
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State Space Form

Define:

Yt =

(
Xt

Zt

)
=

(
Λ

Bt

)
Ft +

(
ξt

εt

)
(1)

And re-write:
Yt = Λ0,tFt + ζt Measurement eq

Ft = CFt−1 + ηt Transition eq.

where Λ0,t = (Λ,Bt )′.
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Model characteristics - extensions

- Deal with missing values in non-synchronous way.
- Model Estimation: Kalman Filter and Maximum Likelihood.
- The model can represent a variety of features of the unstructured data: squares and

other higher moments.
- Xt with ragged edges.
- The model can accommodate mixed frequencies; Xt can follow a lower frequency and

Zt a higher one.
- Enable nowcasting and forecasting at both high and low frequency, extracting a high

frequency factor.
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A Monte Carlo Simulation

Different Specifications for DGP for: Zt = BtFt + εt :
- indiosyncratic components ξt , εt : both cross-sectionally and temporally independent.
(exact model)

- εt ∼ N(0,Σεt ), Σεt = σ2
it ∗ Imax(kt ), σ2

it ∈ U(1,3).
- ut ∼ N(0, In).
- Assume: r = 1, n = 1, Λ0 = {1, . . . 1}
- factor DGP: C = β ∗ Ir , β = {0.5}
- T = 50,100,200,
- max kt = 10,50,100,500,1000
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Comparators

Model 1: Not include zt (standard factor model), i.e:

Xt = ΛFt + ξt

Model 2:

Y ∗t =

(
Xt
Z ∗t

)
=

(
Λ
B∗t

)
Ft +

(
ξt
ε∗t

)
where:

- Z ∗t = ∑kt
k=1 Zt /kt - average of the unstructured data set at each point in time t.

- Var (ε∗t ) = σ̄2
i,t

max kt

Keep the same factor structure
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Average of Relative RMSEs over 200 Monte Carlo simulations

True Parameters : β = 0.5, σ2
i ∈ U(1,3)

Model 1 Model 2
max(kt )

10 50 100 500 1000 10 50 100 500 1000
50 0.666 0.215 0.190 0.076 0.096 0.339 0.307 0.306 0.193 0.103

T 100 0.662 0.222 0.266 0.168 0.123 0.995 0.362 0.421 0.229 0.167
200 0.280 0.243 0.261 0.181 0.102 0.461 0.386 0.409 0.246 0.139

Table: Average of relative RMSE of the HSS over Model 1 and Model 2 respectively.
Model 1: does not include unstructured dataset (Zt ), Model 2: includes the average of Zt

.
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Empirical application - Forecasting Inflation using newspaper articles
scores

- Really many papers on forecasting with factor models.
- The unstructured data set Zt : Let M be the maximum number of articles that

appeared monthly. That said, let zk
t , be a kt × 1 vector of sentiment scores where k is

the number of articles for each point period t and kt = 1 . . . M . This implies that for s,
where k < s < M the observations of zk

t are missing. see example

- We estimate the high dimensional state space model to extract a factor using
sentiment/uncertainty scores extracted from newspaper articles1 see text methods .

- Benchmark: an FADL-type model of the form:

ˆxt+h = α̂ + β̂xt + ∑
j

γ̂j · χjt

where χjt : macro/fin factors (Redl, 2017).
1The sentiment on each article is measured using a dictionary based method

13 / 42



A selection of Forecast Results for Inflation
Text Model h = 3 h= 6 h= 9
Loughran sentiment 0.828 ** 0.823 *** 0.850***
Harvard sentiment 0.831 *** 0.813 *** 0.850 ***
vader sentiment 0.853*** 0.856*** 0.864 ***
stability sentiment 0.874 0.824*** 0.845 ***
opinion sentiment 0.885*** 0.932 0.930
tf idf econom 0.889 * 0.865 *** 0.906 *
Nyman sentiment 0.933 *** 0.964*** 0.972
economcounts 0.938** 0.933** 0.965 **
tf idf uncert 0.939 0.951 0.934
alexopoulos 09 0.964 0.953 0.973 ***
uncertaincounts 0.973 0.951 0.971
Afinn sentiment 0.985 1.004 1.001
baker bloom davis 1.001 0.967 0.973
husted 1.001 0.979 0.983

Table: relative RMSEs, based on the estimated factor using a text method.* Denotes rejection at the
10% level, ** at the 5% level and *** 1 (D-M test) 14 / 42



