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Abstract
Interpretable surrogates of black-box predictors
trained on high-dimensional tabular datasets can
struggle to generate comprehensible explanations
in the presence of correlated variables. We pro-
pose a model-agnostic interpretable surrogate that
provides global and local explanations of black-
box classifiers to address this issue. We introduce
the idea of concepts as intuitive groupings of vari-
ables that are either defined by a domain expert or
automatically discovered using correlation coeffi-
cients. Concepts are embedded in a surrogate de-
cision tree to enhance its comprehensibility. First
experiments on FRED-MD, a macroeconomic
database with 134 variables, show improvement
in human-interpretability while accuracy and fi-
delity of the surrogate model are preserved.

1. Introduction
The field of interpretability aims at providing users and prac-
titioners with techniques meant to explain either globally
a trained machine learning model or locally a particular
prediction made by a model. This can be achieved either
by training directly an interpretable model, or in a post
hoc approach, using model-agnostic or model-specific inter-
pretability techniques.

This paper focuses on post hoc surrogate models that glob-
ally approximate a machine learning classifier while provid-
ing explanations at the local level of each prediction. We
are interested in model-agnostic interpretability approaches
meant to be applied on standard feature spaces composed
of tabular data. Our goal is to explain any type of trained
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Concept: Labor market
2 of

Civilians Unemployed - 15 Weeks and Over, gr > -0.02
Civilians Unemployed - Less Than 5 Weeks, gr ≥ -0.04

Civilians Unemployed for 5-14 Weeks, gr > 0.06

Concept: Consumption; orders; and inventories
2 of

Real Manu. and Trade Industries Sales, gr > -0.02
Unfilled Orders for Durable Goods, gr ≥ -0.01

Total Business: Inventories to Sales Ratio, gr < -0.01
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Concept: Output and income
2 of

IP: Final Products and Nonindustrial Supplies, gr > -0.00
IP: Nondurable Consumer Goods, gr ≤ -0.02

Real Personal Income, gr > 0.00

10

Figure 1. Concept Tree trained on FRED-MD macroeconomic
dataset. Variables are grouped by Concepts to constraint the train-
ing of an interpretable surrogate decision tree

model: the classifier is a black-box left to the discretion of
the practitioners. We refer the reader to recent published
surveys for a global picture of the interpretability field as
for instance (Guidotti et al., 2018).

Surrogate models aiming at providing post hoc interpretabil-
ity may induce confusion by conveying a false sense of sim-
plicity, especially when subgroups of dependent variables
are involved. We refer to dependent variables as variables
sharing similar information and possibly generated by a
common phenomenon. It may include the various lags of a
given time series, various features of a variables, or various
measures of a given fact. Surrogate models may arbitrar-
ily select one given variable among a group of dependent
variables, thus obscuring the global picture. Subsequently,
practitioners may better understand a surrogate model that
retains the whole set of dependent variables and depicts a
bigger picture than a simpler model.

This paper introduces the idea of concept. A concept is a
representation gathering a group of dependent variables. It
can be defined using either domain knowledge or statisti-
cal properties of dependent variables (such as the Pearson
correlation). The use of concepts allows to provide high-
level representations that practitioners may find easier to
interpret. We contend that concept-based methods may
be better suited to human understanding and provide more
practitioner-friendly representations of a black-box classi-
fier.

We substantiate that claim with an application to decision
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tree surrogates. Decision trees are universally considered
interpretable by domain experts (Freitas, 2014). We com-
pare standard surrogate tree models to trees whose training
is constrained by the grouping of subgroups of variables
in concepts. More specifically, we embed the idea of con-
cept in the TREPAN algorithm (Craven, 1996), an inter-
pretable decision tree originally instantiating a variant of
id2-of-3 (Murphy & Pazzani, 1991) with a mechanism of
oracle querying aiming at populating areas of the training
set where the fidelity of the surrogate can be improved. In
our approach, the concepts are used at each node of the
decision tree to constrain the training of the split rule based
on id2-of-3. We compare the resulting Concept Trees to the
surrogates provided by the original TREPAN algorithm.

