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Abstract 

Maritime data from the Automatic Identification System (AIS) have emerged as a potential source for 
real time information on trade activity. However, no globally applicable end-to-end solution has been 
published to transform raw AIS messages into economically meaningful, policy-relevant indicators of 
international trade. Our paper proposes and tests a set of algorithms to fill this gap. We build 
indicators of world seaborne trade using raw data from the radio signals that the global vessel fleet 
emits for navigational safety purposes. We leverage different machine-learning techniques to identify 
port boundaries, construct port-to-port voyages, and estimate trade volumes at the world, bilateral and 
within-country levels. Our methodology achieves a good fit with official trade statistics for many 
countries and for the world in aggregate. We also show the usefulness of our approach for sectoral 
analyses of crude oil trade, and for event studies such as Hurricane Maria and the effect of measures 
taken to contain the spread of the novel coronavirus. Going forward, ongoing refinements of our 
algorithms, additional data on vessel characteristics, and country-specific knowledge should help 
improve the performance of our general approach for several country cases. 
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I.   INTRODUCTION 

World trade is intertwined with overall economic activity. Fluctuations in trade can reflect 
changes in global growth, or they themselves can spur or hamper growth. Businesses and 
policy makers therefore devote great efforts to monitoring high frequency trade data from 
various sources to inform their near-term outlooks and make informed investment decisions 
or craft policy recommendations. However, most proxies of global trade are available with a 
one- to three-month lag and some high frequency indicators miss large swaths of world trade. 
In this paper, we build real-time indicators of world seaborne trade using raw data emitted by 
the global vessel fleet through their transponders to provide a more immediate picture of 
global trade flows than is currently available. 
 
Maritime transport is at the core of world trade and it can be tracked in real time. Over 80 
percent of global merchandise trade by volume and more than 70 percent of its value is 
carried by the international shipping industry (UNCTAD, 2017). Cargo ships are equipped 
with a device that periodically emits a signal (Automatic Identification System message, or 
AIS) which contains information on the vessel’s location, speed, draught, etc. Various private 
providers use terrestrial receivers and satellites to catch these AIS messages and transform 
them into structured data feeds. We use different machine-learning techniques to transform 
these data into estimates of trade volume at the world, bilateral and within-country levels.  
 
Our methodology has good predictive power for many countries. Moreover, in some cases 
we usually have the highest correlation with a one-month lead. This implies that in some 
cases our results can be useful not just to nowcast trade but to forecast it as well. It can be 
instructive to lay out this finding with an example. In countries with high data quality, a 
publication lag of around two months is normal. This means that at the end of February or 
early March official monthly customs data report the evolution of trade until the end of the 
previous year. At that point in time, our methodology allows us to calculate the 3m/3m 
growth rate from AIS data and – in some cases – this will be a good predictor for the quarter-
on-quarter growth rate of actual imports for the first quarter of the year. We infer that this 
predictive power stems from AIS messages sometimes frontrunning the recording of trade by 
national customs offices.  
 
Figure 1 illustrates some of our results for the cases of the Japan and the Euro Area. There, 
and henceforth, we label our index the Global Trade Intelligence (GTI) index. The 
correlation between the monthly GTI and official (CPB) growth rates is as high as 0.49 for 
Japan and, and of 0.47 for the Euro Area when official data are measured with a one-month 
lead.1 The general approach does not work as well for all countries, either because shares of 

 
1 Official trade volume data were collected and shared by the Netherlands Bureau for Economic Policy Analysis 
(CPB). CPB uses the X12 seasonal adjustment method that we also applied to our AIS-based GTI index. Hence, 
the reported correlations are not coming from predictable seasonal fluctuations. See Section V below for further 
discussion. Both our estimates and CPB’s include intra-Euro Area trade. 
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trade by sea are low or because the geography or infrastructure of countries’ ports is 
substantially different from the official U.S. data used to train the algorithm. For the world as 
a whole, our results have a monthly pairwise correlation with official statistics of nearly 0.9 
in levels, and around 0.4 in quarter-on-quarter growth rates. 

 
We also show the usefulness of our methodology for sectoral analyses by benchmarking our 
estimates for the case of oil with available data for crude oil trade. The correlation in levels 
for global crude oil imports is 0.73 in the raw data, and 0.81 on a 3-month moving average 
basis. In growth rates, the correlation is as high as 0.47. We close our results section by 
showing how our methodology can be used in event studies, illustrating this with two 
prominent cases: the effects of Hurricane Maria in Puerto Rico, and the impact of the novel 
coronavirus outbreak in China. 
 
We think that our results should be valuable to policy makers, especially in periods where 
time is of the essence. To the best of our knowledge, the estimates by the CPB are the ‘gold 
standard’ monthly trade volume indicators that are representative of world trade. On or 
around the 23rd day of a given month t, CPB will publish its first estimates of trade volumes 
corresponding to month t-2. As far as a policy maker is concerned, this means that the CPB 
publishes its first estimates for month t-2 with a 7 to 11-week lag, depending on whether the 
reference point is the beginning or the end of month t-2. Because of the challenges involved 
in producing deflators, the first estimate for month t-2 usually undergoes revisions, so that 
the effective lag is often of 11 to 15 weeks. Our current implementation of the methods 
presented in this paper produce import estimates with a 5-day lag, and export estimates with 
a 10-day lag.2 In cases where our index tracks official data best with a lead, the timeliness 
advantage is of course further enhanced. 

 
2 As described in Section V, our volume indicators rely on information on how deep the ship is into the water 
(the draught). This information is manually entered by crews, in some cases with a lag. Therefore, if we want to 
estimate the volume loaded/offloaded at a given port, we may need a few more days of data to observe any 
draught updates. Hence, to be cautious, we censor the last 5 days of our estimates for imports. In the case of 
exports, we censor the last 10 days because outgoing cargo is only classified as export once it reaches a 

Figure 1. GTI Index and Official Data 
3m/3m growth rates, seasonally adjusted 

    
Sources: Authors’ calculations, and Netherlands Bureau of Economic Analysis (CPB). 
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In keeping with the spirit of the standard disclaimer for IMF working papers – that they 
describe research in progress and are published to elicit comments and to encourage debate – 
we are still working on methodological refinements. We are making our results to date 
available for two reasons. First, because we think the results presented here are an 
encouraging first step in using AIS data to monitor world trade activity. And second, because 
of the enormous need for real-time monitoring tools during the current COVID-19 pandemic. 
At the end of the paper, we describe specific areas of ongoing improvements and avenues for 
future research that build on this proof of concept. 
 
