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Abstract

The use of instrumental variables (IVs) to identify causal effects is com-
mon practice in empirical economics, but it is fundamentally impossible to
test their validity. However, assumptions sufficient for the identification of
local average treatment effects (LATEs) jointly generate necessary condi-
tions in the observed data that allow to refute an IV’s validity. Suitable
tests exist, but they may not be able to detect even severe violations of IV
validity in practice. In this paper, we use the causal tree (CT) algorithm by
Athey and Imbens (2016) to search the sample for violations of the LATE
assumptions in a data-driven way. The new approach is applied to the sib-
ling sex composition instrument in census data from China and the United
States. We expect that, because of son preferences, the siblings sex instru-
ment is invalid in the Chinese context. However, while existing IV validity
tests are unable to detect violations, our CT based procedure does.
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1 Introduction

Empirical research that tries to credibly estimate causal effects relies heavily on
instrumental variables (IVs) (Angrist and Pischke, 2010). However, IVs have to
fulfill strong assumptions in order to be valid. Given that it is fundamentally
impossible to directly test the validity of IVs, discussions on threats to the key
identifying assumptions and robustness checks on the latter constitute a crucial
part of many empirical papers.
Recently, Kitagawa (2015), Huber and Mellace (2015) and Mourifié and Wan
(2017) derived tests that allow to refute IV validity based on necessary conditions
in the data that are generated by the joint assumptions sufficient for the identifi-
cation of LATEs (Imbens and Angrist, 1994; Angrist et al., 1996).1 The unifying
idea across these three studies is that, given a treatment status, the estimated
density of compliers, which is the unobserved subpopulation of individuals whose
treatment status is causally affected by the instrument, must be non-negative at
any point of the distribution of the outcome variable. These tests are inconsis-
tent; that is, they cannot detect all violations, even in large samples. In practice,
violations might only get detected when they are large enough.2

The underlying idea of this paper is that the presence or intensity of violations
may vary across subpopulations defined by covariate values. For example, a direct
effect of the IV on the outcome variable might be large enough in a subgroup such
that existing tests can detect it, but in the full sample, this direct effect is watered
down to the point where these tests cannot detect it anymore.
In this paper, we utilize the causal tree (CT) algorithm, developed by Athey and
Imbens (2016), AI hereafter, to split the sample along covariate values with the
aim to detect subpopulations where the LATE assumptions are violated. We as-
sume that the outcome variable has finite discrete support. Thus, the testable

1Related studies include Arai et al. (2018), Kédagni and Mourifie (2015, 2016), Slichter (2015),
Eckhoff Andresen et al. (2018) and Machado et al. (2019).

2To give an example, consider a binary outcome Y , treatment D and instrument Z. If all
LATE assumptions hold, then we must empirically observe that P (Y = 1, D = 1|Z = 1)−P (Y =
1, D = 1|Z = 0) ≥ 0 when Z has a non-negative effect on treatment take-up. Say Z is also random
but has a positive direct effect on the outcome, then P (Y = 1, D = 1|Z = 1) ≥ P (Y = 1, D =
1|Z = 0) in any case and the violation cannot be detected. If the direct effect is negative, then
it has to be larger (in absolute terms) then the share of compliers, which are shifted to the point
Y = 1 by Z to be detected, which is not guaranteed.
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implications reduce to a finite number of moment inequalities that consist of dif-
ferences in joint probabilities. The original aim of the CT algorithm is to split the
sample with respect to heterogeneity in conditional treatment effects, but it can
easily be modified to search for heterogeneity in differences between conditional
joint probabilities. This heterogeneity is conceptually restricted to non-negative
values when the LATE assumptions hold, but may take on negative values if not.
In the latter case, CT can find these violations when they occur in the full sample
or within covariate cells. The proposed procedure can be easily implemented with
existing software packages.3 The CT algorithm puts no restrictions on the number
and support of the covariates.
When violations are uniform across the sample and their severity does not vary
with covariates, our test has less power than existing tests in finite samples, due
to honest splitting. In this case, the CT algorithm will not split the sample or
splits will occur due to noise only. In many applications, however, violations of IV
validity are likely to vary within a sample. We presume that finding violations of
the LATE assumptions in at least one subpopulation casts doubt on the IV in the
whole sample, because researchers cannot rule out further undetected violations.4

The null hypothesis of our test is formulated accordingly.
We also discuss the common case when conditioning on some or all covariates is nec-
essary to guarantee unconfoundedness of the instrument and provide corresponding
splitting criteria and test statistics. Again, these are easily implementable, requir-
ing only an estimate of the instrument propensity score. In the present setting, the
number of leaves of the trees (subpopulations), and thus the number of testable
inequalities, is allowed to grow with the sample size.5 Furthermore, every obser-
vation may contribute to multiple conditional moment inequalities. Therefore, a
testing procedure that allows for any number of inequalities, even larger than the
sample size, and correlation between them is necessary. To test the null hypoth-
esis of at least one violation, we rely on Chernozhukov, Chetverikov, and Kato

3For implementation, we use the R package causalTree, which is available from Susan Athey’s
Github page https://github.com/susanathey/causalTree (accessed on 11/23/2017.). R code
for the implementation of the test can be found on the author’s website.

4In some cases, ex-post removal of problematic sub-groups might be justifiable but does not
guarantee the validity of the IV in the remaining sample.

