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Abstract

We model listing decisions in the housing market, and structurally estimate
household preference and constraint parameters using comprehensive Danish data.
Sellers optimize expected utility from property sales, subject to down-payment con-
straints, and internalize the e↵ect of their choices on final sale prices and time-
on-the-market. The data exhibit variation in the listing price-gains relationship
with “demand concavity;” bunching in the sales distribution; and a rising listing
propensity with gains. A new fact is that gains and down-payment constraints have
interactive e↵ects on listing prices. We find reference-dependence around the nom-
inal purchase price and modest loss-aversion, but our canonical model cannot fully
explain the new facts.
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1 Introduction

Housing is typically the largest household asset, and mortgages, typically the largest

liability (Campbell, 2006, Badarinza et al. 2016). Given these high stakes, household

decisions in the housing market have been a rich source of field evidence on economic

agents’ preferences, beliefs, and constraints. A prominent example is the highly-cited

finding that listing prices for houses rise sharply when their sellers face nominal losses

relative to the initial purchase price—prima facie field evidence of reference-dependent

loss-aversion (Kahneman and Tversky, 1989, Köszegi and Rabin, 2006, 2007).1

The controlled environment of the lab allows for precise investigation that is uncon-

taminated by the frictions and distractions that agents face in the field. To reclaim some

of this precision in field settings, DellaVigna (2009, 2018) calls for a structural behavioral

approach to more carefully and realistically map reduced-form facts to deep structural

parameters. We therefore set up a new model of household selling decisions which in-

corporates realistic housing market frictions. We structurally estimate the parameters of

the model using a large and granular administrative dataset which tracks the entire stock

of Danish housing, and the universe of Danish listings and housing transactions between

2009 and 2016, matched to household demographic characteristics and financial infor-

mation. These rich data also yield several new facts about household decisions that we

cannot match using canonical model features, making them targets for future theoretical

work.

In our model, sellers face both an extensive margin decision of whether or not to

list, and an intensive margin choice of the listing price. Sellers receive expected utility,

modelled à la Köszegi and Rabin (2006), both from the final sale price of the property as

well as (potentially asymmetrically) from any gains or losses relative to a fixed reference

price, which we simply set to the nominal purchase price of the property. Sellers enjoy

1Genesove and Mayer (2001) present early and carefully documented evidence from the Boston hous-
ing market. More recent evidence includes Ferreira et al. 2010, Anenberg, 2011, Schulhofer-Wohl, 2012,
Hong et al. 2016, and Bracke and Tenreyro 2018.
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additional “gains from trade” when listings successfully convert to final sales, receive

an outside option utility value otherwise, and face down-payment constraints à la Stein

(1995). When making their decisions, sellers take as given the impacts of the chosen listing

price on both the probability of sale and the final sale price, i.e., they are (realistically)

constrained by the impacts of their listing decisions on final outcomes, given the behavior

of demand in the housing market. The model yields a number of important insights, which

together suggest a more structured investigation of the moments in the data. While we

describe specific predictions more fully in the paper, we summarize a few important ones

here, as well as how they map to the data.

First, a model with “linear reference dependence” (without loss aversion) can be sep-

arately identified from one with pure final utility of wealth (i.e., the final sales price)

by simply inspecting how listing prices vary with gains. The key is that the reference

price alters the wedge between the utility in the event of a sale and the outside option.

Intuitively, for a reference-dependent household, gains in the event of a sale are additive

to the utility from the final sale price, and provide an additional incentive to lower listing

prices to increase the likelihood of a successful transaction, and vice versa for losses.

Second, we confirm in our model that the kink in preferences characterizing loss aver-

sion generates more than one kink in listing prices. Sellers just to the left of the reference

point have a strong incentive to increase their listing price, aiming for marginally pos-

itive realized gains. But for sellers that face more substantial losses, such “fishing” for

higher prices is limited because higher listing prices imply a higher probability that the

transaction will not go through.

In the data, the listing price schedule has a characteristic “hockey stick” shape first

identified by Genesove and Mayer (2001), rising substantially as expected losses mount,

and being virtually flat in gains. Our empirical estimates are similar in magnitude to

those estimated in that paper despite the di↵erences in sample period, location, and
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sample size.2 At first glance, they are consistent with a significant degree of reference

dependence, at least in the loss domain.3

Third, the shape of demand is very important for model outcomes. If sale probabilities

respond linearly and negatively to higher listing prices, there are material incentives to

set low list prices to induce quick sales. However, Guren (2018) shows in the U.S. that

housing markets are characterized by “concave demand,” i.e., past a certain level, lowering

list prices does not boost sale probabilities, but simply negatively impacts realized sale

prices; we confirm this finding in the Danish data.4 The insight that we derive from

the model is that seller optimization when demand is nonlinear can induce kinks in the

optimal listing price schedule with no need for kinks in preferences such as loss aversion.

Intuitively, reference-dependent sellers expecting gains set low list prices in a world with

linear demand, but in a world with concave demand, there is little reward for lowering

list prices past a point.

We validate this insight in the data by comparing regional housing markets in Den-

mark with varying degrees of demand concavity—and find that the slopes of the listing

price responses to gains and losses vary just as the model predicts. We adopt an instru-

mental variables approach to confirm this fact, using regional variation in the homogeneity

of the Danish housing stock. Intuitively, a more homogeneous “cookie-cutter” housing

stock makes valuation more transparent, and should therefore increase demand sensitiv-

ity to listing prices. In accordance with this intuition, there is visible evidence of more

pronounced demand concavity in more homogeneous sub-markets, and we can precisely

2In the original Genesove and Mayer sample of Boston condominiums between 1990 and 1997
[N=5,792], list prices rise between 2.5 and 3.5% for every 10% nominal loss faced by the seller. We
find rises of 4.4 and 5.3% for the same 10% nominal loss in the Danish data of apartments, row houses,
and detached houses between 2009 and 2016 [N=175,646].

3As Genesove and Mayer (2001), Clapp et al. (2018), and others note, variation in unobservable
quality, as well as potential under- or over-payment at the time of house purchase are important sources
of measurement error. We adopt a wide range of strategies to check robustness to this possible confound,
including property-specific fixed e↵ects estimation, bounding strategies previously proposed in the liter-
ature (Genesove and Mayer, 2001), an instrumental variables approach proposed by Guren (2018), and
a Regression Kink Design (Card et al., 2015b).

4We also show using these data that there are substantial increases in the volatility of time on the
market associated with higher listing premia, a new and important observation.
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predict a less steeply sloped listing price schedule using this instrument.

Fourth, the model reconfirms an issue recognized in prior work (e.g., Genesove and

Mayer, 1997, 2001), that downsizing aversion à la Stein (1995) can be di�cult to separate

from reference-dependent loss aversion. This is because down-payment constraints on

mortgages create an incentive for households to “fish” with higher listing prices, since

household leverage magnifies the e↵ect of declines in collateral value, severely compressing

the size of houses into which households can move. We find strong evidence of this e↵ect of

household leverage on listing prices in the Danish data, but document su�cient variation

to separately identify these two e↵ects from one another, i.e., there is a large enough

share of both “unconstrained losers” and “constrained winners” in the data, a result of

cross-sectional and time-series variation in reference prices, variation in initial leverage,

and subsequent (cash-out) refinancing and remortgaging decisions taken by households

following initial home purchase.

Fifth, household listing behavior also has material implications for quantities. This

means that we can also identify some of the parameters of the model using bunching in

the house sales distribution, a strategy recently proposed and implemented for identifying

reference dependence in a range of field settings (see, e.g., Kleven, 2016, and Rees-Jones,

2018). In the data, we see clear bunching in the realized sales distribution when gains since

purchase are just positive, and “holes” in this distribution just to the left of this point;

prima facie evidence of reference-dependent loss-aversion around the nominal purchase

price.5

Finally, while bunching in the distribution of house sales captures ex post-negotiation

outcomes, the model shows that extensive margin decisions better capture sellers’ ex ante

listing behavior in the extent to which selling propensities vary with expected gains. This

can be identified by estimating listing propensities for the entire Danish housing stock of

5As we note later in the paper, nonlinearities arising from demand concavity can also generate
bunching in the realized sales distribution, which can be hard to distinguish from bunching arising from
reference-dependent loss aversion.
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over 1.7 million housing units as a function of expected gains.6 When we undertake this

analysis in the data, we find that there is a slight but visible increase in the propensity

to list as expected gains rise.

We estimate the seven parameters in our model using seven selected moments from

the data, including those described above, using classical minimum distance estimation

in our exactly identified system. The resulting parameter point estimates yield ⌘ = 0.981

(s.e. 0.312), meaning that gains count about as much as final prices for final utility, and

� = 1.525 (s.e. 0.422), a modest degree of loss aversion, lower than early estimates between

2 and 2.5 (e.g., Kahneman et al. 1990, Tversky and Kahneman, 1992), but closer to those

in more recent literature (e.g., Imas et al. 2016 find � = 1.59). The role of concave

demand is very important for these parameter estimates—in a restricted model in which

we assume that demand is (counterfactually) linear, estimated ⌘ = 0.750 (s.e. 0.291) and

� = 3.285 (s.e. 0.867). This strongly reinforces a broader message (see, e.g., Blundell,

2017) that realistic frictions need to be incorporated when mapping reduced-form facts

to inferences about deeper underlying parameters.7

The parameters reveal strong evidence of the down-payment channel originally iden-

tified by Stein (1995), and we confirm this evidence using separate estimates of financial

constraints from the distribution of household net financial wealth in Denmark. The

parameter estimates also show that there are significant “gains from trade” from success-

ful house listings, and substantial (psychological and transactions) costs associated with

listing, as we later discuss.

The model does a good job of matching the selected moments with plausible preference

parameters. However as an out-of-sample exercise, we conduct a broader evaluation of

6Another critical issue here is that modeling the extensive margin decision is a good way to explicitly
account for any selection e↵ects that may drive patterns of observed intensive margin listing premia in
the data. We discuss this in detail in the model section below.

7This also highlights that frictions in matching in the housing market are another important part of
the explanation for the positive correlation between volume and price observed in housing markets, an
original motivation for the mechanisms identified by both Stein (1995) and Genesove and Mayer (2001)
which our model also incorporates.
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how the model matches the entire surface of the listing premium along the home equity

and gains dimensions. A novel pattern that we find in the data is that home equity and

expected losses have interactive e↵ects on listing prices in this market. The canonical

model that we set up is unable to match these new facts, which we view as targets for

future theoretical work.

To be more specific, when home equity levels are low, i.e., when down-payment con-

straints are tighter, households set high listing prices that vary little around the nominal

loss reference point. In contrast, households that are relatively unconstrained set listing

prices that are significantly steeper in expected losses. Households’ listing price responses

to down-payment constraints are also modified by their interaction with nominal losses.

Mortgage issuance by banks in Denmark is limited to an LTV of no greater than 80%,8

and for households facing nominal losses since purchase, listing prices rise visibly as home

equity falls below this down-payment constraint threshold of 20%. But for households

expecting nominal gains, there is a strong upward shift in this constraint threshold (i.e.,

to values above 20%) in the level of home equity at which they raise listing prices. We

discuss these findings and conjecture mechanisms to explain them towards the end of the

paper; we view them as important targets for future theoretical work that is beyond the

scope of our analysis in this paper.

The paper is organized as follows. Section 2 introduces the model of household listing

behavior. Section 3 discusses the construction of our merged data set, and provides

descriptive statistics about these data. Section 4 estimates the moments that we use

for structural estimation and uncovers new facts about the behavior of listing prices and

listing decisions. Section 5 describes our structural estimation procedure, and reports our

parameter estimates. Section 6 describes validation exercises including our instrumental

variables analysis, and highlights areas where the model falls short in explaining features

of the data. Section 7 concludes.

8We later describe the precise institutional features of the Danish setting, which permits additional
non-mortgage borrowing at substantially higher rates for higher LTV mortgages.
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2 A Model of Household Listing Behavior

We set up a model in which a household (the “seller”), optimally decides on a listing price

(the “intensive margin”), as well as whether or not to list a house (the “extensive margin”).

The model flexibly embeds di↵erent preferences and constraints that have commonly been

used to explain patterns in listing behavior. We then structurally estimate the model to

recover the preference and constraint parameters that best match the data.

2.1 Setup

The market consists of a continuum of sellers and buyers of residential property. For

simplicity, we consider a model with two periods. In period 0, a subset of property

owners receive a “moving” shock ✓ ⇠Uniform(✓min, ✓max), and decide whether or not to

put a property up for sale on the market, and the optimal listing price in case of listing.

We model ✓ as a “gain from trade” (Stein, 1995), i.e., a boost to lifetime utility associated

with successfully moving, which captures a variety of reasons for moving, including labor

market moves to opportunity, or the desire to upsize arising from a newly expanded family.

In period 1, buyers visit properties that are up for sale. If the resulting negotiations

succeed, the property is transferred to the buyer for a market-clearing price. If negotia-

tions fail, the seller stays in the property, with a constant level of utility u.

Our goal is to explain the structural relationship between listing decisions and seller

preferences and constraints. To sharpen this focus, we model buyer decisions and equilib-

rium negotiation outcomes in reduced-form, and focus on recovering seller “policy func-

tions” from this setup. In particular, let ↵ denote the probability that a willing buyer

will be found, and P the final sale price resulting from the negotiation between buyer and

seller. Building on Guren (2018), we note that su�cient statistic formulas (Chetty, 2009)

for equilibrium outcomes are mappings between sale probabilities ↵(`), final sale prices
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P (`), and the listing premium ` = L� bP ,9 i.e. the di↵erence between the listing price L

set by the seller, and some measure of the “expected” property value bP .10 In particular,

the realized premium of the final sales price P (`) over the expected property value bP ,

and the probability of a quick sale ↵(`) arise from the seller’s listing behavior, and the

subsequent negotiation process with the buyer.

A typical seller’s decision in period 0 can be written as:

max
s2{0,1}

8
><

>:
(s)max

`
[↵(`) (U (P (`), ·) + ✓) + (1� ↵(`))u� ']| {z }

EU(`)

+(1� s)u

9
>=

>;
(1)

For a property that is listed, we distinguish between two possible outcomes in period 1,

conditional on the level of the listing premium. With probability ↵(`) the negotiation

succeeds, and the seller receives utility from selling the property for an equilibrium price

P (`). With probability 1�↵(`) the listing fails, in which case the seller falls back to their

outside option level of utility u. In addition, owners who decide to list incur a one-time

cost ', which is sunk at the point of listing—all utility costs associated with listing (e.g.,

psychological “hassle factors”, search, listing and transaction fees) are captured by this

single parameter.

The seller decides on the extensive margin of whether (s = 1) or not (s = 0) to list,

and a listing premium ` to maximize expected utility from final sale of the property.

When so doing, the seller takes ↵(`) and P (`), i.e., the “demand” functions, as given;11

9In the model solution and calibration exercise, we normalize bP to 1. All model quantities can
therefore be thought of as being expressed in logs, consistent with the definitions of gains/losses and
home equity used in our empirical work.

10Guren (2018) assumes that the buyer’s expected or “reference” value is given by the average listing
price in a given zip code and year. This allows for more flexibility, allowing listing prices to systematically
deviate from hedonic/fundamental property values across time and locations. We begin with a simpler
benchmark, setting bP to the fundamental value of the house in the interests of internal consistency of
the model. As we show later, this distinction does not play a significant role in our empirical work, as
Denmark has a relatively homogenous and liquid housing market, and we show that the listing premium
based on hedonic prices more strongly predicts a decrease in the probability of sale than the alternative
based on average listing prices in a direct comparison in the online appendix.

11As we describe later, we flexibly allow for the seller to perceive ↵(`) di↵erently from the (ex-post)
estimated mapping function in the data by adding a parameter � to the model, i.e., the seller essentially
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we estimate these functions in the data as a reduced-form for equilibrium outcomes in

the negotiation process in period 1, which the seller internalizes when optimizing utility.

This assumption simplifies the model, and allows us to more closely focus on our goal,

namely, the underlying parameters of seller utility and constraints.

The functions ↵(`) and P (`) restrict the seller’s action space, and capture the basic

tradeo↵ that sellers face: a larger ` can lead to a higher ultimate transaction price, while

at the same time it decreases the probability that a willing buyer will be found within

a reasonable time frame.12 These points capture the link between listing premia, final

realized sales premia, and time-on-the-market or TOM originally detected by Genesove

and Mayer (2001). In the remainder of the paper, we refer to these two functions ↵(`)

and P (`) collectively as concave demand, following Guren (2018), who documents using

U.S. data that above average list prices increase time-on-the market or TOM (i.e., they

reduce the probability of final sale), while below average list prices reduce seller revenue

with little e↵ect on TOM. We find essentially the same pattern in the Danish data.

We turn next to describing the components of U (P (`), ·) = u(P (`), ·) � (P (`), ·),

which allows us to nest a range of preferences u(P (`), ·), including reference-dependent

loss-aversion à la Kahneman and Tversky (1979) and Koszegi and Rabin (2006, 2007), as

well as down-payment constraints à la Stein (1995) (P (`), ·).

maximizes subject to an (↵(`) + �) probability.
12In our estimation, we define a period as equal to six months. In this case, the function ↵(`) captures

the probability that the transaction goes through within a time frame of six months after the initial
listing.
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2.2 Reference Dependent Loss Aversion

We adopt a standard formulation of reference-dependent loss averse preferences as in

Section IV of Koszegi and Rabin (2006), writing u(P (`), ·) as:

u(P (`), R) =

8
><

>:

P (`) + �⌘G(`), if G(`) < 0

P (`) + ⌘G(`), if G(`) � 0
. (2)

In equation (2), we simply set the reference price level to R. Realized gains G(`)

relative to this reference level are given by G(`) = P (`) � R. Throughout the paper, we

simply assume that R is fixed, and in our empirical application, we simply set R at the

original nominal purchase price of the property.13

The parameter ⌘ captures the degree of reference dependence. Sellers derive utility

both from the terminal value of wealth (i.e. the final price realized from the sale of the

house), as well as from the realized gain relative to the reference price R.

The parameter � > 1 governs the degree of loss aversion. This specification of the

problem assumes that utility is piecewise linear in nominal gains and losses relative to

the reference point, with a kink at zero, and has been used widely both in the lab (e.g.,

Ericson and Fuster, 2011), and in the field (e.g., Anagol et al., 2018).

This utility specification nests several possibilities depending on parameter values.