To the best of our knowledge, our paper is the first to propose the construction of trade 
volume indicators relying solely on AIS data and publicly available sources of information. 
In other words, we back out trade patterns from scratch using (almost) just ships’ radio 
messages. A limited set of papers has sought, with mixed results, a similar objective but 
using proprietary port-call data provided by private vendors. Since those port call data are 
proprietary, it is generally unknown how they are constructed and they are not benchmarked 
against port calls recorded by customs agencies. In contrast, we provide a transparent 
algorithm to identify port calls using as benchmark four years of daily official vessel 
entrances recorded by U.S. customs.  
 
First, we build a dataset of potential port calls using historical AIS messages and a spatial 
clustering algorithm. Since the algorithm uses AIS data as input but is not provided any 
training sample on where ports are actually located in the world (i.e. it has no ‘teacher’), it 
belongs to the class of unsupervised machine learning techniques. Second, we combine this 
set of potential port calls with official, vessel-level U.S. entrance-record data. Since in this 
case we do have official data to target, we can resort to supervised machine learning 
techniques. Specifically, we use these official data to train a classifier that returns a 
prediction of whether any given potential port call is a port call or not. In doing so, our paper 
is also the first to report the accuracy of our (AIS-derived) port call data with respect to 
official statistics at the vessel level. Third, we estimate the volume of trade between any two 
ports and identify import, export, and internal trade volumes. Finally, we benchmark of our 
results against official trade volume data. 
 
Our paper contributes to an incipient and growing literature that uses AIS data to monitor 
trade. Perhaps the two most closely related papers are by Adland, Jia and Strandenes (2017), 
and Arslanalp, Marini and Tumbarello (2019).3 In one of the earliest contributions, Adland et 

 
different country. Further work may allow us to reduce this lag for the case of exports. Stricto sensu, our 
estimates are therefore in fact near real time. 

3 For a general discussion of potential applications of big data to help improve official statistics, see Hammer, 
Kostroch and Quirós (2017). AIS data in particular have also been used to calibrate theoretical models of trade, 
providing the ability to perform experiments such as the effect of closing or opening certain routes (Brancaccio 
et al., forthcoming; Heiland et al., 2019). 
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al. (2017) combine AIS data with proprietary port-call data with the aim of nowcasting crude 
oil exports. Arslanalp et al. (2019) also combine AIS with proprietary port call data for Malta 
and develop indicators to gauge trade activity. 
 
Our paper differs from these contributions in terms of coverage and methodology. While we 
can break down our indicators at the level of vessel type (crude oil tanker, dry bulk, etc.), our 
main objective in this proof of concept is to gauge overall trade activity. Similarly, while we 
illustrate the power of AIS data with some country case studies, our exercise is not tailored to 
any specific country but aims to cover the entire world. From a methodological point of 
view, the main difference is that our approach does not rely on any proprietary port-call 
dataset but builds this information from the AIS data themselves. Furthermore, in the process 
of training our algorithm we are also the first to assess the accuracy of AIS-derived port-call 
data at the vessel level.4 The more general approach and the fact that we only use raw AIS 
data do not come at the expense of performance when compared to the performance in those 
narrower studies. For example, Arslanalp et al. (2019) find a correlation of 0.65 when 
comparing their trade gauge in levels with quarterly official statistics for Malta. With our 
general method that is not tailored to any specific country, we find a monthly correlation in 
seasonally-adjusted levels of 0.88 for the world as a whole. This is not to say that expert 
knowledge of specific cases cannot improve our general, global approach to the problem. We 
believe that this is in fact very much the case for some countries. 
 
The rest of the paper is organized as follows. Section II gives a very brief description of AIS 
data. Section III outlines our approach to identifying ports from AIS data, and mapping these 
ports to countries. The results of this section yield a set of polygons; any ship sending an AIS 
message from within these polygons is considered a potential port call. Section IV lays out 
our approach for teasing out actual port calls from this set of potential port calls. Section V 
presents our methodology for estimating the volume of trade between any two ports and how 
we identify imports and exports. Section VI compares our estimated gauges of trade with 
official data at the aggregate and sectoral levels, and illustrates the usefulness of our 
methodology for event studies. Section VII outlines already identified steps to refine the 
methodology and potential avenues for future research. Section VIII presents concluding 
remarks.  
 

 
4 More specifically, we check whether we can find in our AIS-derived port calls the specific vessels that entered 
ports at specific dates in official statistics. This is different from the approach performed in the aforementioned 
papers, where the only measure of fit is the comparison with aggregate time series data on the number of 
incoming vessels. 
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II.   AIS DATA5 

AIS stands for Automatic Identification System. International Maritime Organization (IMO) 
regulations require, since end-2004, AIS transponders to be fitted aboard “[…] all ships of 
300 gross tonnage and upwards engaged on international voyages, cargo ships of 500 gross 
tonnage and upwards not engaged on international voyages and all passenger ships 
irrespective of size.” AIS transponders send radio messages so as to provide a periodic real-
time feed to other ships and coastal authorities and thus enhance maritime security. These 
radio messages can be picked up either by terrestrial stations (if the ship is near a shore) or by 
satellites. 
 
Besides unique ship identifiers, AIS messages include some data that are automatically 
generated, and some that are manually entered by ships’ crews. Automatically generated data 
include, for example, the ship’s position (latitude and longitude) and its speed. Among the 
manually entered fields are, for example, the ship’s draught (i.e. the vertical distance between 
the ship’s keel and the waterline), the destination and the navigational status (e.g. moored, 
anchored, under way using engine, etc).  
 
The AIS data we use in this paper were provided by MarineTraffic, and cover the period 
from January 1, 2015 to April 18, 2020. The dataset includes over one billion messages from 
over 50,000 distinct ships. While most ships send AIS messages with a frequency of 2-10 
seconds, the data we purchased are down-sampled to the hourly frequency.6 
 
 
III.   ELICITING PORTS FROM RAW AIS DATA – UNSUPERVISED LEARNING 

The first, and arguably main challenge when making sense of AIS data for trade-nowcasting 
purposes is to identify when a ship’s message comes from within the boundaries of a port. 
The scale of the challenge is given by both the sheer number of ports and the fact that port 
boundaries might change or new ports might be built over time. The National Geospatial 
Intelligence Agency’s World Port Index (WPI), which compiles characteristics of major 
ports, identifies 3,669 ports. Even if one were to use domain knowledge to draw port 
boundaries for all these ports, this would still not address the problem that boundaries might 
become obsolete over time. 
 