A selection of Forecast Results for monthly GDP growth
Text Model h = 3 h= 6 h= 9
Harvard sentiment 0.861** 0.745 0.688
Loughran sentiment 0.881 0.803 0.754
economcounts 0.905 0.852 0.829
opinion sentiment 0.910 0.855 0.824
stability sentiment 0.922 0.865 0.835
uncertaincounts 0.925 0.893 0.883
tf idf econom 0.926 0.871 0.845
vader sentiment 0.929* 0.863 0.809
alexopoulos 09 0.943 0.919 0.913
tf idf uncert 0.957 0.922 0.919
Nyman sentiment 0.960 0.923 0.893
Afinn sentiment 0.975 0.970 0.967
husted 0.979 0.972 0.986
baker bloom davis 0.983 0.978 0.980

Table: relative RMSEs, based on the estimated factor using a text method.* Denotes rejection at the
10% level, ** at the 5% level and *** 1 (D-M test) 15 / 42



Time Variation in Machine Learning Models
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Idea

- Extend Machine Learning models to fit to the applied time series setting and account
for structural breaks using the kernel based approach of Giraitis, Kapetanios and Yates
(2014).

- Focus on the regression-like tools because they are the most natural for
macroeconomic applications. In particular, examine the support vector regressor
(SVR) (Vapnik, 1998) and neural nets (Friedman, Hastie and Tibshirani, 2001) and
propose a ground theoretical framework to allow for structural breaks.
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Time-varying neural nets

A general definition of a multi-layer (deep) neural network follows: Let x = (x1, . . . , xp)′ be
the input vector.
Let h1 . . . hL be vectors of activation functions see types for each of the L (hidden) layers of
the network representing non-linear transformations of the data. Denote by gl the l-layer
which is a vector of functions of length equal to the number of Jl nodes in that layer, such
that g0 = x. The overall structure of the network is equal to:

G = gL(gL−1(. . . (g0(.))

where:
gl(x) = W1,lhl (W2,lx+ bl) ∀1 ≤ l ≤ L

and W1,l , W2,l and bl are matrices and vectors of weight parameters.
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Time-varying neural nets

The model can then be written as (Friedman, Hastie and Tibshirani, 2001):

yt = G
(

xt , β0
)
+ εt , t = 1, ...,T (2)

where xt is p× 1, β0 is k × 1 and contains all model parameters and G denotes the overall
nonlinear mapping. We estimate this model by penalised least squares, i.e.

β̂ = argmin
β

‖y −G (X , β)‖2
2

T
+ λ ‖β‖1 .

where y = (y1, ..., yT )
′ and G (X , β) = (G (x1, β) , ...,G (xT , β))′
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Time-varying neural nets
Let the model now be extended to the case

yt = G
(

x t , β0
t

)
+ εt (3)

where β0
t is a persistent, bounded, possibly stochastic process and:∥∥∥β0

t − β0
s

∥∥∥ ≤ C
|t − s|

min(t , s)
sup

s≤h≤t

∥∥∥β0
h

∥∥∥ , for some C > 0. (4)

We estimate this model by time varying penalised least squares, i.e.

β̂t = argmin
β

‖y −G (X , β)‖2
wt ,2

T
+ λ ‖β‖1 .

where

‖y −G (X , β)‖2
wt ,2 =

T

∑
j=1

wt ,j
(
yj −G

(
x j , β

))2
,

and wt ,j = K
(

t−j
H

)
, for some kernel function K and bandwidth H = o (T ), H → ∞.
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Time-varying neural nets

- There is considerable work in the above setting where β0
t is allowed to be stochastic.

- In a series of papers, Giraitis, Kapetanios et al (2014 (JoE), 2015 (JAE), 2018 (JTSA))
show that kernel based estimation of β0

t , in many contexts (regression, ML) is
consistent and asymptotically normal, even if β0

t is stochastic and satisfies a
smoothness condition.

- Recently Dendramis, Giraitis and Kapetanios (2019) extend this to a large dimensional
setting, providing sharp probability exponential inequalities for weighted, randomly
scaled sums of mixing and possibly fat-tailed data that allows time varying estimation
of large covariance matrices.
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Time-varying neural nets

Theorem
Let model (3) with condition (4) hold and let (i) εt be a martingale difference process that is
independent of x t and (ii) G be a function with bounded first derivatives. Then, for all t ,∥∥∥G