The next section expands on the motivation and formally
introduces the idea of high-level concepts. Section 3 intro-
duces Concept Trees, a version of the TREPAN algorithm
that builds on concepts, and shows that Concept Trees meet
the prerequisites of a global-to-local, post-hoc and model-
agnostic surrogate. Section 4 assesses both the qualitative
and quantitative relevance of our proposition through ex-
periments led on FRED-MD, a monthly macroeconomic
database designed for empirical analysis of the US economy
(McCracken & Ng, 2016).

2. Concept: Grouping Dependent Variables
into High-Level Representation of
Variables

It is often the case that groupings of variables in a given
dataset may naturally appear. Such grouping can derive
from similar meaning or a similar origin (e.g. unemploy-
ment among men, unemployment among women, unem-
ployment among young people...). A grouping can also
be the result of multiple transformations applied to a given
source of data (such as multiple lags of a time series, or
features engineered from the same variable).

In this work, we consider two types of concepts: expert-
defined grouping of features and automatically-defined
grouping based on a statistical criterion such as feature cor-
relation. Expert-based concepts may be used when domain
knowledge is available. Automatically-defined concepts do
not require prior domain knowledge.

Exploiting the group structure of variables has already been
used in the literature to train more accurate sparse models,
for instance with group-lasso (Yuan & Lin, 2006) or sparse-
group-lasso (Simon et al., 2013). In the latter, improved
accuracy is observed with variable groupings such as gene
pathways or factor level indicators in categorical data. Other
machine learning fields also cover the idea of grouping
dimensions, such as subspace clustering (Vidal, 2011).

In the field of interpretability, the idea of exploiting a mean-

ingful grouping of features to generate better explanations
has emerged, for instance with topic-modeling-based feature
compression (Kim et al., 2015) or on image classification
with deep learning models (Kim et al., 2017; Ghorbani et al.,
2019).

Correlated features is a known challenge when building
machine learning models and interpreting feature impor-
tances (Bühlmann et al., 2013; Gregorutti et al., 2017; Strobl
et al., 2008; Tolosi & Lengauer, 2011). For instance, lasso-
based methods for feature selection tend to select only one
representative from a group of correlated features and to
discard the others (Bühlmann et al., 2013). It has been
pointed out that correlated features severely impact variable
importance measures of random forests (Strobl et al., 2008;
Gregorutti et al., 2017). Also, many feature selection meth-
ods suffer from a correlation bias: features belonging to a
group of correlated features receive weights inversely pro-
portional to the size of the group (Tolosi & Lengauer, 2011).
This issue creates instability in the feature selection process.
Small changes in the training data can result in significant
changes in the selected set of features. This instability pre-
vents a robust interpretation of variable importance.

We propose to use the idea of concept to address both expert-
defined grouping of features and automatically (correlated)-
defined grouping. Concepts are embedded into surrogate
models in order to constrain their training, which provides
two levels of granularity for the explanations: at high-level
(concept) and at finer level (raw variables). The next para-
graph offers a formal presentation of the idea of concepts.

We consider a set of training examples X where each exam-
ple is denoted x(i) with i ∈ [1...|X|] and associated with a
label y(i). The set of training examples X is composed of
a set of features j ∈ J and each feature vector is noted xj
with j ∈ J = [1...N ].

A concept is a subset of features denoted ck ⊂ J. K con-
cepts ck co-exist to form the set of concepts ck ∈ C, k ∈
[1...K]. The instantiation of a concept ck is the process of
populating it with dependent features. Every feature j ∈ J
belongs to a single concept ck and one concept only:

ck ∩ cl = ∅ | ∀l ∈ J and l 6= k

2.1. Expert knowledge concepts

The instantiation of a concept ck can be either driven by
domain knowledge or performed automatically. The former
requires that all variables belong to user-defined groups that
be meaningful to domain experts. The variable classifica-
tions are sometimes to be found in the documentation of
a dataset. That is the case of the FRED-MD data, which
is used in the experimentation section of this work. The
paper accompanying the dataset (McCracken & Ng, 2016)
includes in appendix a table that classifies the 134 monthly
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macroeconomic indicators into 8 categories: output and
income, labour market, housing, consumption orders and
inventories, money and credit, interest and exchange rates,
prices, and stock markets. Table 1 provides a sample of
these categories.

