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Introduction
I Housing is typically the largest household asset, and mortgages, the

largest liability. (Campbell, 2006, Badarinza et al., 2016, Gomes et al., 2020).

I Rich sources of micro (beliefs, constraints, preferences) insights, with
macro (e.g., housing liquidity and “lock”) implications.
I e.g., Andersen et al. (2019), Bordalo et al. (2019), Piazzesi et al. (2015), Bailey et al. (2018, 2019), Guren (2018),

DeFusco et al. (2018), Armona et al. (2019).

I Influential field evidence (from listing prices) of seller loss aversion in
this important market (Genesove and Mayer, 1997, 2001).

I We revisit this question over two decades later. Key open issues:
I Accurate measurement of seller’s “potential gains”.
I Seller operates in the housing market—faces housing demand.
I Seller also decides whether to list (extensive margin).
I Confounding role of financial constraints (mortgage).

I Large literature since the original GM papers does not fully resolve
these issues (e.g., Ferreira et al. 2010, Anenberg, 2011, Schulhofer-Wohl, 2012, Hong et al. 2016, and Bracke and

Tenreyro 2018).
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This Paper

I Studies admin data (2009-2016): Danish housing stock, transactions,
universe of listings—matched to mortgages and demographics.
I Evaluates prior results using more granular data, and uncovers new facts.

I Sets up a structural framework to better understand the facts.
I Reference-dependent loss-averse seller facing down-payment constraints.

I Listing price choice and listing decision maximize utility, internalizing effects on
final sale price and probability (i.e., demand).

I Model generates seller policy functions given parameters and state variables,
which we map back to the data.

I Model can rationalize many patterns in the data; exceptions point to
future theoretical work.
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Listing premia in the data

I Listing premium (`) = ln(Listing price) - ln(Hedonic price).
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I Potential gains = ln(Hedonic price) - ln(Reference price).
I Assumption: Reference price is nominal purchase price.
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Data and a First Look at the Facts
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Data

I All Danish housing transactions from 2009 to 2016.
I Assessed sale values from the tax registry.
I Size, location, hedonics, sale, purchase time from the property registry.

I Matched to owner’s personal ID, using property ID.
I Data on household demographics: Age, education.
I Data on household income, outstanding mortgage debt, and net financial assets.

I Property ID used to match to (external) listings data.
I All Danish electronic listings (matched to approx. 75% of all transactions).
I Listing price, time on the market, retracted or sold.

I Final dataset: 217,028 listings (70.6% sold, 29.4% retracted) of 181,020
properties by 193,850 households between 2009 and 2016. Mainly
focus on 175,646 listings with a mortgage.
I Also use housing stock (6,478,391 observations of 953,868 unique properties) to

understand the extensive margin, i.e., propensity to list.
More details
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Hedonic pricing model

I Predict prices using hedonic model, to compute listing premium,
potential gains, and potential home equity:

ln(Pit) =δ + δt + δm + δtm + β f1i= f + β f t1i= f1t=τ

+ βxXit + β f x1i= f Xit + Φ(vit) + εit. (1)

I R2 from estimating this model is 0.86. Results are robust to using a
range of alternative models (more later). More details

I Use predicted prices to calculate:

Potential gains (note contrast with) Realized gains
Ĝ = l̂n P− ln R G = ln P− ln R

Potential home equity (note contrast with) Realized home equity
Ĥ = l̂n P− ln M H = ln P− ln M

Listing premium (note contrast with) Realized premium
` = ln L− l̂n P rp = ln P− l̂n P
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Listing premia, potential gains and potential home equity

Potential home equity (H)
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I Estimate model parameters off moments of selected cross-sections;
subsequently evaluate model against entire surface.

Summary statistics Moments: Listing premia
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Bunching

I Loss aversion predicts “bunching” of transactions at prices just above
reference point R. (As sellers aim for realized gain G = 0%.)
I Can identify excess bunching using counterfactual polynomial fit (Chetty et al.

2011, Kleven 2016, Rees-Jones 2018).

I But we also observe potential gains, so can use a better counterfactual.

Polynomial counterfactual Potential gains counterfactual
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Time-on-the-market and final prices

Average time-on-the-market IQR of time-on-the-market
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Probability of sale within 6 months Realized premium vs. listing premium
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Note: Error bars indicate 99% confidence intervals based on bootstrap standard errors.
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Unobserved quality

Estimated shapes we’ve seen are robust to:

I Alt. pricing models, e.g., repeat sales (property-specific FEs for P̂
(R2 = 0.9)).
I OOS hedonic predictions; renovation tax exemptions (in process).