Our approach in this paper is to infer port boundaries, the first building block of our 
nowcasting indicators, from the AIS data themselves. We use unsupervised machine learning 

 
5 Our description in this section is deliberately brief. Almost every paper using AIS data has a good description 
of what AIS messages contain and how they are collected. Because this data source is not yet so widely known, 
we have included this section so that the paper is self-contained for all readers. 
6 Due technological reasons such as message collision and lower satellite coverage in the deep oceans, the 
actual coverage is slightly lower (see e.g. Natale et al., 2015). However, we still have about one message per 
ship every two hours on average.  
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techniques to identify geographical clusters of vessels that, based on certain AIS features, are 
presumed to be at a port. The method we use is described in subsection A below, and its 
implementation is presented in subsection B. Because we are ultimately interested in building 
trade gauges between ports and countries, we lastly map our ML-identified port boundaries 
to ports, and hence countries, in the WPI database. This is presented in subsection C. 
 
 
A.   Conceptual approach: Density-based clustering 

To identify port boundaries using AIS data, we rely on the fact that loading and offloading 
requires vessels to stand still and on the assumption that crews will, in general, correctly 
update the vessels’ navigational status when at port. For that reason, our starting point is the 
set of messages with speed less than 0.5 knots per hour and reporting a navigational status of 
moored. For some vessel types above a certain size that may load and offload without 
mooring, we also consider messages with speed less than 0.5 knots per hours and reporting a 
navigational status of anchored.7 Let 𝐷𝐷 denote this set of messages. The question is how to 
identify port boundaries equipped with the latitude and longitude of messages in 𝐷𝐷. 
 
We use the density-based algorithm for discovering clusters in large spatial databases with 
noise (DBSCAN henceforth; Ester et al., 1996). DBSCAN groups observations that are close 
to each other into clusters, while points in low-density regions are considered outliers. To do 
this, it requires two exogenous inputs: a radius 𝜀𝜀 to define neighborhoods, and a minimum 
number of points 𝑁𝑁 to define what (given the radius) are areas that are sufficiently dense so 
as to be considered a cluster. Specifically, for any point 𝑝𝑝, the 𝜀𝜀-neighborhood (𝜀𝜀 being the 
radius) is defined as: 

𝑁𝑁𝜀𝜀(𝑝𝑝) = {𝑞𝑞 ∈  𝐷𝐷 | 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝, 𝑞𝑞) ≤  𝜀𝜀}, 
 
where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(. , . ) denotes the geodesic distance. Given a choice of 𝜀𝜀, a point 𝑝𝑝 is defined as a 
core point if at least 𝑁𝑁 points are in its 𝜀𝜀-neighborhood. A point 𝑞𝑞 is directly reachable from 
𝑝𝑝 if 𝑝𝑝 is within 𝑞𝑞’s 𝜀𝜀-neighborhood. A point 𝑞𝑞 is reachable from 𝑝𝑝 if there is a path 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛 
𝑝𝑝1 = 𝑝𝑝 and 𝑝𝑝𝑛𝑛 = 𝑞𝑞 such that each 𝑝𝑝𝑖𝑖+1 is directly reachable from 𝑝𝑝𝑖𝑖. All points not reachable 
from any other points are outliers or noise points. A cluster is defined as the set of points 
reachable from a core point. Figure 2 illustrates what is meant by core, border, and outlier 
points. 
 
 
 
 

 
7 These are bulk carriers width deadweight tonnage (DWT) over 75,000 metric tons, oil/chemical tankers with 
DWT over 50,000 metric tons, and crude oil tankers with DWT over 100,000 metric tons. In both the mooring 
and anchored cases, the 0.5-knot threshold is used solely so as to filter out clearly erroneous navigational status 
reports. Spiliopoulos et al. (2018), for example, use this same threshold. 
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Figure 2. Core, border and outlier points in DBSCAN 

 
Notes: In this figure, if DBSCAN is set with distance 𝜀𝜀 and minimum 
number of points 𝑁𝑁 = 4, then it will identify a cluster including all 
purple (core) dots and yellow (border) dots. The green dot will be 
identified as noise. 

 
The application of DBSCAN yields a set of clusters, but what we need in order to identify 
port calls are geographical boundaries. For each cluster, we define its associated polygon as 
the convex hull of the cluster.  
 
Before turning to how we operationalize these ideas in our data, it is useful to discuss the 
advantages and drawbacks of the DBSCAN algorithm. DBSCAN has clear advantages 
compared to several alternatives. For example, the WPI database that we use to map 
polygons to ports characterizes each port’s location with a single latitude-longitude pair. In 
principle, one could take port boundaries to be circles of a given radius centered around the 
latitude and longitude measures in the WPI database. This would imply a one-size-fits-all 
approach to port boundaries, where all ports have the same shape and size. Evidently, in the 
real world  port boundaries are dramatically different both in shape and in size depending on 
the geography around them. 
 
DBSCAN is not the only machine-learning method that can be used to identify clusters. K-
means clustering is another popular and very efficient method (Lloyd, 1982; Forgy, 1965). 
Compared to DBSCAN, however, K-means is heavily influenced by outliers, as it forces 
every point into a cluster. Even more importantly, K-means requires a priori knowledge of 
the number of clusters 𝐾𝐾, a very serious limitation in our application. Spatial data analysis 
methods such as hotspot analysis (Getis, 1992) attempt to generalize Poisson processes to 
applications in the space domain. The basic idea consists in comparing the concentration of 
points in space to the expected number given a random distribution of events. The limitation, 
however, is that these methods would require prior knowledge of the shape of port 
boundaries. In our application, such boundaries are not readily available. 

