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Abstract
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1 Introduction

The increasing availability of large datasets, both in terms of the number of variables and

the number of observations, combined with the recent advancements in the field of econo-

metrics, statistics, and machine learning, have spurred the interest in predictive models

with many explanatory variables, both in finance and economics.1 As not all predictors

are necessarily relevant, decision makers often pre-select the most important candidate ex-

planatory variables by appealing to economic theories, existing empirical literature, and

their own heuristic arguments. Nevertheless, a decision maker is often still left with tens– if

not hundreds– of sensible predictors that may possibly provide useful information about the

future behavior of quantities of interest. However, the out-of-sample performance of stan-

dard techniques, such as ordinary least squares, maximum likelihood, or Bayesian inference

with uninformative priors tends to deteriorate as the dimensionality of the data increases,

which is the well known curse of dimensionality.2

Confronted with a large set of predictors, two main classes of models became popular,

even standard, within the regression framework. Sparse modeling focus on the selection of

a sub-set of variables with the highest predictive power out of a large set of predictors, and

discard those with the least relevance. LASSO-type regularizations are by far the most used

in both research and practice. Regularized models take a large number of predictors and

introduce penalization to discipline the model space. Similarly, in the Bayesian literature, a

prominent example is the spike-and-slab prior proposed by George and McCulloch (1993),

which introduced variable selection through a data-augmentation approach. A second class

of models fall under the heading of dense modeling; this is based on the assumption that,

a priori, all variables could bring useful information for prediction, although the impact of

some of these might be small. As a result, the statistical features of a large set of predictors

are assumed to be captured by a much smaller set of common latent components, which could

be either static or dynamic. Factor analysis is a clear example of dense statistical modeling,

which is highly popular in applied macroeconomics (see, e.g., Stock and Watson 2002 and

De Mol, Giannone, and Reichlin 2008 and the references therein).

Both of these approaches entail either an implicit or explicit reduction of the model

1See, e.g., Elliott and Timmermann (2004), Timmermann (2004), Bai and Ng (2010), Rapach, Strauss,
and Zhou (2010), Billio, Casarin, Ravazzolo, and van Dijk (2013), Manzan (2015), Pettenuzzo and Ravaz-
zolo (2016), Harvey, Liu, and Zhu (2016), Giannone, Lenza, and Primiceri (2017), and McAlinn and
West (2017), just to cite a few.

2Even with a moderate number of predictors the empirical investigation of all possible model combinations
could rapidly become infeasible. For instance, for a moderate size linear regression with p = 30 regressors,
investigating the whole set of possible features combinations would require estimating 230 ⇡ 1.07 billion
regression models.
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space. The intention is to arbitrarily lower model complexity to balance bias and variance,

in order to potentially minimize predictive losses. For instance, in LASSO-type shrinkage

estimators, increasing the tuning parameter (i.e. increasing shrinkage) leads to a higher

bias, thus using cross-validation aims to balance the bias-variance tradeo↵ by adjusting the

tuning parameter. Similarly, in factor models, the optimal number of latent common com-

ponents is chosen by using information criteria to reduce the variance by reducing the model

dimensionality at the cost of increasing the bias (see, e.g., Bai and Ng 2002). In addition, for

economic and financial decision making, in particular, these dimension reduction techniques

always lead to a decrease in consistent interpretability, something that might be critical for

policy makers, analysts, and investors.

In this paper, we propose a novel class of data-rich predictive synthesis techniques and

contribute to the literature on predictive modeling and decision making with large datasets.

We take a significantly di↵erent approach towards the bias-variance tradeo↵ by breaking

a large dimensional problem into a set of small dimensional ones. More specifically, we

retain all of the information available and decouple a large predictive regression model into

a set of smaller regressions constructed by clustering the set of regressors into J di↵erent

groups, each one containing fewer regressors than the whole, according to their economic

meaning or some quantitative clustering. Rather than assuming a priori the existence of

a sparse structure or few latent common components, we retain all of the information by

estimating J di↵erent predictive densities– separately and sequentially– one for each group

of predictors, and recouple them dynamically to generate aggregate predictive densities for

the quantity of interest. By decoupling a large predictive regression model into smaller, less

complex regressions, we keep the aggregate model variance low while sequentially learning

and correcting for the misspecification bias that characterize each group. As this is the

case, the recoupling step benefits from biased models, as long as the bias has a signal that

can be learned. This flips the bias-variance tradeo↵ around, exploiting the weakness of

low complexity models to an advantage in the recoupling step, therefore improving the

out-of-sample predictive performance.

Our methodology di↵ers from existing model combination schemes by utilizing the the-

oretical foundations and recent developments in dynamic density forecast with multiple

models (see, e.g., McAlinn and West 2017). That is, the decoupled models are e↵ectively

treated as separate latent states that are learned and calibrated using the Bayes theorem

in an otherwise typical dynamic linear modeling setup. Under this framework, the inter-

dependencies between the group-specific predictive densities, as well as biases within each

group, can be sequentially learned and corrected; information that is critical, though lost in

typical model combination techniques. Along this line, Clemen (1989), Makridakis (1989),
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Diebold and Lopez (1996), and Stock and Watson (2004) pointed out that individual fore-

casting models are likely to be subject to misspecification bias of unknown form. Even in a

stationary world, the data generating process is likely to be far more complex than assumed

by the best forecasting model and it is unlikely that the same set of regressors dominates

all others at all points in time. As a result, sequentially learning the aggregate bias and

exploiting the latent inter-dependencies among group-specific predictions can be viewed as a

way to robustify the aggregate prediction against model misspecification and measurement

errors underlying the individual forecasts.

Unlike sparse modeling, we do not assume a priori that there is sparsity in the set of

predictors. As a matter of fact, using standard LASSO-type shrinkage will implicitly impose

a dogmatic prior that only a small subset of regressors is useful for predictions and the rest

is noise, i.e., sparsity is pre-assumed. Yet, there is no guarantee that the Lasso estimator is

smooth and asymptotically consistent to the true sparsity pattern in the presence of highly

correlated predictors and model instability; two conditions that are often encountered in

empirical applications (see, e.g., Meinshausen, Yu et al. 2009).

We implement the proposed the methodology, which we call decouple-recouple synthesis

(DRS), and explore both its econometric underpinnings and economic gains on both a

macroeconomic and a finance application. More specifically, in the first application we test

the performance of our decouple-recouple approach to forecast the one- and three-, and

twelve-month ahead annual inflation rate in the U.S. over the period 1986/1 to 2015/12, a

context of topical interest (see, e.g., Cogley and Sargent 2005, Primiceri 2005, Stock and

Watson 2007, Koop and Korobilis 2010, and Nakajima and West 2013, among others). The

set of monthly macroeconomic predictors consists of an updated version of the Stock and

Watson macroeconomic panel available at the Federal Reserve Bank of St.Louis. Details

on the construction of the dataset can be found in McCracken and Ng (2016). The second

application relates to forecasting monthly year-on-year total excess returns across di↵erent

industries in the U.S. from 1970/1 to 2015/12, based on a large set of both industry-specific

and aggregate predictors. The predictors have been chosen from previous academic studies

and existing economic theory (see, e.g., Goyal and Welch 2008 and Rapach et al. 2010).

We compare forecasts against a set of mainstream model combination techniques such as

a standard Bayesian model averaging (BMA), in which the forecast densities are mixed with

respect to sequentially updated model probabilities (see, e.g., Harrison and Stevens 1976,

Sect 12.2 West and Harrison 1997 and Pettenuzzo and Ravazzolo 2016), as well as against

simpler, equal-weighted averages of the model-specific forecast densities using linear pools,

i.e., arithmetic means of forecast densities, with some theoretical underpinnings (see, e.g., West

1984 and Diebold and Shin 2017). While some of these strategies might seem overly simplis-
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tic, they have been shown to dominate some more complex aggregation strategies in some

contexts (Genre, Kenny, Meyler, and Timmermann, 2013). In addition, we compare the

forecasts from our setting with a state-of-the-art LASSO-type regularization, PCA based

latent factor modeling (see, e.g., Stock and Watson 2002 and McCracken and Ng 2016), as

well as the simple historical average (HA), as suggested by Campbell and Thompson (2007)

and Goyal and Welch (2008). Finally, we compare our decouple-recouple predictive strategy

against the marginal predictive densities computed from the group-specific set of predictors

taken separately.

Forecasting accuracy is assessed in a statistical sense based on two di↵erent out-of-sample

performance metrics. We report as a main performance metric the Log Predictive Density

Ratio (LPDR), at forecast horizon k and across time indices t. In addition, although our

main focus is on density forecasts, we also report the Root Mean Squared Forecast Error

(RMSFE), which captures the forecast optimality for a mean squared utility. Irrespective of

the performance evaluation metric, our decouple-recouple model synthesis scheme emerges

as the best for forecasting the yearly total excess returns across di↵erent industries. The

di↵erences in the LPDRs are stark and clearly shows a performance gap in favor of DRS.

As far as the out-of-sample economic performance is concerned, we run a battery of

tests based on a power-utility representative investor with moderate risk aversion. The

comparison is conducted for the unconstrained as well as short-sales constrained investor at

monthly horizons, for the entire sample. We find that our DRS strategy results in a higher

CER (relative to an investor that uses the historical mean as forecast) of more than 150

basis points per year, on average across sectors. Consistent with the predictive accuracy

results, we generally find that the DRS strategy produces higher CER improvements than

the competing specifications, both with and without short-sales portfolio constraints. In

addition, we show that DRS allows to reach a higher CER also on a “per-period” basis,

which suggests that there are economically important gains for a power utility investor.

2 Decouple-Recouple Predictive Strategy

A decision maker D is interested in predicting some quantity y, in order to make some

informed decision based on a large set of predictors, which are all considered relevant to

D, but with varying degree. In the context of macroeconomics, for example, this might be

a policy maker interested in forecasting inflation using multiple macroeconomic indicators,

that a policy maker can or cannot control. Similar interests are also relevant in finance, with,

for example, portfolio managers tasked with implementing optimal portfolio allocations on
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the basis of expected future returns on risky assets. A canonical and relevant approach is

to consider a basic linear regression;

yt = �0zt�1 + ✏t, ✏t ⇠ N(0, ⌫t), (1)

where zt is a p�dimensional vector of predictors, � is the p�dimensional vector of betas,

and ✏t is some observation noise, which is assumed here to be Gaussian to fix ideas.

In many practically important applications, the dimension of predictors relevant to make

an informed decision is large, possibly too large to directly fit something as simple as an

ordinary linear regression. As a matter of fact, at least a priori, all of these predictors

could provide relevant information for D. Under this setting, regularization or shrinkage

would not be consistent with D’s decision making process, as she has no dogmatic priors

on the size of the model space. Similarly, dimension reduction techniques such as principal

component analysis and factor models, e.g., Stock and Watson (2002) and Bernanke, Boivin,

and Eliasz (2005), while using all of the predictors available, reduces them to a small preset

number of latent factors that are hard to interpret or control, in the sense of decision making.

