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Machine Learning Interpretability
Evaluate machine learning models beyond accuracy scores
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Machine Learning

Model

X y

Description of the problem to solve

Tabular data, unstructured data, etc.

Prediction / Decision

Usually aggregated 

accuracy score

(accuracy, AUC, f1-

score)

What has been learned by the model ?

Why a particular prediction has been made ?

Where is the model {correct ; wrong } ?

Is the model fair ?

What can be done to change the prediction ?

Is the model robust?

Is the model causal?

How does the model behave in areas with few data ?

How the prediction is affected by small changes in input ?



Trade-off Interpretability-Accuracy
Accurate Machine Learning Models are not Interpretable (usually)

Simple machine learning model

e.g. Decision Tree
→ Interpretable
→ Less accurate

Blackbox machine learning model

e.g. Random Forest, CNN (Inception…)
→ Uninterpretable
→ More Accurate

Decision: credit or not

One path → simple explanation

One path → One decision by base model

Final decision: aggregation of each decision

Explanation: no consensus



Global, Post-Hoc & Model Agnostic 

Interpretability in Machine Learning



Post-Hoc

Interpretability Approaches Considered in this Work
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(1) We assume the best ML model in 

performance for a task is not necessarily 

interpretable

(2) We want to avoid 

hypotheses on the ML model

(3) We want global (to local) explanations 

+ a surrogate to mimic the black-box 

model

Hypothesis: ML model = black-

box



Principles of Post-Hoc, Model Agnostic Surrogates
Agnostic surrogate model pipeline

1) Train a “black-box””model መ𝑓 from the data (𝑥, 𝑦)

2) Get predictions from the black-box model ො𝑦 = መ𝑓(𝑥)

3) Train an interpretable surrogate model 𝑆 on (𝑥, ො𝑦) to mimic the predictions of the 

black-box model

4) Gain insights from the trained surrogate model

Two performance metrics given a loss function 𝐿 (say, MSE):

Fidelity = 𝐿( ො𝑦𝑆, ො𝑦)

Accuracy = 𝐿( ො𝑦𝑆, 𝑦)
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Local v. Global explanation
Granularity of the explanation

• Local interpretability: explain a single prediction

 Ex: SHAP

 (1) train the model, (2) predict instances, (3) interpret predictions

 Drawback: possible lack of consistency between explanations

• Global interpretability: explain the whole ML model

 Ex: Feature importances

 (1) train the model, (2) interpret the model 

 Advantage: gaining insights about what the model has learned during the training
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Overview of the ML Interpretability field
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TREPAN: Model-Agnostic and Post-Hoc Surrogate

• Mimic the global predictive behaviour of any

model

• Decision Tree trained to replicate predictions

 High fidelity to the model

• Draw instances in low density subspaces

• Min number of instances for split selection

• Important contribution for fidelity

• Expand most promising nodes to increase 

fidelity
• 𝑓 𝑛 = 𝑟𝑒𝑎𝑐ℎ 𝑛 ∗ 1 − 𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦 𝑛

11

(Craven et al., 1996)

From black-boxes (Random 

Forests…) to a faithful Interpretable 

decision tree



A particularity: the m-of-n split rules
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2-of-3 split rule: pick 2 variables 

among the 3 selected for the 

node

TREPAN uses m-of-n split rules at each node
• Inspired by id2-of3 (Murphy & Pazzani, 1991)

• Improves fidelity: learn more complex decision 
boundaries
• Lower human-interpretability: need to assess        
variable combinations



Concept Tree
Improve Interpretability with Groups of Dependent 

Variables



Impact of Dependent Variables on Interpretability

• Real world tabular datasets often involve subgroups of dependent or related 

variables

• Similar meaning or similar origin (e.g. various measures of unemployment)

• Result of multiple transformations to a variable (e.g. multiple lags of time series)

• Known challenge in ML and Interpretability

Eg. robust interpretation of variable importance
(Buhlmann et al., 2013; Gregorutti et al., 2017; Strobl et al., 2008; Tolosi & Lengauer, 2011)

• Subgroups of dependent variables can impact interpretability

• Issue: arbitrary selection of one variable among a subgroup by surrogate models

• Opportunity: better, more comprehensive explanations
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Concepts: Grouping Dependent Variables into High-Level 

Representation

• Grouping dependent variables into high-level representation of variables

• Concepts are embedded into surrogates by constraining their training

• Related works: group variables in ML

• Interpretability (Kim et al., 2015 ; Kim et al., 2017; Ghorbani et al., 2019)

• Some ML sparse models

• Group-lasso (Yuan & Lin, 2006)