5This can be achieved by, for example, setting the minimum number of observations within a
leaf to a constant value.
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(2016)’s, CCK hereafter, many-moments method for unconditional moment in-
equalities. More specifically, we use a hybrid version, which includes pre-selection
of likely non-binding inequalities in a first step and bootstrapping critical values
in a second step.
The proposed approach has several advantages over simply performing the existing
IV validity tests within arbitrarily defined covariate subgroups. First, it provides a
data-driven way to detect violations of LATE assumptions. Researchers can credi-
bly demonstrate that they have efficiently searched for violations of key identifying
assumptions and they can show that the data does not reject their proposed IV.
Second, the algorithm automatically chooses the covariates and covariate values
to condition on. Third, honest splitting and the many-moments testing procedure
safeguard the researcher from over-rejecting the null hypothesis of no violations
as the number of moment inequalities to test rises with the number of subgroups.
No further adjustment of p-values for multiple hypothesis testing are necessary.
Fourth, it allows for a strong first stage effect, i.e. a large share of compliers in
the full sample. Existing test procedures are ceteris paribus more powerful when
the share of compliers is low. However, applied researchers want a strong IV in
order to avoid issues associated with weak IVs (Bound et al., 1995), and because a
larger share of compliers may deliver a causal effect with greater external validity.
Our test procedure gains ceteris paribus more power when the share of compliers
is low within a subpopulation.
The new procedure is then applied to the same-sex IV. Angrist and Evans (1998)
introduced the sex composition of the first two children as an exogenous source of
variation in the number of children that a women has, which is caused by parental
preferences for a mixed sex composition of their children.
The validity of the same-sex IV can be questioned for several reasons. First,
Rosenzweig and Wolpin (2000) doubt the exclusion restriction of the same-sex IV
based on economies of scale: having two children of the same sex directly influences
parental labor supply, because clothes and room-sharing are more likely between
same than opposite sex children. Second, monotonicity may be violated by son
preferences, which are prevalent in many countries (Lee, 2008; Rosenzweig and
Wolpin, 2000; Dahl and Moretti, 2008). Parents who want to have two boys stop
having further children when the first two are already boys, but they would have
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had a third child if the first two were a girl and a boy. Third, son preferences
may cause non-random sex compositions. For example, parents can "opt out" of
a girl-girl constellation by aborting the fetus of the second child, until the mother
is pregnant with a son.
Thus, there is reason to believe that the LATE assumptions might be violated,
in particular in developing countries, where economies of scale arguments and
gender preferences are more prevalent. However, Dahl and Moretti (2008) provide
evidence that son preferences are also prevalent in the United States. Therefore,
we test the validity of the same-sex IV in the 1980 US census sample of Angrist
and Evans (1998), and then in a similarly drawn sample from the 2000 Chinese
census. Because of its one-child policy and son-preferences, it is unlikely that
researchers would have used the same sex IV in Chinese data. The question that
we try to answer with this application is: given potentially strong violations of the
LATE assumptions, are existing tests and/or our test procedure able to reject IV
validity?
We find that in both samples, existing IV validity tests are unable to detect any
violations. However, using our proposed CT-based procedure, we are able to reject
at least one LATE assumption in the Chinese data. Similar to Huber (2015), we
do not find significant violations in the US sample of Angrist and Evans (1998).
This paper also contributes to a recent and fast growing literature that accommo-
dates machine learning tools to the needs of applied econometricans who wish to
estimate causal effects and detect heterogeneity in the latter. The CT algorithm
is extended to causal forests by Wager and Athey (2018), which was applied to
two randomized control trials by Davis and Heller (2017). Athey et al. (2019) con-
sider detecting heterogeneity of parameters in estimation equation models, while
the approach by Asher et al. (2016) relies on moment-based trees. Belloni et al.
(2012, 2014b) and Chernozhukov et al. (2015) present methods based on the least
absolute shrinkage and selection operator (Lasso, Tibshirani, 1996) for inference in
high-dimensional settings where there may be many possible instrument or control
variables relative to the number of observations, see also Belloni et al. (2014a) for
an overview. Knaus et al. (2017) use Lasso-type estimators to detect treatment
effect heterogeneity in job search programs. In the presence of IVs that violate the
exclusion restriction, Kang et al. (2016) and Windmeijer et al. (2019) use variants
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of Lasso to select valid IV’s in linear models. Wager et al. (2016), Bloniarz et al.
(2016) and Athey et al. (2018) improve the efficiency of average treatment effect
estimates in randomized experiments with Lasso-based balancing.
The rest of this paper proceeds as follows. In the next section, we review the
existing LATE assumption tests. In Section 3, we briefly introduce the CT algo-
rithm and highlight the key concepts. Section 4 contains the application of CT to
the IV validity tests. We provide simulation results in Section 5. The empirical
applications follow in Section 6. We conclude in Section 7.

2 Testing for violations of LATE assumptions

Let the observed outcome Y have support Y , the treatment status indicator D ∈
{0, 1}, where D = 1 indicates treatment, and the binary instrument Z ∈ {0, 1}.
The potential outcomes are denoted with Y dz and Dz, where d, z ∈ {0, 1}. Fol-
lowing Kitagawa (2015), three assumptions are sufficient for the identification of
LATEs in this setup.

Assumption 1. (Exclusion restriction): Y d1 = Y d0 = Y d for d ∈ {0, 1} wp1.

Assumption 2. (Random Assignment): Z⊥(Y 11, Y 10, Y 01, Y 00, D1, D0)

Assumption 3. (Monotonicity): D1 ≥ D0 or D0 ≥ D1 wp1

We will relax assumption 2 to hold conditional on covariates below. Without loss
of generality, assume D1 ≥ D0 and assume that this is a priori known to the
researcher. Let BY be a collection of Borel sets from Y . Then, under assumptions
1 to 3, empirically it must hold that:

P (Y ∈ B,D = 1|Z = 1)− P (Y ∈ B,D = 1|Z = 0) ≥ 0 (2.1)

P (Y ∈ B,D = 0|Z = 0)− P (Y ∈ B,D = 0|Z = 1) ≥ 0. (2.2)

for every B ∈ BY . To see why, consider the four compliance types: compliers (C),
always-takers (A), never-takers (N) and defiers (F) (Angrist et al., 1996), which
are distributed in the data as shown in Table 1.