Our decouple-recouple strategy3 exploits the fact that the potentially large p�dimensional

vector of predictors can be partitioned into smaller groups j = 1:J , modifying Eq. (1) to

yt = �0
1zt�1,1 + ...+ �0

j
zt�1,j + ...+ �0

J
zt�1,J + ✏t, ✏t ⇠ N(0, ⌫t). (2)

These groups can be partitioned based on some qualitative categories (e.g. group of pre-

dictors related to the same economic phenomenon), or by some quantitative measure (e.g.

clustering based on similarities, correlation, etc.), though the dimension of each partitioned

group should be relatively small in order to obtain sensible estimates. The first step of our

model combination strategy is to decouple Eq. (2) into J smaller predictive models, such as,

yt = �0
j
zt�1,j + ✏tj, ✏tj ⇠ N(0, ⌫tj), (3)

for all j = 1:J , producing forecast distributions p(yt+k|Aj), where Aj denotes each group of

predictors and k denotes the forecast horizon, 1  k. Since Eq. (3) is a linear projection of

data from each group of explanatory variables, we can consider, without loss of generality,

3We note that the term “decouple/recouple” stems from emerging developments in multivariate analysis
and graphical models, where a large cross-section of data are decoupled into univariate models and recou-
pled via a post-process recovery of the dependence structure (see Gruber and West 2016 and the recent
developments in Gruber and West 2017; Chen, K., Banks, Haslinger, Thomas, and West 2017). While
previous research focuses on making complex multivariate models scalable, our approach does not directly
recover some specific portion of a model (full models are available but not useful), instead aims to improve
forecasts and understand the underlying structure through the subgroups.
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that p(yt+k|Aj) is reflecting the group-specific information regarding the future behavior of

the quantity of interest. In the second step, we recouple the densities p(yt+k|Aj) for j = 1:J

in order to obtain a forecast distribution p(yt+k|A) reflecting and incorporating all of the

information that arises from each group of predictors. In the most simple setting, p(yt+k|Aj)

can be recoupled via linear pooling (see, e.g., Geweke and Amisano 2011);

p (yt+k|A) =
JX

j=1

wjp(yt+k|Aj), (4)

where weights w1:J are often estimated based on past observations and predictive perfor-

mances (e.g. using w1:J proportional to the marginal likelihood). However, while this linear

combination structure is conceptually and practically appealing, it does not capture the fact

that we expect and understand that each p(yt+k|Aj) to be biased and dependent with each

other (i.e., groups of predictors could be highly correlated). Arguably, each group-specific

prediction p(yt+k|Aj) is misspecified unless one of them is the data generating process, which

is something that we can hardly expect in economics or finance. In this respect, Geweke

and Amisano (2012) formally show that even when none of the constituent models are true,

linear pooling and BMA assign positive weights to several models.

The dependence between p(yt+k|Aj) and p(yt+k|Aq), for j 6= q, is also a crucial aspect of

model combination. The optimal combination of weights should be chosen to minimize the

expected loss of the combined forecast, which, by definition, reflects both the forecasting

accuracy of each sub-model and the correlation across forecasts. For instance, it is evident

that the marginal predictive power of macroeconomic variables related to the labor market

is somewhat correlated with the explanatory power of output and income. In addition,

correlations across predictive densities are arguably latent and dynamic. For instance, the

spillover e↵ects interest rates, market liquidity, and aggregate financial variables possibly

changed before and after the great financial crisis of 2008/2009. Thus, an e↵ective combi-

nation scheme must be able to sequentially learn and recover the latent inter-dependencies

between the groups/sub-models.

2.1 Time-Varying Predictive Synthesis

The baseline assumption is that a decision maker D aims to incorporate information from J

individual predictive models labeled Aj, (j = 1:J). The predictive density from each group

of predictors is considered to be a latent state, such that p(yt|Aj) represents a distinct prior

on state j = 1, ..., J . That is, each Aj provides their own prior distribution about what

they believe the outcome in the form of a predictive distribution htj(xtj) = p(yt|Aj); the
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collection of which defines the information set Ht = {ht1(xt1), . . . , htJ(xtJ)}. The di↵erence

between this approach and more general latent factor models, such as PCA, is that we allow

to anchor each latent state, using priors p(yt|Aj) at each time t, to a group that D specifies.

These latent states are then calibrated and learned using Bayesian updating.

A formal prior-posterior updating scheme posits that, for a given prior p(yt), and (prior)

information set Ht provided by A1:J , we can update using the Bayes theorem to obtain a

posterior p(yt|Ht). Due to the complexity of Ht– a set of J density functions with cross-

sectional time-varying dependencies as well as individual biases– the aggregate predictive

density might be di�cult to define. We build on the work of McAlinn and West 2017 (linking

to past literature on Bayesian pooling of expert opinion analysis by West and Crosse (1992)

and West (1992), which extend the basic theorem of Genest and Schervish (1985)), that

show that, under a specific consistency condition, D’s the time-varying posterior density

takes the form

p(yt|�t,Ht) =

Z
↵t(yt|xt,�t)

Y

j=1:J

htj(xtj)dxtj (5)

where xt = xt,1:J is a J�dimensional latent state vector at time t, ↵t(yt|xt,�t) is a condi-

tional density function, which reflects how the decision maker believes these latent states

xt to be synthesized, and �t represents some time-varying parameters learned and cali-

brated over ⌧ = 1, . . . , t. It is important to note that the theory does not specify the form

of ↵t(yt|xt,�t). In fact, McAlinn and West (2017) show that many forecast combination

methods, from linear combinations (including BMA) to more recently developed density

pooling methods (e.g. Aastveit, Gerdrup, Jore, and Thorsrud, 2014; Kapetanios, Mitchell,

Price, and Fawcett, 2015; Pettenuzzo and Ravazzolo, 2016), are special cases of Eq.(5).

This general framework implies that xt is a realization of the inherent dynamic latent

factors at time t and synthesis is achieved by recoupling these separate latent predictive

densities through the time-varying conditional distribution ↵t(yt|xt,�t). Though the the-

ory does not specify ↵t(yt|xt,�t), a natural choice is to impose linear dynamics (see, e.g.,

McAlinn and West, 2017), such that,

↵t(yt|xt,�t) = N(yt|F
0
t
✓t, vt), (6)

where F t = (1,x0
t
)0 and ✓t = (✓t0, ✓t1, ..., ✓tJ)0 represents a (J + 1)�vector of time-varying

synthesis coe�cients. Observation noise is reflected in the innovation variance term vt, and

the time-varying parameters �t is defined as �t = (✓t, vt).

The evolution of these parameters needs to be specified to complete the model specifica-

tion. We follow existing literature in dynamic linear models and assume that both ✓t and
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vt evolve as a random walk to allow for stochastic changes over time as is tradition in the

Bayesian time series literature (see West and Harrison 1997; Prado and West 2010). Thus,

we consider

yt = F 0
t
✓t + ⌫t, ⌫t ⇠ N(0, vt), (7a)

✓t = ✓t�1 + !t, !t ⇠ N(0, vtW t), (7b)

where vtW t represents the innovations covariance for the dynamics of ✓t and vt the resid-

uals variance in predicting yt, which is based on past information and the set of models’

predictive densities. The residual ⌫t and the evolution innovation !s are independent over

time and mutually independent for all t, s. The dynamics of W t is imposed by a standard,

single discount factor specification as in West and Harrison (1997) (Ch.6.3) and Prado

and West (2010) (Ch.4.3). The residual variance vt follows a beta-gamma random-walk

volatility model such that vt = vt�1�/�t, where � 2 (0, 1] is a discount parameter, and

�t ⇠ Beta (�nt/2, (1� �)nt/2) are innovations independent over time and independent of

vs,!r for all t, s, r, with nt = �nt�1 + 1, the degrees of freedom.

Figure 1 visually summarizes the main di↵erence between our approach and a standard

forecast combination scheme. Unlike existing model ensemble techniques, we do not assume

the forecasts to be independent, and sequentially re-calibrate htj(xtj) = p(yt|Aj) as latent

states, which are then e↵ectively transferred onto the time varying parameters �t = (✓t, vt).

These parameters are then used to compute the posterior forecast distribution.

2.2 Estimation Strategy

Estimation for the decouple step is straightforward and depends on the model assumptions

for each group-specific model. For instance, for a typical dynamic linear regressions, we can

compute each htj(xtj) = p(yt|Aj) using conjugate Bayesian updating. As for the recouple

step, some discussion is needed. In particular, the joint posterior distribution of the latent

states and the structural parameters is not available in closed form. We implement a Markov

Chain Monte Carlo (MCMC) approach using an e�cient Gibbs sampling scheme. In our

framework, the latent states are represented by the predictive densities of the models,Aj, j =

1, ..., J , and the synthesis parameters, �t. As a result, posterior estimates provide insights

into the nature of the biases and inter-dependencies of those latent states.

More precisely, the MCMC algorithm involves a sequence of standard steps in a cus-

tomized two-component block Gibbs sampler: the first component simulates from the con-

ditional posterior distribution of the latent states given the data and the second component
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simulates the synthesis parameters. The first step is the “calibration” step, whereby we

learn the biases and inter-dependencies of the agent forecasts (latent states). In the second

step, we “combine” the models’ predictions by e↵ectively mapping the biases and inter-

dependencies of the latent states, htj(xtj), onto the parameters �t in a dynamic manner.

The second step involves a standard implementation of the FFBS algorithm central to

MCMC in all conditionally normal dynamic linear models (Frühwirth-Schnatter 1994; West

and Harrison 1997, Sect 15.2; Prado and West 2010, Sect 4.5). In our sequential learning

and forecasting context, the full MCMC analysis is redone at each time point as time evolves

and new data are observed. Standing at time T , the historical information {y1:T ,H1:T} is

available and initial prior ✓0 ⇠ N(m0,C0v0/s0) and 1/v0 ⇠ G(n0/2, n0s0/2), and discount

factors (�, �) are specified. At each iteration of the sampler we sequentially cycle through

the above steps.

Finally, posterior predictive distributions of quantities of interest are computed as mix-

tures of the model-dependent marginal predictive densities synthesized by ↵t(yt|xt,�t).

Integration over the model space is performed using our MCMC scheme, which provides

consistent estimates of the latent states and parameters. A more detailed description of the

algorithm and how forecasts are generated can be found in Appendix A.

2.3 Simulation Study

To test and exemplify our proposed method in a controlled setting, we conduct a simple sim-

ulation study that emulates conditions observed in economic data; namely that all variables

are correlated and that there are omitted variables, with the true data generating process

being unattainable. To do this, we simulate data by the following data generating process:

y = �2z1 + 3z2 + 5z3 + ✏, ✏ ⇠ N(0, 0.01), (8a)

z1 =
1

3
z3 + ⌫1, ⌫1 ⇠ N

✓
0,

2

3

◆
, z2 =

1

5
z3 + ⌫2, ⌫2 ⇠ N

✓
0,

4

5

◆
, (8b)

z3 = ⌫3, ⌫3 ⇠ N(0, 0.01), (8c)

where only {y, z1, z2} are observed and z3 is omitted. Firstly, all covariates are correlated.

Secondly, since the key variable z3 is not observed, we have a serious omitted variable that

drives all the data observed. Because of this, all models that can be constructed will be

misspecified. Additionally, because z3 drives everything else, there is significant bias in all

models generated.

We consider forecasting 500 simulated data points and compare the eight di↵erent strate-
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gies that are also considered in the empirical application. Notably, the individual models

are subset of all possible models with either {z1}, {z2}, or {z1, z2} as regressors in a lin-

ear regression. We test a simplified version of our proposed “decouple-recouple” predictive

strategy, where the synthesis function is a simple linear regression with non-informative

priors (Je↵reys’ prior). This yields a simpler setup for DRS in order to specifically consider

and compare the strengths of our strategy.