• Sparse-group-lasso (Simon et al., 2013)

• Subspace clustering (Vidal, 2011)
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Big Picture

High-Level Explanations

Subgroups of dependent 

variables

Fine Grained Details

Low-Level Explanations

Raw Variables
→



Concepts: Grouping Dependent Variables into High-Level 

Representation

• Concept definition: subset of dependent features

• Concepts co-exist to form the set of concepts

• Every feature belongs to one single concept only

• Build a concept with dependent features

• Expert-defined: domain knowledge (e.g. documentation of FRED-MD data: 134 vars / 8 

categories)

• Automatically-defined: clustering algorithm based on Pearson correlation
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Any 

dependence 

measure

(every) feature in 

the concept 

considered

User-defined 

threshold

Concept considered 

for inclusion

Feature 

candidate for 

inclusion



Concept Tree: Embedding Concepts into Interpretable Surrogates
Model Architecture

• Objective: global explanations of complex ML models with interpretable surrogates

• Decision Trees are interpretable: graphical structure, sparse subset of feature, hierarchy

• Surrogate decision tree: TREPAN (Craven & Shavlik, 1996)

• Reassessment of its relevance up until recently (Sarkar et al., 2016)

• Our proposition: Concept Tree 

• Take advantage of TREPAN’s efficient learning procedure to mimic a black-box classifier

• In particular the additional instance-drawing procedure
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Concept Tree: Embedding Concepts into Interpretable Surrogates
Node Learning to leverage concepts

• m-of-n split rules learning constrained by concepts

• Whole feature space no longer considered 

• Rather subsets defined by concepts

• At each node, all concepts are assessed

• The one with the highest information gain is selected

• Embed Concepts in a Surrogate Decision Tree is expected to improve interpretability

• Information is organized at concept level: ease the interpretation of a node (m-of-n split rules)

• Take into account feature dependence when producing explanations
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Use Case, Data & Experimentation



Data
FRED-MD database

• Publicly released macroeconomic database

• 134 monthly U.S. indicators

• Our classification target: binary evolution of the civilian unemployment rate

• Provide 8 subgroups of dependent variables based on domain knowledge
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Examples of subgroups in the database

Raw variables belonging to the subgroups



Experimentation setting

Downturn prediction

• Downturn detection in US economy using variables from 

FRED-MD data (McCracken & Ng, 2016)

• Downturns defined from the NBER Business Cycle 

Chronology

• The target 𝑦t is equal to 1 if a downturn occurs between 𝑡
and 𝑡 + 12 (months)
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Black-box predictor

• Gradient Boosted Trees algorithm. 

• Tree depth and learning rates are grid-searched (optimising the F2 score) using time 

series cross-validation. 

• This is not a forecast simulation, but a retrospective exercise (we do not take release 

delays into account and use current series)

downturn

𝑦 = 1𝑦 = 0 𝑦 = 0



Experimentation setting
Performance in predicting downturns is reasonably good
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• Recursive out-of-sample predictions

• Prediction performance is reasonably good with some false positives

Out-of-sample downturn prediction



Experimentation setting
Interpretation

• Objective: shedding light on patterns are captured by the downturn prediction black-box 

algorithm.

• Concept Tree vs. TREPAN

• 2 flavors: Concept Tree-Expert and Concept Tree-Correlated (automatically defined concepts)

• How to compare two surrogate models ?

• Out-of-sample accuracy = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, ො𝑦𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒)

• Out-of-sample fidelity = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦( ො𝑦𝑏𝑙𝑎𝑐𝑘 𝑏𝑜𝑥, ො𝑦𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒)

• “Expert” assessment of interpretability
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Experimentation
Quantitative Results

• Concept Tree at least as accurate as TREPAN
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Experimentation
Concept Tree
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High spreads hint at high risk

If unemployment is already high or 

increasing, the economy is in recession 

and there will not be a downturn

Housing permits too low or too high 

may both predict a downturn

Inflation of CPI or component 

or PPI lower than 1%

Excludes cases where the 

economy is already in a 

recession



Experimentation
TREPAN Tree
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Decision rules from 

heterogeneous expert-defined 

concepts



Conclusion



Conclusion

• Discuss the important notion of feature dependence in ML interpretability

• Propose the idea of concept to tackle this issue

• Expert-defined and automatic mode

• Embed concepts in a TREPAN, a notable global interpretable surrogate

• Improved interpretability

• No significant impact on surrogate fidelity

• Concept Trees “better” structures information and enhances interpretability at a 

constant complexity (quantity of information)

• Avenues for further research: implementing monotonicity, … 
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