When ⌘ = 0, we recover final utility of wealth u(P (`), R) = P (`). When ⌘ > 0 and � = 1

we are in a “linear reference-dependence” framework, i.e., u(P (`), R) = P (`) + ⌘G(`).14

We discuss the implications of these di↵erent parameter values on optimal listing premia

`
⇤ from the model later in this section.

13While this is a restrictive assumption, we find strong evidence to suggest the importance of this
particular specification of the reference point in our empirical work. We follow Blundell (2017), trading
o↵ a more detailed description of the decision-making problem in the field against stronger assumptions
that permit measurement of important underlying parameters.

14While at first glance this model might seem to simply be a scaled version of u(P (`), R) = P (`), as
we later discuss, the presence of the outside option u means that these models generate very di↵erent
predictions from one another.
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2.3 Down-payment Constraints

We now turn to describing (P (`), ·). Let M denote the level of the household’s out-

standing mortgage, and � the required down-payment on a new mortgage origination.

For a given price level P (`), the “realized” home equity position of the household is

H(`) = P (`)�M . Under the assumption that H is put towards the downpayment on the

next home, we can distinguish between constrained (i.e., downsizing averse) households

for which H(`) < �, and unconstrained households for which H(`) � �.

In the face of binding down-payment constraints, only unconstrained sellers can move

to another property of the same or greater value. However, there are several ways in which

households could relax these constraints despite legal restrictions on LTV at mortgage

initiation (which, as we discuss later, are strictly set at 20% in Denmark). The first,

obvious way is for the household to downsize to a less expensive home than P (`), or

indeed, to move to the rental market, which might incur a utility cost. The second is that

households can engage in non-mortgage borrowing to fill the gap � � H(`). A common

approach in Denmark is to borrow from a bank or occasionally from the seller of the

property to bridge funding gaps between 80% and 95% loan-to-value (LTV).15 A third

(typically unobservable) possibility is that households can bring additional funds to the

table by liquidating other assets.16 We therefore assume that violating the down-payment

constraint does not lead the seller to withdraw the sale o↵er. Rather, the seller incurs

a monetary penalty of µ for every unit by which realized home equity drops below the

15Danish households can borrow using “Pantebreve” or “debt letters” to bridge funding gaps above
LTV of 80%. Over the sample period, this was possible at spreads of between 200 and 500 bp over the
mortgage rate. For reference, see categories DNRNURI and DNRNUPI in the Danmarks Nationalbank’s
statistical data bank.

16In Stein (1995), M represents the outstanding mortgage debt net of any liquid assets that the
household can put towards the downpayment. The granular data that we can employ allow us to measure
the net financial assets that households can bring to the table to supplement realized home equity. We
later verify using these data that our inferences are sensible when considering these additional funds.
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constraint threshold:17

(P (`)) =

8
><

>:

µ(� �H(`)), if H(`) < �

0, if H(`) � �

. (3)

2.4 State Variables

In the model, besides the moving shock ✓, seller decisions are conditional on two state

variables, namely, the reference point R, and the size of the outstanding mortgage M . To

more directly map these to quantities that we estimate in the data, and to make our setup

more directly comparable to extant empirical and theoretical literature, we normalize

these two variables by the property’s fundamental (in our empirical application, hedonic)

value, and employ the seller’s expected or “potential” gains bG = bP � R, and similarly,

“potential” home equity bH = bP � M as state variables instead. Realized gains G(`)

and home equity H(`) are their “potential” levels plus a markup/premium which is the

outcome of the seller’s listing behavior and the negotiation process in the market, i.e.,

mediated by ↵(`) and P (`).

We next discuss selected predictions of this model to build intuition, and to help choose

key moments of the data with which we estimate the model’s structural parameters.

2.5 Model Predictions

2.5.1 Preference Parameters and Optimal Listing Premia

The first-order condition determining the optimal `⇤ balances the marginal utility benefit

(MB) of a higher premium, conditional on a successful sale, against the marginal cost

(MC) of an increased chance of the transaction failing, and the consequent fall to the

17i.e.,

U(P (`)) =

⇢
u(P (`)� µ(� �H(`)), if H(`) < �

u(P (`)), if H(`) � �
.
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outside option utility level:

MB = ↵(`)U 0 (P (`)) = ↵
0(`) [u� ✓ � U(P (`))] = MC. (4)

We now outline how equation (4) is a↵ected by di↵erent parameter values in equation

(2). (For the purposes of this discussion, we assume that µ = 0 in equation (3) to focus

on preferences.) If utility stems purely from the terminal house price (i.e. ⌘ = 0), `⇤ will

depend on the hedonic value of the property bP and the size of the moving shock ✓, but

will be invariant to the reference level R. However, the case of linear reference dependence

(⌘ > 0, � = 1) is di↵erent. While R does not a↵ect MB in this case, R does a↵ect MC by

altering the distance between u and the achievable utility level in the event of a successful

transaction. Intuitively, if the household can realize a gain from a successful transaction

(i.e., when R is su�ciently low), the utility from sale will be higher. The resulting `
⇤ will

be lower, as the household seeks to increase the probability of a successful transaction.

The opposite is true when the household faces a loss (i.e., when R is su�ciently high),

which results in a higher `⇤.18

In the case of reference-dependent loss-aversion (⌘ > 0 and � > 1), the kink in the

piecewise linear utility function leads to a piecewise linear pattern in `
⇤ at bG = 0. We

illustrate the intuition behind this result in Figure 1, for a simplified case in which demand

is linear.

Taking as given the trade-o↵ they face between prices and the probability of a suc-

cessful sale, sellers assign an optimal listing premium for each level of potential gains bG.

The listing premium they set determines the gains that they ultimately realize. Impor-

tantly, there exists a level of potential gains bG0 which maps to a realized gain of exactly

18Note that it is critical to assume that households do not receive utility from simply living in a house
that has appreciated relative to their reference point R, i.e. they do not enjoy utility from “paper” gains
until they are realized. If this condition does not hold, the model is degenerate in that R is irrelevant
both for the choice of the listing premium (intensive margin) and the decision to list (extensive margin).
We demonstrate this result analytically in the online appendix.
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zero. Sellers with potential gains below bG0 will want to avoid realizing a loss, meaning

that they slightly adjust their optimal listing premium upwards. This adjustment works

well (i.e., results in an acceptable probability of a failed sale) until a lower limit bG1 is

reached. Beyond this point, it is sub-optimal to aim for a realized gain of zero (despite

the pain associated with a loss), so the seller has no choice but to accept the loss. In the

online appendix, we work through this intuition analytically. Some broad implications

include that the slope of `⇤ along the bG dimension helps to identify the extent of reference

dependence ⌘, and slope di↵erences below and around bG = 0 help to identify �.

2.5.2 Concave Demand

The demand functions ↵(`) and P (`) are a critical determinant of listing behavior and

the expected shape of `⇤ in this model. To build intuition, consider the e↵ect of linear

demand functions ↵(`) = ↵0�↵1` and P (`) = bP +�0+�1` in a linear reference-dependent

utility model (with ⌘ = 1, � = 1) without financial constraints (µ = 0). In this case:

`
⇤ =

1

2

✓
↵0

↵1
� �0 + ✓

�1
� 1

�1

bG
◆
. (5)

Equation (5) shows that when the probability of sale is less sensitive to ` (i.e., when ↵1

is lower), in accordance with intuition, `⇤ is higher.19

This intuition carries over to a case in which ↵(`) has the concave shape first identified

by Guren (2018), and has important and interesting implications for the observed shape

of `⇤ as bG varies. Figure 2 graphically illustrates this mechanism, allowing variation in

↵(`) around ` = 0, i.e., the point at which L = bP .

In Panel A of Figure 2, consider a seller facing gains bG > 0. From equation (4),

low listing premia are optimal for this seller, to avoid hitting the lower outside option u

associated with a failed listing. However, when the seller is faced with concave demand

19We derive the equation explicitly in the online appendix.
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(i.e., the flattening out in ↵(`) when ` < `, continuing to assume that P (`) = �0 + �1`),

lowering ` below ` does not boost the sale probability ↵(`), but it does continue to

negatively impact the realized sale price P (`), meaning that `
⇤ “flattens out” in this

world.

The tradeo↵ faced by sellers facing losses bG < 0 is di↵erent—they set a higher listing

premium to o↵set these losses conditional on a willing buyer being found. This is traded

o↵ against a lower probability that such a buyer will be found at all. A stronger demand

response to ` makes this type of “fishing” more costly. The bottom panel of Figure

3 illustrates this force—a steeper buyer response to di↵erences between ` and ` (i.e.,

increased demand concavity) in turn leads to an attenuation of the slope of `⇤. In the

extreme case in which concave demand has an infinite slope around some level of the listing

premium, rational sellers’ `⇤ collapses to a constant—which would be observationally

equivalent to the case in which sellers are not reference dependent at all (⌘ = 0).

The main predictions from the model in this case are that first, the optimal `⇤ in

a linear reference dependent model (⌘ > 0, � = 1) in the presence of concave demand

exhibits a flatter slope as gains rise, relative to the case of linear demand. The resulting

`
⇤ profile along the dimension of realized gains G shows a characteristic “hockey stick”

shape of the type detected by Genesove and Mayer (2001), but for very di↵erent reasons.

Second, the model predicts a tight link between the shape of ↵(`) and the slope of `⇤. We

use this insight and cross-sectional variation in the concavity of demand across di↵erent

segments of the Danish market to aid structural parameter identification. For example, if

⌘ = 0, in this model, demand concavity does not a↵ect the slope of the `⇤ profile along the

G dimension. In contrast, a high ⌘ leads to a high “pass-through” of demand concavity

into optimal listing premia.

Finally, we add a parameter � to the model, which allows us to estimate the extent

to which sellers perceive the constraints imposed on their behavior by demand concavity

estimated in the data. In essence, as we describe later, this addition means that sellers
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perceive the slope to the right of ` as the slope estimated in the data plus a factor �.

Sellers in our model are explicitly allowed to have reference-dependent preferences—which

provides an incentive for them to set listing premia that are far away from `. In Guren’s

(2018) model, demand concavity provides a strong incentive for sellers to stay close to the

“average” listing premium, a force he refers to as strategic complementarity. We can view

� as one way to assess the relative strength of these forces, namely, reference dependence

and strategic complementarity—a high (negative) level of � would be associated with

sellers perceiving high costs for deviating from `, and vice versa.20

2.5.3 Bunching in the Distribution of House Sales

Household listing behavior also has material implications for quantities. Non-linearities

in `
⇤ along the G dimension will also be reflected in the degree to which transactions

complete, as well as on the final price at which these transactions occur.

In a model with ⌘ > 0, sellers with G < 0 choose relatively higher `
⇤. This has

two consequences. First, the likelihood that willing buyers will be found is lower, given

↵(`), and the consequent likelihood of observing such transactions is lower. Second, if

the transactions do go through, the associated realized gains on these transactions will

be higher, shifting mass in the final sales distribution towards sales with realized G > 0.

This e↵ect is especially pronounced if sellers are loss averse, i.e., when � > 1, in which

case we should observe a jump in the final distribution of house sales precisely at G = 0

with greater mass in this distribution just to the right of this point and less mass just to

the left of this point. The online appendix presents a figure which illustrates this force.

It is also worth noting that concave demand generates a non-linear listing premium

profile for the reasons documented above. This has similar e↵ects on `
⇤, as this force

pushes sellers not to lower listing premia below a point. This asymmetry also generates

bunching towards positive values of realized gains, which will depend on the level of `.

20As we show later, high listing premia are also associated greater volatility in TOM, meaning that �
can also be perceived as a way to assess sellers’ degree of risk aversion in this domain.
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A subtle point here is that any change in the precise specification of the reference

point R in the presence of loss aversion will change the location at which bunching is

observed. Indeed, heterogeneity in reference points will make it hard to observe the

precise location of bunching. To complicate matters further, variations in the level of ` are

a confound, rendering it di�cult to distinguish models with heterogeneous reference points

from models with spatial or temporal variation in `, the point at which demand concavity

kicks in. We avoid this complexity in our setup by simply taking the stance that R is the

nominal purchase price of the property and evaluating the extent to which we see bunching

given this assumption. As we will later see, this is not an outlandish assumption—we

observe significant evidence in the data of bunching at this point, suggesting its relevance

to sellers.

2.5.4 Extensive Margin

The model also has predictions for listing decisions. Any force that induces a wedge

between the expected utility from a successful listing and the outside option u can lead

the seller to decide that listing is sub-optimal. While sellers will respond to such a wedge

by adjusting their decisions along the intensive margin, they may also find that beyond

a certain level of the listing premium, the likelihood of the transaction going through is

so low that listing is sub-optimal to begin with. In particular, the model predicts that

sellers with lower expected gains and lower expected home equity are less likely to find it

optimal to list, which delivers clear predictions on the extensive margin.

This is important, because it allows us to exploit the observed listing behaviour of

sellers with respect to potential gains as an additional moment to inform the structural

estimation of the degree of reference dependence. While bunching in the distribution

of realized house sales described in the previous section is useful, it only captures ex

post-negotiation outcomes. The extensive margin decisions better capture sellers’ ex ante

listing behaviour in response to their potential gains and home equity position.

17

Electronic copy available at: https://ssrn.com/abstract=3396506



Another critical issue here is that modeling the extensive margin decision is a good way

to explicitly account for any selection e↵ects that may drive patterns of observed intensive

margin listing premia in the data, an issue that the prior literature (e.g., Genesove and

Mayer, 1997, 2001, Anenberg, 2011, Guren, 2018) has been unable to control for as a result

of data limitations. For example, if sellers that decide not to list are more conservative

(i.e., they set lower listing premia), and those who decide to list are more aggressive

(i.e., they set higher listing premia) the resulting selection e↵ect would lead to a higher

observed non-linearity in listing premia around reference points that would bias parameter

estimates and inferences conducted only using the intensive margin.

The moving shock ✓ is a key determinant of such selection e↵ects. For any given level

of the moving shock, the listing decision is still a simple binary choice, but once we model

the entire distribution of shocks, we can directly account for the heterogeneity of listing

decisions and calculate average listing premia in the population. By construction, these

average listing premia incorporate the endogenous first-stage selection e↵ects and can be

immediately mapped onto the data.

2.5.5 Additional E↵ects of the Extensive Margin on the Intensive Margin

There are more subtle implications of the model which link the extensive and the intensive

margin. The parameter ✓ alters the distance between the outside option and the utility

from a successful listing, which pushes the seller to set higher average `. However, this

force can move ` into regions of concave demand in which the response of buyers is more

(or less) pronounced, i.e., the probability of a successful sale is more (or less) responsive

to the chosen listing premium because of the nonlinearity in ↵(`). Di↵erent levels of ✓,

therefore, are associated with di↵erent magnitudes of the seller’s reactions around the

relevant preference and constraint thresholds (i.e., R and M) in gains and home equity.

Thus, variation in ✓ will interact with di↵erent levels of R and M in a manner which can

smooth and blur the kinks in the `
⇤ profile discussed above—both in the model and in
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the data. The online appendix illustrates this force with a specific example.

We turn next to describing the data and our estimation of key moments as a precursor

to structural estimation of the parameters.

3 Data and Descriptive Statistics

Our data span all transactions and electronic listings (which comprise the overwhelming

majority of listings) of owner-occupied real estate in Denmark between 2009 and 2016. In

addition to listing information, we also acquire information on property sales dates and

sales prices, the previous purchase price of the sold or listed property, hedonic characteris-

tics of the property, and a range of demographic characteristics of the households engaging

in these listings and transactions, including variables that accurately capture households’

financial position at each point in time. In our empirical work, we also combine the data

in the Danish housing register with the listings data to assess the determinants of the

extensive margin listing decision for all properties in Denmark over the sample period.

That is, we can also assess the fraction of the total housing stock that is listed, conditional

on functions of the hedonic value such as potential gains relative to the original purchase

price, or the owner’s potential level of home equity.

We link administrative data from various sources; all data other than the listings data

are made available to us by Statistics Denmark. We briefly describe these data below;

the online appendix contains detailed information about the sources, construction, and

matching involved in assembling the dataset.

3.1 Data Sources

3.1.1 Property Transactions and Other Property Data

We acquire comprehensive administrative data on registered properties, property trans-

actions, property ownership, and hedonic characteristics of properties from the registers
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of the Danish Tax and Customs Administration (SKAT) and the Danish housing register

(Bygnings-og Boligregister, BBR). These data are available from 1992 to 2016. In our he-

donic model, described later, we also include the (predetermined at the point of inclusion

in the model) biennial property-tax-assessment value of the property that is provided by

SKAT, which assesses property values every second year.21

Loss aversion and down-payment constraints were originally proposed as explanations

for the puzzling aggregate correlation between house prices and measures of housing liq-

uidity, such as the number of transactions, or the time that the average house spends on

the market. In the online appendix, we show the price-volume correlation in Denmark

over a broader period containing our sample period. The plot looks very similar to the

broad patterns observed in the US.

3.1.2 Property Listings Data

Property listings are provided to us by RealView (http://realview.dk/en/), who attempt

to comprehensively capture all electronic listings of owner-occupied housing in Denmark.

We link these transactions to the cleaned/filtered sale transactions in the o�cial property

registers, 76.56 percent of transactions have associated listing data.22 For each property

listing, we know the address, listing date, listing price, size and time of any adjustments

to the listing price, changes in the broker associated with the property, and the sale or

retraction date for the property.

21As we describe later, this is the same practice followed by Genesove and Mayer (1997, 2001); it does
not greatly a↵ect the fit of the hedonic model, and barely a↵ects our substantive inferences when we
remove this variable.

22We more closely investigate the roughly 25% of transactions that do not have an associated electronic
listing. 10% of the transactions can be explained by the di↵erent (more imprecise) recording of addresses in
the listing data relative to the registered transactions data. The remaining 15% of unmatched transactions
can be explained by: (a) o↵-market transactions (i.e., direct private transfers between friends and family,
or between unconnected households); and (b) broker errors in reporting non-publicly announced listings
(“sku↵esager”) to boligsiden.dk. We find that on average, unmatched transactions are more expensive
than matched transactions. Sellers of more expensive houses tend to prefer the sku↵esalg option for both
privacy and security reasons.
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3.1.3 Mortgage Data

To establish the level of the owner’s home equity in each property at each date, we obtain

data on the mortgage attached to each property from the Danish central bank (Danmarks

Nationalbank), which collects these data from mortgage banks. The data are available

annually for each owner from 2009 to 2016, cover all mortgage banks and all mortgages

in Denmark and contain information on the mortgage principal, outstanding mortgage

balance each year, the loan-to-value ratio, and the mortgage interest rate. If several

mortgages are outstanding for the same property, we simply sum them, and calculate a

weighted average interest rate and loan-to-value ratio for the property and mortgage in

question.