Testing predictive performance by measuring the Root Mean Squared one-step ahead

Forecast Error (RMSE) for di↵erent number of samples, we find that DRS outperforms

all other methods and strategies by at least 2%, which, although small, is substantial and

consistent across di↵erent data lengths. The results indicate the strengths and superiority

of DRS in a controlled setting that emulates the conditions encountered in real economic

data. Full descriptions and results can be found in Appendix B.

3 Research Design

In a realistic setting, the data generating process is not necessarily time invariant and e↵ects

of variables change over time with shifts and shocks. To cope with this, we introduce dy-

namics into the decoupled predictive densities to fully exploit the flexibility of our predictive

strategy. Specifically, for the decouple step we use a dynamic linear model (DLM: West and

Harrison, 1997; Prado and West, 2010), for each group, j = 1:J ,

yt = �0
tj
zt�1,j + ✏tj, ✏tj ⇠ N(0, ⌫tj), (9a)

�
tj
= �

t�1,j + utj, utj ⇠ N(0, ⌫tjU tj), (9b)

where the coe�cients follow a random walk and the observation variance evolves with dis-

count stochastic volatility. Priors for each decoupled predictive regression are assumed

fairly uninformative, such as �0j|v0j ⇠ N(m0j, (v0j/s0j)I) with m0j = 0
0 and 1/v0j ⇠

G(n0j/2, n0js0j/2) with n0j = 10, s0 = 0.01. For the recouple step, we follow the syn-

thesis function in Eq. (6), with the following priors: ✓0n|v0n ⇠ N(m0n, (v0n/s0n)I) with

m0 = (0,10/J)0 and 1/v0n ⇠ G(n0n/2, n0ns0n/2) with n0n = 10, s0n = 0.01. The discount

factors are (�, �) = (0.95, 0.99). The dynamic specification in Eq. (9) is attractive due to

its parsimony, ease to compute, and the smoothness it induces to the parameters.4

4See, e.g., Jostova and Philipov (2005), Nardari and Scruggs (2007), Adrian and Franzoni (2009), Pas-
tor and Stambaugh (2009), Binsbergen, Jules, and Koijen (2010), Dangl and Halling (2012), Pastor and
Stambaugh (2012), and Bianchi, Guidolin, and Ravazzolo (2017b), among others.
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3.1 Competing Predictive Strategies

For both studies, we compare our framework against a variety of competing predictive strate-

gies. First, we compare the aggregate predictive density from DRS against the predictive

densities from each group-specific predictive regressions calculated from Eq.(9a)-(9b). That

is, we test the benefits of the recoupling step and the calibration of the aggregate model

prediction upon learning the latent biases and inter-dependencies.

Second, we compare our DRS strategy against a LASSO shrinkage regression, where

the coe�cients in Eq.(1) are estimated in an expanding window fashion from a penalized

least-squares regression, i.e.,

�̂
LASSO

= argmin
�

k y � �z k
2
2 +�

nX

i=1

| �i |

where the shrinkage parameter � is calibrated by leave-one-out cross-validation, that is the

model is trained and the shrinkage parameter is selected based on the quasi-out-of-sample

prediction accuracy. Although such an approach is computationally expensive, it provides

an accurate out-of-sample calibration of the shrinkage parameter (see, e.g., Shao 1993).

A third competing predictive strategy relates to dynamic factor modeling where factors

are latent and extracted from the set of predictors. More precisely, the factor model relates

each yt to an underlying vector of q < n of random variables f
t
, the latent common factors,

via

yt = �0f
t
+ ✏t, ✏t ⇠ N(0, ⌫t),

zt = �f
t
+ ut, ut ⇠ N(0, ⌧),

where (i) the factors f
t
are independent with f

t
⇠ N(0, Iq), (ii) the ✏t are independent and

normally distributed with a discount-factor volatility dynamics, (iii) ut ? f
s
8s, t, and (iv)

� is the n⇥ q matrix of factor loadings. We recursively estimate the factor model by using

an expanding window where the optimal number of factors is selected using the Bayesian

information criterion (BIC). Also, we assume that the factor coe�cients on the latent factors

are time-varying and follow a dynamic linear model consistent with the dynamic specification

in Eq.(9). More precisely, at each time t we replace ztj with f
t
in Eq. (9a) and the slope

parameters have a random walk dynamics as in Eq. (9b). We note that for both the LASSO

regression and factor model, we have tested and compared the expanding window to the

moving window strategy, and found that the expanding window strategy to perform better

overall in the applications considered in this paper.
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The fourth competing strategy is dynamic Bayesian Model Averaging (BMA), in which

the forecast densities are mixed with respect to sequentially updated model probabilities

whereby the weights are restricted to be inside the unit circle and the sum of the model

weights is restricted to be equal to one (e.g. Harrison and Stevens, 1976; West and Harrison,

1997, Sect 12.2), i.e.,

p (yt+k|A) =
JX

j=1

wjp(yt+k|Aj),
JX

j=1

wjt = 1, wjt � 0

where the restrictions on the weights wit are necessary and su�cient to assure that p (yt+k|A)

is a density function for all values of the weights and all arguments of the group-specific

predictive regressions (see, e.g., Geweke and Amisano 2011). As often in the BMA literature,

the weights wjt, j = 1, ..., J , are chosen based on the posterior model probabilities, i.e.,

wj = p(Aj|y1:t), where

p(Aj|y1:t) =
p(yt|Aj)p (Aj|y1:t�1)P
J

j=1 p(yt|Aj)p (Aj|y1:t�1)
,

Choice of weights in any forecast combination is widely regarded as a di�cult and important

question. Existing literature shows that, despite being theoretically suboptimal, an equal

weighting scheme generates a substantial outperformance with respect to optimal weights

based on log-score or in-sample calibration (see, e.g., Timmermann 2004, Smith and Wal-

lis 2009, and Diebold and Shin 2017). For this reason, a fifth competing predictive strategy

we used is linear pooling of predictive densities with equal weights, that is each sub-model

has the same weight in the aggregate forecast, i.e., wj = 1/J .

Both the BMA and the equal-weight linear combination allow us to compare the benefit

of the predictive density calibration that is featured in the recoupling step underlying our

DRS strategy. Finally, we also compare DRS against the prediction from the historical

average for the financial application.

3.2 Out-of-Sample Performance Measures

Following standard practice in the forecasting literature, we evaluate the quality of our

predictive strategy against competing models based on both point and density forecasts. In

particular, we first compare predictive strategies based on the Root Mean Squared Error
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(RMSE), i.e.,

RMSEs =

 
1

T � ⌧ � 1

T�1X

t=⌧

(yt+1 � E [yt+1|y1:t,Ms])
2

!1/2

where T � ⌧ � 1 represents the out-of-sample period, E [yt+1|y1:t,Ms] the one-step ahead

point forecast conditional on information up to time t from the predictive strategy Ms, and

yt+1 is the realized returns.

Although informative, performance measures based on point forecasts only give a partial

assessment. Ideally, one also wants to compare the predictive densities across strategies. As

a matter of fact, performance measures based on predictive densities weigh and compare

dispersion of forecast densities along with location, and elaborate on raw RMSE measures;

comparing both measurements, i.e., point and density forecasts, gives a broader understand-

ing of the predictive abilities of the di↵erent strategies. That is, performance measures based

on the predictive density provide an assessment of a model ability to explain not only the

expected value, i.e., the equity premium, but also the overall distribution of excess returns,

naturally penalizing the size/complexity of di↵erent models. We compare predictive strate-

gies based on the log predictive density ratios (LPDR); at horizon k and across time indices

t, i.e.,

LPDRt =
tX

i=1

log{p(yi+k|y1:i,Ms)/p(yi+k|y1:i,M0)}, (10)

where p(yt+k|y1:t,Ms) is the predictive density computed at time t for the horizon t+k under

the model or model combination/aggregation strategy indexed byMs, compared against our

forecasting framework labeled by M0. As used by several authors recently (e.g. Nakajima

and West, 2013; Aastveit, Ravazzolo, and Van Dijk, 2016), LPDR measures provide a direct

statistical assessment of relative accuracy at multiple horizons that extend traditional 1-step

focused Bayes’ factors.

We also evaluate the economic significance within the context of the finance application

by considering the optimal portfolio choice of a representative investor with moderate risk

aversion. An advantage of our Bayesian setting is that we are not reduced to considering only

mean-variance utility, but can use more general constant relative risk aversion preferences

(see, e.g., Pettenuzzo, Timmermann, and Valkanov 2014). In particular, we construct a two

asset portfolio with a risk-free asset (rft ) and a risky asset (yt; industry returns) for each t,

by assuming the existence of a representative investor that needs to solve the optimal asset
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allocation problem

!?

⌧
= argmax

w⌧

E [U (!⌧ , y⌧+1) |H⌧ ] , (11)

with H⌧ indicating all information available up to time ⌧ , and ⌧ = 1, ..., t. The investor is

assumed to have power utility

U (!⌧ , y⌧+1) =

⇥
(1� !⌧ ) exp

�
rf
⌧

�
+ !⌧ exp

�
rf
⌧
+ y⌧+1

�⇤1��

1� �
, (12)

here, � is the investor’s coe�cient of relative risk aversion. The time ⌧ subscript reflects the

fact that the investor chooses the optimal portfolio allocation conditional on her available

information set at that time. Taking expectations with respect to the predictive density in

Eq. (5), we can rewrite the optimal portfolio allocation as

!?

⌧
= argmax

!⌧

Z
U (!⌧ , y⌧+1) p(y⌧+1|H⌧ )dy⌧+1, (13)

As far as DRS is concerned, the integral in Eq. (13) can be approximated using the draws

from the predictive density in Eq. (5). The sequence of portfolio weights !?

⌧
, ⌧ = 1, ..., t

is used to compute the investor’s realized utility for each model-combination scheme. Let

Ŵ⌧+1 represent the realized wealth at time ⌧ + 1 as a function of the investment decision,

we have

Ŵ⌧+1 =
⇥
(1� !?

⌧
) exp

�
rf
⌧

�
+ !?

⌧
exp

�
rf
⌧
+ y⌧+1

�⇤
, (14)

The certainty equivalent return (CER) for a given model is defined as the annualized value

that equates the average realized utility. We follow Pettenuzzo et al. (2014) and compare

the the average realized utility of DRS Û⌧ to the average realized utility of the model based

on the alternative predicting scheme i, over the forecast evaluation sample:

CERi =

"P
t

⌧=1 Û⌧,iP
t

⌧=1 Û⌧

# 1
1��

� 1, (15)

with the subscript i indicating a given model combination scheme, Û⌧,i = Ŵ 1��

⌧,i
/(1 � �),

and Ŵ⌧,i the wealth generated by the competing model i at time ⌧ according to Eq. (14).

A negative CERi shows that model i generates a lower (certainty equivalent) return than

our predictive strategy.
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4 Empirical Results

4.1 Forecasting Aggregate Inflation in the U.S.

The first application concerns monthly forecasting of annual inflation in the U.S., a context

of topical interest (Cogley and Sargent, 2005; Primiceri, 2005; Koop, Leon-Gonzalez, and

Strachan, 2009; Nakajima and West, 2013). We consider a balanced panel of N = 128

monthly macroeconomic and financial variables over the period 1986:01 to 2015:12. A

detailed description of how variables are collected and constructed is provided in McCracken

and Ng (2016). These variables are classified into eight main categories depending on their

economic meaning: Output and Income, Labor Market, Consumption and Orders, Orders

and Inventories, Money and Credit, Interest Rate and Exchange Rates, Prices, and Stock

Market.