– Table 1 about here –
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Then, (2.1) can be re-written as

P (Y ∈ B,D = 1|Z = 1)− P (Y ∈ B,D = 1|Z = 0)

= P (Y 11 ∈ B|C,Z = 1)P (C|Z = 1) + P (Y 11 ∈ B|A,Z = 1)P (A|Z = 1) (2.3)

− P (Y 10 ∈ B|A,Z = 0)P (A|Z = 0)− P (Y 10 ∈ B|F,Z = 0)P (F |Z = 0)

A1
= P (Y 1 ∈ B|C,Z = 1)P (C|Z = 1) + P (Y 1 ∈ B|A,Z = 1)P (A|Z = 1)

− P (Y 1 ∈ B|A,Z = 0)P (A|Z = 0)− P (Y 1 ∈ B|F,Z = 0)P (F |Z = 0)

A2
= P (Y 1 ∈ B|C)P (C) + P (Y 1 ∈ B|A)P (A)− P (Y 1 ∈ B|A)P (A)− P (Y 1 ∈ B|F )P (F )

= P (Y 1 ∈ B|C)P (C)− P (Y 1 ∈ B|F )P (F )

A3
= P (Y 1 ∈ B|C)P (C) = P (Y 1 ∈ B,C) ≥ 0

A similar derivation can be done for (2.2), which leads to

P (Y ∈ B,D = 0|Z = 0)− P (Y ∈ B,D = 0|Z = 1)
A1,A2,A3

= P (Y 0 ∈ B,C) ≥ 0.

Put differently, the estimated share of compliers has to be non-negative at ev-
ery point of the distribution of Y given a realized treatment status. Testable
implications (2.1) and (2.2) have first been proposed by Balke and Pearl (1997)
and Heckman and Vytlacil (2005), but without suggesting a specific testing proce-
dure. Kitagawa (2015) proposes to test (2.1) and (2.2) using a variance-weighted
Kolmogorov-Smirnov type statistic, whose unknown distribution is bootstrapped
to derive critical values. One problem with this approach is that if Y is continuous,
then (2.1) and (2.2) generate an infinite amount of unconditional inequalities.
Discretizing Y into a finite number of arbitrarily chosen sets could lead to some
estimated negative densities not being detected, because they can average out with
nearby positive densities of compliers in the same set. Nevertheless, discretizing
might be a practical solution in many applications. Mourifié and Wan (2017) solve
this issue elegantly by rewriting (2.1) and (2.2) as conditional moment inequalities
(conditional on Y = y) and then applying the intersection bounds approach of
Chernozhukov et al. (2013). Huber and Mellace (2015) relax assumptions 1 and
2 to hold only in expectation as this is sufficient to identify average effects. They
propose a test based on four moment inequalities, which can handle both discrete

7



and continuous outcomes.
Kitagawa (2015), Proposition 1.1 and Mourifié and Wan (2017), Theorem 1, estab-
lish that (2.1) and (2.2) are sharp, in the sense that they are the strongest testable
implications of assumption 1 to 3 given the observed data. Laffers and Mellace
(2017) prove that the inequalities proposed by Huber and Mellace (2015) are the
strongest testable implications when assumptions 1 and 2 hold in expectation and
assumption 3 holds as stated above.
The decomposition in (2.3) demonstrates why tests based on (2.1) and (2.2) are
inconsistent. Consider for example the case when A2 and A3 hold, but not A1.
Then (2.1) equals

P (Y 11 ∈ B|C)P (C) + P (Y 11 ∈ B|A)P (A)− P (Y 10 ∈ B|A)P (A). (2.4)

Only when the direct effect of the instrument is large enough among always takers
will P (Y 11 ∈ B|A) sufficiently differ from P (Y 10 ∈ B|A) for some B in order for
(2.1) to become negative. When A2 does not hold, P (A|Z = 1) might not equal
P (A|Z = 0) but this violation will not be detected in a sample of any size when
it is rather small compared to the probability mass P (Y 1 ∈ B,C). It is also easy
to see that violations of different assumptions can cancel each other out.
Now consider the availability of covariates X, which are measured pre-treatment
and that are fully independent of the instrument:

Assumption 4. (Covariates): X⊥Z

Under assumptions 1 to 4, Kitagawa’s inequalities (2.1) and (2.2) must hold at
any point x in the covariate space X :6

P (Y ∈ B,D = 1|Z = 1, X = x)− P (Y ∈ B,D = 1|Z = 0, X = x) ≥ 0 (2.5)

P (Y ∈ B,D = 0|Z = 0, X = x)− P (Y ∈ B,D = 0|Z = 1, X = x) ≥ 0. (2.6)

Returning to the decomposition in (2.3) shows that conditioning on X can be
helpful in four ways. First, the share of compliers within some covariate cell,

6While rejection of (2.5) or (2.6) actually jointly tests assumptions 1 to 4, assumption 4 can
be tested separately using, for example, balancing tables. If no imbalances are found, violations
of (2.5) or (2.6) are then more likely due to violations of assumptions 1 to 3 which is the main
interest here.

8



P (C|X = x), might be lower than in the full sample or even zero, such that
violations in that cell can be more easily detected, ceteris paribus. Second, the
share of defiers might locally be larger. Third, the direct effect of the instrument
might be stronger for some subpopulation, which makes finding violations of A1
easier. Fourth, a non-random instrument leads to different shares of always-takers
between Z = 1 and Z = 0 and this imbalance is more pronounced among some
subpopulation.
Kitagawa (2015), Huber and Mellace (2015) and Mourifié and Wan (2017) also
apply their tests within covariate cells. However, how to form these covariate cells
such that they make finding violations of IV validity more likely is an open ques-
tion, in particular when covariates are continuous. Arbitrarily defining subgroups
is inefficient and introduces the need to correct for multiple testing. A further
problem is the potential large dimensionality of X, which makes implementation
of the above tests for all x practically unfeasible. Therefore, we now introduce the
Casual Tree (CT) algorithm.