Core point

Border point

Outlier/noise point
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The ability of DBSCAN to elicit clusters of arbitrary shapes is well suited to our application, 
insofar as the geography of ports is widely heterogeneous. Furthermore, by not requiring 
prior knowledge of the number of clusters and being able to tease out outliers, DBSCAN has 
also clear advantages over methods such as K-means. Yet, DBSCAN does have certain 
limitations. Chief among them is that it requires two exogenous parameters: the distance 𝜀𝜀 
and the minimum number of points 𝑁𝑁. In our application, in order not to miss trade at ports 
that are less-frequently visited, we set these parameters such as to err on the side of having 
too many polygons. Recent extensions of the algorithm to endogenize these parameters 
constitute a promising avenue for future refinements of our results.8  
 
 
B.   Implementation: Weighted DBSCAN 

Not all AIS messages are relevant for the construction of mooring and anchorage clusters. 
First, we only keep messages where the navigational status is moored and the speed is below 
0.5 knots per hour. To identify port calls of certain ship types that may engage in trade while 
anchored (see footnote 6 above) we also use messages where the navigational status is 
anchored and the speed is below 0.5 knots per hour.9 This leaves us with 189.0 million 
observations, out of the 854.7 million observations of the original 4-year dataset. Second, to 
reduce computational time, we round up the latitude and longitude fields. For latitudes 
between 0 and 45 degrees, we round to the nearest fourth decimal place. This corresponds to 
around 11 meters at the equator and around 8 meters at 45-degree latitude. For latitudes 
greater than 45 degrees, we round to the nearest one-fifth of the fourth decimal place (i.e. in 
0.0002 increments). Finally, we collapse the dataset by rounded-up latitude and longitude, 
creating a new variable (position_weight) that counts the number of AIS messages 
corresponding to each rounded-up position.  
 
Our weighted DBSCAN algorithm requires two parameters: a radius 𝜀𝜀, and a minimum 
number of points 𝑁𝑁. We set 𝜀𝜀 = 2,000 meters and 𝑁𝑁 =1,000.10 Our prior is that within this 
distance 𝜀𝜀  we should be able to observe sufficiently many messages to justify the point as a 
core point. In our application, the minimum number of neighbors to define a core point 
depends on the timespan of the dataset and the sampling frequency. Loosely speaking, we set 

 
8 The original authors of DBSCAN have proposed a new method, called OPTICS, which is less sensitive to 
input parameters. Given the size of our dataset, we adopted a weighted version of DBSCAN where each point 
on the grid in weighted by the number of messages in that point. A similar extension of OPTICS could be used 
to refine our results. 
9 To avoid overlap between our resulting mooring and anchorage polygons, we subtract from the area of 
anchorage polygons the area of mooring polygons. This implies that while our mooring polygons are convex 
sets by construction, the anchorage polygons need not be. 
10 Across the paper, distances on the map (including between message locations, and also between centroids and 
ports) were computed using the haversine formula. 
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the minimum number of observations 𝑁𝑁 as equivalent to a single-berth terminal having to be 
occupied at least about five percent of the time to be identified as a cluster by the algorithm. 
With 12 daily messages over four years, a berth that is constantly occupied would have 
12x365x4=17,520 messages. We therefore set DBSCAN’s parameter to 1,000. Figure 3 
below shows the sensitivity, in terms of number of core and noise points, under various 
choices of the parameter 𝑁𝑁. By and large, the number of noise points does not change 
dramatically under different choices of 𝜀𝜀 .  
 

Figure 3. Number of core and noise points under different calibrations 
different choices of 𝜀𝜀; number of points in millions 

 
 
 
C.   Assigning polygons to ports and countries 

For each AIS-derived polygon, we first calculate the latitude and longitude of its centroid and 
try to identify the sovereign country where the centroid lies. The assignment of polygons to 
port groups is based on the cluster’s centroid’s position and works as follows. 
 
Assigning centroids to countries. In order to map centroids’ positions to countries, we use a 
database of polygons identifying territorial waters of all countries in the world (version 10 of 
the Maritime Boundaries Geodatabase; Flanders Marine Institute, 2018). For some polygons, 
however, their centroids happen to be located over land, so that no jurisdiction is found when 
searching across sea polygons. We therefore also identify the country of the centroid by 
using polygons over land areas, using the World Borders Dataset.11 Whenever our search 
over water returns no sovereign country, we use the results of a search over land. 
 
Of the around 3,500 cluster centroids, all but around 1,300 are mapped to a country based on 
maritime boundaries. Of those 1,300, all but around 500 are mapped to a country based on 
land boundaries. That is, we end up with about 3,000 centroids mapped to a country and 
about 500 centroids that are not assigned to any country.  
 
Assigning centroids to head ports. This is done in two steps. First, if the polygon’s centroid 
has a country assigned, we look for the set of head ports within a 30 km radius of the centroid 
that belongs to the same country. If this set is not empty, then we assign the polygon to the 
head port in this set that is closest to the centroid. Otherwise, we assign the polygon to the 

 
11 Available at https://thematicmapping.org/downloads/world_borders.php 

Core Noise
500m 186.2 2.8
1000m 187.2 1.8
2000m 187.8 1.3
5000m 188.2 0.8

https://thematicmapping.org/downloads/world_borders.php
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WPI port within the same country that is closest to the centroid. Secondly, if the polygon’s 
centroid does not have a country assigned, then we look for the set of head ports within a 30 
km radius of the centroid. If this set is not empty, then we assign the cluster to the head port 
in this set that is closest to the centroid. Otherwise, we assign the cluster to the WPI port that 
is closest to the centroid. 
 
The two-step, hierarchical procedure that first searches for head ports helps avoid situations 
where a cluster is assigned to a non-head port 𝑑𝑑 that belongs to head port 𝑗𝑗 when in fact head 
port 𝑘𝑘 is at a smaller distance from the cluster’s centroid. Further note that the calibration 
based on a 30-km distance is consistent with the one used to construct port groups.  
 
Removing assignment if nearest port is too far away. Figure 4 below shows the resulting 
histogram of centroids’ distance to the nearest port. When this distance is greater than 75 km, 
we remove the assignment. Clusters that, because of this step, end up not being assigned to 
any port constitute what we denote ‘synthetic ports’. Synthetic ports that lie on the waters or 
land of a country are synthetic ports of that country. We have a total of 16 synthetic ports, 
which we assign to the closest countries. In order to minimize the possibility of 
misclassification, we manually validate each of these assignments.12 
 

Figure 4. Histogram of clusters’ distance to closest WPI port 
distance in km 

 
 
 
IV.   IDENTIFYING PORT CALLS – SUPERVISED LEARNING 

Once we have identified port areas from the raw AIS data, the question is how to infer 
whether a message received from within a port polygon is a true port call or not. Ships may 
traverse port polygons without stopping at port facilities that allow them to load or offload 
cargo. Such examples include ships going up the river in Rotterdam or Buenos Aires, 

 
12 We should note that, in Figure 5, some polygons appear to be far from the closest WPI ports but are not 
necessarily far from the shores of the closest country. 
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crossing the San Francisco Bay to reach Oakland, or stepping on a polygon on their way 
through the Singapore Strait. 
 