The empirical application is conducted as shown in Figure 2; first, the decoupled models

are analyzed in parallel over 1986:01-1993:06 as a training period, simply estimating the

DLM in Eq. (9) to the end of that period to estimate the forecasts from each subgroup.

This continues over 1993:07-2015:12, but with the calibration of recouple strategies, which,

at each quarter t during this period, is run with the MCMC-based DRS analysis using data

from 1993:07 up to time t. We discard the forecast results from 1993:07-2000:12 as training

data and compare predictive performance from 2001:01-2015:12. The time frame includes

key periods that tests the robustness of the framework, such as the inflating and bursting

of the dot.com bubble, the building up of the Iraq war, the 9/11 terrorist attacks, the sub-

prime mortgage crisis and the subsequent great recession of 2008–2009. We consider a 1-,

3-, and 12-step step ahead forecasts, in order to reflect interests and demand in practice.

Panel A of Table 1 shows results aggregated over the testing sample. Our decouple-

recouple strategy improves the one-step ahead out-of-sample forecasting accuracy relative

to the group-specific models, LASSO, PCA, equal-weight averaging, and BMA. The RMSE

of DRS is about half of the one obtained by LASSO-type shrinkage, a quarter compared to

that of PCA, and significantly lower than equal-weight linear pooling and Bayesian model

averaging. In general, our decouple-recouple strategy exhibits improvements of 4% up to

over 250% in comparison to the competing predictive strategies considered. For each group-

specific model, we note that the Labor Market achieve similarly good point forecasts, which

suggests that the labor market and price levels might be intertwined and dominate the

aggregate predictive density. Also, past prices alone provide a good performance, consistent

with the conventional wisdom that a simple AR(1) model often represent a tough benchmark

to beat. Output and Income, Orders and Inventories, and Money and Credit, also perform
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well, with Output and Income outperforming Labor Market in terms of density forecasts.

Similarly, Panel B and panel C of Table 1 both show that DRS for the 3- and 12-

step ahead forecasts reflect a critical benefit of using our model combination scheme for

multi-step ahead evaluation. As a whole, the results are relatively similar to that of the

1-step ahead forecasts, with DRS outperforming all other methods, though the order of

performance is di↵erent for each horizon. Interestingly, the LASSO sensibly deteriorates as

the forecasting horizon increases when it comes to predicting the overall ahead distribution of

future inflation. Similarly, both the equal weight and BMA show a significant -50% in terms

of density forecast accuracy. It is fair to notice though that the LASSO predictive strategy

is the only one that does not explicitly consider time varying volatility of inflation, which is

a significant limitation of the methodology, even though stochastic volatility is something

that has been shown to substantially a↵ect inflation forecasting (see, e.g., Clark 2011 and

Chan 2017, among others). In terms of equal-weight pooling and BMA, we observe that

BMA does outperform equal weight, though this is because the BMA weights degenerated

quickly to Orders and Inventories for the 3-step ahead forecasts and Prices for 12-step

ahead forecasts, which highlights the problematic nature of BMA, as it acts more as a

model selection device rather than a forecasting calibration procedure.

Appendix C shows the recursive one-step ahead out-of-sample performance of DRS in

terms of predictive density. The results make clear that the out-of-sample performance

of DRS with respect to the benchmarking model combination/shrinkage schemes tend to

steadily increase throughout the sample.

Delving further into the dynamics of our decouple-recouple model combination scheme,

Figure 3 highlights the first critical component of the recoupling step, namely learning the

latent inter-dependencies among and between the subgroups. For the sake of interpretability

Figure 3 reports a rescaled version of the J-dimensional vector of posterior estimates ✓̂t =⇣
✓̂1t, . . . , ✓̂Jt

⌘0
by using a logistic transformation, i.e.,

✓̃jt =
exp

⇣
✓̂jt
⌘

P
J

j=1 exp
⇣
✓̂jt
⌘ , j = 1, . . . , J s.t. ✓̃jt 2 (0, 1),

JX

j=1

✓̃jt = 1. (16)

That is, each posterior estimates are rescaled to be inside the unit simplex, and sum to

one across groups of predictors. This allows to give a clearer interpretability of the relative

importance of these latent interdependencies through time. The left panel shows the results

for the one-step ahead forecast; we note that prior to the dot.com bubble, Money and

Credit, Output and Income, and Order and Inventories have the largest weight although

they quickly reduce their weight throughout the rest of the testing period.
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One large trend in coe�cients is with Labor Market, Prices, and Orders and Inventories.

After the dot.com crash, we see a large increase in weight assigned to Labor Market, making

it the group with the highest impact on the predictive density for most of the period. A

similar pattern also emerges with Interest and Exchange Rates at the early stages of the

great financial crisis, though to a lesser extent. Yet, Labor Market does not always represent

the group with the largest weight towards the end of the sample. In the aftermath of the the

dot.com crash the marginal weight of Prices trends significantly upwards, crossing Labor

Market around the sub-prime mortgage crisis, making it by far the highest weighted group

and the end of the test period.

Compared to the results from the one-step ahead forecasts, the right panel of Figure 3

shows that there are specific di↵erences in the dynamics of the latent inter-dependencies

when forecasting inflation on a longer horizon. More specifically, we note a significant de-

crease in importance of Labor Market before and after the great recession, and a marked

increase of the relative importance of Prices after the great financial crisis, with Labor Mar-

ket still quite significant towards the end of the sample. This is a stark contrast to the results

of the 1-step ahead forecasts and reflects an interesting dynamic shift in importance of each

subgroup that highlights the flexible specification of DRS for multi-step ahead modeling.

Since the parameters of the recoupling step are considered to be latent states, the condi-

tional intercept of the recoupling scheme can be interpreted as the aggregate bias, namely

a free-roaming component, which is not directly pinned down by any group of predictors.

Specifically, the time variation in the conditional intercept can be thought of as a reflection

of unanticipated (by the group-specific models, and as an extension, the group indicators)

economic shocks, which then a↵ect inflation forecasts with some lag.

Figure 4, the intercept in the synthesis model, clearly shows a sign switch in the aftermath

of the short recession in the early 2000s and the financial crisis of 2008–2009. In addition, we

note some specific di↵erences between the predictive bias for the one-step ahead (solid light-

blue line) and the three-step ahead (dashed light-blue line) forecasts. These di↵erences are

key to understand the long-term dynamics of inflation. For one, compared to the one-step

ahead conditional intercept, the conditional intercept of the longer-run forecast is clearly

amplified. This is quite intuitive, as we expect forecast performance to deteriorate as the

forecast horizon moves further away, and thus more reliant on the free-roaming component

of the latent states. Second, the bias of both forecasts substantially change in the aftermath

of both the mild recession in the US in the early 2000s and the great financial crisis. The

lag here should not look suspicious as the persistent time variation of both the sub-model

predictive densities and the recoupling step imply some stickiness in the bias adjustment.

Further results, including random partitioning in the decouple step and retrospective
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analysis of the latent interdependencies, can be found in Appendix C. The random par-

titioning results show that, consistent with the philosophy of utilizing “prior” knowledge,

qualitative partitioning outperforms random partitioning (reflecting a “flat” prior on the

sub-groups) in terms of both RMSE and LPDR. The retrospective analysis provides key

insight into the state of the economy, going beyond simple forecast improvements; a feature

that is unique and critical in our proposed strategy.

4.2 Forecasting the Equity Premium for Di↵erent U.S. Industries

We consider a large set of predictors to forecast monthly year-on-year excess returns in the

U.S. across di↵erent industries from 1970:01 to 2015:12. The choice of the predictors is

guided by previous academic studies and existing economic theory with the goal of ensuring

the comparability of our results with these studies (see, e.g., Lewellen 2004, Avramov 2004,

Goyal and Welch 2008, Rapach et al. 2010, and Dangl and Halling 2012, among others). We

collect monthly data on more than 63 pre-calculated financial ratios for all U.S. companies

which can be classified in eight main categories: Valuation, Profitability, Capitalization,

Financial Soundness, Solvency, Liquidity, E�ciency Ratios, and Other. Both returns and

predictors are aggregated at the industry level by constructing value-weighted returns in

excess of the risk-free rate and value-weighted averages of the single-firm predictors. Industry

aggregation is based on the four-digit SIC codes of the existing firm at each time t. We use

the ten industry classification codes obtained from Kenneth French’s website.

Together with industry-specific predictors, we use additional 14 aggregate explanatory

variables, which are divided into two additional categories; aggregate financials and macroe-

conomic variables. In particular, following Goyal and Welch (2008) and Rapach et al. (2010),

the aggregate financial predictors consist of the monthly realized volatility of the value-

weighted market portfolio (svar), the ratio of 12-month moving sums of net issues divided

by the total end-of-year market capitalization (ntis), the default yield spread (dfy) calcu-

lated as the di↵erence between BAA and AAA-rated corporate bond yields, and the term

spread (tms) calculated as the di↵erence between the long term yield on government bonds

and the Treasury-bill. Additionally, we consider the traded liquidity factor (liq) of Pástor

and Stambaugh (2003), and the year-on-year growth rate of the amount of loans and leases

in Bank credit for all commercial banks.

For the aggregate macroeconomic predictors, we utilize the inflation rate (infl), measured

as the monthly growth rate of the CPI All Urban Consumers index, the real interest rate (rit)

measured as the return on the treasury bill minus inflation rate, the year-on-year growth

rate of the initial claims for unemployment (icu), the year-on-year growth rate of the new
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private housing units authorized by building permits (house), the year-on-year growth of

aggregate industrial production (ip), the year-on-year growth of the manufacturers’ new

orders (mno), the M2 monetary aggregate growth (M2), and the year-on-year growth of the

consumer confidence index (conf) based on a survey of 5,000 US households.

The empirical application is conducted similar to the forecasting of U.S. inflation (see

Figure 2). More precisely, first, the decoupled models are analyzed in parallel over 1970:01-

1992:09 as a training period, simply estimating the DLM in Eq. (9) to the end of that period

to estimate the forecasts from each group of predictors. This continues over 1993:07-2015:12,

but with the calibration of recouple strategies, which, at each time t during this period, is run

with the MCMC-based DRS analysis using data from 1993:07 up to time t. We discard the

forecast results from 1993:07-2000:12 as training data and compare predictive performance

from 2001:01-2015:12. The time frame includes key periods, such as the early 2000s– marked

by the passing of the Gramm-Leach-Bliley act, the inflating and bursting of the dot.com

bubble, the ensuing financial scandals such as Enron and Worldcom and the 9/11 attacks–

and the great financial crisis of 2008–2009, which has been previously led by the burst of the

sub-prime mortgage crisis (see, e.g., Bianchi, Guidolin, and Ravazzolo 2017a). Arguably,

these periods exhibit sharp changes in financial markets, and more generally might lead

to substantial biases and time variation in the latent inter-dependencies among relevant

predictors.