3.1.4 Owner/Seller Demographics

We source demographic data on individuals and households from the o�cial Danish Civil

Registration System (CPR Registeret). In addition to each individual’s personal identifi-

cation number (CPR), gender, age, and marital history, the records also contain a family

identification number that links members of the same household. This means that we

can aggregate individual data on wealth and income to the household level.23 We also

calculate a measure of households’ education using the average length of years spent in

education across all adults in the household. These data come from the education records

of the Danish Ministry of Education. We source individual income and wealth data from

the o�cial records at SKAT, which hold detailed information by CPR numbers for the

entire Danish population.

23Households consist of one or two adults and any children below the age of 25 living at the same
address.
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3.1.5 Final Merged Data

We only keep transactions for which we can measure both nominal losses and home

equity. We have transactions data available from 1992 to the present, meaning that we

can only measure the purchase price of properties that were bought during or after 1992.

Moreover, the mortgage data run from 2009 to 2016. In addition, the sample is restricted

to properties for which we know both the ID of the owner, as well as that of the owner’s

household, in order to match with demographic information. For listings that end in a final

sale, we also drop within-household transactions and transactions that Statistics Denmark

flag as anomalous or unusual. We restrict our analysis to residential households, in our

main analysis dropping listings from households that own more than three properties in

total, as they are more likely property investors than owner-occupiers.24

In the online appendix, we describe the data construction filters and their e↵ects on

our final sample in more detail. Once all filters are applied, the sample comprises 217,028

listings of Danish owner-occupied housing in the period between 2009 and 2016, for both

sold (70.6%) and retracted (29.4%) properties, matched to mortgages and other household

financial and demographic information. These listings correspond to a total of 193,850

unique households, and 181,020 unique properties. Most households that we observe in

the data sell one house during the sample period, but roughly 9% of households sell two

houses over the sample period, and roughly 1.5 percent of households sell three or more

houses.

In our main analysis we study the 175,646 households that have a mortgage, but we

return to the 41,382 households with no mortgage as a robustness check. In addition, we

use the entire housing stock (13,305,501 observations of 1,736,172 unique properties) to

understand the extensive margin decision of whether to list the properties for sale.

24Genesove and Mayer (2001) separately estimate loss aversion for these groups of homeowners and
speculators. We simply drop the speculators in this analysis, choosing to focus our parameter estimation
in this paper on the homeowners.
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3.2 Hedonic Pricing Model

To calculate potential gains and potential home equity, we require a measure of expected

price bP for each property-year in the data. To do so, we estimate a standard hedonic

pricing model on our sample of sold listings and use this model to predict prices for the

entire sample of listed properties, including those that are not sold.25

The hedonic model predicts the log of the sale price Pit of all sold properties i in each

year t, using a set of property characteristics:

ln(Pit) = ⇠ + ⇠t + ⇠m + ⇠tm + �ft i=f t=⌧ + �Xit

+ �fx i=fXit + �(vit) + i=f�(vit) + "it, (6)

where Xit is a vector of property characteristics, namely ln(lot size), ln(interior size),

number of rooms, bathrooms, and showers, a dummy variable for whether the property

was unoccupied at the time of sale or retraction, the age of the building, dummy variables

for whether the property is located in a rural area or a historic area, and ln(distance of

the property to the nearest major city).

⇠ is a constant, ⇠t are year fixed e↵ects, ⇠m are fixed e↵ects for di↵erent municipalities

(there are 98 municipalities in Denmark), ⇠tm are year cross municipality fixed e↵ects,

and i=f is an indicator variable for whether the property is an apartment (denoted by

f for flat) rather than a house.26 �(vit) is a third-order polynomial of the previous-year

tax assessor valuation of the property.27 We interact the apartment dummy with time

25Later in the paper, we also assess the extent to which gains, losses and home equity determine the
decision to list. We estimate a separate hedonic model for all properties, including all unlisted properties,
in order to conduct these additional tests.

26In the online appendix, we also include cohort e↵ects ⇠c in the hedonic regression, and continue
to find robust evidence of all patterns uncovered in our empirical analysis, showing that intra-cohort
variation in gains and losses is also associated with changes in listing premia.

27Genesove and Mayer (1997, 2001) also consider tax assessment data in their hedonic model. Im-
portantly, the tax assessment valuation is carried out before the time of the transaction, in some cases
even many years before. Until 2013, the tax authority re-evaluates properties every second year. The
assessment, which is valid from January 1st each year, is established on October 1st of the prior year.
In the years between assessments, the valuation is adjusted by including local-area price changes. This
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dummies, as well as with the hedonic characteristics and the tax valuation polynomial,

to allow for a di↵erent relationship between hedonics and apartment prices.

When we estimate the model, the R
2 statistic equals 0.86 in the full sample.28 The

large sample size allows us to include many fixed e↵ects into the model, helping to deliver

a better-fitting model. This helps to ameliorate concerns of noise or unobserved quality

in the measure bP , an important concern when estimating the e↵ects of both loss aversion

and home equity (e.g., Genesove and Mayer, 1997, 2001, Anenberg, 2011, Clapp, et al.,

2018). We also adopt a number of alternative approaches to deal with the important issue

of unobserved quality and its e↵ects on our inferences, as we describe later.

3.3 Gains, Losses, and Home Equity

Armed with the hedonic pricing model, we estimate bG and bH in percentage terms, i.e.,

bG = dlnP � lnR, where R is set to the nominal purchase price of the property, and

bH = dlnP � lnM , where M is reported by the household’s mortgage bank each year. The

online appendix plots the distributions of bG and bH in the data, both winsorized at the

1% and 99% percentile points (there are several large values given the substantial time

elapsed since the purchase of some properties in the data).29 Mean bG in the data is 33%

and median bG is 26%, and 25% (75%) of property-years have bG < 0 ( bG � 0). Mean bH is

26%, median bH is 24%, and 75% (25%) of property-years have bH < 0 ( bH � 0). Modal bH

is close to 21%, which is to be expected, as Denmark has a constraint on the issuance of

mortgages—the Danish Mortgage Act specifies that LTV at issuance by mortgage banks

adjustment has been frozen since 2013, recording such price changes as of 2011. Only in the case of
significant value-enhancing adjustments to a house or apartment would a re-assessment have taken place
thereafter–and once again, is pre-determined at the point of property sale.

28The online appendix contains several details about the hedonic model and estimates. We also
estimate the model in levels rather than logs, with an R

2 of 0.88. Moreover, the R
2 when we eliminate

the tax assessor valuation from the hedonic characteristics is 0.73.To check the robustness of our results
to the specification of the hedonic model, we also amend it in various ways as outlined in the appendix.
Our results are qualitatively, and for the most part, quantitatively una↵ected by these amendments.

29 bH is also winsorized at 100% to restrict it to this level for tiny mortgages, given the log di↵erence
approach that we use to compute it.
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is restricted to be 80% or lower, though, as mentioned earlier, households can engage in

non-mortgage borrowing to fill the gap at substantially higher rates. This constraint does

not change over our sample period.30

It is potentially a significant challenge to estimate the independent e↵ects of down-

payment constraints31 and gains on households’ listing decisions, since bG and bH are jointly

dependent on dlnP . However, there are multiple other factors that influence this correla-

tion, including the LTV ratio at origination (i.e., variation in initial downpayments), and

households’ post-initial-issuance remortgaging decisions including “cash-out” refinancing.

In the online appendix, we plot the joint distribution of these two variables, and show

that in addition to unconstrained winners ( bH � 20% and bG � 0) and constrained losers

( bH < 20% and bG < 0) which comprise 68.4% of the sample, we have both constrained

winners (24.9% of the sample, bH < 20% and bG � 0) and the final category of uncon-

strained losers (6.7% of the sample, bH � 20% and bG < 0).32 While this is reassuring, it

could well be the case that this variation is confined to one particular part of the sample

period, i.e., driven by time-variation in Danish house prices. To check this, in the online

appendix we also plot the shares of seller groups in the data across each of the years

in our sample. The figure shows that aggregate price variation does shift the relative

shares in each group across years, with price rises increasing the fraction of unconstrained

winners relative to losing and constrained groups. However, the relative shares still look

30The online appendix documents the changes in the Act over our 2009 to 2016 sample period. While
the constraint does not move during this period, there are a few changes in the wording of the act, a
change in the maximum maturity of certain categories of loans in February 2012 from 35 to 40 years, and
the revision of certain stipulations on the issuance of bonds backed by mortgage loans. None of these
materially a↵ect our inferences.

31The notion of constraints applies only if households are reluctant to downsizing. In the online
appendix, we show, using a subsample of 14,939 households for which we can find two subsequent housing
transactions and mortgage down-payment data, that there is a high correlation between the current house
value, and the price of the next home that these households purchase, and that the price of the next
home almost always lies above the price of the current house.

32
M > R is frequently observed in the data (44.8% of observations). This is primarily because of

households’ subsequent actions to remortgage to higher levels than their mortgage at issuance. This
generally arises from “cash-out” refinancing, but could also arise from disadvantageous subsequent re-
financing by homeowners, or fluctuations in adjustable rate mortgage payments causing households to
increase mortgage principal to reduce monthly payment volatility.
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stable over the sample period, alleviating concerns that di↵erent groups simply come from

di↵erent time periods, i.e., identification of any e↵ects is likely to arise mainly from the

cross-section rather than the time-series. We also verify that the inclusion of cohort and

cohort-cross-municipality fixed e↵ects in the hedonic model does not a↵ect our inferences

materially.

3.4 Listing Premia, Realized Premia, Time-on-the Market, and

Probability of Sale

Our measure of the listing premium in the data is ˆ̀= lnL� dlnP , where L is the reported

initial listing price observed in the data.33 The online appendix plots the distribution of

ˆ̀. Mean (median) ˆ̀ is 13.4% (11.8%), and ˆ̀> 0 (ˆ̀< 0) for 75% (25%) of the sample.

The online appendix also shows the distribution of TOM in the data. We winsorize this

distribution at 200 weeks, viewing properties that spend roughly 4 years on the market

as essentially retracted. Mean (median) TOM in the data is 36 weeks (25 weeks). This is

higher than the value of roughly 17 weeks reported in Genesove and Han (2012).

We next inspect the inputs to the function ↵(ˆ̀) in the data. The left plot in Panel A

of Figure 3 shows how TOM relates to ˆ̀ in the data using a simple binned scatter plot.

When ˆ̀ is below 0, TOM barely varies with ˆ̀; however, TOM moves roughly linearly

with ˆ̀ when ˆ̀ is positive and moderately high. Interestingly, we also observe that the

relationship between ˆ̀ and TOM flattens out as ˆ̀ rises to very high values above 40%.

This behavior is mirrored in the right-hand side of Panel A of Figure 3, which shows the

share of seller retracted listings, which also rises with ˆ̀. Here we also see more “concavity”

as ˆ̀ drops below zero, in that the retraction rate rises the farther ˆ̀ falls below zero.

The left plot in Panel B of Figure 3 simply converts the two plots in Panel A into a

33We confirm, estimating Genesove and Mayer’s (2001) specifications on our data (see online appendix),

that the coe�cient on dlnP in our data using ther regression, controlling for a range of other determinants,
is close to 1. We discuss below how our results are also robust to using the alternative approach of
Genesove and Mayer (2001), and discuss identification and measurement concerns in greater detail there
as well.
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single number, which is the probability of house sale within six months, i.e., ↵(ˆ̀) (we pick

six months to match the median 25 week TOM observed in the sample), which we plot

on the y-axis as a function of ˆ̀ on the x-axis. To smooth the average point estimate at

each level of the listing premium, we use a generalized logistic function or GLF (Richards,

1959, Zwietering et al., 1990, Mead, 2017) of the form:

↵(ˆ̀) = A+
K � A

⇣
C +Qe�B ˆ̀

⌘1/⌫
. (7)

The solid line corresponds to this set of smoothed point estimates. The GLF is well suited

to capture concave demand, in that it is bounded both from above (K) and below (A).

Moreover, we are able to easily vary the degree of concavity in a convenient way, through

the single parameter B. In our estimation of the parameters, we restrict A = 0 to impose

that the probability of sale asymptotically converges to 0 for arbitrary high levels of ˆ̀.

The right-hand plot in Panel B of Figure 3 shows how the markup of P (ˆ̀) over the

hedonic value (i.e. lnP (ˆ̀) � dlnP or the “realized premium” of the final sales price over

the hedonic value) varies with ˆ̀. This realized premium rises virtually one-for-one with

ˆ̀ when ˆ̀ is low, but flattens out as ˆ̀ rises. In Denmark, virtually identically to the

patterns detected by Guren (2018) in three U.S. markets, low list prices appear to reduce

seller revenue with little corresponding decline in TOM, and akin to Genesove and Mayer

(2001), who analyze the Boston housing market between 1990 and 1997, the Danish data

also reveals that sellers who set high ˆ̀ su↵er longer TOM, but ultimately achieve higher

prices (i.e., high realized premia) on these sales. The solid line shows a simple linear fit

of this relationship that we use in the model.

As described in the model section, the model parameter � (which we implement as

an addition to B in equation (7)) accounts for the possibility that sellers may perceive

demand concavity di↵erently from our measures in the data. Concretely, we measure �

as the relative reduction in the probability of sale for a listing premium of 10%. The
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right-hand plot in Panel C of Figure 3 shows that the data also exhibit strong pattern of

rising volatility of TOM as ˆ̀ rises, a new fact that we uncover here. Among other reasons,

this is a force that could potentially deliver a negative �, i.e., a downward adjustment of

probability of sale for any given ˆ̀, as a result of TOM volatility aversion on the part of

sellers (we show the potential e↵ects of � on perceived ↵(ˆ̀) in the left-hand plot in Panel

C).34

4 Moments in the Data

In this section, we describe important moments of the data. These are a combination of

previously established results that we verify in our data, and new facts about the behavior

of ˆ̀ and the extensive margin listing decision. Rather than attempting to use the entire

dataset to estimate the parameters of the model, we select key moments that are critical

for identification, and use these as the input into structural parameter estimation. One

approach to validation that we later adopt is to generate predictions from the model using

these estimated parameters, and to evaluate these predictions against the data.

4.1 Listing Premia, Gains/Losses, and Home Equity

Panel A of Figure 4 is a 3-D plot of ˆ̀against both bG and bH in the data, averaged in bins of

3 percentage points. The plot shows that ˆ̀ declines in both bG and bH, consistent with the

patterns previously identified in the literature. Unusually, given the large administrative

data that we have access to, the plot captures the variation ˆ̀ along both dimensions

simultaneously, and clearly reveals both independent and interactive variation along both

dimensions. We describe these interactions in more detail towards the end of the paper,

and evaluate the extent to which we can match these relationships using the model.

34The more steeply sloping line corresponds to the actual � parameter that we acquire from structural
estimation, described later.
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4.1.1 Estimation Moments

To make progress at this stage, we discipline the estimation moments, restricting our focus

to two cross-sections of the 3-D plot. We first evaluate the relationship between ˆ̀ and

bG, setting bH = 20%, and the relationship between ˆ̀ and bH setting bG = 0%. These are

shown as dotted lines in Panel A of Figure 4, and Panel B plots these cross-sections. The

left-hand plot in Panel B shows that ˆ̀ increases substantially more with losses ( bG < 0)

than it declines with gains ( bG > 0). There is also some visual evidence of a kink in the

relationship at bG = 0. The right-hand plot of Panel B shows a strong negative relationship

between ˆ̀ and bH, but little evidence of a kink in this plot at the H = 20% mark.

We estimate three moments for structural parameter estimation in Panel B. The first

is the level of ˆ̀ at bG = 0%, which is 10.4%. The second is the slope of ˆ̀ for bG < 0%,

which equals �0.492. The third is the slope of ˆ̀ for bH < 20% which is �0.304.35

4.1.2 Unobserved Quality

An important and often-repeated concern in the literature measuring the relationship

between ˆ̀ and bG (and indeed, in estimating the function ↵(ˆ̀)) is that observed non-

linearities could simply arise from measurement error in the underlying model for bP .

We discuss this issue in detail in the online appendix, which also shows plots on the

robustness of the relationship between ˆ̀ and bG, and the shape of ↵(ˆ̀) to a range of

di↵erent models that we use to estimate bP . The bottom line is that the asymmetries seen

in the relationship between ˆ̀ and bG, as well as those seen in measured demand concavity

are robust to estimating several di↵erent models of bP proposed in the literature as well

as more novel approaches that we adopt to deal with unobserved quality, including the

use of property-specific fixed e↵ects to absorb time-invariant unobserved house features;

instrumenting variation in bP using regional house price indexes following Guren (2018);

Genesove and Mayer (2001)’s bounding approach; adding fixed e↵ects, demographics,

35We compute standard errors for our structural parameter estimates using a bootstrap procedure.
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and interactions to the hedonic model; and the use of the regression kink design approach

suggested by Card et al. (2015b) (and implemented e.g., by Landais, 2015, Nielsen et

al. 2010, Card et al. 2015a), which relies on quasi-random assignment at thresholds of

particular “running variables” that induce kinks in agents’ responses.

4.2 Regional Variation in Demand Concavity and Listing Pre-

mium Slopes

The model predicts two possible and distinct sources of the di↵erential slopes of `⇤ across

gains and losses. One is that in the presence of loss aversion (i.e., � > 0), there are kinks

in `
⇤ around bG = 0, which can be smoothed into a di↵erential slope by variation in ✓. The

second is buyer sensitivity to `, i.e. the degree of demand concavity ↵(`). The bottom

panel of Figure 3 illustrates this second mechanism in the model, which predicts that

sellers set a steeper `
⇤ slope when bG < 0 in markets where ↵(`) demand is less steeply

sloped and vice versa. This predicts a tight correlation between the slope of ↵(ˆ̀) and the

slope of ˆ̀ when bG < 0.