We make use of official statistics on vessel entrances and clearances at U.S. ports to identify 
true port calls from the set of polygon visits. More specifically, the U.S. Army Corps of 
Engineers’ Navigation Data Center (NDC henceforth), in partnership with the U.S. 
Department of Homeland Security’s Customs and Border Protection agency, compiles what 
is known as the national waterway data. NDC data record most port calls on U.S. ports, 
including 23 different fields of potential interest. Importantly, the dataset includes the 
vessels’ IMOs and date of entry.13 As of March 2020, NDC data are available through end 
2018.14 
 
 
A.   Mapping AIS-derived port visits and official port calls 

We start the analysis by looking for matches between our polygon visits and the official port-
call data produced by NDC. We do this by mapping every GTI and NDC port call to one of 
the following categories: 
 
Matched port calls. For each NDC port call we search for the same IMO in our port visit data 
over a window of +/- 2 days around the date the port call was recorded by NDC. The 
rationale for looking up to two days back in time is that by law vessels have up to two days to 
file their entrance report .15 At the other end, there are two reasons to look for port calls up to 
two days after the NDC records. First, NDC records the day in local U.S. time, but the 
timestamp in AIS data is in UTC time. UTC timestamps can be 5-9 hours ahead of U.S. time, 
depending on the U.S. time zone and whether daylight saving time is in effect. That is, there 
can be vessels that arrive at Los Angeles at 6 pm, but it is already the next day in UTC. We 
limit, but do not eliminate, this source of discrepancy by shifting AIS timestamps by six 
hours across the board. Second, a vessel may report entry ahead of entering the port, for 
example while waiting at anchorage. Sometimes a single vessel may have multiple port calls 
within this window either in our database or in NDC database or in both. In those cases, we 
match NDC records to the ones with the closest dates in our dataset. If this does not break the 
tie, we give preference to the earliest record.  
 
False negatives. These are IMOs recording port calls in the NDC database for which we do 
not find a port call in our data over the +/- 2-day window. 
 

 
13 The U.S. Code for Federal Regulations stipulates that all vessels, with the exception of U.S.-flagged ships 
coming directly from another U.S. port and without foreign goods onboard, must file an entrance statement 
(Code for Federal Regulations, Title 19, §4.3). U.S.-flagged ships make up only 0.5 percent of our dataset. 
14 We exclude Puerto Rico and U.S. Virgin Islands from all the analyses in this section. 
15 Code for Federal Regulations, Title 19, §4.3. 

https://www.cbp.gov/sites/default/files/assets/documents/2018-Apr/CBP%20Form%201300.pdf
https://www.govinfo.gov/content/pkg/CFR-2019-title19-vol1/xml/CFR-2019-title19-vol1-part4.xml
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False positives. These are IMOs recording port calls in our database that remain unmatched 
to NDC port calls over the +/- 2-day window. Since some vessels are not required to file an 
entrance record, a false positive does not necessarily imply that a vessel did not enter a port. 
 
As a matter of fact, one should not treat the official data from NDC as capturing the universe 
of calls at U.S. ports. In particular, NDC is unlikely to record port calls by U.S.-flagged 
vessels coming from another U.S. port (see footnote 10 above). We will therefore restrict 
attention in what follows to non-U.S.-flagged vessels that in our raw database arrive from 
non-U.S. ports. 
 
 
B.   Checking for blind spots  

For the period 2015-2018, we record more than 500,000 distinct ship-date pairs with 
messages coming from within polygons associated with U.S. ports, whereas NDC shows 
nearly 290,000 entrance records. Around 215,000 NDC port calls can be mapped to an GTI 
polygon visit within a +/- 2-day window. As shown in Table 1, nearly all matched port calls 
are found on the same day in both datasets, or with a one-day lag/lead in our database. In this 
initial matching, about 71,000 observations are classified as false negatives (no GTI record), 
and over 300,000 as false positives (GTI record unmatched to an NDC record). The next 
subsection discusses how to correctly measure false positives and lays out our approach to 
tackling them. Here we focus on analyzing false negatives, and show that the actual number 
is much lower than suggested by the initial matching. 
 

Table 1. Searching official port calls in GTI polygons 
including all vessels 

 
 
The underlying AIS data that we use contain IMO-registered vessels that participate in global 
trade and comprise the core commercial markets of the world fleet (dry bulk, containers, wet 
bulk, gas carriers-LNG/LPG, etc.). To test the adequacy of our algorithms and refine our 
calibrations, an analysis of false negatives must first tease out how many of the unmatched 
NDC port calls correspond to IMOs that never show up in our underlying data. These are 
mostly small ships (e.g. tugs, barges, service vessels) that do not participate in international 
trade. 

Frequency Percent Cumulative
Found by GTI on day t = 

-2 804 0.1 0.1
-1 9,458 1.6 1.7
0 189,538 31.4 33.1

+1 10,427 1.7 34.8
+2 4,460 0.7 35.5

In ML-AIS but not in NDC (false positives) 318,168 52.6 88.1
In NDC but not in ML-AIS (false negatives) 71,674 11.9 100.0
Total 604,529 100.0



16 

 
Of the around 71,000 false negative port calls, about 58,000 correspond to IMOs that are not 
in our data. Excluding these IMOs from the analysis reveals that our algorithm can match 
94.3 percent of NDC’s port calls (Table 2). 
 

Table 2. Searching official port calls in GTI polygons 
excluding vessels not appearing in underlying AIS database 

 
 
At 94.3 percent, we are able to capture the overwhelming majority official U.S. port calls. 
The natural question is whether this overall high figure masks weaknesses in detecting 
certain types of vessels. Table 3 shows total official port calls broken down by false negative 
and true positives for the top ten vessel types visiting U.S. ports. For example, of the 71,598 
official port calls by container ships, 69,599 are detected by our algorithm, implying a false 
negative rate of 2.79 percent. The false negative rate is below 10 percent in all cases 
presented in Table 3, except for self-discharging bulk carriers. Figure A1 in Appendix A 
shows that, within this category, we tend to miss smaller vessels but capture the larger ones. 
 