Repeat sales model Out-of-sample simulations Alternative spec. Model fit

I Shire-level house prices as estimate of P̂
I 2136 shires. Smallest unit: ≈1,500 property-years and ≈45 listings.

More details

I Regressing premium on demographics, municipality, & year FE.
More details

I Genesove and Mayer (2001) bounding approach.
More details

I Regression Kink Design (RKD)
I Significant change in slope in narrow neighbourhood around kink, while other

characteristics smooth around Ĝ = 0 (` = 0 in TOM). More details

Imperial College Business School Imperial means Intelligent Business 9



Theory
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Model

max
s∈{0,1}

{
(s)max

`
[α(`) (U(P(`), ·) + θ) + (1− α(`))u− ϕ] + (1− s)u

}

Preferences and constraints

I U (P(`), ·) = u(P(`), ·)− κ(P(`), ·) nests reference-dependent loss-aversion à la
Kahneman and Tversky (1979) and down-payment constraints à la Stein (1995).

More details Institutional framework

Concave demand

I α(`) and β(`) estimated from the data.

Outside option

I u = P̂ = 1 normalized for interpretation of units, assume uncorrelated with R
(except through P̂).

More details

Additional “fitting” parameters

I θ ∼ F(θmin, θmax) is “gain from trade/moving” (Stein, 1995), i.e., utility of move.

I ϕ is the cost of listing/search.

I δ adjustment to perceived demand concavity.
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Reference dependence and loss aversion

I Utility function with reference dependence and loss aversion:

u = P + ηG(λ1G<0 + 1G≥0)

I Note: defined over realized prices P and realized gains G.

Utility
from sale

Loss
aversion

R = P
(Realized

gains = 0%)

R decreasingR increasing

Linear reference
dependence
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Optimal listing premia (`∗)

I Solve for optimal listing premia under different utility specifications.

I Consider the state variable: potential gains Ĝ = P̂− R.
I Maps to realized gains through listing and sale: G(`∗) = Ĝ + β(`∗).

Potential
gains

Optimal listing
premium

Linear reference
dependence

Loss aversion

Potential loss domain Potential gain domain

Analytical solution Discussion
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Additional model predictions

1. Model predicts bunching above realized gains of G = 0%.

2. Extensive margin decision and heterogeneity:
I Sellers with potential losses are less likely to list properties for sale.
I Distribution of “gains from moving” in the population “smooths out”

non-linearities and kinks. More details

3. Concave demand generates non-linearity of listing premium profile:
I The seller understands that the chosen listing premium affects the final sales

price, and time on the market.

Exploit cross-regional variation for identification

Imperial College Business School Imperial means Intelligent Business 13
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Structural estimation: Work in progress
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Matching empirical moments

I Average listing premium for different levels of potential gains and
home equity, excess bunching at G = 0%, and probability of listing.
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Matching empirical moments: Demand concavity

I Relationship between the slope of the listing premium and demand
concavity across 98 municipalities of Denmark.
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Model fit and estimated parameters

Potential home equity (H)
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Reference dependence η = 0.981∗∗∗ (0.312)
Loss aversion λ = 1.525∗∗∗ (0.422)
Down-payment constraint µ = 1.035∗∗∗ (0.140)
Distrib. of moving shocks θmin = 0.228 (0.186)

θmax = 1.037∗∗∗ (0.174)
Cost of listing/search ϕ = 0.039 (0.040)
Adjustment to concavity δ = −0.093∗∗∗ (0.025)

I λ in the literature: 2 to 2.5 (Kahneman et al. 1990, Tversky and Kahneman, 1991). When we shut down

concave demand channel: λ = 3.29. Linear demand Identification Sensitivity analysis
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Discussion and Conclusions
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Interactions
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I Model cannot explain flattening out of listing premia-potential gains
relationship as home equity constraint tightens.

I Similarly, it appears as if a household’s propensity to engage in
“fishing” behavior kicks in at a level of potential home equity that is
influenced by potential gains.

Discussion
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Conclusions

I We set up a structural model of house listing behavior, and document
the importance of the following ingredients:

I Reference dependence plus loss aversion.

I Seller optimization in the presence of “demand concavity.”

I Penalty for realized home equity less than down-payment constraint thresholds.

I Gains from trade for a successful sale and costs of listing.

I Acquire new estimates of key behavioral parameters from an
important high-stakes household decision in a search and matching
market.

I However, the model cannot completely match some new facts which
we identify in the data.
I Potential new target for behavioral economics theory.
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