To check whether this predicted correlation moment is observed in the data, we sep-

arately estimate the slope of ˆ̀ in the domain bG < 0, as well as separate ↵(`) functions

(in particular, the slope of ↵(ˆ̀) when ˆ̀ � 0) in di↵erent municipalities of Denmark,

corresponding to di↵erent local housing markets.36

Figure 5 Panel A shows results when we sort municipalities by their estimated demand

concavity (i.e., the slope of ↵(ˆ̀) when ˆ̀� 0). The right-hand panel of the plot illustrates

that there is indeed substantial variation in demand concavity across municipalities, show-

ing municipalities in the top and bottom 5% of estimated demand concavity. The slope

for municipalities with strong demand concavity (top 5%) lies between �1.4 and �1.1,

while the slope for municipalities with weak demand concavity (bottom 5%) lies between

36Municipalities are a natural local market unit—there are 98 in Denmark, each of around 60,000
inhabitants, and with roughly 1,800 listings on average. We also re-do this exercise using shires, which
are a smaller geographical delineation covering 80 listings on average as a cross-check.
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�0.1 and �0.3. The left-hand panel of Figure 5 Panel A shows the corresponding figure

for the relationship between ˆ̀ and bG for these municipalities. Indeed, as the model pre-

dicts, markets with strong demand concavity exhibit a substantially weaker slope of ˆ̀ in

the domain bG < 0 (�0.1 to �0.4) than markets with weak demand concavity (�0.5 to

�0.9).37

In the left-hand plot of Panel B of Figure 5, we plot the relationship between the slope

of ˆ̀ in the domain bG < 0 and demand concavity (i.e., the slope of ↵(ˆ̀) when ˆ̀� 0) across

all municipalities. As the model predicts, this relationship is tight and negative across

municipalities.

We turn these observations into moments for the purposes of estimation. For each

municipality, we start with the concavity of demand (calculated as above, i.e., the slope

of ↵(ˆ̀) when ˆ̀� 0). We then compute the slope of ˆ̀ with respect to bG above and below

bG = 0. The fourth moment is then given by regressing the municipality-average listing

premium slope for bG < 0 on the municipality-specific concavity of demand. We estimate

this regression slope to be equal to �0.384 (s.e. 0.071). Analogously, to obtain the fifth

moment we regress the local (municipality-level) listing premium slope for bG � 0 on the

local concavity of demand. The corresponding estimate is equal to �0.098 (s.e. 0.043).

Towards the end of the paper, we describe a validation analysis that we undertake

to confirm the mechanism in the data using instruments for demand concavity. We now

turn to describing the sixth and seventh moments that we estimate.

37We also observe important di↵erences between the levels of ↵(ˆ̀) across these markets i.e., there are
both “hot” and “cold” municipalities à la Ngai and Tenreyro (2014); for the purposes of our investigation,
we focus on the slope di↵erentials, and to show these, Figure 5 normalizes sub-markets to have the same
level of the listing premium. Un-normalized plots in the online appendix reveal that the level of ˆ̀ is lower
when the level of ↵(ˆ̀) is higher and vice versa; consistent with Ngai and Tenreyro (2014), the levels of
↵(ˆ̀) and P (ˆ̀) are strongly positively correlated across sub-markets.
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4.3 Bunching

The right-hand plot of Panel A in Figure 6 documents significant bunching of transactions

in the positive domain of realized gains G, with a sharp jump around G = 0, and with

significant mass apparently extending further into the domain G > 0. The “raw” change

in sales frequency in the interval G 2 [�3%,+3%] around G = 0% is one measure of

bunching, and this estimate equals 30%. However, we do not need to rely solely on the

distribution of realized transactions. The left-hand plot of Panel A of the figure shows

the distribution of potential gains bG. This is a useful counterfactual for the distribution

of realized G, because in the model, when ⌘ > 0, realized gains arise from potential gains

which are transformed through the choice of `⇤ and the associated probability of sale.

In contrast, in the case of ⌘ = 0, the model predicts that the distribution of G would

simply be a constant linear transformation of the distribution of bG. The position of the

pronounced jump in the distribution precisely at G = 0% is also a clue that � > 1, and

o↵ers empirical support for the choice of R as the nominal purchase price (see Kleven,

2016, for a discussion of bunching at reference points).

To calculate our preferred measure of bunching (the sixth moment that we employ), we

normalize the sales frequency over realized gainsG (right-hand plot) by the sales frequency

over bG expected gains (left-hand plot), which for the same interval G 2 [�3%,+3%]

around G = 0% delivers a bunching measure of 29%, strikingly similar to the “raw” esti-

mate. The magnitude is also very close when estimating counterfactuals using a smooth

polynomial function (see, e.g., Kleven (2016)), and is robust to conditioning on bH = 20%.

4.4 Extensive margin

To estimate our final moment, we compute the fraction of the housing stock in Denmark

that lists at each level of bG, by estimating dlnP for all properties in Denmark for which

we have data on the nominal purchase price R (12, 565, 190 property-years in the data).
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Panel B of Figure 6 shows a mild increase in the probability of listing as bG increases. This

slope is our seventh and final empirical moment for structural parameter estimation. We

also note that the unconditional average listing propensity is 3.75% of the housing stock

(corresponding to between 2% and 4% of the housing stock listed in each sample year).

We not not attempt to explain the average propensity to list as we view this as beyond

the scope of this paper, and would require us to take a strong stance on the factors that

drive the moving decision, currently summarized by our estimates of ✓.

Table 1 summarizes the seven moment estimates that we employ in structural param-

eter estimation, as well as associated OLS and cluster-robust bootstrap standard errors

(clustering individual draws by shire). We move next to describing our structural param-

eter estimation.

5 Structural Estimation

5.1 Moments in the Model

To match the data moments inside the model, we make a few assumptions. First, we

simply use the estimated demand concavity ↵(`) and P (`) shown in Panel B of Figure

3 as two of these inputs. Second, we set � = 20% according to Danish law. Third, we

normalize all quantities in the model, setting the property’s fundamental value bP = 1

and we set the outside option u = bP . Fourth, we define the variables bG = bP � R and

bH = bP �M as the model equivalents of potential gains and home equity in the data.

Next, consider the set of parameters from the model:

x =


⌘, �, �, µ, ✓min, ✓max, '

�0
. (8)

To obtain policy functions of state variables and parameters, we solve the model
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numerically, inputting grids of bG and bH, and yielding:

h
s
⇤( bG, bH, ✓,x), `⇤( bG, bH, ✓,x)

i
= arg max

s2{0,1}

n
(s)max

`

n
EU(`, bG, bH, ✓,x)

o
+ (1� s)u

o
.

(9)

We then compute aggregates, i.e., averages in the population of listing probabilities,

and average listing premia which account for the extensive margin decision:

S
⇤( bG, bH,x) =

Z
s
⇤( bG, bH, ✓,x)d✓, (10)

L ⇤( bG, bH,x) =

Z

s⇤=1

`
⇤( bG, bH, ✓,x)d✓. (11)

These functions then allow us to compute the set of seven model-implied moments

Mm(x)7⇥1 corresponding to the moments in the data Md
7⇥1 described above.

The first moment is the average listing premium L ⇤( bG = 0%, bH = 20%,x). The

second is a slope from regressing L ⇤( bG, bH = 20%,x) on the grid of bG for bG < 0. The

third is a slope from regressing L ⇤( bG = 0%, bH,x) on the grid of bH for bH < 20%.

We next propose a simple procedure to approximate the regional correlation moments

(i.e., the relationship between variation in demand concavity and the slope of the listing

premium) inside the model. Let  bG<0 be the slope from a regression of L ⇤( bG, bH = 20%,x)

on the grid of bG for bG < 0, and  bG�0 the analogous slope for bG � 0 ( bG<0 and  bG�0

simply capture the slopes of the listing premium above and below potential gains of zero).

Now consider a change �̃ in demand concavity. We re-compute each of the  slopes for

� � �̃
2 and � + �̃

2 , which is a first-order approximation of the degree to which a change in

concave demand “passes through” to the slopes of L ⇤ above and below bG = 0%. The

fourth and fifth moments inside the model are then given by
+

bG<0
��

bG<0

�̃
and

+
bG�0

��
bG�0

�̃
.

The sixth moment measures bunching of transactions around realized gains of zero.

To calculate this measure, we begin with a randomly generated sample of N = 1, 000

draws of bG from a uniform distribution with limits (�50%,+50%). For each observation
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in the sample, we obtain the optimal aggregate listing premium L ⇤ for a level of home

equity equal to 20% and the average level of the moving shock, and calculate realized

gains as G = P (L ⇤)�R. In addition, we model the likelihood that the transaction goes

through by drawing a random number ✏ from a uniform distribution and including the

observation in the final sample of transactions if ✏ < ↵(L ⇤). The measure of bunching is

then given by the relative density of transactions in the positive vs. the negative domain,

in the interval [-5%, +5%].38

Finally, the seventh moment is given by the slope from a regression of S⇤( bG, bH =

20%,x) on the grid of bG, to match the corresponding extensive margin moment in the

data.

5.2 Classical Minimum Distance Estimation

From the moments in the data and in the model, we calculate:

g(x) = Mm(x)�Md.

Since the system is exactly identified, i.e., seven moments and seven parameters, we

can estimate the structural parameters bx simply as:

bx = argmin
x

g(x)0g(x).

The asymptotic variance of the parameters is given by:

avar(bx) =

@g(x)

@x
W

@g(x)

@x0

��1

,

where we set W to the inverse of the normalized covariance matrix of moments x. We

38We choose this slightly wider interval than in the data to avoid situations in which our results may
be influenced by the grid sizes.
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consider both a simple (diagonal) case: W ii = (�2
i /Ni)�1, as well as the (shire-clustered)

bootstrap full covariance matrix. Finally, we make inferences about the parameter esti-

mates using the asymptotic relationship:

bx !d
N(x, avar(bx)).

5.3 Parameter Estimates

Table 2 shows the estimated parameters and associated standard errors. The data favor

a model of reference dependence with ⌘ = 0.981 with a degree of loss aversion � = 1.525.

This � estimate is lower than that commonly considered in the early literature, which lies

between 2 and 2.5 (e.g., Kahneman et al. 1990, Tversky and Kahneman, 1992), but is

closer to estimates reported in more recent literature (e.g., Imas et al. 2016 finds a value

of � = 1.59).39

The parameter µ = 1.035 best matches the average ˆ̀ slope with respect to bH, i.e.,

there is an 103.5 bp penalty (expressed as a fraction of the mortgage amount) for every

percent that H drops below � = 20%. This parameter can be contrasted with an average

rate increase of roughly 50 bp on the whole loan if the household were to borrow an

additional 10% in the unsecured Danish lending market.40 The relatively larger number

suggests that households in Denmark faced financial constraints preventing them from

borrowing. In support of this, we find that the median household in our sample has

negative net liquid financial wealth of roughly �9%, i.e., their unsecured debt is greater

than their liquid financial assets (stocks, bonds, cash) by this amount.

39Given how close the estimated ⌘ is to 1, we re-estimated a restricted version of the model where
⌘ = 1. Further details are discussed in the online appendix. We obtained similar estimates of � = 1.58
(s.e. 0.25), µ = 1.08 (s.e. 0.19), � = �0.11 (s.e. 0.05), ✓min = 0.25 (s.e. 0.20), ✓max = 1.10 (s.e. 0.40) and
' = 0.04 (s.e. 0.04).

40Households in this market face between 200-500 basis points increases in interest rates for every
percentage point of borrowing in this market between 80 and 95 LTV over our sample period. Taking
450 bp as the point estimate within this range, at an 80% LTV an additional ten percent borrowing adds
roughly 50 bp to the overall loan.
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We find that � = �0.098, which corresponds to a perceived relative reduction of the

probability of sale of 9.8%, for a household listing at ` = 10%, and that the distribution

✓ ⇠Uniform(✓min, ✓max) has parameters ✓min = 0.228 and ✓s = 1.037. These “moving

shocks” correspond to the present discounted value of future benefits from successfully

selling and/or moving, and are on the order of 22.8% of the hedonic price for a household

at the minimum of the distribution, and approximately equal to the entire hedonic value

for a household at the maximum of the distribution. Finally, we find that the estimated

“all-in” cost of listing is 3.9% of the hedonic value of the house, though this parameter is

not precisely estimated in our setup.

5.4 Sensitivity Analysis

Andrews et al. (2017) argue that in method-of-moments estimation of the type that we

use, it is often useful to understand the mapping from moments to estimated parameters.

In Figure 7 we propose a simple and less formal application of this idea. Solid red lines

(which overlap with the dashed black lines) indicate the level of the moment in the data

(which are exactly matched by the indicated moments in the model given that the system

is exactly identified). Dotted red lines show the 95% confidence interval in the data for

the parameter estimate based on bootstrap standard errors. The horizontal solid lines

show how sensitive the moments are to varying each of the parameters, describing how

each moment varies when we re-compute the model-implied moments varying each of the

structural parameters by two standard deviations. This also provides useful intuition on

the sources of identification in the data for each of the model’s parameters.

We also evaluate the importance of correctly modelling demand concavity. We do

so by adopting a näıve approach to estimation that eschews this important feature and

simply assumes that demand is linear. To do so, we preserve the P (`) function, but simply

estimate a linear ↵(`) function, and re-estimate the parameters (apart from �) under this

assumption. We find that in the case of this restricted model, we estimate ⌘ = 0.750 with
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a degree of loss aversion � = 3.285, a radical departure from the more realistic estimates

that we extract when demand is permitted to be concave.

6 Model Fit, Validation, and Open Questions

6.1 Model Fit

The plots in Panel A of Figure 8 compare the model-implied patterns of optimal listing

premia with those observed in the data, contrasting the 3-dimensional plots in the data

(left-hand plot) and the model (right-hand plot). The plot shows that there is a pro-

nounced increase in ˆ̀ for G < 0, and shows a similar increase in ˆ̀when bH declines. What

is striking about the plot is that it suggests that the position of any reference point is

not uniquely determined by bG or bH alone. As we briefly mentioned earlier, there seems

to be considerable variation in the slope of the relationship between ˆ̀ and both bG and bH

that depends on the level of the other variable. Put di↵erently, both in the data and in

the model, it appears as if the e↵ects of losses and constraints interact with one another,

and that the factors a↵ecting household behavior are neither one nor the other variable

in isolation. We explore this issue in greater detail below.

6.2 Interactions

Panel B of Figure 8 shows that the model is unable to capture these interactions. The

figure plots selected cross-sections of the listing premium surface in the data, using a

smooth function of the bins for ease of visualization as dashed lines, alongside their

model equivalents as solid lines.41 The left-hand plot in Panel B shows that there is a

change in the slope of the ˆ̀ - bG relationship as bH varies, and the right-hand plot, that

there seems to be a change in the inflection point in the ˆ̀ - bH relationship as bG varies.

41We simply use the GLF function introduced in equation (7) for this purpose. The online appendix
shows a plot of the actual bins in the data alongside the model-implied listing premia.

38

Electronic copy available at: https://ssrn.com/abstract=3396506



Note that the average level of ˆ̀ in the data declines substantially as households become

less constrained, and increases substantially as households become more constrained—

this is simply the unconditional relationship between ˆ̀ and bH, seen in a di↵erent way in

the left-hand plot. What is more interesting is that controlling for this change in level,

the slope of ˆ̀ as a function of bG is a↵ected by the level of bH. The important new fact is

that down-payment-unconstrained households exhibit seemingly greater levels of reference

dependence along the gain/loss dimension, exhibiting a pronounced increase in the slope

to the left of bG = 0. In contrast, down-payment constrained households exhibit a flatter

ˆ̀ along the bG dimension. The right-hand plot in Panel B of the figure shows the ˆ̀ -

bH relationship, where again, the level di↵erences reflect the ˆ̀ - bG relationship. Another

interesting fact emerges—along the bH dimension, while the slope around the threshold

does not change, the position of the kink in ˆ̀ increases with the level of past experienced

gains.

These new facts appear to require a more intricate model of preferences and/or con-

straints than the literature has thus far proposed, which cannot be rationalized by our

canonical model, which captures many of the forces thus far proposed in the literature.

We briefly speculate on the possible types of models that may rationalize these findings

here, with a view towards motivating theoretical work on a broader class of preference

and constraint specifications.

One possible rationalization of the variation in the ˆ̀- bG relationship with bH is that the

luxury of being unconstrained appears to cause more psychological motivations such as loss

aversion to come to the fore. Put di↵erently, unconstrained households seem constrained

by their loss aversion à la Genesove and Mayer (2001), while constrained households

respond to their real constraints by engaging in “fishing” behavior à la Stein (1995).

It may also be that this finding can be rationalized by a more complex specification of

reference points such as expectations-dependent reference points (e.g., Köszegi and Rabin,

2006, 2007, and Crawford and Meng, 2011).
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Turning to the change in the position of the kink in the ˆ̀ - bH relationship as bG varies,

it appears as if a household’s propensity to engage in “fishing” behavior kicks in at a level

of bH that is strongly influenced by their expected bG. One possible rationalization of this

is that households facing nominal losses feel constrained at levels of home equity (i.e.,

H = 20%) that would force them to downsize, while those expecting nominal gains may

have in mind a larger “reference” level of housing into which they would like to upsize

(or indeed, a larger fraction of home equity in the next house). To achieve this larger

reference level of housing, they begin “fishing” at levels of H > 20% in hopes of achieving

the higher downpayment on the new, larger house. To provide suggestive evidence on

this story, in the online appendix we focus on a sample of 14,440 households for which we

can find two subsequent housing transactions and mortgage downpayment data. For this

limited subsample, we show a binned scatter plot of the ˆ̀ on the subsequently sold listing

against the realized downpayment on the subsequent house, controlling for the level of

bH on the subsequently sold listing. We find evidence that the downpayment on the new

house is correlated with ˆ̀, which, given our evidence of bG predicting ˆ̀, is consistent with

the idea that households shifting their reference level of housing on the basis of expected

gains.

6.3 Demand Concavity, Housing Stock Homogeneity, and List-

ing Premia

Earlier, we documented how regional variation in demand concavity correlates with re-

gional variation in the shape of the listing premium schedule. This relationship could be

driven by a number of di↵erent underlying forces. For instance, demand may respond

to primitive drivers of supply rather than the other way around—i.e., some markets may

be populated by more loss-averse sellers, and buyer sensitivity to `
⇤ might simply accom-

modate this regional variation in preferences. Another possibility is that this regional
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relationship simply captures the di↵erent incidence of common shocks to demand and

market quality.

Our model is partial equilibrium, and describes a di↵erent underlying mechanism for

this correlation, namely, that sellers are optimizing in the presence of the constraints

imposed by demand concavity. In order to understand whether the left-hand plot of

Panel B of Figure 5 is potentially consistent with sellers responding to such incentives, we

implement an instrumental variables (IV) approach. Our IV approach is driven by the

intuition that the degree of demand concavity is related to the ease of value estimation

and hence price comparison for buyers. Intuitively, a more homogeneous “cookie-cutter”

housing stock can make valuation more transparent, and should therefore increase buyers’

sensitivity to `. That is, this intuition predicts that markets with high homogeneity should

exhibit more pronounced demand concavity.