(
X , β̂t

)
−G

(
X , β(T ),0

)∥∥∥2

wt ,2

T
= Op

((
log k

H

)1/2

sup
t

∥∥∥β0
t

∥∥∥
1

)
. (5)

where β(T ),0 = (β0
1
′, ..., β0

T
′)′ and G

(
X , β(T ),0

)
= (G

(
x1, β0

1

)
, ...,G

(
xT , β0

T

)
)′
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Time - varying SVR

- Let xt = [x1t , . . . xNt ]
′ be the vector of covariates and yt be the target variable.

yt = β0′x t + εt . (6)

- Recall that SVR operates by solving (Vapnik et al. (1997), pg. 156-158) :

β̂ = min
β
‖β‖2 , s.t.

yt − β′x t ≤ ε + ξt , β′x t − yt ≤ ε + ξ∗t , ξ∗t , ξt ≥ 0

where ε denotes a preselected error margin parameter (tuning parameter) and ξ∗t , ξt
are slack variables.
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Time - varying SVR

Dual Formulation of the problem:

max
α,α∗

[
−

T

∑
i,j=1

(αi − α∗i )
(

αj − α∗j

)
x ′ix j − ε

T

∑
i=1

(αi + α∗i ) +
T

∑
i=1

(αi + α∗i ) yi

]

s.t.
T

∑
i=1

(αi − α∗i ) = 0 and αi , α∗i ≥ 0.

Then,

β̂t =
T

∑
i=1

(αti − α∗ti ) x i

The value of parameter ε defines a margin of tolerance where no penalty is given to the errors.
Thus, the formulation of the problem can be viewed as a penalised optimisation procedure where
there is a positive value which controls the penalty imposed on observations that lies outside the ε
and helps to prevent overfitting (Steinwart and Christmann, 2008).

24 / 42



Time - varying SVR
Following Giraitis, Kapetanios and Yates (2014); Kapetanios and Zikes (2018), we
incorporate weights wt ,j where wt ,j = K

(
t−j
H

)
, for some kernel function K which is

centered on the time-point of interest and decays for more distant observations and
bandwidth H = o (T ) , H → ∞, the optimization problem becomes:

max
αt ,α∗t

[
−

T

∑
i,j=1

wt,jwt,i (αi − α∗i )
(

αj − α∗j

)
x ′ix j−

ε
T

∑
i=1

wt,i (αi + α∗i ) +
T

∑
i=1

wt,i (αi + α∗i ) yi

] (7)

s.t.
T

∑
i=1

(αi − α∗i ) = 0 and αi , α∗i ≥ 0,
T

∑
i=1

wt,i = T

Then,

β̂t =
T

∑
i=1

wt,i (αti − α∗ti ) x i .
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Empirics - Forecasting US Industry portfolios

Dataset
- Targets: Three Standard industry portfolios of U.S. equities. 2

- Cnsm: Consumer Durables, NonDurables, Wholesale, Retail.
- Manuf: Manufacturing, Energy, Utilities.
- HiTech: Business Equipment, Telephone, Television Transmission.

- Predictors: “Zoo factors” of Feng, Giglio and Xiu (2019) 3.
- Full sample length: 1976m1 - 2017m10: Evaluation period starts in 2002.

2Focus on portfolios rather than individual assets because they have more stable betas, higher
signal-to-noise ratios, and are less prone to missing data issues. Data from Kenneth French’s website.

3150 risk factors at the monthly frequency for the period from July 1976 to December 2017
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Forecasting US industry portfolios

Table: Out of sample relative RMSEs using time-varying ML and standard ML model: Benchmark:
AR(1)

Steps Ahead (1) (3) (6) (9) (12)

Cnsm
TVSVM 0.750 0.735 0.734 0.733 0.829

SVM 0.868 0.844 0.830 0.839 0.831
TVNN 0.940 1.000 1.000 0.890 0.983

NN 1.106 1.030 1.090 0.925 1.050

Manuf
TVSVM 0.684 0.864 0.800 0.605 0.798

SVM 0.892 0.871 0.809 0.811 0.793
TVNN 1.035 1.068 0.947 0.984 0.887

NN 0.968 1.299 0.991 0.944 0.936
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Forecasting US industry portfolios

Table: Out of sample relative RMSEs using time-varying ML and standard ML model: Benchmark:
AR(1)

Steps Ahead (1) (3) (6) (9) (12)

HiTech
TVSVM 0.608 0.604 0.805 0.809 0.813

SVM 0.829 0.811 0.803 0.822 0.821
TVNN 0.982 0.987 0.997 0.964 0.908

NN 0.926 0.927 0.926 0.944 0.983
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Empirics 2 - UK GDP growth

- We use the time-varying ML models to forecast monthly UK GDP at h = 1,3,6,9,12
step ahead using a large panel of survey indicators.