Table 3. Searching official port calls: Vessel-type breakdown 
excluding vessels not appearing in underlying AIS database 

 
 

Frequency Percent Cumulative
Found by GTI on day t = 

-2 804 0.4 0.4
-1 9,458 4.2 4.5
0 189,538 83.3 87.8

+1 10,427 4.6 92.4
+2 4,460 2.0 94.3

In NDC but not in ML-AIS (false negatives) 12,934 5.7 100.0
Total 227,621 100.0

No Yes
CONTAINER SHIP 1,999 69,599 71,598

2.79 97.21 100
BULK CARRIER 3,216 31,666 34,882

9.22 90.78 100
OIL/CHEMICAL TANKER 1,949 30,375 32,324

6.03 93.97 100
GENERAL CARGO 1,258 19,232 20,490

6.14 93.86 100
VEHICLES CARRIER 618 18,347 18,965

3.26 96.74 100
CRUDE OIL TANKER 830 17,352 18,182

4.56 95.44 100
SELF DISCHARGING BULK CARRIER 1,186 5,422 6,608

17.95 82.05 100
LPG TANKER 310 5,683 5,993

5.17 94.83 100
OIL PRODUCTS TANKER 308 3,877 4,185

7.36 92.64 100
RO-RO CARGO 100 3,248 3,348

2.99 97.01 100

In GTI polygon?
Total
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Different port geographies may, in principle, lead to different false negative rates. For 
example, we may be missing port calls in ports with certain geographic characteristics that 
our spatial clustering algorithm couldn’t handle well. Detecting any such problem would be 
important, especially as we will use the U.S. data to train a random forest classifier, which 
then will be applied to other countries. For example, for a country with its main port in a 
river delta (as is Rotterdam for the Netherlands), it can be especially useful to know whether 
GTI works well in New Orleans, where ships go up the Mississippi. We therefore analyzed 
the false negative rate by U.S. port and vessel type. 16 Figure 5 illustrates the case of bulk 
carriers, showing that false negative rates are relatively low for the most relevant ports.  
 

Figure 5. False negatives by U.S. port: The case of bulk carriers 

 
 
 
C.   Teasing out false positives via supervised learning 

While Table 1 shows that our port polygons capture nearly all official port calls, it also 
reveals a more pervasive problem – an abundance of false positives. That is, vessels that step 
on polygons but do not have entry records in the NDC data. As noted above, NDC need not 
record all port calls by all vessels: U.S.-flagged vessels coming from other U.S. ports and 
loaded only with U.S. goods are not required de jure to complete a port entrance form. In 
practice, it seems that these vessels indeed often don’t file for entry. For example, of the GTI 
port visits for which we can find a corresponding NDC port call, about half have a previous 
port visit in the U.S. This fraction jumps to nearly 70 percent  for GTI port visits for which 
we cannot find a corresponding NDC port call. Similarly, in the GTI port visits for which we 
can find a corresponding NDC port call, about 3 percent of the vessels are U.S.-flagged. This 
fraction jumps to 17 percent for GTI port visits for which we cannot find a corresponding 
NDC port call. For this reason, and to ensure an unbiased implementation of our 

 
16 It is in fact this analysis that led us to use messages with navigational status anchored in the construction of 
polygons for three specific vessel types (see footnote 4). 
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classification method, in what follows we drop all observations where the previous GTI port 
of call is in the U.S. and the vessel is U.S. flagged.  
 
This still leaves us with plenty of false positives, that is AIS-derived polygon visits that we 
cannot match to official entry records.17 Fortunately, we can rely on several features of these 
visits to infer whether the messages coming from within a polygon represent a port call. For 
example, a vessel speeding through the polygon at an average speed of 10 knots per hour 
and/or spending less than one hour within the polygon is unlikely to be able to load or 
offload any cargo during its polygon visit. 
 
In principle, teasing out these false positives on the basis of a set of covariates is a 
classification problem akin to the challenge in international macroeconomics of predicting 
crises (see e.g. Frankel and Rose, 1996; Kaminsky, Lizondo and Reinhart, 1998; Catao and 
Milesi-Ferretti, 2014). Following in the footsteps of this literature, we could for example 
estimate a probit model of the binary variable of each visit being an NDC-recorded port call 
(labeled as a 1) or not (labeled as 0). 
 
The problem with estimating models with an underlying linearity assumption (such as probit 
or logistic regression) is that many of the covariates that we use have non-linear and non-
monotonic effects on the probability of a given observation being a port call. Consider, for 
example, how average speed and duration of stay within the polygon are related to the 
likelihood of finding a matching NDC port call for a particular polygon visit. In the case of 
average speed, the relation is nonlinear in the sense that, for average speeds of less than 
around 3 knots per hour, the distribution of average speed is similar for true and false 
positives (Figure 6, top left panel). For average speeds above 5, however, false positives are 
far more frequent than true port calls. Similarly, low and very large values of duration of stay 
are associated with a higher frequency of false positives. In between, however, one finds that 
the distribution of false positives is not very different from that of true port calls (Figure 6, 
top right panel). These distributions, in turn, are different at the vessel-type level, as the 
technology of loading and offloading varies depending on the type of cargo carried by the 
ship, as well as possibly the ship’s size (Figure 6, bottom panels).  
 
 
 
 
 
 
 
 

 
17 There are around 336,000 observations of U.S.-flagged vessels where the previous GTI port of call is in the 
U.S., which implies that we also drop some true positives from the analysis. False positives drop the most, as 
expected, from around 320,000 to around 90,000. 
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Figure 6. Teasing out false positives using AIS data 

  

  
 
These nonlinearities and nonmonotonicities call for a flexible, nonparametric approach to 
distinguish false positives from true port calls. We use a random forest classifier to predict 
whether a vessel’s visit to a polygon is related to a port call. A random forest classifier is a 
so-called ensemble learning method that creates multiple decision trees in randomly selected 
subspaces of the space spanned by our covariates (known as ‘features’ in the machine 
learning literature) and yields a classification of zeros and ones by majority vote of all 
individual trees. Each decision tree is constructed with randomly-sampled covariates and 
subsample of the data (also known as training sample) to minimize a cost function (Ho, 1995; 
Ho, 1998; Breiman, 2001). The cost function used is Gini's diversity index: 
 

𝐶𝐶 = 1 −� 𝑝𝑝𝑖𝑖2
1

𝑖𝑖=0
 

 
where 𝑝𝑝𝑖𝑖 is the deadweith-tonnage-weighted frequency of observations labeled as class i 
under a node of the tree. Since in our application misclassifications are more costly the larger 
the ship, we penalize them in proportion to vessels’ gross tonnages. 
 
The tree is grown every time by splitting at a feature to minimize the Gini’s diversity index 
of the parent node until it is impossible to reduce the Gini’s diversity index or we reach a 
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constraint that the number of points under a node must be larger than a given threshold. This 
threshold is a hyper parameter and is used to limit the complexity of the model and thus 
improve out of sample prediction power. Random forests can help reduce overfitting of 
individual decision trees by simply introducing randomness and using majority vote of 
different trees (Friedman et al., 2001). 
 