Our main instrument is the share of apartments and row houses listed in a given

sub-market. Row houses in Denmark are houses of similar or uniform design joined by

common walls, and apartments have less scope for unobserved characteristics such as

garden sheds and annexes than regular detached houses.42 As an alternative, we also use

the distance (computed by taking the shire-level distance to the closest of the four cities,

averaged over all shires in a given municipality) to the four largest cities in Denmark

(Copenhagen, Aarhus, Odense, and Aalborg) as a measure of how rural a given market

is, and how far away from cities people live on average. This alternative relies on the

possibility that homogeneous housing units are more likely to be built in suburbs or in

cities, rather than in the countryside.

In the case of both instruments, the identifying assumption is that these measures of

homogeneity of the housing stock only a↵ect the slope of ˆ̀with respect to bG through their

e↵ect on ↵(ˆ̀). To account for cross-market di↵erences in model-predicted demand-side

factors a↵ecting the slope of ˆ̀ with respect to bG and bH, we also include specifications

42In the online appendix, we show pictures of typical row houses in Denmark.
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which control for the average age, education length, financial assets, and income of sellers

in a given sub-market.

Figure 5 on the right-hand side of Panel B shows strong evidence of the “first-stage”

correlation, i.e., demand concavity on the y-axis against homogeneity measured by the

share of apartments and row-houses in a given municipality on the x-axis, with each dot

representing a municipality (more negative values of demand concavity mean a sharper

slope of ↵(ˆ̀) to the right of ˆ̀ = 0). Table 3 reports the results of the more formal IV

exercise. Column 1 shows the simple OLS relationship between the slope of ˆ̀ for bG < 0 on

demand concavity slope (slope of ↵(ˆ̀) for ˆ̀� 0) across municipalities,43 with a baseline

level of �0.384. Column 2 uses the apartment-and row-house share as an instrument

for demand concavity, and the just identified two-stage least squares (2SLS) specification

yields a coe�cient estimate of �0.479. With both instruments (i.e., including the distance

to the largest cities as well), the overidentified 2SLS specification gives a result of �0.465

without, and �0.468 with controls for average household characteristics in the munic-

ipality. The first-stage F-statistics are between 25 and 37, assuaging weak-instrument

concerns (Stock and Yogo, 2002) and we cannot reject the null of the Hansen overiden-

tification test of a correctly specified model and exogenous instruments at conventional

significance levels.44 These results appear to validate the mechanism that we propose in

the model.

7 Conclusion

Using a model that we structurally estimate on comprehensive Danish housing market

data, we acquire new estimates of key behavioral parameters and estimates of household

43Municipalities are required to have at least 30 observations where bG < 0, leaving 95 out of 98
municipalities, but results are robust to keeping all municipalities.

44These results are robust to using a logit model, di↵erent cuto↵s (` � 5, 10, 15%) for the demand
concavity estimation, cuts of the data such as excluding the largest cities Copenhagen and Arhus, and
regressions at the shire level. These robustness checks are all available in the online appendix.

42

Electronic copy available at: https://ssrn.com/abstract=3396506



constraints from an important high-stakes household decision. Our work shows that in

this market, households do exhibit reference dependence around the nominal purchase

price plus modest loss aversion. However these inferences require an understanding of the

institutional setting in the housing market—we document that inferences about prefer-

ences can be strongly a↵ected by the correct specification of demand in this search and

matching market. We also find evidence of the strong role of down-payment constraints

on household decisions, and acquire estimates of the size of gains from trade for successful

house sales, as well as new estimates of the all-in costs of house listing.

The model cannot completely match some new facts which we identify in the data,

which we view as a new target for behavioral economics theory. Nominal losses and down-

payment constraints interact with one another, in the sense that reference dependent

behavior is less evident when households are facing more severe constraints, and most

pronounced for unconstrained households. We also find that home equity constraints

loom larger for households facing nominal losses. However, for households facing nominal

gains, we find evidence consistent with an upward shift in the point at which they feel

constrained. This could be explained by households resetting their desired size or quality

of housing upwards in response to experienced gains.

In micro terms, this interaction between reference dependence and constraints could

have implications for the way we model behavior. We tend to assume that agents optimize

their (potentially behavioral) preferences subject to constraints, and in numerous models,

agents may also wish to impose constraints on themselves to “meta-optimize” (Gul and

Pesendorfer, 2001, 2004, Fudenberg and Levine, 2005, Ashraf et al. 2006, DellaVigna and

Malmendier 2006). However, if constraints a↵ect the incidence of behavioral biases, or

indeed, if being in a zone that is more prone to bias a↵ects the response to constraints,

our models must of necessity become more complicated to accommodate such behavior.

Taking a more macro perspective, reference dependence appears important for un-

derstanding aggregate housing market dynamics. The housing price-volume correlation
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tends to fluctuate, and especially during housing market downturns, prices and liquidity

can move in lockstep. This has important implications for labor mobility, which responds

strongly to housing “lock” (Ferreira et al., 2012). Interaction e↵ects such as the e↵ect of

expected losses on the household response to constraints could also help to make sense

of the seemingly extreme reactions of housing markets to apparently small changes in

underlying prices, and inform mortgage market policy (Campbell, 2012, Piskorski and

Seru, 2018).
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Figure 1
Reference dependence and loss aversion

The figure illustrates how each specification of utility function is reflected in the sellers’ optimal choice

of listing premia. We plot a stylized version of listing premium profiles, for the case in which demand

functions ↵(`) and �(`) are linear and the household is not facing financing constraints. In the online

appendix, we describe and solve an analytical version of this model, which illustrates the driving forces

of optimal listing premia for di↵erent levels of potential gains.
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Figure 2
Concave demand

This figure illustrates the link between concave demand and the choice of optimal listing premia. In

Panel A we plot a stylized listing profile resulting from a case of pure reference dependence with no loss

aversion (⌘ > 0 and � = 1). Since the probability of sale does not respond to listing premia set below a

certain level `, it is rational for sellers to not respond to the exact magnitude of the expected gain. In

Panel B we show how a steeper slope of demand translates into a general flattening out of the listing

premium profile.
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Figure 3
Concave demand in the data

Panel A shows how the time-on-the-market and the listing retraction rate depend on the listing premium.

The left-hand side of Panel B shows the average probability of sale within six months ↵(`) across

equal-sized bins of the listing premium in the sample. The right-hand side of Panel B shows the average

realized premium P (`) � bP across equal-sized bins of the listing premium. Panel C illustrates the

additional scaling factor �, which is related to the interquartile range of time on the market (in weeks)

across equal-spaced bins of the listing premium (connected by a line in the right-hand side figure), as a

measure of the uncertainty around the probability of sale, which is increasing in ` � 0.

Panel A

Panel B

Panel C
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Figure 4
Listing premia, gains, and home equity

Panel A reports binned average values (in 3% steps) for the listing premium (`) along both levels of

expected gains and home equity. Panel B shows the underlying binned values for two cross-sections: In

the left plot, we condition on a home equity level of 20%, and in the right plot on a level of expected

gains of 0%. We use these two representative cross-sections to generate the empirical moments used in

structural estimation.

Panel A: Listing premium surface

Panel B: Listing premia moments
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Figure 5
Listing premium-gain slope and demand concavity

Panel A shows the listing premium over gains (left-hand side) and demand concavity (right-hand side)

patterns. We sort municipalities by the estimated demand concavity, using municipalities in the top

and bottom 5% of observations. Demand concavity is estimated as the slope coe�cient of the e↵ect of

the listing premium on the probability of sale within six months, for ` 2 [0, 50]. The slope of the listing

premium over gains is calculated for bG < 0. For better illustration of the main e↵ect, we adjust the

quantities measured to have the same level at G = 0% and ` = 0% respectively. The left-hand side of

Panel B shows the correlation between the estimated listing premium slope and demand concavity across

municipalities using a binned scatter plot with equal-sized bins. The right-hand side of Panel B shows a

binned scatter plot of the correlation between the main instrument, the share of listed apartments and

row houses in a given municipality, and demand concavity in a binned scatter plot with equal-sized bins.

Panel A

Panel B
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Figure 6
Moments: bunching and extensive margin

Panel A reports the frequency of observed transactions in terms of potential gains (left-hand side plot)

and realized gains (right-hand side plot). This serves as the basis for the estimation of bunching, which

we use as an empirical moment in our structural estimation exercise. Panel B reports the likelihood of

listing with respect to potential gains. We calculate this by calculating the observed number of listings

relative to the total stock of properties with potential gains in a given bin.

Panel A

Panel B
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Figure 7
Model sensitivity to parameters

This figure illustrates the mapping from moments to estimated parameters. In the spirit of Andrews et

al. (2017), we vary each of the structural parameters by two times their respective estimated standard

error and re-compute model-implied moments. Solid red lines indicate the level of the moment in the

data. Dotted red lines show the 95% confidence interval in the data based on bootstrap standard errors.

The horizontal solid lines show how sensitive the moments are to variation in each of the parameters.
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Figure 8
Model fit

Panel A reports listing premia by potential gains and home equity, both in the data and in the model. We

use the set of seven estimated parameters to evaluate average quantities in the model, accounting for the

extensive margin decision of whether to list the property for sale or not. Panel B illustrates the model fit

for conditional listing premia profiles, conditioning on di↵erent levels of potential gains and home equity.

Dotted lines indicate observations in the data (for which we report fitted values using generalized logistic

functions) and solid lines their model-implied counterparts.

Panel A

Panel B
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Table 1
Overview of moments and other estimates from the data

The table reports estimated empirical moments in the data. The first two capture the level and the slope

of the listing premium with respect to the seller’s level of potential gains, for bG > 0%, conditional on a

home equity level of bH = 20%. The third moment is the slope of the listing premium with respect to

potential home equity, for bH < 20%, conditional on gains of bG = 0%. The fourth and fifth moments are

obtained as slope coe�cients from cross-sectional regressions by municipality. For each municipality, we

compute the slope LP � bG for bG < 0% and bG � 0% respectively, as well as the concavity of demand (i.e.

the slope ↵ � ` for ` > 0). The sixth moment is the slope of the listing probability with respect to the

potential gains, conditional on a home equity level of H = 20%. The final moment captures the bunching

of transactions around realized gains of 0%, calculated as the relative frequency of transactions in the

[0,3%] interval of realized gains, relative to the [-3%,0) interval. In parentheses, we report bootstrap

standard errors, clustered at the shire level. *, **, *** indicate statistical significance at the 10%, 5%

and 1% confidence levels, respectively.

1. Level of LP for bG = 0% 0.104⇤⇤⇤ (0.005)

2. Slope LP- bG for bG < 0% -0.492⇤⇤⇤ (0.052)

3. Slope LP- bH for bH < 20% -0.304⇤⇤⇤ (0.031)

4. Cross-sectional slope LP- bG-↵ for bG < 0% -0.384⇤⇤⇤ (0.071)

5. Cross-sectional slope LP- bG-↵ for bG � 0% -0.098⇤⇤ (0.043)

6. Slope of list. prob. by bG 0.005⇤⇤ (0.002)

7. Bunching above G = 0% 0.290⇤⇤⇤ (0.051)

Table 2
Estimated parameters

The table reports structural parameter estimates obtained through classical minimum distance estimation.

We recover concave demand ↵(`) and P (`) from the data and set the down-payment constraint � = 20%.

In parentheses, we report standard errors based on the estimated bootstrap variance-covariance matrix

in the data, clustered at the shire level. *, **, *** indicate statistical significance at the 10%, 5% and

1% confidence levels, respectively.

⌘ = 0.981⇤⇤⇤ (0.312)

� = 1.525⇤⇤⇤ (0.422)

µ = 1.035⇤⇤⇤ (0.140)

� = �0.093⇤⇤⇤ (0.025)

✓min = 0.228 (0.186)

✓max = 1.037⇤⇤⇤ (0.174)

' = 0.039 (0.040)
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Table 3
Listing premium-slope over gains and demand concavity slope regressions

This table reports regression results for the relationship between the listing premium slope over gains and

demand concavity. The dependent variable in all regressions is the slope of the listing premium over bG < 0

across municipalities.45 Column 1 reports the baseline correlation with the demand concavity slope across

municipalities using OLS. Column 2 reports the 2-stage least squares regression instrumenting demand

concavity with the apartment- and row-house share. Columns 3 and 4 report the overidentified 2SLS

regression with both instruments, row-house and apartment share and average distance to city, without

and with household controls (age, education length, net financial assets and log income), respectively.

In parentheses, we report bootstrap standard errors, clustered at the shire level. *, **, *** indicate

statistical significance at the 10%, 5% and 1% confidence levels, respectively.

OLS 2SLS

(1) (2) (3) (4)

Single IV Overidentified

Demand concavity -0.384⇤⇤⇤ -0.479⇤⇤⇤ -0.465⇤⇤⇤ -0.468⇤

(0.071) (0.121) (0.083) (0.267)

Household controls X

Observations 95 95 95 95

R
2 0.396

First-stage F-stat 37.126 36.153 25.376

Hansen J-stat (p-val) 0.222 0.912
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1 Further Details on Framework

1.1 Reference Dependence and Loss Aversion

Figure A.1 illustrates the seller’s utility function for three cases. The first (⌘ = 0) corre-

sponds to the utility from terminal value of wealth. The second (⌘ > 0,� = 1) captures

linear reference dependence and the third (⌘ > 0 and � > 1) reference-dependent loss

aversion.

1.2 Derivation of bG0 and bG1

We now derive the potential gain levels bG0 and bG1 discussed in Figure 1 in the paper, for

a simple case where the demand functions are linear: ↵(`) = ↵0�↵1` and �(`) = �0+�1`.

In this case, expected utility is given by:

U
⇤(`| bG) = max

`
(↵0 � ↵1`)

2

64 bP + �0 + �1`| {z }
P (`)

+⌘ ( bG+ �0 + �1`)| {z }
G(`)

+✓

3

75+ (1� ↵0 + ↵1`) bP . (1)

The first-order condition for the choice of `⇤ is then:

↵0(1 + ⌘)�1 � ↵1

h
bP + (1 + ⌘)�0 + ⌘ bG+ ✓ � bP

i
� 2(1 + ⌘)↵1�1`

⇤ = 0, (2)

which implies the optimal solution:

`
⇤( bG) =

↵0(1 + ⌘)�1 � ↵1

h
(1 + ⌘)�0 + ⌘ bG+ ✓

i

2(1 + ⌘)↵1�1

=
1

2

✓
↵0

↵1

� �0

�1

� 1

�1

✓

1 + ⌘
� 1

�1

⌘

1 + ⌘

bG
◆
. (3)

Deeper in the loss domain, we have:

`
⇤
�( bG) =

1

2

✓
↵0

↵1

� �0

�1

� 1

�1

✓

1 + �⌘
� 1

�1

�⌘

1 + �⌘

bG
◆
. (4)

Realized gains result from a markup over potential gains, depending on the chosen optimal

listing premium:1

1Note that G = bG + �(`⇤( bG)) = �0 + �1e�0
+ (1 � �1e�1

) bG if we define `
⇤( bG) = e�

0
� e�

1
bG, and

`�
⇤( bG) = e��,0 � e��,1

bG.
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G( bG) = bG+ �(`⇤( bG)) (5)

Defining �0 = �0 +
�1

2

⇣
↵0
↵1

� �0

�1
� 1

�1

✓
1+⌘

⌘
and �1 = 1 � 1

2

⌘
1+⌘ , we can simplify the

expressions for the relationship between realized gains and potential gains:

G( bG) = �0 + �1
bG (6)

With loss aversion, realized gains are then given by a step function:

G( bG) =

8
><

>:

�0 + �1
bG if bG > bG0,

0 if bG 2 [cG1,
bG0],

��,0 + ��,1
bG if bG < bG1.

(7)

Here, we have:
bG0 = ��0

�1
and bG1 = ���,0

��,1
, (8)

with ��,0 and ��,1 defined analogously to �0 and �1 above.

1.3 Irrelevance of R with Utility from Passive Gains

We assume that households do not receive utility from simply living in a house that

has appreciated relative to their reference point R, i.e. they do not enjoy utility from

passive “paper” gains until they are realized. If this condition does not hold, the model

is degenerate in that R is irrelevant both for the choice of the listing premium (intensive

margin) and the decision to list (extensive margin). Consider the following utility function:

U =↵(`)

0

B@P (`) + P (`)�R| {z }
G(`)

1

CA+ (1� ↵(`))

0

@bP + bP �R| {z }
bG

1

A

=2↵(`)P (`) + 2(1� ↵(`)) bP �R.

In this case, R is a simple scaling factor. It does not a↵ect either marginal utility or

marginal cost.
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1.4 Derivation of Equation (5) in the Paper

To build intuition on how the demand functions ↵(`) and P (`) determine listing behavior,

consider the case of linear demand functions ↵(`) = ↵0 � ↵1` and P (`) = bP + �0 + �1`

in a “pure” reference-dependent utility model (with ⌘ = 1, � = 1) without financial

constraints (µ = 0). In this case, we have:2

U(`) = (↵0 � ↵1`)( bP + bG+ �0 + �1`+ ✓) + (1� ↵0 + ↵1`) bP .

The first-order condition for the choice of `⇤ is given by:

↵0�1 � ↵1( bP + bG+ �0 + �)� 2↵1�1`
⇤ = 0,

which implies the optimal solution:

`
⇤ =

↵0�1 � ↵1( bG+ �0 + ✓)

2↵1�1

=
1

2

✓
↵0

↵1

� �0 + ✓

�1

� 1

�1

bG
◆
.

1.5 Bunching

Figure A.2 illustrates the bunching of transactions around realized gains of zero, in the

case of loss aversion. This is a direct outcome of the kink in the listing premium profile.

Listing premia are sharply increasing around G = 0 because sellers avoid realizing losses,

and choose listing premia that are just high enough to push them above the threshold.

1.6 Specific Example of Extensive Margin E↵ects on Intensive

Margin

To develop intuition, consider sellers with very high ✓, who would naturally choose very

low average listing premia. However, because of concave demand, such sellers will converge

on the the same level (`) of listing premia, the point beyond which there is no further

improvement in the probability of sale. Put di↵erently, if ✓ is su�ciently high, the chosen

listing premium is essentially a↵ected only by its e↵ects on the probability of sale, and

`
⇤ will barely respond to preferences (potential gains) and constraints (potential home

equity). At the opposite end, if ✓ is very low (i.e., there are only tiny incentives to move),

the average listing premium will be so high that responding to potential gains and losses is

2In the paper, we denote bG = bP � R as potential gains and G(`) = P (`) � R = bG + �0 + �1` as
realized gains. For consistency in the discussion of model predictions, we did not use the “hat” notation
in Equation (5).
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either immaterial or too costly. Taken together, if the distribution of ✓ is such that there

is substantial mass in either (or both) of these areas, the average observed listing premium

in the market will show no evidence of reference dependence, and appear una↵ected by

down-payment constraints.3 More realistically, a more smooth distribution of ✓ will blur

the e↵ects of both reference dependence and constraints on the intensive margin.