3 Recursive partitioning for heterogenous treat-

ment effects

This section briefly describes the CT algorithm and its implementation. The algo-
rithm is based Breiman et al. (1984)’s classification and regression trees (CART) al-
gorithm and its aim is to search for heterogeneity in conditional average treatment
effects. For illustrative purposes, consider the average causal effect of Z on D (also
known as the first stage effect) at some point X = x: α(x) = E[D1 −D0|X = x].
It is important to note that the CT algorithm (as implemented in the R package
causalTree) will estimate this effect with the difference in conditional means of
some target variable between treated and control units; that is, with the sample
analogues of E[D|Z = 1, X = x] − E[D|Z = 0, X = x] for α(x). The algorithm
is essentially a data mining tool that at every step evaluates a splitting criterion
at every possible split of the data; that is, at any covariate value of any covariate.
CT will split the sample at that covariate value which delivers the largest hetero-
geneity in the causal effect between the newly formed subgroups. The algorithm
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is greedy in the sense that it only tries to improve the splitting criterion at the
next split, without considering possible future splits. The splitting ends after some
conditions are met, which are discussed below. The result of the algorithm is a so
called tree, denoted with Π, which is a collection of L leaves (l): Π = {l1, ..., lL}.
Let l(x,Π) denote the leaf from tree Π which contains the point x.
Before presenting the splitting criterion, we need to highlight an important chal-
lenge, which is inference within the resulting leaves. If there exists a subsample,
for example, at some X1 ≤ x1, where the splitting criterion is large by chance
alone, then the algorithm is likely to place a split there. However, the observed
sample at that point may not be a random sample of the underlying population.
Thus, any estimates formed from the observations used for placing the splits are
likely to be biased. To solve this problem, AI propose so called honest estimation,
implemented by a double tree approach. One randomly chosen part of the sample,
called the training sample of size N tr, is used to build the tree, while the remaining
sample, called the estimation sample of size N est, is used to estimate treatment
effects which are ultimately reported. Since we also observe X in the estimation
sample, we know in which leaf a single observation falls, even if it was not used to
built the tree.
The empirical splitting criterion of the honest causal tree algorithm (CT-H) is

−ÊMSEα(Str, Sest,Π) =
1

N tr

∑
i∈Str

α̂2(Xi;S
tr,Π) (3.1)

−
(

1

N tr
+

1

N est

)∑
l∈Π

(
S2
tr,treat(l)

pr
+
S2
tr,cont(l)

1− pr

)

The first term on the right represents the average heterogeneity in α(x), as es-
timated in the training sample Str with tree Π. The second term is a penalty
for within-leaf variance (S2) of the outcome variable in the treated and untreated
populations, weighted by pr = P (Z = 1). Given the same potentially achieved
treatment effect heterogeneity, the CT-H algorithm prefers splits where the esti-
mates will have lower variance. This second term anticipates honest estimation
and is missing in the adaptive version of the algorithm (CT-A). In the applica-
tion and simulations below, we use the CT-A algorithm and found no substantial
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differences in results when using either CT-H or CT-A.
Two more issues regarding implementation deserve further discussion. The first
concerns honest splitting. Splitting the data in half and using only one part for
estimation seems wasteful. To alleviate this inefficiency somewhat, we follow the
idea of Chernozhukov et al. (2018) and swap the roles of the samples. Instead of
training and estimation, we call the two random halves of the full sample SA and
SB. For every tree proposed in the subsequent sections, we grow the trees ΠSA and
ΠSB , respectively. For every observation in SB, we save the information in which
leaves of ΠSA it would fall and in which leaves of ΠSB observations from SA would
fall. Let Π = ΠSA∪ΠSB . The test statistics generated from ΠSA are then estimated
in SB, and vice versa. The two trees may form leaves on different elements of X
or values of the same X and have different sizes. Using two parallel tree structures
increases the number of inequalities to be tested and, thus, increases the chance
to detect violations of the LATE assumptions. In the remainder of this paper, we
keep this sample swapping procedure implicit and by estimation mean estimation
in the part of the data where the tree is not built.
The second issue concerns pruning of the tree. Growing a tree deeply uncovers
more heterogeneity and, thus, makes it more likely to find violations of the LATE
assumptions. A larger tree also means smaller sample sizes within new leaves,
leading to noisier estimates of the test statistics. A classic solution to solve this
bias-variance trade-off is to penalize tree size proportional to a constant, which is
determined via K-fold cross-validation (often K=10). We follow this practice and
prune all trees. See Athey and Imbens (2015a) or, for example, Hastie et al. (2009)
for more details on cross-validation. Note that when using honest estimation, cross-
validation is only performed within the training sample. When growing the tree
initially, the minimum number of observations from the treated and control group
in new leaves is an important limiting parameter. In principle, one can set this
parameter to one because the final tree will be pruned. In practice, computational
speed will be increased by larger values.
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4 Improving IV validity tests with causal trees

In this section, we use CTs to search for violations of (2.1) or (2.2) in the covariate
space. To do this, define for any B ∈ BY the pseudo outcome variables Rz =

1{Y ∈ B}Dz and Qz = −1{Y ∈ B}(1−Dz). Furthermore, let

σ(1, x) = E[R|Z = 1, X = x]− E[R|Z = 0, X = x] (4.1)

= E[R1 −R0|X = x]

σ(0, x) = E[Q|Z = 1, X = x]− E[Q|Z = 0, X = x] (4.2)

= E[Q1 −Q0|X = x]

be the conditional average effect of Z on R and Q respectively at X = x. Under
assumptions 1 to 4:

σ(1, x) ≥ 0 (4.3)