- Full sample length: 2000m1 - 2018m8
- Reserve 92 months for forecast evaluation (post crisis)
- Derive direct forecasts generated by the time-varying neural nets and time-varying

support vector regressions and compare with standard AR(1). For comparison,
forecasts are also derived using the standard neural nets and support vector
regressors under the same specifications.
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Empirical Application - GDP growth

In-sample period: 2000m1-2009m12
Model h = 1 h = 3 h= 6 h= 9 h= 12
TVNN 0.750*** 0.698* 0.742* 0.840 0.825*
NN 0.843 0.721 0.778 0.843 0.900***
TVSVR 0.945 0.925 0.887 0.915 0.987
SVR 0.716 0.646*** 0.664*** 0.696* 0.764

Table: Average RMSEs at h=1,3,6,9,12 for the time-varying and the standard ML models relative to
the AR(1). *, **, *** are the results from Diebold and Mariano (1995) test with Harvey’s (1997)
adjustment for predictive accuracy.* Denotes rejection at the 10% level, ** at the 5% level and ***
1% level.
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Thank you

Thank you
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Appendix
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Example of spreadsheet of an unstructured dataset

Go back
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Text methods: Algorithm-based metrics

Positive and negative dictionary Boolean Computer science-based
Financial stability (Correa et al., 2017) Economic Uncertainty (Alexopoulos, Cohen

et al., 2009)
VADER sentiment (Gilbert, 2014)

Finance oriented (Loughran and McDonald,
2013)

Monetary policy uncertainty (Husted, Rogers
and Sun, 2017)

‘Opinion’ sentiment (Hu et al., 2017; Hu and Liu,
2004)

Afinn sentiment (Nielsen, 2011) Economic Policy Uncertainty (Baker, Bloom and
Davis, 2016)

Punctuation economy (this paper: See details )

Harvard IV (used in Tetlock (2007))
Anxiety-excitement (Nyman et al., 2018)
Single word counts of “uncertain” and “econom”
tf-idf applied to “uncertain” and “econom”

Go back
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Average of Relative RMSEs over 500 Monte Carlo simulations

True Parameters : σ = 1,q = 0.9

Model 1 Model 2

T
maxkt 100 500 1000 100 500 1000

50 0.928 0.750 0.640 0.928 0.757 0.635
100 0.920 0.741 0.642 0.914 0.742 0.640
400 0.921 0.742 0.635 0.920 0.755 0.640
1000 0.914 0.742 0.6357 0.921 0.748 0.647

Table: Average of RMSEs of the High Dimensional state space relative to the comparator models.
Model1: not include unstructured dataset (Zt ), Model2: includes the average of Zt

35 / 42



Popular activation functions

- Logistic function: h(x) = 1
1+exp−x

- hyperbolic tangent (tanh) function: h(x) = tanh(x)
- Rectified Linear Unit (RELU) function: h(x) = max(0, x)

go back
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Conditional Variances

Var (F |X1, . . . XN) = ΣFF − ΣFX Σ−1
XX ΣXF . Given that:

Var (Xi) = 1 + σ2
i , Var (X̄ ) = 1 + 1

N2 ∑N
i=1 σ2

i , Cov(Xi ,F ) = 1, Cov(X̄ ,F ) = 1, we
have

Var (F |X̄ ) = 1− 1
1 + 1

N2 ∑N
i=1 σ2

i

,

And applying the Sherman-Morrison formula :

Var (F |X1, ...,XN) = 1−
N

∑
i=1

1
σ2

i
+

∑N
i=1 ∑n

j=1
1

σ2
i σ2

j

1 + ∑N
i=1

1
σ2

i

.

go back
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Conditional Variances
It holds that: Var (F |X̄ ) ≥ Var (f |X1,XN),i.e:,

N

∑
i=1

1
σ2

i
−

∑N
i=1 ∑N

j=1
1

σ2
i σ2

j

1 + ∑N
i=1

1
σ2

i

≥ 1
1 + 1

N2 ∑N
i=1 σ2

i

If σ2
i = σ2, for all i ∈ N ,

N
σ2 −

N2

σ4

1 + N
σ2

− 1

1 + σ2

N

≥ 0 (8)

We set α = N
σ2 . Then:

α− α2

1 + α
− 1

1 + 1
α

≥ 0

or
α + α2 + 1 + α− α2 − α− 1− α ≥ 0

But α + α2 + 1 + α− α2 − α− 1− α = 0 go back
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