2 Detailed Data Description

Our data span all transactions and electronic listings (which comprise the overwhelming

majority of listings) of owner-occupied real estate in Denmark between 2009 and 2016.

In addition to listing information, we also acquire information on property sales dates

and sales prices, the previous purchase price of the sold or listed property, hedonic char-

acteristics of the property, and a range of demographic characteristics of the households

engaging in these listings and transactions, including variables that accurately capture

households’ financial position at each point in time. We link administrative data from

various sources; all data other than the listings data are made available to us by Statistics

Denmark. We describe the di↵erent data sources and dataset construction below.

2.1 Property Transactions and Other Property Data

We acquire administrative data on property transactions, property ownership, and housing

characteristics from the registers of the Danish Tax and Customs Administration (SKAT).

These data are available from 1992 to 2016. SKAT receives information on property

transactions from the Danish Gazette (Statstidende)—legally, registration of any transfer

of ownership must be publicly announced in the Danish Gazette, ensuring that these data

are comprehensive. Each registered property transaction reports the sale price, the date

at which it occurred, and a property identification number.

The Danish housing register (Bygnings-og Boligregister, BBR) contains detailed char-

acteristics on the entire stock of Danish houses, such as size, location, and other hedonic

characteristics. We link property transactions to these hedonic characteristics using the

property identification number. We use these characteristics in a hedonic model to predict

property prices, and when doing so, we also include on the right-hand-side the (prede-

termined at the point of inclusion in the model) biennial property-tax-assessment value

3Naturally, these patterns will also strongly be reflected in decisions along the extensive margin. This
is a possibility that which we plan to explore in the future (e.g., most intuitively, the majority of low-✓
owners may decide not to list), in a setup in which the drivers of the moving decision can be more clearly
identified and mapped onto observable household characteristics.
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of the property that is provided by SKAT, which assesses property values every second

year.4 SKAT also captures the personal identification number (CPR) of the owner of ev-

ery property in Denmark. This enables us to identify the property seller, since the seller

is the owner at the beginning of the year in which the transaction occurred.

In our empirical work, we combine the data in the housing register with the listings

data to assess the determinants of the extensive margin listing decision for all properties in

Denmark over the sample period. That is, we can assess the fraction of the total housing

stock that is listed, conditional on functions of the hedonic value such as potential gains

relative to the original purchase price, or the owner’s potential level of home equity.

Loss aversion and down-payment constraints were originally proposed as explanations

for the puzzling aggregate correlation between house prices and measures of housing liq-

uidity, such as the number of transactions, or the time that the average house spends

on the market. In Figure A.3 we show the price-volume correlation in Denmark over a

broader period containing our sample period. The plot looks very similar to the broad

patterns observed in the US.

2.2 Property Listings Data

Property listings are provided to us by RealView (http://realview.dk/en/), who attempt

to comprehensively capture all electronic listings of owner-occupied housing in Denmark.

RealView data cover the universe of listings in the portal www.boligsiden.dk, in addition

to additional data collected directly from brokers. The data include private (i.e., open to

only a selected set of prospective buyers) electronic listings, but do not include o↵-market

property transactions, i.e., direct private transfers between households. Of the total

number of cleaned/filtered sale transactions in the o�cial property registers (described

below), 76.56 percent have associated listing data.5 For each property listing, we know

the address, listing date, listing price, size and time of any adjustments to the listing

price, changes in the broker associated with the property, and the sale or retraction date

4As we describe later, this is the same practice followed by Genesove and Mayer (1997, 2001); it does
not greatly a↵ect the fit of the hedonic model, and barely a↵ects our substantive inferences when we
remove this variable.

5We more closely investigate the roughly 25% of transactions that do not have an associated electronic
listing. 10% of the transactions can be explained by the di↵erent (more imprecise) recording of addresses in
the listing data relative to the registered transactions data. The remaining 15% of unmatched transactions
can be explained by: (a) o↵-market transactions (i.e., direct private transfers between friends and family,
or between unconnected households); and (b) broker errors in reporting non-publicly announced listings
(“sku↵esager”) to boligsiden.dk. We find that on average, unmatched transactions are more expensive
than matched transactions. Sellers of more expensive houses tend to prefer the sku↵esalg option for both
privacy and security reasons.
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for the property. The address of the property is de-identified by Statistics Denmark, and

used to link these listings data to administrative property transactions data.

2.3 Mortgage Data

To establish the level of the owner’s home equity in each property at each date, we need

details of the mortgage attached to each property. We obtain mortgage data from the

Danish central bank (Danmarks Nationalbank), which collects these data from mortgage

banks through Finance Denmark, the business association for banks, mortgage institu-

tions, asset management, securities trading, and investment funds in Denmark. The data

are available annually for each owner from 2009 to 2016, cover all mortgage banks and all

mortgages in Denmark and contain information on the mortgage principal, outstanding

mortgage balance each year, the loan-to-value ratio, and the mortgage interest rate. The

data contain the personal identification number of the borrower as well as the property

number of the attached property, allowing us to merge data sets across all sources. If sev-

eral mortgages are outstanding for the same property, we simply sum them, and calculate

a weighted average interest rate and loan-to-value ratio for the property and mortgage in

question.

2.4 Owner/Seller Demographics

We source demographic data on individuals and households from the o�cial Danish Civil

Registration System (CPR Registeret). In addition to each individual’s personal identifi-

cation number (CPR), gender, age, and marital history, the records also contain a family

identification number that links members of the same household. This means that we

can aggregate individual data on wealth and income to the household level.6 We also

calculate a measure of households’ education using the average length of years spent in

education across all adults in the household. These data come from the education records

of the Danish Ministry of Education.

Individual income and wealth data also come from the o�cial records at SKAT, which

hold detailed information by CPR numbers for the entire Danish population. SKAT

receives this information directly from the relevant third-party sources, e.g., employers

who supply statements of wages paid to their employees, as well as financial institutions

who supply information on their customers’ balance sheets. Since these data are used to

facilitate taxation at source, they are of high quality.

6Households consist of one or two adults and any children below the age of 25 living at the same
address.
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2.5 Final Merged Data

Our analysis depends on measuring both nominal losses and home equity. This imposes

some restrictions on the sample. We have transactions data available from 1992 to the

present, meaning that we can only measure the purchase price of properties that were

bought during or after 1992. Moreover, the mortgage data run from 2009 to 2016. In

addition, the sample is restricted to properties for which we know both the ID of the

owner, as well as that of the owner’s household, in order to match with demographic

information.

For listings that end in a final sale, we drop within-household transactions and trans-

actions that Statistics Denmark flag as anomalous or unusual. We flag (but do not drop)

listings by households that do not have a stable structure, that is, we create a dummy for

those listings for which the household ceases to exist as a unit in the year following the

listing owing to death or divorce. We also flag households with missing education infor-

mation. We restrict our analysis to residential households, in our main analysis dropping

listings from households that own more than three properties in total, as they are more

likely property investors than owner-occupiers.7

Once these filters are applied, the sample comprises 217,028 listings of Danish owner-

occupied housing in the period between 2009 and 2016, for both sold (70.6%) and retracted

(29.4%) properties, matched to mortgages and other household financial and demographic

information. These listings correspond to a total of 193,850 unique households, and

181,020 unique properties. Most households that we observe in the data sell one house

during the sample period, but roughly 9% of households sell two houses over the sample

period, and roughly 1.5 percent of households sell three or more houses.

In our main analysis we study the 175,646 households that have a mortgage, but we

return to the 41,382 households with no mortgage as a robustness check. In addition, we

use the entire housing stock (13,305,501 observations of 1,736,172 unique properties) to

understand the extensive margin decision of whether to list the properties for sale.

Table A.1 describes the cleaning and sample selection process from the raw listings

data to the final matched data, with N = 175, 646.

7Genesove and Mayer (2001) separately estimate loss aversion for these groups of homeowners and
speculators. We simply drop the speculators in this analysis, choosing to focus our parameter estimation
in this paper on the homeowners.

9

Electronic copy available at: https://ssrn.com/abstract=3396506



3 Summary Statistics

3.1 Liquid Financial Wealth

Figure A.5 Panel A shows the distribution of liquid financial assets in the sample. The

wealthiest households in the sample have above 2 million DKK, which is roughly US$

300,000 in liquid financial assets (cash, stocks, and bonds). The median level of liquid

financial assets is 71,000 DKK and the mean in the sample is 247,000 DKK. When we

divide gross financial assets by mortgage size, we find that households, at the median,

could relax their constraints by around 6.25 percent if they were to liquidate all financial

asset holdings. However, the right-hand side of the top panel of the figure shows that

this would be misleading. Looking at net financial assets, once short-term non-mortgage

liabilities (mainly unsecured debt) are accounted for, substantially changes this picture.

The median level of net financial assets in the sample is -106,000 DKK and the mean

is -136,000 DKK, and the picture shows that households’ available net financial assets

actually e↵ectively tighten constraints for around 60 percent of the households in our

sample. When we divide net financial assets by mortgage size we find, for households

with seemingly positive levels of financial assets, that the constraints are in fact tighter

by 9.3% at the median. Put di↵erently, if households were to liquidate all financial asset

holdings and attempt to repay outstanding unsecured debt, at the median, they would

fall short by 9.3%, rather than be able to use liquid financial wealth to augment their

down payments. We therefore control for the amount of net financial assets in several of

our specifications to ensure that we accurately measure the impact of these constraints

on household decisions. This is a significant advance, given the measurement concerns

that have a↵ected prior work in this area.

3.2 Age and Education

Given the natural reduction in labor income generating opportunities as households ap-

proach retirement, we might also expect that mortgage credit availability reduces as

households age. And both age and education have been shown in prior work to a↵ect

the incidence of departures from optimal household decision-making (e.g., Agarwal et al.,

2009, Andersen, et al., 2018), meaning that we might expect preference-based hetero-

geneity across households along these dimensions. Figure A.5 Panel B shows the age and

education distributions of households in the sample. As expected, home-owning house-

holds with mortgages are both older and more educated than the overall distribution of

households.
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3.3 Gains, Losses and Home Equity – Independent Variation

There are several challenges associated with estimating the independent and joint e↵ects

of down-payment constraints and gains on households’ listing decisions. One important

challenge is that home equity and expected gains/losses are likely to be highly correlated

with one another, mainly because of their joint dependence on dlnP . Other factors that

influence this correlation are the LTV ratio at origination, and households’ decisions to

remortgage to higher levels or to engage in subsequent “cash-out” refinancing after the

initial issuance of the mortgage. A second challenge in cleanly estimating the e↵ects of

both constraints and gains on household behavior is that their e↵ects could interact in

complex ways. This means that su�cient independent variation is necessary to be able

to estimate any interaction e↵ects with reasonable precision.

We therefore document the extent to which there is independent variation in gains and

home equity in the data. We first provide a simple classification of the household-years

in the data into four groups, based on estimated dlnP , the purchase price of the home R,

and the mortgage amount M . The groups are:

1. Unconstrained Winners (48.8%): H � 20% and G � 0.

2. Constrained Winners (26.5%): H < 20% and G � 0.8

3. Unconstrained Losers (6.2%): H � 20% and G < 0

4. Constrained Losers (18.6%): H < 20% and G < 0

The density of the data in each of the four groups is shown in Figure A.7. We show a

vertical line at zero gains, and a horizontal line at 20% home equity. Under the assumption

that households wish to move into a house of at least the same size as they currently own,

and do not possess additional resources that they can bring to bear to augment the down

payment, 20% current home equity is the constraint point, rather than zero home equity.

The figure shows that, as expected, there is a high correlation between the extent of

home equity constraints and the gains and losses experienced by households. However,

in our sample, there is considerable density o↵ the principal diagonal of the plot. While

8
M > R is frequently observed in the data (44.8% of observations). This is primarily because of

households’ subsequent actions to remortgage to higher levels than their mortgage at issuance. This
generally arises from “cash-out” refinancing, but could also arise from disadvantageous subsequent re-
financing by homeowners, or fluctuations in adjustable rate mortgage payments causing households to
increase mortgage principal to reduce monthly payment volatility.
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this is reassuring, it could well be the case that this variation is confined to one particular

part of the sample period, i.e., driven by time-variation in Danish house prices.

To check this, Figure A.8 plots the shares of seller groups in the data across each

of the years in our sample. The figure shows that aggregate price variation does shift

the relative shares in each group across years, with price rises increasing the fraction of

unconstrained winners relative to losing and constrained groups. However, the relative

shares still look fairly stable over the sample period, alleviating concerns that di↵erent

groups simply come from di↵erent time periods, i.e., identification of any e↵ects is likely

to arise mainly from the cross section rather than the time series.

3.4 Generalized Logistic Functions and Interaction E↵ects

This rich set of interactions calls for a flexible and parsimonious model capable of capturing

the observed shapes of the LP -G and LP -H relationships. To better document the facts

about these patterns in the data, we estimate a simple model of reference points, borrowing

a function commonly used in the biology literature to model the growth of organisms and

populations. This is the generalized logistic function, also known as a Richards curve

(Richards, 1959, Zwietering et al., 1990, Mead, 2017):

E[LP (V )] = A+
K � A

(1 +Qe�BV )1/⌫
. (9)

Here, the parameters A and K control the lower and upper asymptotes of the sigmoid

function, and the parameters Q, B and ⌫ control the position of the reference (i.e. inflec-

tion) point as well as the slope of the sigmoid curve at the reference point.

Figure A.11 plots the relationships estimated using the model in equation (9). We set

V first as gains (V = G), and next, as the level of home equity V = H. Panel A of the

figure has G along the x-axis, and LP along the y-axis. However, we now condition on

three levels of H: the blue line shows the LP -G relationship for households with levels

of H between 20 and 40% (i.e., e↵ectively unconstrained households), while the red lines

show the same relationship when households are increasingly constrained (the dashed red

line when H is between -5% and 20%, and the solid line when H is between �15% and

�5%).

To better understand these plots, we note that the average level of LP declines sub-

stantially as households become less constrained, and increases substantially as households

become more constrained—this is simply the unconditional relationship between LP and

H, seen in a di↵erent way in this plot. (Panel B of the figure shows the level di↵erences
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that reflect the LP -G relationship, i.e., higher levels of LP for those with high realized

losses (in red) relative to those experiencing gains (blue)).

What is more interesting here is that controlling for this change in level, the slope

of LP as a function of G is also a↵ected by the level of H. The important new fact is

that down-payment-unconstrained households exhibit seemingly greater levels of reference

dependence along the gain/loss dimension, exhibiting a pronounced increase in the slope

to the left of G = 0. In contrast, down-payment constrained households exhibit a flatter

LP across the G dimension.

The bottom panel shows another interesting fact—along the home equity dimension,

while the slope around the threshold does not change, the position of the kink in the

listing premium increases with the level of past experienced gains.

3.5 Conditional E↵ects on Listing Premia

Of course, these observations could simply be capturing the e↵ect of other potential de-

terminants for which the plots do not control, and indeed, we may be concerned yet again

about the independent e↵ects of G and H on LP . To check whether these conditional

e↵ects do indeed exist controlling for one another, and for a range of other determi-

nants, and to verify whether they are statistically significant, we estimate the following

piecewise-linear specification:

LPit = µt + µm + ⇠0Xit + ⇠1Bit + ↵1 Git<0 + ↵2 Hit<20%

+ (�0 + �1 Git<0| {z }
Gains

+�2Bit + �3 Git<0Bit| {z }
Conditional e↵ect

)Git

+ (�0 + �1 Hit<20%| {z }
Down-payment

constraint

+�2Bit + �3 Hit<20%Bit| {z }
Conditional e↵ect

)Hit

+ "it. (10)

Equation (10) allows LP to depend (piecewise) linearly on both home equity H and

gains G (through �0, �0). We include time (µt) and municipality (µm) fixed e↵ects, and

controls Xit (household age, years of education, and net financial assets). The piecewise

linear specification also allows for kinks in the linear relationship at a reference point of 0

for nominal gains, and 20% for home equity through �1 and �1—these coe�cients capture

the “unconditional” e↵ects of gains and home equity on household behavior. The baseline

estimation is reported in Table A.3. To capture the conditional behavior, we bin both

home equity and gains (as well as the other conditioning variables) and introduce dummy
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variables B into the regression of the respective other dimension to capture the di↵erent

LP -G (and LP -H) relationships for these groups. We allow for B to modify both the

unconditional relationship with G and H (�2, �2), as well as any slope di↵erential at the

reference points (�3, �3).9

Despite the considerable number of parameters in equation (10), the estimates point

to interesting conditional variation in the data. The y-axis of Panel A of Figure A.9 shows

the point estimate for the slope of the LP -G relationship for di↵erent bins of household

covariates shown on the x-axis.

Panel B of Figure A.10 investigates the e↵ect of down-payment constraints, condition-

ing the LP -H relationship on the level of household covariates.

4 Hedonic Pricing Model and Alternatives

4.1 Unobserved Quality

An important and often-repeated concern in the literature measuring the relationship

between ˆ̀ and bG (and indeed, in estimating the function ↵(ˆ̀)) is that observed non-

linearities could simply arise from measurement error in the underlying model for bP .

We show that the asymmetries seen in the relationship between ˆ̀ and bG, as well as

in measured demand concavity are robust to estimating several di↵erent models of bP
proposed in the literature as well as more novel approaches that we adopt to deal with

unobserved quality (Figure A.14).

First, we use repeat sales to di↵erence out property-specific fixed e↵ects to absorb time-

invariant unobserved house features (e.g., a sea view).10 Second, we follow Guren (2018),

and use more and less granular regional indexes of house price changes as instruments for
bP , as house price changes at the shire level are more plausibly exogenous to individual

sellers who can only a↵ect the unobserved quality of their house. Third, we implement

the approach proposed by Genesove and Mayer (2001) to establish bounds on the e↵ect

of both unobservable property quality, and the possibility that the seller over- or under-

9Since we do not want to model any higher-order e↵ects in this context, we exclude the respective
gains bins from B when interacted linearly with the gains variable, and home equity bins when interacted
linearly with the home equity variable. That is, we allow only for “cross-e↵ects” in this specification.