Panel A of Table 2 shows that our decouple-recouple strategy improves the out-of-sample

forecasting accuracy relative to the group-specific models, LASSO, PCA, equal-weight av-

eraging, and BMA. Consistent with previous literature, the recursively computed equal-

weighted linear-pooling is a challenging benchmark to beat by a large margin (see, e.g.,

Diebold and Shin 2017). The performance gap between Equal Weight and DRS is not

as significant compared to others across industries. The out-of-sample performance of the

LASSO and PCA are worse than other competing model combination schemes as well as

the historical average (HA). These results hold for all the ten industries under investigation.

The outperformance of DRS is quite luminous related to the log predictive density ratios.

In fact, as seen in Panel B of Table 2, none of the alternative specifications come close to

DRS when it comes to predicting one-step ahead. With the only partial exception of the

Energy sector, DRS strongly outperforms both the competing model combination/shrinkage

schemes and the group-specific predictive densities.

Two comments are in order. First, while both the equal-weight linear pooling and the

sequential BMA tend to outperform the group-specific predictive regressions, the LASSO

strongly underperforms when it comes to predicting the density of future excess returns.

This result is consistent with the recent evidence in Diebold and Shin (2017). They show

21



that simple average combination schemes are highly competitive with respect to standard

LASSO shrinkage algorithm. In particular, they show that good out-of-sample performances

are hard to achieve in real-time forecasting exercise, due to the intrinsic di�culty of small-

sample real-time cross-validation of the LASSO tuning parameter.

Delving further into the dynamics of our DRS predictions, Figure 5 shows the posterior

mean estimates of the latent interdependencies among predictive densities which have been

rescaled by using a logistic transformation as in Eq.(16). For the ease of exposition we report

the results for a handful of industries, namely Consumer Durable, Consumer Non-Durable,

Manufacturing and Other. The posterior estimates for the other industries are available

upon request.

Although the interpretation of the dynamics of the latent inter-dependencies is not al-

ways clean, some interesting picture emerge. First, there is a substantial time variation

in the inter-dependencies among predictive densities. In particular, abrupt changes in the

relative e↵ects of groups of predictors can be identified around the great financial crisis, es-

pecially for the Manufacturing and Other industries. This is likely not due to idiosyncratic

volatility e↵ects, as we explicitly take into account time varying volatility for the unex-

pected returns for each of the group-specific regressions (see Eq. 9). Second, the “weight”

of aggregate financials on the aggregate predictive density tend to increase over time for all

industries with a rather stable upward trend. Third, the fact that we impose a random-

walk dynamics to the latent interdependencies does not prevent the predictive synthesis to

be stable over time. Indeed, the posterior estimates of �t for Consumer Non-Durables are

rather stable throughout the evaluation sample. Fourth, the role of Value and Financial

Soundness is highly significant in predictive stock returns, with substantial fluctuations and

di↵erences around the great financial crisis of 2008–2009. Financial Soundness indicators

involve variables such as cash flow over total debt, short-term debt over total debt, current

liabilities over total liabilities, long-term debt over book equity, and long-term debt over

total liabilities, among others. These variables arguably capture a company’s risk level in

the medium-to-long term as evaluated in relation to the company’s debt level, and therefore

collectively capture the ability of a company to manage its outstanding debt e↵ectively to

keep its operations. Quite understandably, the interplay between debt (especially medium

term debt) and market value increasingly a↵ect risk premia, and therefore the predicted

value of future excess returns in a significant manner.

The time variation in the latent inter-dependencies is reflected in the aggregate dynamic

bias, which is sequentially corrected within our decouple-recouple dynamic predictive frame-

work. Figure 6 shows the dynamics of the calibrated bias across di↵erent industries. The

figure makes clear that there is a substantial change in the aggregate bias in the aftermath
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of both the dot.com bubble and the great financial crisis. Which is to say, the aggregate

predictive density that is synthesized from each class of predictors is significantly recali-

brated around periods of market turmoil. Finally, one comment is in order. It should be

clear that our goal in this paper is not to over-throw other results from the empirical finance

literature with respect to the correlation among predictors and/or the misspecification of

others modeling frameworks, but to deal with two crucial aspects of in dynamic forecasting

of the equity premium: (1) capture the dynamic interplay between di↵erent, economically

motivated, predictive densities, and (2) sequentially learn and correct for eventual models’

misspecification.

4.2.1 Economic Significance. We now investigate the economic gains obtained by us-

ing our DRS strategy as opposed to one of the competing predictive strategies. In particular,

we take the perspective often used in returns predictability studies of a representative in-

vestor with power utility and moderate risk aversion, i.e., � = 5 (see, e.g., Barberis 2000,

Johannes, Korteweg, and Polson 2014, Pettenuzzo et al. 2014, and Pettenuzzo and Ravaz-

zolo 2016). Panel A of Table 3 shows the results for portfolios with unconstrained weights,

which means short sales are allowed to maximize the portfolio returns. In particular, we

report the CER of a competing strategy relative to the benchmark DRS as obtained from

Eq.(15).

The economic performance of our decouple-recouple strategy is rather stark in contrast

to both group-specific forecasts and the competing dimension reduction and forecasts com-

bination schemes. The realized CER from DRS is substantially larger than any of the other

model specifications across di↵erent industries. Not surprisingly, given that the statistical

accuracy of a simple recursive historical mean model is not remarkable, the HA model leads

to a very low CER. The results show that there is substantial economic evidence of returns

predictability: a representative investor using our predictive strategy could have earned con-

sistently positive utility gains across di↵erent U.S. industries relative to an investor using

the historical mean. Interestingly, the equally-weighted linear pooling and Bayesian model

averaging turn out to be both strong competitors, although still generate lower CERs.

Panel B of Table 3 shows that the performance gap in favor of DRS is confirmed under

the restriction that the portfolio weights have to be positive, i.e., long-only strategy. Our

predictive strategy generates a larger performance than BMA and equal-weight linear pool-

ing. Notably, both the performance of other benchmark strategies such as the LASSO and

dynamic PCA substantially improve by imposing no-short sales constraints.

In addition to the full sample evaluation above, we also study how the di↵erent models
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perform in real time. Specifically, we first calculate the CERi⌧ at each time ⌧ as

CERi⌧ =

"
Û⌧,i

Û⌧

# 1
1��

� 1, (17)

Similarly to Eq (15), a negative CERi⌧ can be interpreted as evidence that model i generates

a lower (certainty equivalent) return at time ⌧ than our DRS strategy. Panel A of Table 4

shows the average, annualized, single-period CER for an unconstrained investor. The results

show that the out-of-sample performance is robustly in favor of the DRS model-combination

scheme. As for the whole-sample results reported in Table 3, the equal-weighted linear

pooling turns out to be a challenging benchmark to beat. Yet, DRS generates constantly

higher average CERs throughout the sample.

Panel B shows the results for a short-sales constrained investor. Although the gap be-

tween DRS and the competing forecast combination schemes is substantially reduced, DRS

robustly generates higher performances in the order of 10 to 40 basis points, depending

on the industry and the competing strategy. As a whole, Tables 3-4 suggest that by se-

quentially learning latent interdependencies and biases improve the out-of-sample economic

performance within the context of a typical portfolio allocation example.

5 Conclusion

In this paper, we propose a framework for predictive modeling when the decision maker is

confronted with a large number of predictors. Our new approach retains all of the informa-

tion available by first decoupling a large predictive model into a set of smaller predictive

regressions, which are constructed by similarity among classes of predictors, then recoupling

them by treating each of the subgroup of predictors as latent states; latent states, which are

learned and calibrated via Bayesian updating, to understand the latent inter-dependencies

and biases. These inter-dependencies and biases are then e↵ectively mapped onto a latent

dynamic factor model, in order to provide the decision maker with a dynamically updated

forecast of the quantity of interest.

This is a drastically di↵erent approach from the literature where there were mainly two

strands of development; shrinking the set of active regressors by imposing regularization and

sparsity, e.g., LASSO and ridge regression, or assuming a small set of factors can summarize

the whole information in an unsupervised manner, e.g., PCA and factor models.

We implement and evaluate the proposed methodology on both a macroeconomic and a

finance application. We compare forecasts from our framework against a variety of standard

24



sparse and dense modeling benchmarks used in finance and macroeconomics within a linear

regression context. Irrespective of the performance evaluation metric, our decouple-recouple

model synthesis scheme emerges as the best for forecasting both the annual inflation rate

for the U.S. economy as well as the equity premium for di↵erent industries in the U.S.
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Table 1. Out-of-sample forecast performance: Forecasting inflation.

This table reports the out-of-sample comparison of our decouple-recouple framework against each individual
model, LASSO, PCA, equal weight average of models, and BMA for inflation forecasting. Performance
comparison is based on the Root Mean Squared Error (RMSE), and the Log Predictive Density Ratio
(LPDR) as in Eq. (10). The testing period is 2001/1-2015/12, monthly.

Panel A: Forecasting 1-Step Ahead Inflation

Group-Specific Models LASSO PCA EW BMA DRS

Output &

Income

Labor

Market
Consump.

Orders &

Invent.

Money

& Credit

Int. Rate &

Ex. Rates
Prices

Stock

Market

RMSE 0.2488 0.2247 0.7339 0.2721 0.2624 0.4258 0.2223 0.5027 0.3348 0.9329 0.2945 0.2721 0.2051

(%) -7.35% -7.37% -122.06% -8.73% -15.75% -40.56% -6.83% -59.59% -63.24% -354.85% -43.59% -32.68% -

LPDR -40.48 -42.05 -233.09 -59.15 -56.34 -134.18 -20.00 -171.21 -3785.15 -285.41 -88.81 -60.40 -

Panel B: Forecasting 3-Step Ahead Inflation

Group-Specific Models LASSO PCA EW BMA DRS

Output &

Income

Labor

Market
Consump.

Orders &

Invent.

Money

& Credit

Int. Rate &

Ex. Rates
Prices

Stock

Market

RMSE 0.3678 0.3670 0.7709 0.3697 0.3954 0.4990 0.3616 0.5658 0.3991 0.9491 0.4038 0.3697 0.3494

(%) -5.29% -5.05% -120.66% -5.81% -13.17% -42.87% -3.50% -61.95% -14.23% -171.65% -15.57% -5.81% -

LPDR -57.89 -204.15 -135.62 -40.99 -101.32 -56.79 -80.58 -80.85 -2765.79 -182.16 -20.02 -57.58 -

Panel C: Forecasting 12-Step Ahead Inflation

Group-Specific Models LASSO PCA EW BMA DRS

Output &

Income

Labor

Market
Consump.

Orders &

Invent.

Money

& Credit

Int. Rate &

Ex. Rates
Prices

Stock

Market

RMSE 0.5919 0.6136 0.8710 0.5864 0.6423 0.7129 0.6351 0.7129 0.6373 0.9898 0.6423 0.6322 0.5518

(%) -7.27% -11.20% -57.85% -6.27% -16.40% -29.19% -15.10% -29.19% -15.49% -79.37% -16.40% -14.57% -

LPDR -141.98 -478.53 -85.97 -101.93 -226.13 -74.32 -267.17 -50.40 -3597.14 -140.33 -512.64 -82.87 -
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Figure 1. Outline of the Methodology

This figure visually presents our strategy compared to standard combination strategies. Here, the cloud
above is considered the data generating process, dotted ovals are the data generating processes of the agents’
forecasts, the dotted lines are the agents’ projections, and the solid circles are the observed agents’ forecasts.
In our predictive synthesis framework (left panel), the agent-specific predictive densities are calibrated based
on latent inter-dependencies and biases (where the overlapping areas of dotted ovals are inter-dependencies
and areas o↵ the cloud are biases) and are combined using the synthesis function. Opposed to this, a
standard model combination scheme (right panel) ignores the latent inter-dependencies and biases and
minimizes a function of the observed agents’ forecasts.