We construct a total of 16 covariates or features of polygon visits that we feed into the 
classifier (Table 4). The information contained in these variable ranges from characteristics 
of the ship (e.g. gross tonnage) or the polygon (whether it is an anchorage polygon), to 
measurement of events taking place within the polygon (e.g. number of messages with 
navigational status anchored or moored), to dynamic features that account for events in 
multiple polygons (e.g. number of hours from previous mooring-polygon visit). Based on 
preliminary bivariate analysis and intuition, we conjecture that these features will help 
separate polygon visits that are not true port calls. 
 
The inclusion of variables related to ships’ draught warrants some discussion. Draught 
corresponds to the vertical distance between the bottom of the ships’ keel to the waterline. It 
can therefore be a useful gauge of how loaded vessels are. What is worth flagging is that, 
contrary to, for example, vessels’ speed and position, draught is manually fed by vessels’ 
crews to AIS transponders. As a result, measurement errors in draught readings can be 
pervasive. This includes not just potential errors in typing in the information, but also 
possibly lags in updating it when large changes in draught take place (marginal changes in 
draught take place constantly, including because of the burning of fuel).18  

 
Table 4. Features used to tease out false positives 

 
 

 
18 We will come back below to issues related to the draught variable when discussing our construction of a 
volume indicator. 

Variable Definition
Anchored message ratio Fraction of messages with status anchored (over anchored+moored)
Total no. anchored/moored messages Count of anchored or moored messages
Is anchorage polygon 1 if it is an anchorage (i.e. not mooring) polygon
Hours from draught change Hours between last draught change and polygon entry
Dummy previous mooring call 1 if other mooring call in past 48 hours
Hours from previous mooring call Hours from end of previous mooring call
No. draught decrease Count of draught decreases 
No. draught increase Count of draught increases 
Share of low-speed messages Share of messages with speed<0.5 knots 
No. messages Count of messages 
Average message speed Average speed of messages 
Average speed Distance over time from [first message out of] to [first message in] polygon
Duration of stay Time from [first message out of] to [first message in] polygon
Summer deadweight tonnage Summer deadweight tonnage
Gross tonnage Gross tonnage
Ship type Ship type
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Our approach to training the random forest classifier works as follows. We have a total of 
472,085 labeled port visits. We randomly pick 10 percent of the data points as the test set and 
the rest is used to train and optimize hyper parameters using five-fold cross validation 
(Kohavi, 1995).19 Hyper parameter tuning is done using Bayesian optimization (Snoek at al., 
2012).20 We tune two hyper parameters: the minimum number of points at each leaf node, 
and the number of trees constructed. The exercise yields a minimum number of points at each 
leaf node of 1, and 232 trees.21 
 

Table 5. Model Comparison on Testing Sample 

 RANDOM 
FORESTS SVM LOGISTIC 

REGRESSION 

ACCURACY 
𝑻𝑻𝑻𝑻 + 𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝑺𝑺𝑻𝑻𝑺𝑺𝑺𝑺𝑻𝑻𝑺𝑺
 91.3% 84.5% 84.7% 

PRECISION  
𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑻𝑻
 

89.4% 80.9% 81.2% 

RECALL 
𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻+ 𝑭𝑭𝑻𝑻
 

91.1% 85.0% 84.8% 

Notes: TP = # of true positives, TN = # of true negatives, FP = # of false positives, FN = # of 
false negatives 

 
Table 5 shows different measures of how well the random forest classifier works in the 
testing sample, i.e. the subsample that we left aside when training the model. We compare 
these results with the ones stemming from two other popular classification methods in the 
machine learning literature: support vector machines (SVM; Cortes and Vapnik, 1995), and 
logistic regression.  
 
The results in Table 5 show an overall good performance of the random forest classifier. 
Moreover, the classifier outperforms the two alternatives in the three different metrics shown. 
The metrics shown on Table 5 are derived from each model’s confusion matrix. The 
confusion matrix maps each observation in our AIS-derived polygon visits into one of four 
categories: (i) those that the model classifies as port call and show up as port calls in official 
statistics (true positives), (ii) those that the model classifies as port call but do not show up in 

 
19 That is, we randomly partition the training dataset into 5 equal-sized subsamples. Of the 5 subsamples, a 
single subsample is retained as the validation data for testing the model (e.g. calculating the error rate, etc.), and 
the remaining 4 subsamples are used to train the model. The cross-validation process is then repeated 5 times, 
with each of the 5 subsamples used exactly once as the validation data. The 5 results can then be averaged to 
produce a single estimation. 
20 Hyper parameters tuning consists in maximizing out-of-sample performance over hyper parameters. It is in 
general difficult to calculate the derivatives of this objective function. The Bayesian approach constructs a 
probabilistic model (usually Gaussian processes) for the objective function and then exploits this model to make 
decisions about where to next evaluate the function. 
21 Our random forest model uses all the features to grow each tree. Randomness is introduced by bootstrapping 
only a fraction 0.6 of the training samples for each tree. 
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official statistics (false positives), (iii) those that the model does not classify as port call and 
do not show up in official statistics (true negatives), and (iv) those that the model does not 
classify as port call but show up in official statistics (false negatives). As is clear from this 
description, false positives correspond to type I errors, whereas false negatives correspond to 
type II errors. 
 
The first metric in Table 5, denoted accuracy, corresponds to the number of correctly-
classified port calls (the sum of true positives and true negatives) in ratio to the total sample 
of polygon visits. Since it conflates type I and type II errors, a high level of accuracy as the 
one observed in Table 5 for our classifier may mask error-type-specific problems. As far as 
nowcasting trade goes, both types of errors would introduce equal amounts of noise to our 
trade indicators. It is nonetheless important to know whether one type of error is more 
pervasive, as false positives would imply over-estimation of trade flows whereas false 
negatives would be associated with under-estimation. 
 
The second and third measures presented in Table 5 shed light on these two types of errors. 
Precision corresponds to the number of cases that both the model and the official data 
identify as port calls (true positives) in ratio to the sum of true positives and cases the model 
identifies as port calls but the official data do not (false positives). At nearly 90 percent, the 
precision of the random forest classifier is substantially higher than for the two alternative 
classifiers. Recall measures the number of true positives in ratio to the total number of 
official port calls (i.e. true positives plus false negatives). Importantly, compared to the 
alternative methods, the random forest classifier achieves substantially higher precision while 
also improving on recall. In other words, its predictions of certain polygon visits not being 
true port calls does not come at the expense of missing actual port calls. The random forest 
model outperforms SVM and logistic regression by being able to account better for the non-
linearities present in our application.  
 