10Exploiting the detailed nature of the Danish administrative data and ability to match additional
data sources, we are also in the process of acquiring data on tax exemptions for renovation expenses to
account for potentially time-variation in unobservable quality that may a↵ect property value. The idea
is that households who face a loss do not incur renovation expenses to improve the quality of the house
that are systematically larger than those of households who face a gain.
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paid at the initial purchase.11 Fourth, we note that these concerns are potentially more

muted in our setting since our hedonic model is estimated with high precision given the

larger sample of transactions in our data, and the consequent ability to utilize a range of

fixed e↵ects. We additionally augment the model with cohort fixed e↵ects, interactions

between hedonics and house size, and controls for detailed demographic characteristics

and households’ financial circumstances, and continue to find the patterns in ˆ̀ and ↵(ˆ̀)

when we make these changes.12 Fifth, we implement a quasi-experimental approach to

establish a significant change in slope in a narrow neighbourhood around bG = 0 (for ˆ̀)

and in ˆ̀= 0 (for ↵(ˆ̀)), while other observable characteristics are visibly smooth around
bG = 0 and ` = 0. This Regression Kink Design (RKD) (suggested by Card et al. 2015b

and implemented e.g., by Landais, 2015, Nielsen et al. 2010, Card et al. 2015a) relies on

quasi-random assignment at thresholds of particular “running variables” that induce kinks

in agents’ responses. As long as households can only imperfectly manipulate which side

of the threshold they are on, unobserved property quality should not have a significant

kink precisely at the threshold and the resulting di↵erences in behavior above and below

the threshold can be interpreted as causal. The di↵erent approaches are further described

below.

4.2 Baseline Hedonic Model

We estimate the expected market price using a hedonic price model on our final sample of

traded properties and predict prices for the entire sample of listed properties. The price

in logs is estimated using the hedonic model

ln(Pit) = ⇠ + ⇠t + ⇠m + ⇠tm + �ft i=f t=⌧

+ �Xit + �fx i=fXit

+ �(vit) + i=f�(vit) + "it.

⇠ is a constant, ⇠t are year fixed e↵ects, ⇠m are municipality fixed e↵ects (98 munici-

palities in total), and ⇠tm are municipality-year fixed e↵ects. i=f is an indicator variable

for whether the property is an apartment (denoted by f for flat) rather than a house. Xit

is a vector of the following property characteristics: ln(lot size), ln(interior size), num-

ber of rooms, number of bathrooms, number of showers, a dummy variable for whether

11Compared to Genesove and Mayer’s (2001) estimates of 2.5% to 3.5%, we find a range for listing
price increases between 4.4% to 5.3% for every 10% increase in expected loss.

12We note that many of these variables have hitherto been considered unobservables in prior literature.
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the property was unoccupied at the time of sale or retraction, ln(age of the building), a

dummy variable for whether the property is located in a rural area, a dummy for whether

the building is registered as historic, ln(distance to nearest of Denmarks four largest

cities). �(vit) is a third-order polynomial of the previous-year tax assessed valuation of

the property. The R
2 of the regression is 0.8638. The model fit is shown in Figure A.6.

4.3 Repeat Sales Estimation

To control for time-invariant unobserved heterogeneity in properties, we apply property

fixed e↵ect in a repeat sales sample. Since the hedonic model is based on our final sample

of sold listings from 2009-2016, we run the fixed e↵ects model on repeat sales within our

final sample, but due to the short window, repeat sales are not as frequent. In order to

increase repeat sales sample size, we also estimate the fixed e↵ect model on repeat sales in

the entire population of Danish real estate sales from 1992 to 2016. We estimate \ln(Pit)

using the model

ln(Pit) = ⇠ + ⇠t + ⇠m + ⇠tm + ⇠p + �ft i=f t=⌧

+ �Yit + �fy i=fYit

+ �(vit) + i=f�(vit) + "it.

with ⇠p being property fixed e↵ects and Yit being a vector of the following (poten-

tially) time-invariant property characteristics: ln(interior size), number of rooms, number

of bathrooms, number of showers, a dummy variable for whether the property was unoc-

cupied at the time of sale or retraction, ln(age of the building), a dummy for whether the

building is registered as historic. R2 from estimation of the model is 0.9011.

4.4 Additional Models of bP

We further include house prices estimated based on a municipality-, and shire-level house

price index, respectively, and a model extension using size interactions and cohort (pur-

chase year) fixed e↵ects. An overview of the alternative model specifications is given in

Table A.2 and the results are compared in Figures A.12 and A.13.
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4.5 Genesove and Mayer (2001) Bounding Approach

We follow Genesove and Mayer (2001) to establish bounds on the relationship between

expected gains and list prices given unobserved heterogeneity and variation in over-and

under-payment at the previous transaction. In particular, we replicate Table 2 in their

paper in Table A.4. As a baseline, comparing column (2) and (1), the e↵ect from a 10%

increase in expected losses can be bounded between a 4.4 to 5.3% increase in list prices,

compared to their 2.5 lower bound and 3.5% upper bound estimate.

4.6 Regression Kink Design (RKD)

Following Card et al. (2017), we compute the RKD estimate of a given running variable

V as follows:

⌧ = lim
v!v+

dE[LPit|Vit = v]

dv

����
Vit=v

� lim
v!v�

dE[LPit|Vit = v]

dv

����
Vit=v

, (11)

based on the following RKD specification (Landais 2015):

E[LPit|Vit = v] = m + t + ⇠Xit +

"
pX

p=1

�p(⌫ � ⌫)p + ⌫p(v � v)p V�v

#
. (12)

where |v � v| < b. (13)

As before, we include time (t) and municipality (m) fixed e↵ects, and controls Xit.

These include household characteristics (age, education length, and net financial assets),

as well as the previous purchase year, which we include to ensure that households are

balanced along the dimension of housing choice, and is predetermined at the point of

inclusion in this specification. V is the assignment variable, v is the kink threshold, V�v

is an indicator whether the experienced property return is above the threshold, and b is

the bandwidth size.

To estimate the change in listing premium slope across gains, we choose V = G as

the assignment variable, and v = 0 as the kink point. To estimate the e↵ect of demand

concavity, V = `, with a baseline kink threshold of v = 0%. Table A.5 reports results

across bandwidths b 2 {b⇤, 15, 20} around each of the running variables. b
⇤ denotes the

mean-squared-error optimally chosen bandwidth following Calonico et al (2014) and we

use a polynomial order p = 2 for gains, and p = 1 for demand concavity.13 Figures A.16

13The precision but not the size of the estimate for unconstrained households depends on the use of
a local linear compared to a local quadratic function. Hahn et al. (2001) show that the degree of the
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to A.18 show further robustness for the RKD using gains.

5 Institutional Background

5.1 Amendments to the Danish Mortgage-Credit Loans and

Mortgage-Credit Bonds Act

Changes to the law regulating the loan-to-value ratio of mortgage loans between 2009 to

2016 are listed in Table A.12.

5.2 Foreclosures

Homeowners who cannot pay their mortgage or property tax may benefit from selling

their home -– even if they have negative home equity — since they otherwise risk to

be declared personally bankrupt by their creditors. If declared personally bankrupt,

the property will be sold at a foreclosure auction. Foreclosures in most cases result in

prices significantly below market price. Selling in the market will thus potentially allow

homeowners to repay a bigger fraction of their debt. Homeowners with negative home

equity may even be tempted to set higher listing prices to cover an even higher fraction

of the debt. Whether this is optimal is debatable, since setting a higher listing price

probably also reduces the probability of selling the property before a foreclosure process

could begin.

5.3 The Foreclosure Process in Denmark

A foreclosure takes place if a homeowner repeatedly fails to make mortgage or property

tax payments. After the first failed payment, the creditor (the mortgage lender or the tax

authorities) first send reminders to the home owners and after approximately six weeks

send the case to a debt collection agency. If the home owner after two to three months

still fails to pay the creditor, the creditor will go to court (Fogedretten) and initiate a

foreclosure. The court calls for a meeting between the owner and the creditor to guide the

owner in the foreclosure process. At the meeting the owner and creditor can negotiate a

polynomial is critical in determining the statistical significance of the estimated e↵ects. In particular,
the second-order polynomial needed to identify derivative e↵ects leads to an asymptotic variance of
the estimate that is larger by a factor of 10 relative to the first-order polynomial. We verify that the
qualitative patterns that we detect are broadly una↵ected by the use of either polynomial order, but that
the standard errors, consistent with Hahn et al. (2001), are substantially higher for the second-order
polynomial, reported in Figure A.19.
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short extension of four weeks to give the owner a chance to sell the property in the market.

If that fails, the court has another four weeks, using a real estate agent, to attempt to

sell the property in the market. After the attempts to sell in the market, the creditor will

produce a sales presentation for the foreclosures, presenting the property and the extra

fees that a buyer has to pay in addition to the bid price. The court sets the foreclosure

date and at least two weeks before announces the foreclosure in the Danish Gazette

(Statstidende), online, and in relevant newspapers. At the foreclosure auction interested

buyers make price bids and highest bid determines the buyer and the price. If the buyer

meets some financial requirements, the buyer takes over the property immediately and

the owner is forced out. However, the owner can (and often will) ask for a second auction

to be set within four weeks from the first. All bids from the first auction are binding in

the second, but if a higher bid appears, the new bidder will win the auction.

The entire process from first failed payment to foreclosure typically takes six to nine

months. At any point the owner can stop the foreclosure process by selling in the market

and repaying the debt.

Selling in the market is preferred to foreclosure since foreclosure prices are significantly

lower than market prices. Buyers have few opportunities to assess the house and have to

buy the house “as seen” without the opportunity to make any future claims on the seller,

making it a risky trade. In addition, buyers have to pay additional fees of more than 0.5

percent of the price.
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6 Additional Tables and Figures

Figure A.1
Reference Dependence and Loss Aversion: Utility Functions
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Figure A.2
Bunching
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Figure A.3
Price-Volume Correlation

This figure shows quarterly average realized house sales prices (in DKK per square meter) on the

right-hand axis, and the number of houses sold in Denmark on the left-hand axis, between 2004Q1 and

2018Q2. The sample period for our analysis covers the years 2009 to 2016. Aggregate housing market

statistics are provided by Finans Danmark, the private association of banks and mortgage lenders in

Denmark.
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Figure A.4
Summary Statistics: Transaction Characteristics

This figure shows four histograms of main variables of interest. Gain (G) is computed as the log di↵erence

between the estimated hedonic price ( bP ) and the previous purchase price (R), i.e. G = ln bP � lnR,

in percent. Home equity (H) is computed as the log di↵erence between the estimated hedonic price

and the current mortgage value (M), i.e. H = ln bP � lnM , in percent. H is truncated at 100

in order to avoid small mortgage balances leading to log di↵erences greater than 100. The listing

premium (LP ) measures the log di↵erence between the ask price and estimated hedonic price, in

percent. All are winsorized at 1 percent in both ends. Time on the market (TOM) measures the time

in weeks between when a house is listed and recorded as sold. Each listing spell is restricted to 200 weeks.
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Figure A.5
Summary Statistics: Household Characteristics

This figure shows four histograms of household characteristics. Panel A shows the distribution of

available liquid assets. Liquidity is measured as liquid financial wealth (deposit holdings, stocks and

bonds). Net financial wealth is measured as liquid financial wealth net of bank debt. Panel B shows

household characteristics. Age measures the average age in the household, and education length

measures the average length of years spent in education across all adults in the household.
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Figure A.6
Actual vs. Predicted Price of Sold Properties

This figure shows a binned scatter plot of the estimated log hedonic price ln(Pit) versus the realized log

sales price, for the sample of listings that resulted in a sale (N = 117, 408). The hedonic model is as

follows: ln(Pit) = ⇠ + ⇠t + ⇠m + ⇠tm + �ft i=f t=⌧ + �Xit + �fx i=fXit + �(vit) + i=f�(vit) + "it,

where Xit is a vector of property characteristics, namely ln(lot size), ln(interior size), number of rooms,

number of bathrooms, number of showers, a dummy variable for whether the property was unoccupied

at the time of sale or retraction, ln(age of the building), a dummy variable for whether the property

is located in a rural area, a dummy for whether the building registered as historic, and ln(distance of

the property to the nearest major city). ⇠ is a constant, ⇠t are year fixed e↵ects, ⇠m are fixed e↵ects

for di↵erent municipalities (98 municipalities in total), and i=f is an indicator variable for whether the

property is an apartment (denoted by f for flat) rather than a house. �(vit) is a third-order polynomial

of the previous-year tax assessor valuation of the property. The R
2 of the regression is 0.86.
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Figure A.7
Gains and Home Equity

This figure plots the joint distribution of the experienced gain and home equity position of households,

at the time of listing. The color scheme refers to the relative frequency of observations in gain and

home equity bins of 10 percentage points, where each color corresponds to a decile in the joint frequency

distribution. The darker shading indicates a higher density of observations. Gain-home equity bins

that did not have su�cient observations are shaded in white. The dotted blue lines separate the joint

distribution in four groups: (1) Unconstrained Winners (H �20% and G �0) covering 48.8% of the

sample, (2) Constrained Winners (H <20% and G �0) with 26.5%, (3) Unconstrained Losers (H �20%

and G <0) with 6.2%, and (4) Constrained Losers (H <20% and G <0) accounting for 18.6% of the

sample.
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Figure A.8
Seller Groups - Listed (Relative Shares)

This figure shows the relative share of each seller group over time. The four groups are defined as follows:

I) Unconstrained Winners (H �20% and G �0), II) Constrained Winners (H <20% and G �0), III)

Unconstrained Losers (H �20% and G <0), IV) Constrained Losers (H <20% and G <0).
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Figure A.9
Loss Aversion: Understanding Heterogeneity

This figure shows the e↵ect of experienced gains on the ask-market-premium (AMP) across quantile bins

of covariates (age, education length and net financial wealth). It reports estimated coe�cients across

di↵erent bins of covariates, which corresponds to the slope across the loss domain (G < 0), conditional

on additional controls for home equity, and time and municipality fixed e↵ects. The sign for �1 + �3 is

reversed such that an increase in the coe�cient can be read as an increase in the e↵ect.
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Figure A.10
Down-Payment Constraints: Understanding Heterogeneity

This figure shows the e↵ect of home equity on the ask-market-premium (AMP) across quantile bins of

covariates (age, education length, and net financial wealth). It reports the estimated coe�cients across

di↵erent bins of covariates, which corresponds to the slope across the constrained domain (H < 20%),

conditional on additional controls for experienced gains, and time and municipality fixed e↵ects. The

sign for �1+�3 is reversed such that an increase in the coe�cient can be read as an increase in the e↵ect.
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Figure A.11
Estimation of Generalized Logistic Functions (GLF)

This figure shows the e↵ect of experienced gains (Panel A) and home equity (Panel B) on the listing

premium. We report estimated relationships which follow a non-linear model specified in the form of

a generalized logistics function E[AMP (V )] = A + K�A
(1+Qe�BV )1/⌫

, for which the underlying parameters

A,K,Q,B, ⌫ are estimated through a non-linear least squares procedure, and the assignment variables

are V = G and V = H respectively. The solid dots indicate bin scatter points, for equally spaced bins of

experienced gains and home equity.

0
10

20
30

40
Li

st
in

g 
Pr

em
iu

m
 (%

)

-50 -25 0 25 50 75 100
Gain (%)

Home Equity [-15,5)% [5,20)% [20,40)%

0
10

20
30

Li
st

in
g 

Pr
em

iu
m

 (%
)

-50 -25 0 25 50 75 100
Home Equity(%)

Gain [-10,0)% [0,10)% [10,25)%

29

Electronic copy available at: https://ssrn.com/abstract=3396506



Figure A.12
Coverage of Alternative Models of bP

This graph shows the number of observations for which we can estimate bP for di↵erent alternative models.

Hedonic is a comprehensive hedonic model and our baseline specification. Ext. hedonic is an extended

version of Hedonic which adds purchase year fixed e↵ects and interacts all hedonic controls with three

dummies for interior size. Repeat adds property fixed e↵ects to Hedonic and is therefore restricted to

repeated sales within the sample. Mun. index is the purchase price adjusted for local, i.e. municipality

level, price changes and Shire index is the purchase price adjusted for local, shire level, price changes. If

not indicated otherwise, models are estimated on the final sample of (repeated) sales from 2009 to 2016.

If (full) is indicated, the model is estimated on the full sample of (repeated) sales from 1992 to 2016.

Repeat > 2(full) is restricted to properties sold at least three times during the full sample period.
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Figure A.13
Estimated vs. Realized ln(price)

This graph compares the model estimated price to the realized sales price in logs. Hedonic is a com-

prehensive hedonic model, and the baseline model for our main analysis. Ext. hedonic is an extended

version of Hedonic which adds purchase year fixed e↵ects and interacts all hedonic controls with three

dummies for interior size. Repeat adds property fixed e↵ects to Hedonic and is therefore restricted to

repeated sales within the sample. Mun. index is the purchase price adjusted for local, municipality level,

price changes and Shire index is the purchase price adjusted for local, shire level, price changes. If not

indicated otherwise, models are estimated on the final sample of (repeated) sales from 2009 to 2016. If

(full) is indicated, the model is estimated on the full sample of (repeated) sales from 1992 to 2016. Repeat

> 2(full) is restricted to properties sold at least three times during the full sample period.
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Figure A.14
Robustness to Alternative Models of bP

These figures show the robustness of our two key empirical shapes to alternative specifications of bP .

Panel A show the listing price-to-gains relationship and Panel B shows demand concavity. Hedonic (full)

is a comprehensive hedonic model. Ext. hedonic (full) is an extended version of Hedonic (full) which

adds purchase year fixed e↵ects and interacts all hedonic controls with three dummies for interior size.