2.2. Automatic concepts: a simple approach

Failing that user may rely on domain knowledge, the set
of concepts C can be built automatically using a clustering
algorithm based on feature correlations. Features (indexed
by j) can be grouped in a concept ck using any dependence
measure ρ. The most straightforward is the Pearson corre-
lation, that measures linear correlation between variables.
Assuming the measure has values between [−1; 1] (an abso-
lute value of 1 meaning two variables perfectly dependent),
a user-defined threshold ε is set on the absolute value of the
measure of dependence between two features xj and xj′ in
order to decide whether these features belong to the same
concept ck:

|ρ(xj , xj′)| ≥ ε | ∀(j, j′) ∈ ck

The clustering algorithm is greedy: for each iteration a
feature is tested against all features and existing groups. A
feature j′ is affected to a concept ck if its dependence to
each feature in ck is higher than ε:

|ρ(xj , xj′)| ≥ ε | ∀j ∈ ck → ck = ck ∪ j′

If a given feature is independent from all the others, it be-
longs to a singleton. This formalization is also adequate
for the expert’s knowledge grouping. In that case, ρ and ε
would be the criteria of group assignment by the expert.

The next section explains how the notion of concepts may
be used to constrain the training of a decision tree in order
to produce more interpretable surrogates.

3. Concept Tree: Embedding Concepts For
More Interpretable Surrogate Decision
Tree

Decision trees are a well-known interpretable machine learn-
ing model. A decision tree has a graphical structure, its
decisions rely on a sparse subset of features, and features
are used in a hierarchical way, thus conveying an intuitive
sense of feature importance and providing several levels of
explanation granularity (Freitas, 2014). Training a decision
tree on the training set X yields an interpretable classifica-
tion algorithm, provided that the number of nodes is kept
under a certain threshold. The limit on the tree complexity
may come at the expense of predictive performance. Deci-
sion trees appear as good candidate surrogates to black-box
classifiers.

A decision tree surrogate is produced as follows. A black-
box b is trained on X with the true class labels y(i) ; the
surrogate f is then trained on the black-box predictions
ŷ(i) = b(x(i)). In production, the classification is performed
by the black-box while the explanations are provided by the
surrogate decision tree. The fidelity of the surrogate is
assessed as the proportion of instances where the surrogate
makes the same prediction than the black-box classifier.

The TREPAN algorithm is an instance of interpretable sur-
rogate tree model (Craven & Shavlik, 1996). It is model-
agnostic and aims at mimicking the classification behaviour
of a black-box b. It queries the black-box with instances to
get predictions ŷ(i) = b(x(i)) and then fits an interpretable
decision tree. The outline of TREPAN is shown in Algo-
rithm 1. The querying of extra instances allows to populate
the critical areas of the feature space and thus significantly
curb the tendency of decision trees to overfit.

TREPAN uses m− of − n decision rules, that are inspired
from id2− of3 decision trees (Murphy & Pazzani, 1991).
To fit an m − of − n decision rule, the set of the n most
discriminative tests on the features for the node is discov-
ered using the information gain. Then, in order to validate
a node, an instance must validate at least m tests among
the n. For instance, given a decision rule with 3 tests x1,
x2 and x3, such as 2-of-{x1,¬x2, x3} is equivalent to the
logical expression (x1∨¬x2)∧(x1∨x3)∧(¬x2∨x3). The
parameters m and n are user-defined upper-bounds: their
final values are learnt by the node. Them−of −n decision
rules are learnt in a greedy way for computational efficiency.
For the outline of the fitting algorithm of an m− of − n de-
cision rule, we refer the reader to the original paper (Craven,
1996) for the sake of conciseness and precision.

While the original TREPAN paper is two decades old al-
ready, researchers have kept reassessing its relevance up
until recently (Sarkar et al., 2016). Experimentations show
that TREPAN has a good fidelity to the black-box and a
better accuracy on the test set than a decision tree directly
trained on the training set X (Craven & Shavlik, 1996). This
good performance is attributed to the additional-instance-
drawing mechanism, which yields a denser support to the
fit of a decision rule and thus a better prediction accuracy.