σ(0, x) ≥ 0 (4.4)

for all B and x, which directly corresponds to inequalities (2.5) and (2.6). The CT
algorithm is now used to split the sample at covariate values to find heterogeneity
in σ(d, x) for d ∈ {0, 1}. Under assumption 1 to 3, σ(d, x) can only vary between
0 and 1 for any x. However, if the IV is invalid, σ(d, x) can vary between -1 and
1. In this case, the CT algorithm is able to split the sample such that for some
X = x∗ we may find that indeed σ(1, x∗) < 0.
Let ΠB,d denote the resulting tree for B and l(x ; ΠB,d) the leaf from the tree
ΠB,d which contains the point x. The tree is a finite set of L such leaves: ΠB,d =

{l1,d,B, l2,d,B, ..., lL,d,B}, where L may vary with the chosen combination of B and
d. Instead of considering σ(1, x) and σ(0, x) for a potentially infinite number of
points in X , we consider

σ(1, l) = E[R1 −R0|X ∈ l(x ; ΠB,1)] (4.5)

σ(0, l) = E[Q1 −Q0|X ∈ l(x ; ΠB,0)] (4.6)

for all l(x ; ΠB,d) and B, which are a potentially large but finite number of inequal-
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ities. Note that our procedure also tests the unconditional inequalities (2.1) and
(2.2), in the root node of every tree.

4.1 Test procedure

The CCK test procedure is developed for unconditional moment inequalities, where
a moment is described by the mean of a random variable. To implement their
approach in our setting, we define the random variables

ti(1, l) = 1{Yi ∈ B}1{Xi ∈ l(x ; ΠB,1)}Di [(1− Zi)/p̂01 − Zi/p̂11]

ti(0, l) = 1{Yi ∈ B}1{Xi ∈ l(x ; ΠB,0)}(1−Di) [Zi/p̂10 − (1− Zi)/p̂00]

for all l(x ; ΠB,d) and B where

p̂11 =
1

N

∑
i

Zi 1{Xi ∈ l(x ; ΠB,1)} (4.7)

p̂01 =
1

N

∑
i

(1− Zi)1{Xi ∈ l(x ; ΠB,1)} (4.8)

p̂10 =
1

N

∑
i

Zi 1{Xi ∈ l(x ; ΠB,0)} (4.9)

p̂00 =
1

N

∑
i

(1− Zi)1{Xi ∈ l(x ; ΠB,0)}. (4.10)

Let ζ(d, l) = E[ti(d, l)] denote the expected values of the ti(d, l) variables. Let
p = |ζ(d, l)| denote the total number of inequalities that we would like to test.
We test the following null hypothesis:

H0 : ζ0 ≡ sup
(B,d,l)∈BY×{0,1}×ΠB,d

ζ(d, l) ≤ 0, versus H1 : ζ0 > 0. (4.11)

That is, we test whether at least one moment inequality is violated. To be specific,
for every B and d = 0, 1 combination a single tree is grown using the CT algorithm,
where σ(d, x) is the target causal effect. For testing, we create L variables ti(d, l),
one for every leaf of the tree ΠB,d. The collection of such created variables from
all trees are then used in the test procedure below.
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For ease of notation, let tij denote the j-th from a total of p variables that we
constructed. Furthermore, let ζ̂j = 1

N

∑
i tij denote the sample mean of the j-th

variable and σ̂2
j = 1

N

∑
i(tij − ζ̂j)

2 the sample variance. CCK consider the test
statistic

T = max
1≤j≤p

√
Nζ̂j
σ̂j

. (4.12)

The goal is to find a critical value c, which is used to reject H0 if T is larger than
c with test size α. Under the H0 it must hold that

T ≤ max
1≤j≤p

√
N(ζ̂j − ζj)

σ̂j
,

hence, finding an upper bound for the (1− α) quantile of
√
N(ζ̂j−ζj)

σ̂j
is sufficient to

keep the test’s size at or below α. CCK show that, under rather weak requirements,
a critical value for T is

c(α) =
Φ−1(1− α/p)√

1− Φ−1(1− α/p)/N
. (4.13)

A great advantage of (4.13) in the presence of large p relative to N is that it grows
only very slowly in p. However, c(α) is very conservative. As N → ∞ and while
p fixed, c(α) becomes Φ−1(1 − α/p) which is identical to a Bonferroni adjusted
critical value for testing p hypothesis with size α.
Therefore, in the first step, we reduce the number of inequalities to be tested by
screening out those unlikely to be binding„ i.e. where (2.5) and (2.6) are clearly
positive. We then use an empirical bootstrap instead of (4.13) to construct a
critical value. The bootstrap accounts for correlation among the ζ̂j, which is
helpful given that single leaves are split from other leaves.
The moment selection step follows the first part of CCK’s two-step self-normalizing
sums method. Let 0 < βN < α/2 be a constant which is allowed to go to zero
as N → ∞. Calculate c(βN) using (4.13). Then, the set of pre-selected moment
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inequalities Ĵ ⊂ {1, ..., p} is given by

Ĵ = {j ∈ {1, ..., p} :
√
Nζ̂j/σ̂j > −2c(βN)}

For the second step, generate B i.i.d bootstrap samples t∗ij for all j ∈ Ĵ and
calculate

WĴ = max
j∈Ĵ

√
NE[t∗ij − ζ̂j]

σ̂j

The critical value c∗(α) is then given by the (1−α+ 2βN)-quantile of WĴ . We can
also calculate a pseudo p-value by

∑
Ĵ 1{WĴ ≥ T}/B. Note that the bootstrap

does not involve the tree building procedure in every replicate. Instead, the ti
variables are constructed using information on leaf membership in the trees from
the original sample.

4.2 Unconfoundedness of the instrument

In many applications, assumption 2 will only hold when conditioning on a set of
covariates. Denote this set as W , which may include some or all elements of X:

Assumption 5. (Unconfoundedness):
Z⊥(Y 11, Y 10, Y 01, Y 00, D1, D0, X)|W where W ⊆ X

This section modifies the splitting criterion and estimation of the test statistics
under assumptions 1, 3 and 5. Consider estimation first. When constructing the
variables ti(d, l) we divide by the estimated joint probabilities P (Z = 1, Xi ∈
l(x ; ΠB,d)) = P (Z = 1|Xi ∈ l(x ; ΠB,d))P (Xi ∈ l(x ; ΠB,d)) or P (Z = 0, Xi ∈
l(x ; ΠB,d)). Thus, we already condition estimation of P (Z = 1) (or P (Z = 0))
to be within leaves, which are a function of the covariates. However, although
the trees motivated above may use some elements of W for splitting, it is not
guaranteed that all will be used because the tree is built to detect heterogeneity in
σ(d, x) and not to enable assumption 5. AI suggest inverse probability weighting
with the estimated (instrument) propensity score to remove bias for estimation
within leaves. The propensity score estimates are re-normalized within leaves and
Z = 1 and Z = 0 groups to increase efficiency (Hirano et al., 2003). Denote the

15



propensity score of the instrument with e(w) = P (Z = 1|W = w) and an estimate
of it as ê(w). Then, we modify the estimated joint probabilities in (4.7) to (4.10):

p̂11 =
ê(w)∑

i:Xi∈l(x ; ΠB,1),Z=1 ê(w)

1

N

∑
i

1{Xi ∈ l(x ; ΠB,1)} (4.14)

p̂01 =
(1− ê(w))∑

i:Xi∈l(x ; ΠB,1),Z=0(1− ê(w))

1

N

∑
i

1{Xi ∈ l(x ; ΠB,1)} (4.15)

p̂10 =
ê(w)∑

i:Xi∈l(x ; ΠB,0),Z=1 ê(w)

1

N

∑
i

1{Xi ∈ l(x ; ΠB,0)} (4.16)

p̂00 =
(1− ê(w))∑

i:Xi∈l(x ; ΠB,0),Z=0(1− ê(w))

1

N

∑
i

1{Xi ∈ l(x ; ΠB,0)}. (4.17)

With respect to splitting, there are two options. The first is to ignore confounding
of the instrument, which may result in a weakened ability of CT to find violations.
The second is to modify the splitting target to build a transformed outcome tree
(TOT). To implement the latter, we define the pseudo outcome variables

Rz∗ = P z Z − ê(w)

ê(w)(1− ê(w))

Qz∗ = Qz Z − ê(w)

ê(w)(1− ê(w))
.

The advantage of considering Rz∗ and Qz∗ as outcome variables is that they are
unbiased estimators of σ(1, x) and σ(0, x):

E[Rz∗|X = x] = E[R1 −R0|X = x] = σ(1, x)

E[Qz∗|X = x] = E[Q1 −Q0|X = x] = σ(0, x)

See Athey and Imbens (2015b), proposition 1, for a proof of the first equalities.
Thus, instead of using the CT algorithm, the classic CART algorithm for regression
trees can be used off the shelf with Rz∗ and Qz∗ as outcome variables.
The disadvantage of the TOT approach is that it does not use information on Z di-
rectly, making it a less efficient estimator of σ(d, x), see AI. Consequently, the tree
is likely to be pruned stronger than necessary and leaves with potentially helpful
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heterogeneity are cut off. Thus, there exists a trade-off for an unconfounded in-
strument: using the CT algorithm for splitting may blunt the search for violations
of the LATE assumptions. Using the TOT approach accounts for confounding
but distorts the pruning process. Which splitting rule is preferable will depend on
the degree of confoundedness of the instrument, but it is beyond the scope of this
paper to derive the condition where switching to one approach is optimal.

5 Simulations

To test the finite sample performance of our new procedure, we set up the following
data generating process, which is close to that of ?:

Y ∗ = 2D + γZ +
3∑

k=1

βkXk + U

D = 1{αZ + ε}

whereXk ∼ N(0, 1), βk ∼ Uniform(0, 1) ,for k = 1, 2, 3,

(U, ε) ∼ N(0, 5), cov(U, ε) = 0.5, Z ∼ Bernoulli(0.5).

The three covariates X1, X2 and X3 predict the outcome Y ∗. We set the coefficient
γ to either 0 (DGP1), 1 (DGP2) or 5 if X1 < 0, X2 > 0, and X3 > 0, and 0
otherwise (DGP3). In DGPs 1 to 3 the first stage coefficient α is either 0.2 or 0.6
leading to complier shares of 2% and 10%, respectively. For DGP4 we set γ to 0
but α is equal to -10 if X1 < 0 and X2 > 0, and 3 otherwise. DGP1 represents the
valid IV case, DGP2 is a global violation of the exclusion restriction, while DGP3
shows a strong local violation of the exclusion restriction with E[γ] = 0.625. DGP4
corresponds to a local violation of monotonicity, with a globally estimated share
of compliers of 24%. For implementation, Y ∗ is discretized into four equally large
subsets. We compare our procedure to the Huber and Mellace (2015) probability
test that uses Chen and Szroeter (2014)’s smooth indicator method7. The sample
size is either 1,000 or 3,000 observations.
Table 2 shows rejection frequencies from 10,000 simulations. We find that for

7The bootstrap in Chen and Szroeter (2014)’s smooth indicator approache uses 999 replica-
tions.
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both sample and complier population sizes, our procedure does not over-reject
the Null of no violation of LATE assumptions at the 5% level under DGP1 (no
violation case). When the violation of the exclusion restriction is global (DGP2),
the probability based test of Huber and Mellace (2015) performs better than our
procedure under all scenarios. This was to be expected, because splitting the data
by covariates cannot improve the power of the test and honest splitting leads to
a lower sample size when testing for global violations (in the root node of the
tree). However, the difference in power between Huber and Mellace (2015) and
our test is not very large for N=3,000. Under DGP3 the exclusion restriction is
only locally violated. Consequently, splitting the sample by covariates can lead to
an improvement in test power. In this case, our procedure has a larger power than
the test of Huber and Mellace (2015) for both sample sizes and complier shares.
In case of DGP4, a local violation of the monotonicity assumption, our procedure
again outperforms Huber and Mellace (2015).

– Table 2 about here –

6 Application

In this section, we apply our procedure to the same-sex instrument, a widely
used instrumental variable for endogenuous fertility decisions and sibship size.8

Building on the observation that some parents prefer a mixed sex composition
of their children, Angrist and Evans (1998) (henceforth, AE) propose to use the
occurrence of same-sex siblings as an IV for the number of children. As already
laid out in the introduction, there are several reasons why this IV may be invalid,
in particular in developing countries. Huber (2015) was the first to test this IV’s
validity using the approach of Huber and Mellace (2015) in the 1980 US Census
sample that was employed by AE. He finds no violation in the full sample and very
few violations across 22 subgroups and concludes that the IV’s validity in these
data cannot be refuted. We first replicate Huber (2015)’s results in the AE data

8Recent applications of the same-sex IV in various contexts include: Dehejia et al. (2019),
Brinch et al. (2017), Cools and Hart (2017), Fitzsimons and Malde (2014) and Aaronson et al.
(2017).
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before turning to a sample drawn of the 2000 Chinese census. As discussed in the
introduction, we expect the IV to be invalid in the Chinese setting.
In both data sets, Z indicates a same-sex composition of the first two children
and D is an indicator equal to one if mothers have three or more children at the
time of the census. The selection criteria for both samples are as follows. Mothers
have to be aged 21 to 35, had their first child after the age of 14, their first child
is younger than 18, and have at least two children.9 We choose α = 0.05, 5-fold
cross validation for pruning, βN = 0.0001 for the moment pre-selection part, and
a minimum number of observations with Z = 1 and Z = 0 in every leaf of 2,000.

6.1 US Census 1980

We refer to AE and Huber (2015) for a description of the sample. To allow for
a faster computation, we take a random half of the original 394,840 observations,
such that the final sample size is 197,420. The outcome variable is the number
of weeks that the mothers worked last year, which takes on 53 unique values. As
covariates, we consider the mother’s current age, age at first birth, sex of the first
and second child, educational attainment (four levels), and dummies for Hispanic
ethnicity and race (white, black, other). The effect of the same-sex instrument
on the probability to have more than two children is about 6 percentage points,
which compares to a baseline probability of 37%.
The results are shown in the first row of Table 3. Both the Huber and Mellace
(2015) and Kitagawa (2015) tests clearly do not reject the null of no LATE assump-
tion violations. Our CT based test procedure generates 326 moment inequalities,
of which 324 are chosen after the pre-selection step. The test statistic of 2.41 is
smaller than the critical value of 3.37 and the bootstrap p-value is 0.666. Conse-
quently, we do not reject the validity of the same-sex IV in the original AE sample
and thereby replicate the finding of Huber (2015).

– Table 3 about here –
9In the Chinese data the mothers have to additionally reside in one-family households.
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6.2 Chinese Census 2000

This sample is built on the 1% Chinese census of 2000, provided by IPUMS-I
(Minnesota Population Center, 2017). After applying the selection criteria, the
sample size is 357,995 mothers. Again, we take a random half of the sample, such
that the final sample size is 178,997.
The outcome variable is the number of days worked last week, which ranges from
zero to seven. As covariates, we consider mother’s current age, age at first birth,
sex of the first and second child, educational attainment, literacy status, and ethnic
group.10

The sample is described in Table 4. We find that 57% of first born children are
female. This was to be expected because families with son-preferences are larger on
average when the first child is female (Dahl and Moretti, 2008). Before restricting
the sample to mothers with at least two children, only about 40% of mothers have
two or more children and less than 8% have three or more. This pattern is likely to
be linked to China’s (now past) one-child policy. These figures compare to 66% and
27% in the US Census data, respectively. The effect of the same-sex instrument on
the probability to have more than two children is 14 percentage points (t-statistic
102) unconditionally and 13 percentage points (t-statistic 97) after controlling for
the mentioned covariates, which is an increase of roughly 100%. Thus, the effect
size of this instrument is much larger in absolute and relative terms compared to
the AE application.

– Table 4 about here –

The result of our IV validity test for the Chinese sample are presented in the second
row of Table 3. As was the case for the US census sample, the tests of Huber and
Mellace (2015) and Kitagawa (2015) are unable to detect any violations. However,
our CT-based approach clearly rejects the null of no LATE violations. The test
statistic of 5.26 is greater than the critical value of 3.08 and the bootstrapped
p-value is 0.1%. We also find that the pre-selection step considerably decreases
the number of tested inequalities: the tree building phase generates 162 moment
inequalities, which are reduced to 102 after pre-selection.

10Ethnic groups which make up less than 0.5% of the sample are assigned to the other or
unknown group.
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To illustrate our CT-based procedure, Figure 1 shows the unpruned tree for B = 7

and d = 0, which consists of 17 leaves. The first value displayed in every leaf is the
estimate of σ(0, x) in the training sample. The second value shows the fraction of
all observations belonging to that leaf. The text beneath the leaf shows the variable
and value on which the leaf was split next. We find that, as expected, the first
child’s gender is the most important predictor of heterogeneity in the difference
P (Y = 7, D = 0|Z = 0) − P (Y = 7, D = 0|Z = 1). When the first child’s sex
is male, then the estimated probability of not having a further child and to work
a full week is larger for mothers with same-sex children (i.e. two boys) than with
mixed sex children. This observation is strongly in line with the existence of son
preferences that lead to a violation of the monotonicity assumption. Figure 1 also
shows that, conditional on the first child’s gender, there is further heterogeneity
in σ(0, x) across mothers age at birth, educational attainment and ethnicity.

– Figure 1 about here –

7 Conclusion

The identification of local average treatment effects using instrumental variables
is common in empirical research. The validity of instruments is a focal point of
debate in such studies. Fortunately, the LATE framework generates empirically
testable implications of the IV’s validity. In this paper, we proposed a machine
learning based approach to improve existing IV validity tests in a data driven way.
The procedure uses the CT algorithm by Athey and Imbens (2016) to split the
sample along covariate values to form subsamples of the data were violations are
most likely. For testing, we use Chernozhukov et al. (2016)’s many moments test
procedure. Our approach can be implemented using existing software packages.
We find that our new procedure is able to detect violations of the LATE framework
in a setting where we strongly expect them, but where existing tests fail to reject
the Null of no violations. Specifically, we tested the validity of Angrist and Evans
(1998)’s same-sex instrument in US and Chinese census data. We cannot reject
the validity of this instrument in the data of Angrist and Evans (1998) with either
the existing or with our new test procedure. However, the latter is able to reject
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IV validity in the 2000 Chinese census, while the former is not.
Our procedure also has some limitations. First, the new procedure requires the
presence of covariates that are unaffected by the treatment. Second, it has less
power in small samples than existing tests when violations do not vary with co-
variates, because we need to conduct honest splitting to avoid bias from adaptive
searching for violations: one half of the sample is used to build trees while the
other half is used to estimate the test statistic. Although we switch the roles of
the samples to generate more moment inequalities, honest splitting implies that
one can never use all observations to estimate the same moment inequality. Third,
our study is not directly applicable to continuous outcome variables. One possi-
bility to use CT in this case may be to split the sample with respect to the share
of compliers (the effect of Z on D) and then apply the tests of Huber and Mellace
(2015) and Mourifié and Wan (2017) within the resulting subsamples and correct
for multiple testing. The reasoning is that, as mentioned above, if the share of
compliers is low, IV violation are easier to detect.11 A second solution would be to
repeatedly and randomly divide a continuos Y into a random number of subsets,
use our splitting procedure for every permutation and then test the Null of any
IV violations from any such permutations under the Chernozhukov et al. (2016)
framework, which allows for a large number of moment inequalities.

11Splitting the data with respect to the first stage effect can also be used to test for assumptions
2 and 3 separately. This may also be useful to show whether monotonicity holds in the sample.
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Tables and Figures

Table 1: Compliance types

Z=1 Z=0

D=1 C,A F,A
D=0 F,N C,N
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Table 2: Simulation results (10,000 simulations)

N=1,000 α = 0.2 α = 0.6
CT HM CT HM

DGP 1 0.028 0.034 0.006 0.000
DGP 2 0.548 0.895 0.313 0.548
DGP 3 0.445 0.092 0.238 0.002
DGP 4 0.481 0.000

N=3,000
DGP 1 0.014 0.006 0.001 0.000
DGP 2 0.983 1.000 0.798 0.972
DGP 3 0.988 0.151 0.937 0.247
DGP 4 0.999 0.000

Table displays rejection frequencies for signifi-
cance level of 5%. CT refers to our test and
HM refers to test by Huber and Mellace (2015).
The minimum number of observations with ei-
ther Z = 1 or Z = 0 within every leaf is set to
50. For DGP4 α = −10 if X1 < 0, X2 > 0 and 3
otherwise.
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Table 3: Results of the IV validity tests

Causal trees IV validity test
Data H&M(2015) K(2015) p |Ĵ | T c∗(α) Pseudo p-value

US 1980 Census 1.000 0.936 326 324 2.41 3.37 0.666
China 2000 Census 1.000 1.000 162 102 5.26 3.08 0.001

H&M(2015) is the p-value of the Huber and Mellace (2015) IV validity test using Chen and Szroeter
(2014)’s smooth indicator approach and K(2015) of Kitagawa (2015)’s test. p is the number of inequalities
to be tested before moment selection. |Ĵ | is the number of actually tested inequalities after the pre-selection
step with βN = 0.0001. T is the test-statistic and based on Chernozhukov, Chetverikov, and Kato (2016)’s
empirical bootstrap method. The critical value is denoted with c∗(α). All bootstraps involved use 2000
replications.
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Figure 1: Tree Π7,0 from the Chinese sample. The first value in every leaf is the
estimate of σ(0, x) in the training sample. The second value shows the fraction
of all observations belonging to that leaf. The text beneath the leaf shows the
variable and value on which the leaf was split next.
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Table 4: Chinese data description

Mean SD Min Max
Outcome:
Days worked last week 5.027 2.550 0 7
Treatment:
More than two children 0.196 0.397 0 1
Instrument:
Same-sex 0.422 0.494 0 1
Covariates:
Age 31.677 2.802 21 35
Age at first birth 21.933 2.309 15 35
1st child is a girl 0.571 0.495 0 1
2nd child is a girl 0.422 0.494 0 1
Ethnicity: Han 0.873 0.333 0 1
Ethnicity: Mongol 0.005 0.071 0 1
Ethnicity: Hui 0.011 0.106 0 1
Ethnicity: Tibetan 0.006 0.075 0 1
Ethnicity: Ugur 0.013 0.113 0 1
Ethnicity: Miao 0.014 0.117 0 1
Ethnicity: Yi 0.014 0.119 0 1
Ethnicity: Zhuang 0.018 0.131 0 1
Ethnicity: Man 0.006 0.075 0 1
Ethnicity: Tujia 0.009 0.094 0 1
Ethnicity: Other/unknown 0.032 0.176 0 1
Literate 0.933 0.249 0 1
Education: Less than primary 0.149 0.356 0 1
Education: Primary 0.820 0.385 0 1
Education: Secondary or university 0.032 0.175 0 1

Sample drawn from the 1% 2000 Chinese census made available by Minnesota
Population Center (2017) as IPUMS file. The sample is restricted to mothers
that reside in one-family households, are aged 21 to 35, had their first child after
the age of 14, their first child is younger than 18, and who have at least two
children. N=178,997.
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