The results shown in Table 5 correspond to certain exogenous thresholds in each model. For 
example, and most familiar to economists, the results for the logistic regression corresponds 
to a rule whereby an estimated probability of being a port call greater than or equal to (lower 
than) 0.5 yields a predicted label of port call (not a port call). Potentially, one can choose a 
different rule as a tradeoff between true positive rate and false positive rate. For example, one 
could label as predicted port call those observations with a logistic-estimated probability 
greater than 0.6 instead of 0.5. This will naturally lead to a lower incidence of false positives 
and a higher incidence of false negatives. The Receiver Operating Characteristics (ROC) 
curve, shown in Figure 7 for the three different classification methods, illustrates precisely 
this tradeoff. The figure shows clearly that random forest classifier is unambiguously the best 
classification method among the three methods we considered. 
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Figure 7. ROC Curve of Different Models on Test Set 

 
 
Figure 8 shows the importance of different covariates of our trained random forest model. 
The importance of a covariate or feature is estimated by summing changes in the Gini’s 
diversity index due to splits on every predictor and dividing the sum by the number of branch 
nodes. As shown in the plot, the two most important features are the anchored message ratio 
and the duration stay within the polygon. The first of these is a feature of the polygons 
themselves, not the polygon visits. Its importance reflects the fact that most of our false 
positives come from anchorage polygons, where by construction the fraction of anchored 
messages will be higher. The importance of duration of stay, in turn, is intuitive since vessels 
need a certain amount of time to load/unload cargo and if the stay is too short or too long, it 
becomes less likely that the polygon visit is trade related. Coupled with other variables such 
as number of messages from polygon, ship type, and time to next mooring polygon, these are 
strong predictors of whether a polygon visit is related to a port call or not. 
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Figure 8. Feature Importance in the Random Forest Model 

 
 
V.   THE FINAL STEP: VOYAGES AND THE VOLUME OF TRADE 

Once the random forest classifier has been trained using the official port-call data for the 
U.S., we apply it to our worldwide AIS-derived polygon-visit dataset. That is, we feed the 
same 23 features described above so that the classifier returns a predicted label of either 0 
(not a port call) or 1 (port call) for each polygon visit. This constitutes our estimated global 
port call database. 
 
It is straightforward to get voyages between these estimated port calls. The only thing to note 
is that when constructing these voyages, we ‘see through’ certain ports. This is done so as to 
avoid incorrectly classifying the origin/destination at the bilateral level, and is done at the 
expense of losing trade gauges for these jurisdictions. In particular, we discard polygon visits 
where the jurisdiction is Panama or Gibraltar, and two ports along the Suez Canal (WPI 
names: As Suways, and Bur Said (Port Said)). These are well-known bottlenecks in the 
maritime transportation network. 
 
Equipped with these voyages, the last remaining step consists in assigning to each trip a 
gauge of the volume of trade involved. With our existing dataset, the best possible gauge of 
the metric tons of cargo transported by a ship 𝑑𝑑 at time 𝑑𝑑 is a function of the ship’s 
deadweight tonnage and draught data. Specifically, let 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼 denote the inbound metric tons 
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of cargo transported by ship 𝑑𝑑 at time 𝑑𝑑 into a given port. Further let 𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 denote the 
deadweight tonnage of 𝑑𝑑, 𝑑𝑑𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 denote maximum (or design) draught, and 𝑑𝑑𝑖𝑖,𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑖𝑖 denote 
its draught when not transporting any goods (or ballast draught), and  𝑑𝑑𝑖𝑖𝑖𝑖 denote the observed 
draught. Then, we can estimate the incoming cargo weight as:  
 

𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 × 𝑑𝑑𝑖𝑖𝑖𝑖−𝑑𝑑𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖
𝑑𝑑𝑖𝑖,𝑚𝑚𝑏𝑏𝑚𝑚−𝑑𝑑𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖

, 

 
where we adjust the ship’s total capacity with the current utilization rate. 
 
We have data on ships’ deadweight tonnage 𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖, and design draught 𝑑𝑑𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚. As mentioned 
above, draught is manually entered by the crew and thus prone to measurement error. We 
take 𝑑𝑑𝑖𝑖𝑖𝑖 to be the last observed draught before entering a polygon, as we presume that crews 
will more carefully report their draught shortly before entering a port so as to inform port 
authorities that the vessel will be able to enter without problems. 
 
We do not have in our data a measure of ballast draught, and therefore impute it as follows. 
For each vessel, we calculate the ratio of the first percentile of draught as observed in the 
four years of AIS messages to the vessel’s design draught. Then, by ship type (crude oil 
tanker, container ship, etc.) and  by deadweight tonnage tertile (within ship type), we get the 
median of this ratio. Let 𝑚𝑚𝑚𝑚𝑟𝑟𝑏𝑏 denote this median ratio for ship type 𝑚𝑚 and size tertile 𝑑𝑑. For 
each ship 𝑑𝑑 of type 𝑚𝑚 and tertile size 𝑑𝑑, 𝑑𝑑(𝑚𝑚, 𝑑𝑑), we impute the ballast draught as  
 

𝑑𝑑𝑖𝑖(𝑟𝑟,𝑏𝑏),𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑟𝑟𝑏𝑏 × 𝑑𝑑𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 . 
 
The estimated metric tons of cargo 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖 gives us a gauge of the volume of trade in each 
voyage. Voyages, of course, can take place between ports of different countries or within a 
country. Moreover, a vessel coming from overseas may offload cargo (imports) in multiple 
domestic ports, or load cargo (for exports) in multiple domestic ports. We therefore need a 
mapping from metric tons of cargo in port-to-port voyages to volumes of imports, exports, 
and internal trade. 
 
Our procedure to assign metric tons of cargo to imports, exports, and internal trade works as 
follows: 
 
(1) Recall that 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼 denotes the metric tons of cargo transported by a ship 𝑑𝑑 at time 𝑑𝑑 into a 
given port. We estimate the outgoing cargo weight as 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖+1𝐼𝐼𝐼𝐼 , that is the 
outgoing cargo weight is equal to the incoming cargo weight of the next port. As stated 
above, this is motivated by the idea that incoming draught may be more precise than leaving 
draught. Next, from the incoming and outgoing cargo weight, we define the net cargo 
offloaded at the port as 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖𝑂𝑂𝑂𝑂 = 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼 − 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂. