The Case for Low and Stable Inflation

Klaus Adam

University of Oxford & Nuffield College

January 2020

Adam

The Case for Low and Stable Inflation

January 2020 1 / 30

Adam

- CB consensus: $\sim 2\%$ inflation target optimal (BoE, ECB, Fed)
- Ongoing discussion: higher targets desirable due to falling real rates?

- CB consensus: $\sim 2\%$ inflation target optimal (BoE, ECB, Fed)
- Ongoing discussion: higher targets desirable due to falling real rates?
- Intellectual foundations for positive inflation targets surprisingly weak!

• For monetary policy models used by CBs & academia:

Average inflation close to zero under optimal monetary policy

• For monetary policy models used by CBs & academia:

Average inflation close to zero under optimal monetary policy

• Pull to zero inflation is the 'dark force' of monetary economics

• Explain why optimal policy delivers zero inflation in MP models

- Explain why this implication should not be taken too seriously Realistic product structure => positive inflation target optimal

- Explain why this implication should not be taken too seriously Realistic product structure => positive inflation target optimal
- Estimate optimal UK target given actual product structure: Optimal inflation target: 2.6% Target increased by 1.2% over past 20 years

• Lucas/Phelps: inflation (surprises) can confuse prices signals

- Lucas/Phelps: inflation (surprises) can confuse prices signals
- Modern incarnation (à la Woodford) enshrined in all monetary models:
 - Systematic inflation/deflation =>inefficient price dispersion =>inefficient quantity distortions

- Lucas/Phelps: inflation (surprises) can confuse prices signals
- Modern incarnation (à la Woodford) enshrined in all monetary models:
 Systematic inflation/deflation =>inefficient price dispersion =>inefficient quantity distortions
- Quantity distortions particularly pronounced in competitive economies

January 2020 7 / 30

time

Adam

time

Works similarly for deflation => zero inflation optimal

Adam

- Under typical demand elasticity assumptions: Large quantity distortions from price distortions
- Schmitt-Grohé & Uribe (2010): dark force is dominating
 Zero inflation optimal even when considering other forces

Zero inflation optimal even when considering other forces:

- **M. Friedman:** eliminate opportunity cost of holding cash negative => negative inflation
- Lower bound on nominal rates: with *optimal* policy still very low inflation inflation (<0.5%)
- James Tobin: downward nominal wage rigidity => positive inflation Quantification a nightmare...Are wages allocative?

- **()** Explain why optimal policy delivers zero inflation in MP models
- **②** Explain why this implication should not be taken seriously
- Sestimate optimal UK inflation target for realistic product structure

• Simplification in modern MP models:

Settings without product turnover => products around forever

• No relative price trends on average across products: "Not everyone can depreciate against the average price"

In the data:

Constant product replacement & strong relative price trends

Adam

• Strong relative price trends over product lifetime

- newly incoming products initially expensive (relative to competitors)
- relative price falls over product lifetime

• Strong relative price trends over product lifetime

- newly incoming products initially expensive (relative to competitors)
- relative price falls over product lifetime

• Adam & Weber (AER 2019):

- this has important implications for the optimal rate of inflation
- under optimal policy: average inflation is positive

Declining Relative Prices with Zero Inflation

Declining Relative Prices with Zero Inflation

Adam

Declining Relative Prices with Optimal Inflation

Declining Relative Prices with Optimal Inflation

Optimal increase of average price:

inverse of the decrease in relative price on previous slides

Adam

January 2020 18 / 30

- **()** Explain why optimal policy delivers zero inflation in MP models
- **2** Explain why this implication should not be taken seriously
- Sestimate optimal UK target with realistic product structure Adam and Weber (2020), 'Estimating the Optimal Inflation Target from Trends in Relative Prices'

Annual Rate of Rel. Price Decline, ONS Expenditure Items

20 / 30

UK Relative Price Trends Across Product Categories

Division Description	Relative Price
	Trend
	(in % per year)
Food & Non-Alcoholic Beverages	-1.00
Alcoholic Beverages & Tobacco	-0.41
Clothing & Footwear	-9.36
Housing, Water, Electricity & Gas	-0.83
Furniture, Equipment & Maintenance	-1.67
Health	-0.73
Transport	-0.79
Communications	-6.97
Recreation & Culture	-3.98
Restaurants & Hotels	-0.36
Miscellaneous Goods & Services	-1.68

Image: A matrix and a matrix

• Optimal inflation target given by

$$\Pi^* = -\sum_i \psi_i \cdot \textit{rpt}_i$$

 ψ_i : expenditure weight of product category *i* rpt_i : efficient relative price trend in product category *i*

• Optimal inflation target given by

$$\Pi^* = -\sum_i \psi_i \cdot \textit{rpt}_i$$

- ψ_i : expenditure weight of product category *i rpt_i*: *efficient* relative price trend in product category *i*
- Holds independently of price setting frictions (Calvo, menu-costs)

• Optimal inflation target given by

$$\Pi^* = -\sum_i \psi_i \cdot \textit{rpt}_i$$

 ψ_i : expenditure weight of product category *i* rpt_i : efficient relative price trend in product category *i*

- Holds independently of price setting frictions (Calvo, menu-costs)
- Efficient relative price trends:
 - can be measured using observed relative price trends
 - distortions affect only level of rel. prices not time trend

• Optimal inflation target given by

$$\Pi^* = -\sum_i \psi_i \cdot \textit{rpt}_i$$

 ψ_i : expenditure weight of product category *i* rpt_i : efficient relative price trend in product category *i*

- Holds independently of price setting frictions (Calvo, menu-costs)
- Efficient relative price trends:
 - can be measured using observed relative price trends
 - distortions affect only level of rel. prices not time trend
- Optimal inflation target: expenditure-weighted average of the (negative of) observed relative price trends

Annual Rate of Rel. Price Decline, ONS Expenditure Items

- Expenditure categories slowly change over time
 - CD players drop out, get replaced by flash-drive devices
- Optimal inflation target also (slowly) moves over time!

Beginning versus end-of-sample distributions:

Source of the Upward Trend

Dynamic Olley-Pakes Decomposition

- Results not driven by clearance sales at end of product lifetime
- Mismeasurement of quality progress is not a concern here
 - unaccounted quality progress: biases relative price trends
 - unaccounted quality progress: biases inflation rate

Both biases cancel: our method delivers correct answer!

• Possible to overcome 'dark force' in monetary models

- Realistic product structure: significantly positive inflation targets (2.6%)
- Acceleration of relative price trends => higher optimal targets
- Highlights importance of supply-side factors for optimal target (& for stabilization policy)

Adam and Weber (2019), *Optimal Trend Inflation*, American Economic Review, Vol. 109, 702-737

Adam and Weber (2020), *Estimating the Optimal Inflation Target from Trends in Relative Prices*, University of Oxford mimeo,

Schmitt-Grohé and Uribe (2010), *The Optimal Rate of Inflation*, in: Handbook of Monetary Economics, Vol. 3B, 653-722, edited by B.M. Friedman and M. Woodford