(a) Our Framework (b) Standard Combination

Figure 2. Timeline of the Inflation Forecasting Exercise

This figure visually presents the timeline of the inflation forecasting exercise by separating the train sample,
the train and combine and the evaluation sample.
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Figure 3. Posterior Means of Rescaled Latent Inter-Dependencies for the U.S. Inflation
Forecasting

This figure shows the latent interdependencies across groups of predictive densities– measured through the
predictive coe�cients– used in the recoupling step for both the one- and three-month ahead forecasting
exercise. For the sake of interpretability we report the rescaled coe�cients which are normalized by using
a logistic transformation.

(a) 1-step ahead (b) 3-step ahead

Figure 4. Out-of-Sample Dynamic Predictive Bias for U.S. Inflation Forecasting

This figure shows the dynamics of the out-of-sample predictive bias obtained as the time-varying intercept
from the recoupling step of the DRS strategy. The sample evaluation period is 01:2001 to 12:2015.
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Figure 5. Posterior Means of Rescaled Latent Inter-Dependencies for the U.S. Industry
Equity Premium

This figure shows the one-step ahead latent interdependencies across groups of predictive densities– mea-
sured through the predictive coe�cients– used in the recoupling step. For the ease of exposition we report
the results for four representative industries, namely, Consumer Durables, Consumer non-Durables, Manu-
facturing, Shops, Utils and Other. Industry aggregation is based on the four-digit SIC codes of the existing
firm at each time t following the industry classification from Kenneth French’s website. The sample period
is 01:1970-12:2015, monthly.

(a) Consumer Durable (b) Cons. Non-Durable

(c) Manufacturing (d) Other

(e) Utils (f) Shops
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Figure 6. Out-of-Sample Dynamic Predictive Bias for the U.S. Industry Equity Premium

This figure shows the dynamics of the out-of-sample predictive bias obtained as the time-varying intercept
from the recoupling step of the DRS strategy. The figure reports the results across all industries. The
sample period is 01:2001-12:2015, monthly. The objective function is the one-step ahead density forecast of
stock excess returns across di↵erent industries. Industry classification is based on 4-digit SIC codes.
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Appendix:

Large-Scale Dynamic Predictive Regressions
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Outline

This Appendix provides additional details regarding our methodology, the estimation

strategy, some test based on a simulated dataset, as well as some additional out-of-sample

empirical results. Note that all notations and model definitions are similar to those in the

main article.

A MCMC Algorithm

In this section we provide details of the Markov Chain Monte Carlo (MCMC) algorithm

implemented to estimate the BPS recouple step. This involves a sequence of standard

steps in a customized two-component block Gibbs sampler: the first component learns

and simulates from the joint posterior predictive densities of the subgroup models; this the

“learning” step. The second step samples the predictive synthesis parameters, that is we

“synthesize” the models’ predictions in the first step to obtain a single predictive density

using the information provided by the subgroup models. The latter involves the FFBS

algorithm central to MCMC in all conditionally normal DLMs ( Frühwirth-Schnatter

1994; West and Harrison 1997, Sect 15.2; Prado and West 2010, Sect 4.5).

In our sequential learning and forecasting context, the full MCMC analysis is per-

formed in an extending window manner, re-analyzing the data set as time and data

accumilates. We detail MCMC steps for a specific time t here, based on all data up until

that time point.

A.1 Initialization:

First, initialize by setting F t = (1, xt1, ..., xtJ)0 for each t = 1:T at some chosen initial

values of the latent states. Initial values can be chosen arbitrarily, though following

McAlinn and West (2017) we recommend sampling from the priors, i.e., from the forecast

distributions, xtj ⇠ htj(xtj) independently for all t = 1:T and j = 1:J .

Following initialization, the MCMC iterates repeatedly to resample two coupled sets of

conditional posteriors to generate the draws from the target posterior p(x1:T ,�1:T |y1:T ,H1:T ).

These two conditional posteriors and algorithmic details of their simulation are as follows.
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A.2 Sampling the synthesis parameters �1:T

Conditional on any values of the latent agent states, we have a conditionally normal DLM

with known predictors. The conjugate DLM form,

yt = F
0
t✓t + ⌫t, ⌫t ⇠ N(0, vt),

✓t = ✓t�1 + !t, !t ⇠ N(0, vtW t),

has known elements F t,W t and specified initial prior at t = 0. The implied conditional

posterior for �1:T then does not depend on H1:T , reducing to p(�1:T |x1:T , y1:T ). Standard

Forward-Filtering Backward-Sampling algorithm can be applied to e�ciently sample these

parameters, modified to incorporate the discount stochastic volatility components for vt

(e.g. Frühwirth-Schnatter 1994; West and Harrison 1997, Sect 15.2; Prado and West 2010,

Sect 4.5).

A.2.1 Forward filtering:

One step filtering updates are computed, in sequence, as follows:

1. Time t� 1 posterior:

✓t�1|vt�1,x1:t�1, y1:t�1 ⇠ N(mt�1,Ct�1vt�1/st�1),

v
�1
t�1|x1:t�1, y1:t�1 ⇠ G(nt�1/2, nt�1st�1/2),

with point estimates mt�1 of ✓t�1 and st�1 of vt�1.

2. Update to time t prior:

✓t|vt,x1:t�1, y1:t�1 ⇠ N(mt�1,Rtvt/st�1) with Rt = Ct�1/�,

v
�1
t |x1:t�1, y1:t�1 ⇠ G(�nt�1/2, �nt�1st�1/2),

with (unchanged) point estimates mt�1 of ✓t and st�1 of vt, but with increased un-

certainty relative to the time t�1 posteriors, where the level of increased uncertainty

is defined by the discount factors.

3. 1-step predictive distribution: yt|x1:t, y1:t�1 ⇠ T�nt�1(ft, qt) where

ft = F
0
tmt�1 and qt = F

0
tRtF t + st�1.
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4. Filtering update to time t posterior:

✓t|vt,x1:t, y1:t ⇠ N(mt,Ctvt/st),

v
�1
t |x1:t, y1:t ⇠ G(nt/2, ntst/2),

with defining parameters as follows:

i. For ✓t|vt : mt = mt�1 +Atet and Ct = rt(Rt � qtAtA
0
t),

ii. For vt : nt = �nt�1 + 1 and st = rtst�1,

based on 1-step forecast error et = yt�ft, the state adaptive coe�cient vector (a.k.a.

“Kalman gain”) At = RtF t/qt, and volatility estimate ratio rt = (�nt�1+e
2
t/qt)/nt.

A.2.2 Backward sampling:

Having run the forward filtering analysis up to time T, the backward sampling proceeds

as follows.

a. At time T : Simulate �T = (✓T , vT ) from the final normal/inverse gamma posterior

p(�T |x1:T , y1:T ) as follows. First, draw v
�1
T from G(nT/2, nT sT/2), and then draw

✓T from N(mT ,CTvT/sT ).

b. Recurse back over times t = T � 1, T � 2, . . . , 0 : At time t, sample �t = (✓t, vt) as

follows:

i. Simulate the volatility vt via v
�1
t = �v

�1
t+1+�t where �t is an independent draw

from �t ⇠ G((1� �)nt/2, ntst/2),

ii. Simulate the state ✓t from the conditional normal posterior p(✓t|✓t+1, vt,x1:T , y1:T )

with mean vector mt + �(✓t+1 �mt) and variance matrix Ct(1� �)(vt/st).

A.3 Sampling the latent states x1:T

Conditional on the sampled values from the first step, the MCMC iterate completes with

resampling of the posterior joint latent states from p(x1:t|�1:t, y1:t,H1:t). We note that

xt are conditionally independent over time t in this conditional distribution, with time t

conditionals

p(xt|�t, yt,Ht) / N(yt|F
0
t✓t, vt)

Y

j=1:J

htj(xtj) where F t = (1, xt1, xt2, ..., xtJ)
0
. (A.1)
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Since htj(xtj) has a density of Tntj(htj, Htj), we can express this as a scale mixture of

Normal, N(htj, Htj), with H t = diag(Ht1/�t1, Ht2/�t2, ..., HtJ/�tJ), where �tj are inde-

pendent over t, j with gamma distributions, �tj ⇠ G(ntj/2, ntj/2).

The posterior distribution for each xt is then sampled, given �tj, from

p(xt|�t, yt,Ht) = N(ht + btct,H t � btb
0
tgt) (A.2)

where ct = yt � ✓t0 � h
0
t✓t,1:J , gt = vt + ✓

0
t,1:Jqt✓t,1:J , and bt = qt✓t,1:J/gt. Here, given the

previous values of �tj, we have H t = diag(Ht1/�t1, Ht2/�t2, ..., HtJ/�tJ) Then, conditional

on these new samples of xt, updated samples of the latent scales are drawn from the

implied set of conditional gamma posteriors �tj|xtj ⇠ G((ntj + 1)/2, (ntj + dtj)/2) where

dtj = (xtj � htj)2/Htj, independently for each t, j. This is easily computed and then

sampled independently for each 1:T to provide resimulated agent states over 1:T.

A.4 Forecasting

In terms of forecasting, at time t, we generate predictive distributions of the object of

interest as follows: (i) For each sampled �t from the posterior MCMC above, draw vt+1

from its stochastic dynamics, and then ✓t+1 conditional on ✓t, vt+1 from Eq.(7b)– this

gives a draw �t+1 = {✓t+1, vt+1} from p(�t+1|y1:t,H1:t); (ii) draw xt+1 via independent

sampling from ht+1,j(xt+1,j), (j = 1:J); (iii) conditional on the parameters and latent

states draw yt+1 from Eq.(7a). Repeating, this generates a random sample from the

1-step ahead synthesized forecast distribution for time t+ 1.

Forecasting over multiple horizons is often of equal or greater importance than 1-step

ahead forecasting. However, forecasting over longer horizons is typically more di�cult

than over shorter horizons, since predictors that are e↵ective in the short term might not

be e↵ective in the long term. Our modeling framework provides a natural and flexible

procedure to recouple subgroups over multiple horizons.

In general, there are two ways to forecast over multiple horizons, through traditional

DLM updating or through customized synthesis. The former, direct approach follows

traditional DLM updating and forecasting via simulation as for 1-step ahead, where the

synthesis parameters are simulated forward from time t to t + k. The latter, customized

synthesis involves a trivial modification, in which the model at time t�1 for predicting yt

is modified so that the k-step ahead forecast densities made at time t� k, i.e., ht�k,j(xtj)

5



replace htj(xtj). While the former is theoretically correct, it does not address how e↵ective

predictors (and therefore subgroups) can drastically change over time as it relies wholly

on the model as fitted, even though one might be mainly interested in forecasting several

steps ahead. McAlinn and West (2017) find that, compared to the direct approach, the

customized synthesis approach significantly improves multi-step ahead forecasts, since the

dynamic model parameters, {✓t, vt}, are now explicitly geared to the k-step horizon.

B Simulation Study

We consider a simple– yet relevant– simulation study to illustrate and highlight our pro-

posed methodology and its implications for real data applications. This simulation study

allows to isolate the gains coming from the combination and re-calibration steps as op-

posed to the inherent dynamics of the synthesis function, since the data generating process

impose stationarity.

To construct a meaningful simulation study, the data generating process must contain

certain characteristics that represent conditions often observed empirically. The first

characteristic is that all covariates need to be correlated, since most covariates in financial

applications are– to a varying degree– correlated. Intuitively, this is a characteristic that is

coherent with observation, though not always taken into account or explicitly considered.

In terms of dimension reduction techniques, LASSO-type shrinkage methods fail with

inconsistent model selection when covariates are highly correlated (Zhao and Yu, 2006).

On the other hand, PCA methods perform well when the correlation is high, due to its

ability to extract the underlying latent correlation structure, though underperforms when

the correlation is mild and change over time.

The second characteristic is that there are omitted variables and the true data gener-

ating process is unattainable, i.e., all models are wrong. This is indeed a critical feature,

as we cannot realistically expect any model to be fully specified in economic or financial

studies. Additionally, the omitted variable might be the key component in understanding

the data process. For example, if we are interested in modeling/forecasting the economy,

we might consider a latent variable, such as the economic activity, that, while realizes

itself through observed variables, e.g., unemployment, is not observed. Thus, a critical

component of a modeling technique would necessarily have to account for the biases in-

duced by the omitted variables. These two characteristics build the main components of

our simulation study.
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We simulate data by the following data generating process:

y = �2z1 + 3z2 + 5z3 + ✏, ✏ ⇠ N(0, 0.01), (B.3a)

z1 =
1

3
z3 + ⌫1, ⌫1 ⇠ N

✓
0,

2

3

◆
, (B.3b)

z2 =
1

5
z3 + ⌫2, ⌫2 ⇠ N

✓
0,

4

5

◆
, (B.3c)

z3 = ⌫3, ⌫3 ⇠ N(0, 0.01), (B.3d)

where only {y, z1, z2} are observed and z3 is omitted. We note that, due to {z1, z2} being

generated from z3, they are both correlated, though not to an extreme degree to be unre-

alistic. Since {z1, z2} are the only two variables observed, we satisfy the aforementioned

first characteristic. Secondly, since {y, z1, z2} are all generated by z3, and z3 is not ob-

served, we have a serious omitted variable that drives all the data observed. Because of

this, all models that can be constructed will be misspecified (possible models are z1 or z2

only, or both {z1, z2}). Additionally, because z3 drives everything else, there is significant

bias in all models generated (i.e. models have high bias and small variance).

We generate N = 510 samples, use the first ten to fit the initial model, and forecast

500 data points. We consider eight di↵erent strategies that are also considered in the

empirical application. A more detailed description of these models will be provided in

Section 3 below. The first three models are subset of the possible models with either {z1},

{z2}, or {z1, z2} are considered as regressors and the models are estimated using ordinary

least squares. We also consider a penalized LASSO-type regression and a PCA regression,

where in the first step the latent principle component factors are extracted and used as

covariates in a linear regression.

Further, we construct two model combination strategies combining two models gener-

ated from linear regressions with only {z1} or {z2}, i.e., p(y|Aj) = �̂zj + ✏j for j = 1, 2,

where each �̂j is the ordinary least squares estimate. The first model combination scheme

is a simple average of the two models, also known as equal weight averaging. It is im-

portant to note that, since we only have two covariates, the equal weight averaging is

equivalent to the complete subset regression of Elliott et al. (2013). We also consider

Bayesian model averaging (BMA), where the weights are determined by the marginal

likelihood of the predictive density.

Finally, we compare the seven competing strategies against a simplified, namely time

invariant, version of our proposed “decouple-recouple” predictive strategy. Here, the
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latent states are, as with the two forecast combination schemes, the forecasts from the two

linear regressions with {z1} or {z2}, but the synthesis function is time invariant instead of

the dynamic specification. This yields a simpler setup for DRS by removing the dynamics

from the equation and following suit with the model and strategies compared. Here,

the synthesis parameters are estimated using a simple Bayesian linear regression with

non-informative priors (Je↵reys’ prior).

We test the predictive performance by measuring the Root Mean Squared one-step

ahead Forecast Error (RMSE) for the first n = 10, 50, 100, 250, 500, as well as for the

last l = 400, 300, 200, 100 data points to emulate a extending window analysis. Table B.1

shows the results from the simulation study, with Panel A being the result of the first n

samples and Panel B being the result of the last l samples. Looking at Panel A, we see

that, with very small samples, DRS significantly improves over the other methods with

an improvement of approximately 60%.

As the sample increases, we see the improvements of DRS shrink, finally settling

around 1%. Overall, the gains are small, but is clearly persistent, showing how DRS is

able to improve forecasts by learning biases and interdependencies and incorporating the

information to improve forecasts. Comparatively, we note that LASSO does the worst of

the models and strategies considered, while PCA does the best, which is what we expect,

since z1 and z2 are substantially correlated. Equal weight averaging and BMA also fail

and the RMSE does not improve on both models, and in fact its predictive performance is

roughly the average of the two models. The full model, interestingly, does worse than the

model combination strategies, suggesting that model combination is a legitimate strategy

when the covariates are correlated and variables are omitted.

Panel B emulates a setting where a researcher decides to use the first number of

samples as a learning period and focuses on sampling the last l in an extending window

fashion, a setting familiar in time series analysis. Here, the results are more pronounced,

with DRS improving over the other methods by nearly 2% for all l considered. Overall,

the simulation study validates the predictive properties of our predictive strategy in a

controlled setting; where the study is set up to emulate data often observed in economics

and finance, albeit simplified.
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C Further Empirical Results

This Section reports further empirical results for both applications. In particular, we

report the out-of-sample recursive Log Predictive Density Ratios (LPDR) as calculated by

Eq.(9) in the main text. As far as the application on forecasting the equity premium across

industries is concerned, we also report a recursive measure of CER which complement the

full sample estimates reported in Table 3 and 4 in the main text.

C.1 Forecasting the Aggregate U.S. Inflation

Delving further into the dynamics of the LDPR, Figure C.1 shows the one-step ahead out-

of-sample performance of DRS in terms of predictive density. The figure makes clear that

the out-of-sample performance of DRS with respect to the benchmarking model combi-

nation/shrinkage schemes tend to steadily increase throughout the sample. Interestingly,

the LASSO sensibly deteriorates when it comes to predicting the overall one-step ahead

distribution of future inflation. Similarly, both the equal weight and BMA show a signif-

icant -50% in terms of density forecast accuracy. Consistent with the results in Table (1)

in the main text, both Labor Market and Prices on their own outperform the competing

combination/shrinkage schemes, except for DRS. Output and Income, Orders and Inven-

tories, and Money and Credit, also perform well, with Output and Income outperforming

Labor Market in terms of density forecasts.

On the other hand, we note that Consumption, Interest Rate and Exchange Rates,

and the Stock Market, perform the worst compared to the rest by a large margin. LASSO

fails poorly in this exercise due to the persistence of the data, and erratic, inconsistent

regularization the LASSO estimator imposes. Also, it is fair to notice that the LASSO

predictive strategy is the only one that does not explicitly consider time varying volatility

of inflation, which is a significant limitation of the methodology, even though stochastic

volatility is something that has been shown to substantially a↵ect inflation forecasting

(see, e.g., Clark 2011 and Chan 2017, among others). In terms of equal-weight pooling

and BMA, we observe that BMA does outperform equal weight, though this is because

the BMA weights degenerated quickly to Orders and Inventories, which highlights the

problematic nature of BMA, as it acts more as a model selection device rather than a

forecasting calibration procedure.

We further our analysis by comparing our DRS strategy, using qualitative information
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to partition the sub-groups, to the same DRS strategy with random partitions, where

sub-groups are chosen at random over the covariate space. This di↵erence in partition

strategy reflects the di↵erence in the “prior” of the decision maker on the covariate space,

with the qualitative partition strategy reflecting an “informative” prior and the random

partition strategy reflecting a “flat” prior. We compare the results of the qualitative

partition against 10 iterations of the random partition using 1-step ahead out-of-sample

RMSE (Figure C.2) and LPDR (Figure C.3). For both measures, we find that the qual-

itative partition strategy to outperform all iterations of the random partition strategy.

In terms of RMSE, we find that the qualitative partition strategy to outperform random

partitioning throughout almost all of the testing period. For LPDR, we similarly find

the qualitative strategy to outperform random partitioning, although there are certain

periods where random partitioning performs better. Notably, we find increased variation

in LPDR at around 2007, before the great financial crisis. We finally note that, although

the random partitioning strategy does underperform compared to qualitative partitioning,

it still outperforms all of the sub-groups and models/strategies considered in the main

analysis for both RMSE and LPDR. These results are consistent with Bayesian reason-

ing, where informative priors can provide critical information for improvement over flat

priors. Since these information are available (provided through the economic grouping

in the data), using it improves forecasts in both metrics. However, in situations where

information is not available or poor, we can assume some clustering strategy– that reflects

the decision maker’s view on the data– to be useful and beneficial as well.

C.2 Retrospective Analysis of Aggregate U.S. Inflation

While the main scope of the paper is on forecasting and basic interpretability from the

synthesis weights, using BPS within the DRS framework allows for further analysis into

the biases and inter-dependencies of the subgroups: a topic covered here. Note that all

analyses in this section is retrospective, that is, the results are given using all of the data

in the period examined (i.e. the results are not forward-looking, but looking back from

the end of the analysis).

We first analyze the posterior latent correlation between the subgroups by simply

taking the posterior MCMC samples and computing the correlation. Here, we report

three snapshots within the time period examined; 12:2003 (Figure C.4), a period before

the crisis, 12:2008 (Figure C.5), during the great financial crisis, and 12:2014 (Figure

C.6), after the crisis. The three periods represent starkly di↵erent economic conditions
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that exemplify how BPS captures the time varying inter-dependency.

Looking at Figure C.4, a period of relative stability, we do not see strong levels of

correlation between the subgroups, apart from some mild negative correlation between

Labor Market, and Interest Rate and Exchange Rates and Prices, as well as some positive

correlations. Moving to Figure C.5, during the crisis, the positive correlations between

subgroups lessens overall and a strong negative correlation between Prices and Labor

Market as well as Money and Credit appear, alongside positive correlation between Prices

and Consumption and Orders and Inventories. The lessening of the positive correlations

amongst subgroups suggests a dissipation of predictive information, meaning that de-

pendence among predictability has been mostly lost during the crisis. This is expected

during a crisis, as most models tend to deteriorate. On the other hand, the emergence of

Prices, and its dependence with some of the other series is notable. This result echoes the

dependence patterns seen in the forward looking synthesis weights in Figure 3, where the

increase in the information provided from Prices coincides with the decrease in subgroups

such as Labor Market. Finally, post-crisis (Figure C.6), we see another pattern emerge,

where some positive correlation emerging from the Labor Market, while the strong corre-

lations around Prices are still persistent. In contrast to previous periods, Stock Market

looses almost all of its dependence with the other subgroups, which highlights the disjoint

of the stock market to the overall economy after the crisis.

We further our retrospective analysis by considering the empirical R2 between the

latent subgroups. The empirical R2 is defined as the variance of one subgroup explained

by all of the other subgroups (Figure C.7) or by another subgroup (paired: Figure C.8).

This measure provides an alternative view of dependencies from the correlation in Figure

C.4-C.6, as it provides a broader dependence structure of a subgroup and another (group

or individual) subgroup, as well as an easier exposition of the dependence over time.

The grouped empirical R2 (Figure C.7) provides a metric to measure how di↵erent

a subgroup is from the other groups. Thus, the higher the R2, the more similar it is

to the rest. A general pattern is that post crises (namely the dot.com bubble and the

great financial crisis), there is an overall increase in R2, which is expected as groups tend

to “herd” together when uncertainty increases. A particularly interesting result is the

connection between Interest Rate and Exchange Rates and Stock Market. In the post-

dot.com bubble period, the patterns of R2 between the two subgroups are disjoint, with

the former following the other subgroups closely. This could be seen as a sign of a bubble,

as the information provided by the stock market clearly cannot be explained by the other
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aspects of the economy (compared to the bond/currency market). However, before and

after the great financial crisis, we see an almost identical trajectory between the two,

indicating a shift in the relation of bonds/currency and stocks before and after the crisis,

where the stock market is more “in-line” with the others.

To get a better picture of joint dependencies of subgroups, we use the paired empirical

R2 (Figure C.8). Here, instead of going over all of the combinations, we focus on two key

subgroups; Labor Market and Prices. For Labor Market, Prices and Output and Income

are the two dominant subgroups of dependency. The dependencies of the two interweave,

with switches occurring around the two crises. Prices, on the other hand, is primarily

dependent on the Labor Market, with Money and Credit creeping up at the end of the

analysis.

C.3 Forecasting the Equity Premium for Di↵erent U.S. Indus-

tries

Figure C.9 shows the whole out-of-sample path of density forecasting accuracy across

modeling specifications. For the ease of exposition, we report the results for Consumer

Durable, Consumer Non-Durable, Manufacturing, Telecomm, HiTech, and Other indus-

tries. The results for the remaining industries are quantitatively similar and available

upon request. Top-left panel shows the out-of-sample path for the Consumer Durable

sector. The DRS compares favorably against alternative predictive strategies. Similar

results appear in other sectors.

As a whole, Figure C.9 shows clear evidence of how the competing model combina-

tion/shrinkage schemes possibly fails to rapidly adapt to structural changes. Although

the performance, pre-crisis, is good, it is notable that there is a large loss in predictive

performance after the great recession in 2008/2009. DRS consistently shows a perfor-

mance robust to shifts and shocks and stays in the best group of forecasts throughout the

testing sample.

The out-of-sample performance of the LASSO sensibly deteriorates when it comes to

predicting the overall one-step ahead distribution of excess returns. The equal-weight

linear-pooling turns out to out-perform the competing combination schemes but DRS,

as well as the group-specific predictive regressions. Arguably, the strong outperformance

of DRS is due to its ability to quickly adjust to di↵erent market phases and structural

changes in the latent inter-dependencies across groups of predictors. In addition, unlike
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others, the LASSO-type predictive strategy does not explicitly take into consideration

stochastic volatility in the predictive regression, which possibly explains the substantial

and persistent underperformance in the aftermath of the great financial crisis, a period of

abrupt market fluctuations.

To parallel the results above, we also inspect the economic performance over time by

reporting the cumulative sum of the CERs:

CCERit =
tX

⌧=1

log (1 + CERi⌧ ) , (C.4)

where CERit is calculated as in Eq.(15) in the main text. Figure C.10 shows the out-of-

sample cumulative CER for the Consumer durable, Consumer non-durable, Telecomm,

Health, Shops and Other industrial sectors. Except for a few nuances, e.g., the pre-crisis

period for Telecomm and Other, the DRS combination scheme constantly outperforms

the other predictive strategies.

Interestingly, although initially generating a good CER, the LASSO failed to adjust to

the abrupt underlying changes in the predictability of industry returns around the crisis.

Despite the initial cumulative CER being slightly in favor of the LASSO vis-a-vis DRS,

such good performance disappears around the great financial crisis and in the aftermath

of the consequent aggregate financial turmoil. As a result, DRS generates a substantially

higher cumulative CER by the end of the forecasting sample, showing much stronger

real-time performance.

Results are virtually the same by considering an investor with short-sales constraints.

Figure C.11 shows the out-of-sample cumulative CER for the Consumer durable, Con-

sumer non-durable, Telecomm, Health, Shops and Other industrial sectors, but now im-

posing that the vector of portfolio weights should be positive and sum to one, that is,

no-short sale constraints are imposed.

The picture that emerges is similar to the above. Except for a transitory period

during the great financial crisis for the Health sector, the DRS strategy significantly

outperforms all competing specifications. As before, by imposing no-short constraints the

gap between DRS the competing specifications is substantially reduced, thought the gains

are persistent.
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Table B.1. Simulation Study: Out-of-Sample Forecasting Performance

This table reports the out-of-sample comparison of our decouple-recouple framework against each indi-
vidual model, full model, LASSO, PCA, equal weight average of models, and BMA, for simulated data.
Performance comparison is based on the Root Mean Squared Error (RMSE).

Panel A: Forecasting 1-Step Ahead Simulation Data (based on first n samples)

n z1 z2 {z1, z2} LASSO PCA EW BMA DRS

10 2.8768 2.8820 2.8830 2.7988 2.8613 2.8793 2.8793 1.7923

-60.51% -60.80% -60.85% -56.16% -59.64% -60.65% -60.65% -

50 2.8538 2.8618 2.8578 2.8557 2.8464 2.8577 2.8575 2.7568

-3.52% -3.81% -3.66% -3.58% -3.25% -3.66% -3.65% -

100 2.9091 2.9121 2.9114 2.8993 2.9020 2.9106 2.9105 2.8977

-0.39% -0.50% -0.47% -0.06% -0.15% -0.44% -0.44% -

250 2.8564 2.8583 2.8577 2.8606 2.8532 2.8573 2.8573 2.8475

-0.31% -0.38% -0.36% -0.46% -0.20% -0.35% -0.34% -

500 2.7506 2.7520 2.7516 2.7526 2.7494 2.7513 2.7513 2.7197

-1.14% -1.19% -1.17% -1.21% -1.09% -1.16% -1.16% -

Panel B: Forecasting 1-Step Ahead Simulation Data (based on last l samples)

l z1 z2 {z1, z2} LASSO PCA EW BMA DRS

400 2.6926 2.6934 2.6931 2.6973 2.6931 2.6930 2.6930 2.6573

-1.33% -1.36% -1.35% -1.51% -1.35% -1.34% -1.34% -

300 2.6269 2.6278 2.6272 2.6237 2.6281 2.6274 2.6273 2.5852

-1.62% -1.65% -1.63% -1.49% -1.66% -1.63% -1.63% -

200 2.6772 2.6779 2.6777 2.6797 2.6777 2.6776 2.6776 2.6183

-2.25% -2.27% -2.27% -2.34% -2.27% -2.26% -2.26% -

100 2.6186 2.6191 2.6188 2.6214 2.6182 2.6189 2.6189 2.5717

-1.83% -1.85% -1.83% -1.93% -1.81% -1.84% -1.84% -
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Figure C.1. Out-of-sample LPDR for Forecasting U.S. Inflation

This figure shows the dynamics of the out-of-sample Log Predictive Density Ratio (LPDR) as in Eq.(9)
obtained for each of the group-specific predictors, by taking the results from a set of competing model
combination/shrinkage schemes, e.g., Equal Weight, and Bayesian Model Averaging (BMA). LASSO not
included due to scaling. The sample period is 01:2001-12:2015, monthly. The objective function is the
one-step ahead density forecast of annual inflation.

Figure C.2. Out-of-sample RMSE for Forecasting U.S. Inflation: Comparison between
qualitative and random partitioning. Purple line is DRS using qualitative partitioning
and black lines are DRS results using partitions chosen at random (computed over 10
random partitions).
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Figure C.3. Out-of-sample LPDR for Forecasting U.S. Inflation: Comparison between
qualitative and random partitioning. LPDR is compared against qualitative partitioning,
with random partitioning being computed over 10 random partitions.

Figure C.4. US inflation rate forecasting: Retrospective posterior correlations of latent
agent factors at 12:2003.
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Figure C.5. US inflation rate forecasting: Retrospective posterior correlations of latent
agent factors at 12:2008.

Figure C.6. US inflation rate forecasting: Retrospective posterior correlations of latent
agent factors at 12:2014.
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Figure C.7. US inflation rate forecasting: Retrospective latent dependencies

This figure shows the retrospective latent inter-dependencies across groups of predictive densities used
in the recoupling step. The latent dependencies are measured using the MC-empirical R2, i.e., variation
explained of one model given the other models. These latent components are sequentially computed at
each of the t = 1:180 months.
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Figure C.8. US inflation rate forecasting: Retrospective latent dependencies (paired)

This figure shows the retrospective paired latent inter-dependencies across groups of predictive densities
used in the recoupling step. The latent dependencies are measured using the paired MC-empirical R2,
i.e., variation explained of one model given another model, for Labor Market (top) and Prices (bottom).
These latent components are sequentially computed at each of the t = 1:180 months.
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Figure C.9. Out-of-sample LPDR for Forecasting the Equity Premium for Di↵erent
Industries in the U.S.

This figure shows the dynamics of the out-of-sample Log Predictive Density Ratio (LPDR) as in Eq.(7)
obtained for each of the group-specific predictors, by taking the historical average of the stock returns
(HA), and the results from a set of competing model combination/shrinkage schemes, e.g., LASSO, Equal
Weight, and Bayesian Model Averaging (BMA). For the ease of exposition we report the results for
four representative industries, namely, Consumer Durables, Consumer Non-Durables, Telecomm, Health,
Shops, and Other. Industry aggregation is based on the four-digit SIC codes of the existing firm at each
time t following the industry classification from Kenneth French’s website.

(a) Consumer Durable (b) Cons. Non-Durable

(c) Telecomm (d) Other

(e) Health (f) Shops
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Figure C.10. Out-of-Sample Cumulative CER without Constraints

This figure shows the dynamics of the out-of-sample Cumulative Certainty Equivalent Return (CER) for
an unconstrained as in Eq. (C.4) obtained for each of the group-specific predictors, by taking the historical
average of the stock returns (HA), and the results from a set of competing model combination/shrinkage
schemes, e.g., LASSO, Equal Weight, and Bayesian Model Averaging (BMA). For the ease of exposition
we report the results for four representative industries, namely, Consumer Durables, Consumer Non-
Durables, Telecomm, Health, Shops, and Other. Industry aggregation is based on the four-digit SIC
codes of the existing firm at each time t following the industry classification from Kenneth French’s
website.

(a) Consumer Durable (b) Cons. Non-Durable

(c) Telecomm (d) Other

(e) Health (f) Shops
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Figure C.11. Out-of-sample Cumulative CER with Short-Sale Constraints

This figure shows the dynamics of the out-of-sample Cumulative Certainty Equivalent Return (CER) for
a short-sale constrained investor as in Eq. (C.4) obtained for each of the group-specific predictors, by
taking the historical average of the stock returns (HA), and the results from a set of competing model
combination/shrinkage schemes, e.g., LASSO, Equal Weight, and Bayesian Model Averaging (BMA). For
the ease of exposition we report the results for four representative industries, namely, Consumer Durables,
Consumer Non-Durables, Telecomm, Health, Shops, and Other. Industry aggregation is based on the
four-digit SIC codes of the existing firm at each time t following the industry classification from Kenneth
French’s website.

(a) Consumer Durable (b) Cons. Non-Durable

(c) Telecomm (d) Other

(e) Health (f) Shops
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