Repeat (full) adds property fixed e↵ects to Hedonic (full) and is therefore restricted to repeated sales

within the sample. Repeat > 2(full) is restricted to properties sold at least three times during the full

sample period. Mun. index (full) is simply the purchase price adjusted for local, municipality level, price

changes and Shire index (full) is the purchase price adjusted for local, shire level, price changes. All are

estimated on the full sample of (repeated) sales from 1992 to 2016.
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Figure A.15
Residual Listing Premium and Gains and Home Equity

This figure shows the relationship between residual listing premium and gains or home equity, respec-

tively. The residual listing premium is computed with household controls (age, education length, net

financial assets) and municipality and year fixed e↵ects partialled out.
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Figure A.16
RKD Validation: Smooth Density of Assignment Variable

This figure shows the number of observations in bins of the assignment variable, gain. Following

Landais (2015), the results for the McCrary (2008) test for continuity of the assignment variable and

a similar test for the continuity of the derivative are further shown on the figure. We cannot reject

the null of continuity of the derivative of the assignment variables at the kink at the 5% significance level.14
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Figure A.17
RKD Validation: Covariates Smooth around Cuto↵

This figure shows binned means of covariates (home equity/gain, age, length of education, liquidity,

bank debt, financial wealth) over bins of the assignment variable, gain. It provides visual evidence for

these covariates evolving smoothly around and not having a kink at the cuto↵ point.
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Figure A.18
RKD Robustness: Estimates for Di↵erent Bandwidths (Gain)

This figure plots the range of RKD estimates and 95% confidence intervals across bandwidths ranging

from 5 to 50, using a local quadratic regression. The optimal bandwidth is indicated based on the

MSE-optimal bandwidth selector from Calonico et al. (2014).
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Figure A.19
RKD Estimation: Local Linear vs. Local Quadratic Estimation Results

This figure compares RK estimates using a local linear regression with estimates using a local quadratic

regression, across di↵erent bandwidths b 2 {b⇤, 10, 20}, for gain (G) and probability of sale (P),

respectively. b⇤ refers to the MSE-optimal bandwidth selector from Calonico et al. (2014).
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Figure A.20
Non-Mortgage Sample

This figure shows the relationship between listing premium and gains for the sample of households with

no mortgage (N = 41, 382), using a binned scatter plot of equal-sized bins for bG 2 [�50, 50].
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Figure A.21
Correlation between ↵(`) and P (`) Levels

This figure shows the correlation between the level of the relationship between probability to sale as a

function of the listing premium (↵(`)) on the x-axis and the level of the mapping between listing prices

and realized prices (P (`)) on the y-axis across markets segmented by municipality.
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Figure A.22
Listing Premium Predicts Down-Payment

This figure shows a binned scatter plot of the ask-market-premium against the down-payment of a

seller’s next house, controlling for current home equity (H), based on a sub-sample of the data for which

we have information on the next house purchase price and mortgage value (N = 14, 440).
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Figure A.23
Current and Next House Price

This figure shows a binned scatter plot of the current home price against the next house price (in 2015

DKK), based on a sub-sample of the data for which we have information on the next house purchase

price and mortgage value (N = 14, 440).
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Figure A.24
Understanding the Extensive margin: Home Equity

This figure reports the share of listed houses relative to the stock of all houses, across 5% bins of home

equity.
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Figure A.25
Illustration of Homogeneity of Housing Stock for IV Estimation

Panel A illustrates what is defined as “row houses” in the Danish building and housing register (Bygnings-

og Boligregistret). Each registered property can be looked up on the register via . The right-hand side

shows a screenshot of the property outline of a house that is part of a row house unit. On contrast, Panel

B shows the property outline of a detached single family house, which has visibly di↵erent features from

other surrounding houses and is less homogeneous than the row house unit.

Panel A

Panel B
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Figure A.26
Listing Premium-Gain Slope and Demand Concavity

This figure the listing premium over gains (left-hand side) and demand concavity (right-hand side)

patterns when sorting municipalities by the estimated demand concavity, using municipalities in the

top and bottom 5% of observations. Demand concavity is estimated as the slope coe�cient of the

e↵ect of listing premium on probability of sale within six months, for ` 2 [0, 50]. The listing pre-

mium over gains slope is the slope coe�cient of the e↵ect of expected gains bG on listing premia, for bG < 0.

Figure A.27
Model fit
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Table A.1
Construction of Main Dataset

This table describes the cleaning and sample selection process from the raw listings data to the final

matched data, with N = 175, 646.

All listings 614,864
Unmatched in registersa -107,499

507,365
Cleaning
Owner ID not determinedb -71,944
Owners not foundc -4,026
Error in listing or purchase dated -1,520
No purchase pricee -167,970
No ask price -906
No predicted purchase price -137
No hedonic price -5

260,857
Selecting
Summerhouses -23,706
Investorsf -20,123
No mortgage -41,382

Final data 175,646
a
Reasons could be misreported addresses or not ordinary owner-occupied housing.

b
E.g. properties with several owners from di↵erent households.

c
No owner ID in registers

d
Listing date is before purchase date

e
Purchased before 1992

f
Seller owns more than 3 properties
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Table A.3
Loss Aversion and Down-Payment Constraints: Baseline Results

This table reports results for four regressions. Column (4) represents the estimated coe�cients from the
saturated regression

`it = µt + µm + ⇠0Xit + ↵1 Git<0 + ↵2 Hit<20% + (�0 + �1 Git<0)Git + (�0 + �1 Hit<20%)Hit + ✏it,

where `it is the listing premium, µt and µm are year and municipality fixed e↵ects, respectively, and

Git<0 and Hit<20% are indicator functions for households who face an expected gain or home equity

lower than 20%, respectively. Column (1) and (2) report results for specifications with only gain or home

equity coe�cients separately, and column (3) corresponds to column (4) but excludes household controls

(age, liquid financial wealth and bank debt). Standard errors are clustered by year and municipality.

*/**/*** denote p < 0.10, p < 0.05 and p < 0.01, respectively.

(1) (2) (3) (4)
LP LP LP LP

↵1 0.795⇤ -0.181 -0.206
(0.351) (0.294) (0.277)

�0 -0.041⇤⇤⇤ -0.014⇤⇤⇤ -0.018⇤⇤⇤

(0.004) (0.004) (0.004)
�1 -0.473⇤⇤⇤ -0.368⇤⇤⇤ -0.362⇤⇤⇤

(0.035) (0.030) (0.031)
↵2 8.679⇤⇤⇤ 6.798⇤⇤⇤ 6.686⇤⇤⇤

(0.787) (0.752) (0.733)
�0 -0.082⇤⇤⇤ -0.071⇤⇤⇤ -0.074⇤⇤⇤

(0.007) (0.006) (0.006)
�1 -0.104⇤⇤⇤ -0.084⇤⇤⇤ -0.081⇤⇤⇤

(0.026) (0.022) (0.023)
Household controls X
Year FE X X X X
Observations 173873 173873 173873 173873
R

2 0.182 0.230 0.266 0.270
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Table A.4
Replicating Main Results from Genesove and Mayer (2001)

This table replicates Table 2 from Genesove and Mayer (2001) using our main dataset. The dependent

variable is the log ask price. LOSS is the previous log selling price less the expected log selling price,

truncated from below at 0, and LOSS (squared) is the term squared. LTV if � 80 is the current LTV

of the property if the LTV is greater equal to 80 and 0 otherwise. Estimated hedonic house prices are

assumed to be additive in baseline value and market index, where baseline value captures the value of

hedonic characteristics of the property and the market index reflects time-series variation in aggregate

house prices. Residual from last sales price is the pricing error from the previous sale and months since

last sale counts the number of months between the previous and current sale.

(1) (2) (3) (4) (5) (6)
Ask (log) Ask (log) Ask (log) Ask (log) Ask (log) Ask (log)

LOSS 0.532⇤⇤⇤ 0.444⇤⇤⇤ 0.497⇤⇤⇤ 0.328⇤⇤⇤ 0.552⇤⇤⇤ 0.466⇤⇤⇤

(0.015) (0.015) (0.026) (0.026) (0.015) (0.015)
LOSS (squared) 0.092⇤ 0.297⇤⇤⇤

(0.053) (0.051)
LTV if �80 0.002⇤⇤⇤ 0.002⇤⇤⇤ 0.002⇤⇤⇤ 0.002⇤⇤⇤ 0.002⇤⇤⇤ 0.002⇤⇤⇤

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Baseline value 0.988⇤⇤⇤ 0.985⇤⇤⇤ 0.988⇤⇤⇤ 0.985⇤⇤⇤ 0.989⇤⇤⇤ 0.986⇤⇤⇤

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Market index at listing 0.985⇤⇤⇤ 0.982⇤⇤⇤ 0.985⇤⇤⇤ 0.982⇤⇤⇤

(0.003) (0.003) (0.003) (0.003)
Residual from last sales price -0.082⇤⇤⇤ -0.084⇤⇤⇤ -0.078⇤⇤⇤

(0.003) (0.003) (0.003)
Months since last sale -0.000⇤⇤⇤ -0.000⇤⇤⇤ -0.000⇤⇤⇤ -0.000⇤⇤⇤ 0.000 -0.000⇤⇤⇤

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Constant 0.455⇤⇤⇤ 0.486⇤⇤⇤ 0.456⇤⇤⇤ 0.490⇤⇤⇤ 75.543⇤⇤⇤ 75.336⇤⇤⇤

(0.027) (0.027) (0.027) (0.027) (0.218) (0.217)
Year-Quarter FE X X
Observations 175646 175646 175646 175646 175646 175646
R

2 0.875 0.876 0.875 0.876 0.878 0.879

46

Electronic copy available at: https://ssrn.com/abstract=3396506



Table A.5
Regression Kink Design

The table shows results from sharp RKD tests of loss aversion, using the 0% gain cuto↵, and demand

concavity, using the 0% listing premium cuto↵, for varying bandwidths b 2 {b⇤, 15, 20}. b
⇤ refers to

the optimally chosen bandwidth using a MSE-optimal bandwidth selector from Calonico et al. (2014).

The control variables are year fixed e↵ects, household controls (age, education length and net financial

wealth) and year of previous purchase. *, **, *** indicate statistical significance at the 10%, 5% and 1%

confidence levels, respectively.

(1) (2) (3) (4) (5) (6)
Gain Gain Gain P(sale) P(sale) P(sale)

RK estimate 0.364⇤⇤ 0.375⇤⇤ 0.277⇤⇤ -0.558⇤⇤⇤ -0.611⇤⇤⇤ -0.662⇤⇤⇤

(0.159) (0.174) (0.114) (0.193) (0.103) (0.072)

Cuto↵ 0.00 0.00 0.00 0.00 0.00 0.00
Bandwidth 16 15 20 9 15 20
Polynomial order 2 2 2 1 1 1
N below cuto↵ 43068 43068 43068 42731 42731 42731
N above cuto↵ 130809 130809 130809 131146 131146 131146
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Table A.6
IV Robustness: Shire Level

This table reports regression results for the relationship between the listing premium slope over gains

and demand concavity. The dependent variable in all regressions is the slope of the listing premium

over bG < 0, across shires with at least 30 observations. Column 1 reports the baseline correlation with

the demand concavity slope across municipalities using OLS. Column 2 reports the 2-stage least squares

regression instrumenting demand concavity with the apartment-and row-house share. Column 3 reports

the overidentified 2SLS regression with both instruments, row-house and apartment share and average

distance to city. Panel B includes household controls (age, education length, net financial assets, and

log income). Standard errors are clustered at the municipality-year level. *, **, *** indicate statistical

significance at the 10%, 5% and 1% confidence levels, respectively.

Panel A

(1) (2) (3)
OLS 2SLS 2SLS (overid)

Demand concavity -0.134⇤⇤⇤ -0.431⇤⇤⇤ -0.389⇤⇤⇤

(0.027) (0.122) (0.114)

Observations 433 433 433
R

2 0.053
First-stage F-stat 23.991 12.482 11.612
Hansen J-stat (p-val) 0.185

Panel B

(1) (2) (3)
OLS 2SLS 2SLS (overid)

Demand concavity -0.087⇤⇤⇤ -0.431⇤⇤⇤ -0.427⇤⇤⇤

(0.027) (0.126) (0.115)
Household controls X X X
Observations 433 433 433
R

2 0.167
First-stage F-stat 17.082 13.271 13.767
Hansen J-stat (p-val) 0.936
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Table A.7
IV Robustness: Logit Demand Concavity

This table reports regression results for the relationship between the listing premium slope over gains

and demand concavity, using a logit specification for demand concavity. The dependent variable in all

regressions is the slope of the listing premium over bG < 0, across municipalities with at least at least

30 observations where bG < 0 (Panel A), and shires with at least 30 observations, respectively (Panel

B). Column 1 reports the baseline correlation with the demand concavity slope across municipalities

using OLS. Column 2 reports the 2-stage least squares regression instrumenting demand concavity with

the apartment-and row-house share. Column 3 reports the overidentified 2SLS regression with both

instruments, row-house and apartment share and average distance to city. Panel B includes household

controls (age, education length, net financial assets, and log income). Standard errors are clustered at

the municipality-year level. *, **, *** indicate statistical significance at the 10%, 5% and 1% confidence

levels, respectively.

Panel A

(1) (2) (3)
OLS 2SLS 2SLS (overid)

Demand concavity -0.228⇤⇤⇤ -0.457⇤⇤⇤ -0.464⇤⇤⇤

(0.053) (0.131) (0.123)
Household controls X X X
Observations 95 95 95
R

2 0.607
First-stage F-stat 27.520 21.835 22.026
Hansen J-stat (p-val) 0.888

Panel B

(1) (2) (3)
OLS 2SLS 2SLS (overid)

Demand concavity -0.060⇤⇤⇤ -0.377⇤⇤⇤ -0.383⇤⇤⇤

(0.023) (0.114) (0.108)
Household controls X X X
Observations 433 433 433
R

2 0.161
First-stage F-stat 16.330 12.422 12.634
Hansen J-stat (p-val) 0.869
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Table A.8
IV Robustness: Excluding Copenhagen and Aarhus

This table reports regression results for the relationship between the listing premium slope over gains

and demand concavity, excluding the two largest cities in Denmark, Copenhagen and Aarhus. The

dependent variable in all regressions is the slope of the listing premium over bG < 0, across municipalities

with at least at least 30 observations where bG < 0 (Panel A), and shires with at least 30 observations,

respectively (Panel B). Column 1 reports the baseline correlation with the demand concavity slope across

municipalities using OLS. Column 2 reports the 2-stage least squares regression instrumenting demand

concavity with the apartment-and row-house share. Column 3 reports the overidentified 2SLS regression

with both instruments, row-house and apartment share and average distance to city. Panel B includes

household controls (age, education length, net financial assets, and log income). Standard errors are

clustered at the municipality-year level. *, **, *** indicate statistical significance at the 10%, 5% and

1% confidence levels, respectively.

Panel A

(1) (2) (3)
OLS 2SLS 2SLS (overid)

Demand concavity -0.291⇤⇤⇤ -0.476⇤⇤⇤ -0.487⇤⇤⇤

(0.060) (0.126) (0.119)
Household controls X X X
Observations 93 93 93
R

2 0.628
First-stage F-stat 29.382 24.845 25.041
Hansen J-stat (p-val) 0.792

Panel B

(1) (2) (3)
OLS 2SLS 2SLS (overid)

Demand concavity -0.069⇤⇤ -0.379⇤⇤⇤ -0.403⇤⇤⇤

(0.030) (0.118) (0.115)
Household controls X X X
Observations 364 364 364
R

2 0.182
First-stage F-stat 15.948 13.444 13.428
Hansen J-stat (p-val) 0.497
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Table A.10
Estimated Parameters (Alternative Identification, ⌘ = 1).

The table reports empirical moments (Panel A) and structural parameter estimates obtained through

classical minimum distance estimation (Panel B). We recover concave demand ↵(`) and P (`) from the

data and set the down-payment constraint � = 20%. In parentheses, we report standard errors based on

the estimated bootstrap variance-covariance matrix in the data, clustered at the shire level. *, **, ***

indicate statistical significance at the 10%, 5% and 1% confidence levels, respectively.

Panel A
Moments

1. Level of LP for G = 0% 0.104⇤⇤⇤ (0.005)

2. Slope LP-G for G < 0% -0.492⇤⇤⇤ (0.052)

3. Slope LP-G for G � 0% 0.040⇤ (0.021)

4. Slope LP-H for H < 20% -0.304⇤⇤⇤ (0.031)

5. Slope of list. prob. by G 0.005⇤⇤ (0.002)

6. Bunching above G = 0% 0.290⇤⇤⇤ (0.051)

Panel B
Parameter estimates

� = 1.58⇤⇤⇤ (0.25)

µ = 1.08⇤⇤⇤ (0.19)

⇠ = �0.11⇤⇤ (0.05)

✓min = 0.25 (0.20)

✓max = 1.10⇤⇤⇤ (0.40)

' = 0.04 (0.04)
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Table A.11
Estimated Parameters (Alternative Identification, No Concave Demand).

The table reports structural parameter estimates obtained through classical minimum distance estimation,

in a model in which we assume linear demand ↵(`) = 0.6� 0.53` estimated in the data. In this case we

need to drop the moments implied by the cross-sectional variation of concave demand, and so we consider

just a set of three moments (Level of LP for G = 0%, Slope of LP-G for bG < 0% and bunching above

G = 0%), and three parameters (⌘, � and ✓max). All other parameters are as in the baseline specification.

In parentheses, we report standard errors based on the estimated bootstrap variance-covariance matrix

in the data, clustered at the shire level. *, **, *** indicate statistical significance at the 10%, 5% and

1% confidence levels, respectively.

⌘ = 0.750⇤⇤⇤ (0.291)

� = 3.285⇤⇤⇤ (0.867)

✓max = 4.535⇤⇤⇤ (0.815)
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Table A.12
Amendments to the Danish Mortgage-Credit Loans and Mortgage-Credit Bonds Act in

the period from 2009 to 2016

May 2009 Allows a bankruptcy estate to make changes to fees in special circum-
stances

June 2010 Adjustments about bankruptcies
June 2010 Change of wording

December 2010 Change of wording
February 2012 Maximum maturity for loans to public housing, youth housing, and

private housing cooperatives is extended from 35 to 40 years
December 2012 Elaboration of the rules on digital communication with the FSA
December 2012 Elaboration on the opportunity for mortgage credit institutions to

take up loans to meet their obligation to provide supplementary col-
lateral.

March 2014 Establish the terms under which the mortgage-credit institution can
initiate sale of bonds if the term to maturity on a mortgage-credit loan
is longer than the term to maturity on the underlying mortgage-credit
bonds.

March 2014 Implements EU regulation. Change of wording on the definition of
market value.

December 2014 Small additions to the terms under which the mortgage-credit institu-
tion can initiate sale of bonds if the term to maturity on a mortgage-
credit loan is longer than the term to maturity on the underlying
mortgage-credit bonds.

April 2015 Changes to the terms under which the mortgage-credit institution can
initiate sale of bonds if the term to maturity on a mortgage-credit loan
is longer than the term to maturity on the underlying mortgage-credit
bonds.
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