Them−of−n decision rule structure improves the accuracy
and the fidelity of the decision tree as it allows to learn more
complex decision boundaries. However, it comes at the
price of interpretability of both the node’s decision rule
and the decision tree overall. A practitioner may find it
hard to understand all the possible

(
n
m

)
combinations of

variables at the same time. Moreover, the contrary of a
m− of − n literal may be challenging to conceive as soon
as m > 1 and 1 < n < m. Alternatively, simpler nodes
such as the ones in C4.5 (Quinlan, 1993) would be easier
to interpret, but would yield significantly larger trees for
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Table 1. Overview of the grouping of variables by concept in FRED-MD database (McCracken & Ng, 2016)

Concept 1: Output and Income Concept 2: Labor Market Concept 5: Money and Credit

Real Personal Income Civilian Labor Force Total Reserves of Depository Institutions
Real personal income ex transfer receipts Civilian Employment Commercial and Industrial Loans

IP: Consumer Goods Civilian Unemployment Rate Total Consumer Loans and Leases Outstanding
... ... ...

a given fidelity level, thus reducing overall interpretability
(Craven & Shavlik, 1996).

Similar to TREPAN, the Concept Tree aims at mimick-
ing the classification behaviour of b, using the additional-
instance-drawing procedure at the node level to improve
fidelity. The chief difference between Concept Tree and
TREPAN lies in the learning of the decision rule at each
node. The m− of − n decision rule is no longer fitted on
the whole feature space. It is constrained to use subsets
of features defined by the concepts. At a given node, the
Concept Tree fits a m− of −n decision rule using only the
variables related to the concept ck for each concept ck, and
selects the one that yields the best information gain. Each
node thus splits the sample on a m− of − n decision rule
based on a concept, using related variables only. A part from
that restriction, the Concept Tree uses the same expanding
procedure as TREPAN, described in Algorithm 1.

This paper aims at improving the interpretability of surro-
gate trees built withm−of−n decision rules by introducing
the Concept Tree, a tree-based surrogate methods based on
TREPAN and the use of concepts. The use of concepts is ex-
pected to help practitioners better understand the surrogate.
Each node relies on variables belonging to one concept-
grouping only. Nodes thus use complex m− of −n literals
but ensure better human-understandability by organizing
information at a concept level.

We argue that concept-based decision rules have a better
interpretability than standardm−of−n decision rules while
having the exact same informational complexity (the number
of bits needed to write down the decision rule). Defying the
conventional notion of complexity-interpretablity trade-off,
Concept Trees achieve a higher interpretability at the same
level of complexity, thus preserving predictive accuracy.

4. Experimentation: FRED-MD
Macroeconomic Database

This paper has introduced the ideas of Concept and Con-
cept Tree, whose main objectives are to provide an accurate
surrogate f mimicking a black-box classifier b while being
as interpretable as possible. The next paragraphs describe
experimentations made with the FRED-MD dataset (Mc-
Cracken & Ng, 2016), a public macroeconomic database of

Algorithm 1 Simplified overview of Trepan
Trepan(b, X , max nodes, min sample, m, n)
Initialize the tree with root R
S ← X ∪DrawSample(min sample− |X|)
Get labels from black-box b for train set S
Initialize Queue with < R,S >
n nodes = 1
while Queue 6= ∅ and n nodes < max nodes do

Remove < nodeN, SN > from head of Queue
Fit decision rule of node N
for each outcome t of the test do

Initialize a child node C
Sc ← instances of SN with outcome t for the test
SC ← Sc ∪DrawSample(min sample− |Sc|)
Get labels from black-box b for SC

if C is not pure enough then
Add < nodeC, SC > to Queue

end if
n nodes = n nodes+ 1

end for
end while
Return R

134 monthly U.S. indicators and more than 700 instances
released by the Federal Reserve Bank of St. Louis. Inter-
pretability is critical in economics and our experimentations
show how Concept Trees may match the requirements of
the field.

The experimentations applied to a downturn prediction ex-
ercise. Downturns are defined using the NBER Business
Cycle Chronology, that provides dates for each peak and
through in the US business cycle. The target variable is
defined as ”a downturn occurs in the next 12 months”. For-
mally, the target variable yt equals 1 if a downturn occurs
between t and t+12, and 0 otherwise, as in (Wright, 2006).
Downturn are predicted using the wide array of macroeco-
nomic variables in FRED-MD. Domain-knowledge-based
experts are extracted from the FRED-MD official docu-
mentation, which classifies variables into 8 subgroups (see
Table 1).

The competitors are both flavors of Concept Tree (Concept
Tree-Expert and Concept Tree-Correlated for automatically-
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Algorithm 2 Construction of a Concept Tree decision rule
ConstructConceptDecisionRule(X , y, concepts)
best candidate← ∅
best ig ←= 0
for c ∈ concepts do
Xc ← Select features from X belonging to c
candidate←MofNDecisionRule(Xc, y,m, n)
ig ← Compute information gain for candidate
if ig > best ig then
best ig ← ig
best candidate← candidate

end if
end for
Return best candidate

defined concepts) and the original TREPAN. Since the Con-
cept Tree and TREPAN have a similar structure, they share
the same parameters for the experimentation. The maximal
number of nodesmax nodes is set to 10. For the split rules,
the values ofm−of−n are set to 1−of−1, 3−of−3 and
5− of − 5. The minimal value of samples min samples
to fit a split rule at a node is 100, thus additional samples
are drawn from the fitted distribution if the X is not large
enough. For Concept Tree-Correlation, the threshold ε on
the correlation ρ is set to 0.9 such as |ρ(xj , xj′)| ≥ 0.9.

The black-box b used is a Gradient Boosting Trees with
500 estimators. The learning rate and tree depth are grid-
searched while other parameters have standard scikit-learn
values (Pedregosa et al., 2011). Out-sample-fidelity is com-
puted by 50-split time-series cross-validation. Time-series
cross validation implies that the train set includes all obser-
vations prior to t, for corresponding to January 1st of each
of the last 50 years in the sample. The test set includes the
12 months following t. At each split the black-box is fitted
on the train set and makes predictions for the train set and
the test set. The Concept Tree and TREPAN instances are
then fitted on the train set with black-box predictions as tar-
gets, and their fidelities are measured against the black-box
predictions made on the test set. Out-of-sample accuracy is
assessed using the same procedure. Fidelity measures the
proportion of predictions made by the surrogate that match
the predictions made by the black-box, while accuracy mea-
sures the proportion of predictions made by the surrogate
that match the actual value of the target. Interpretability is
assessed by economic expert judgement.

4.1. Results

Table 2 presents the cross-validated accuracies and fidelities
for TREPAN, the Concept Tree with expert-defined concepts
and the Concept Tree with automatically defined clusters.
The black-box mean accuracy over the folds is 84%± 27%.

Table 2. Experimental results: surrogate accuracy and fidelity as a
function of the algorithm, the concept type and the split rule
Algorithm Concept Type Split Rule Surr. Accuracy Surr. Fidelity

Concept Tree Expert
1− of − 1

83%± 29% 85%± 27%
Concept Tree Correlation 82%± 30% 85%± 28%

TREPAN / 84%± 29% 86%± 26%
Concept Tree Expert

3− of − 3
78%± 32% 83%± 28%

Concept Tree Correlation 83%± 27% 84%± 25%
TREPAN / 84%± 29% 89%± 22%

Concept Tree Expert
5− of − 5

77%± 31% 82%± 26%
Concept Tree Correlation 84%± 25% 82%± 25%

TREPAN / 82%± 30% 86%± 22%

The experimentations show the relevance of this family of
interpretability approaches in terms of accuracy and fidelity
to the predictive model. The experimentations also show
that Concept Tree provides surrogates whose fidelity and
accuracy matches the performance of TREPAN trees and
whose interpretability may be significantly enhanced. Al-
though, TREPAN overall slightly leads in terms of accuracy
and fidelity, the non-negligible standard-deviations and the
setup of this preliminary experiment (number of folds and
datasets) don’t allow for a final conclusion. However, the ex-
periment highlights the relevance of Concept Tree in terms
of accuracy and fidelity and as things stand, Concept Tree
is at least as relevant as TREPAN.

Figure 2 in Appendix displays the trees generated by
TREPAN (Figure 2(a)), the Concept Tree with expert-
defined concepts (Figure 2(b)) and the Concept Tree with
correlation-based defined concepts (Figure 2(c)).

In Concept Tree-Expert (based on domain-knowledge), ex-
planations are structured by sharing a common ”language”
with users or experts. It provides the big picture with one
general concept by node. The detailed analysis of a node
is eased because only related, homogeneous, variables are
assembled. There is an intuitive relations between high-
level explanations (concepts) and low-level explanations
(raw variables).

In Concept Tree-Correlation, computed automatically based
on variable correlations, part of the domain-knowledge can
be recovered. Concept Tree-Correlation presents also the
advantage of gathering dependent variables for each node,
avoiding arbitrary choices between correlated variables to
build a test.

In contrast, TREPAN trees use an idiosyncratic language
not shared by the practitioner. Associations of tests in a
TREPAN node generate confusion by gathering variables
that are hardly related from a domain-knowledge point of
view. Such nodes obstruct the understanding by preventing
the user from getting the big picture.

From a macroeconomic point of view, the Concept Tree-
Expert (2(b)) yields meaningful high level explanations of
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the workings of the black-box classifiers. The cascade struc-
ture of the tree indicates that the black-box algorithm would
only predict a downturn when five conditions occur simulta-
neously, with regard to interest rates, unemployment, hous-
ing markets, prices and household income. The first condi-
tion corresponds to high spread for either public or private
bonds, which both indicate high levels of uncertainty, as
lenders may ask for higher risk premia when facing higher
downturn likeliness. The second condition implies that if
unemployment is already high or increasing, the economy
is already in recession, which makes the occurrence of a
downturn unlikely. Two conditions within the third node
apply to the same variable: a number of housing permits in
the West lower than 255 or higher than 558 along with an
increasing number of permits in the Midwest is captured as
a pattern conducive to downturns. The dual threshold on
permits in the West fits with economic intuition, whereby
too low housing construction may indicate low growth and
too high construction can hint at overheating of the housing
market or bubbles. The three tests in the price concept node
correspond to a price index growing at a pace lower than
1%, either the Consumer Price Index or its durable goods
subcomponent, or the Producer Price Index. Overall, Con-
cept Tree enhances the interpretability of surrogate trees by
structuring the explanations.

5. Conclusion
The present paper introduces concepts, a meaningful manner
to group dependent variables, and Concept Trees, an alterna-
tive tree-based surrogate model that provides both high-level
and detailed explanation to black-box classifiers. The group-
ing of variables in concepts allows to overcome the false
sense of simplicity conveyed by simpler decision tree surro-
gate that may give an artificially high importance to a given
variable picked among a set of correlated variables, thus
obscuring the bigger picture. The use of concepts also helps
practitioners make sense of otherwise cryptic m− of − n
literals, by relying on a higher-level representation of the
data. Compared to TREPAN, Concept Trees produce surro-
gates that have a comparable size and are as accurate, but
more easily understandable to a human thanks to a better
organization of the information along higher-level represen-
tations that significantly enhance the interpretability of the
surrogate.

Experiments were conduced using FRED-MD, a macroeco-
nomic database whose documentation includes a grouping
of variables. The Concept Tree was applied to this data using
both expert-defined concepts derived from the data docu-
mentations and concepts built using a simple correlation-
based clustering algorithm. First results show a notable
improvement in human-readability while accuracy and fi-
delity of the surrogate are preserved.

Further research could involve a deeper assessment of our
propositions, both quantitatively and qualitatively. It could
also be relevant to explore alternative clustering algorithms
designed to produce more relevant concepts. Further mod-
ification to the Concept Tree algorithm may improve per-
formance: currently, following TREPAN’s principle, one
concept can only be used once in a decision path. Consid-
ering a concept encompass several variables, the accuracy
and fidelity of the surrogate may suffer from this probably
too severe constraint.

References
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Concept Tree: High-Level Representation of Variables for More Interpretable Surrogate Decision Trees

A. Appendix: Decision Trees

2 of
Moody’s Aaa Corporate Bond Minus FEDFUNDS > 1.30

3-Month Treasury C Minus FEDFUNDS > -0.01
All Employees: Wholesale Trade,GrowthRate > 0.00

3 of
5-Year Treasury C Minus FEDFUNDS > -0.26

All Employees: Government > 8483.00
Civilians Unemployed for 15-26 Weeks > 239.00

3 of
New Private Housing Permits (SAAR) > 1070.00

CPI : All Items,GrowthRate > -0.00
Japan / U.S. Foreign Exchange Rate,GrowthRate > -0.07

1 of
Real personal income ex transfer receipts,GrowthRate > 0.01

IP: Business Equipment,GrowthRate > 0.02
M2 Money Stock,GrowthRate > 0.05

01

3 of
Ratio of Help Wanted/No. Unemployed > 0.72

New Private Housing Permits, Northeast (SAAR) > 166.50
Initial Claims > 276225.00

13 of
IP: Durable Consumer Goods,GrowthRate > -0.20

10-Year Treasury Rate,GrowthRate > -0.37
Capacity Utilization: Manufacturing > 79.97

11 of
Real personal income ex transfer receipts,GrowthRate > 0.12

Housing Starts, West > 413.21
IP: Business Equipment,GrowthRate > 0.12

01

0

0

(a) Trepan Decision Tree. Variables from the same expert-defined concepts are displayed with the same color.
We can thus easily see that most nodes use variables from heterogeneous groups, making the interpretation
difficult



Concept Tree: High-Level Representation of Variables for More Interpretable Surrogate Decision Trees

Concept: Interest and exchange rates
2 of

Moody’s Aaa Corporate Bond Minus FEDFUNDS > 1.30
3-Month Treasury C Minus FEDFUNDS > -0.01

Effective Federal Funds Rate > 9.67

Concept: Labor market
2 of

Civilians Unemployed for 27 Weeks and Over > 1356.00
Help-Wanted Index for United States,GrowthRate > -0.00

Concept: Housing
2 of

New Private Housing Permits, West (SAAR) ≤ 255.00
New Private Housing Permits, Midwest (SAAR),GrowthRate > -0.11

New Private Housing Permits, West (SAAR) > 558.50

Concept: Prices
1 of

CPI : All Items,GrowthRate > 0.01
PPI: Finished Consumer Goods,GrowthRate > 0.01

CPI : Durables,GrowthRate > 0.01

Concept: Consumption; orders; and inventories
2 of

Total Business: Inventories to Sales Ratio,GrowthRate > 0.01
Real personal consumption expenditures,GrowthRate > -0.00

Unfilled Orders for Durable Goods,GrowthRate > 0.02

0Concept: Output and income
2 of

IP: Durable Materials,GrowthRate > 0.00
IP: Manufacturing (SIC),GrowthRate > 0.19
IP: Residential Utilities,GrowthRate > -0.10

10

Concept: Output and income
2 of

Real Personal Income,GrowthRate > 0.00
Capacity Utilization: Manufacturing > 75.21

IP: Durable Materials,GrowthRate > 0.02

01

0

0

0

(b) Concept Tree-Expert. Variables from the same expert-defined concepts are displayed with the same
color. Each node use variables from one single expert-based concept

Concept: cluster 36
2 of

New Private Housing Permits, South (SAAR) ≤ 408.00
New Private Housing Permits, South (SAAR) > 331.00

Concept: cluster 16
1 of

Moody’s Aaa Corporate Bond Minus FEDFUNDS > 1.30

Concept: cluster 15
1 of

5-Year Treasury C Minus FEDFUNDS > -0.56

Concept: cluster 6
3 of

Real personal income ex transfer receipts,GrowthRate > -0.00
CPI : All items less medical care,GrowthRate > 0.00

Unfilled Orders for Durable Goods,GrowthRate > -0.01

Concept: cluster 3
2 of

IP Index,GrowthRate > 0.00
All Employees: Government > 13304.50

IP: Nondurable Consumer Goods,GrowthRate > 0.30

01

1

Concept: cluster 6
2 of

Real Personal Income,GrowthRate > 0.01
Retail and Food Services Sales,GrowthRate > 0.00

CPI : Transportation,GrowthRate > 0.02

Concept: cluster 34
1 of

Housing Starts, West > 315.00
New Private Housing Permits, West (SAAR) > 300.50

0Concept: cluster 3
3 of

All Employees: Government > 14814.50
All Employees: Wholesale Trade,GrowthRate > 0.00

All Employees: Financial Activities,GrowthRate > 0.00

1Concept: cluster 20
1 of

IP: Nondurable Materials,GrowthRate > 0.01
CPI : Durables,GrowthRate > 0.01

Japan / U.S. Foreign Exchange Rate,GrowthRate > 0.04

01

0

0

0

(c) Concept Tree-Correlated. Each node use variables from one single concept based on variable correlations. Variables
from the same expert-defined concepts are displayed with the same color.

Figure 2. Structure of trained 3− of − 3 Decision Trees


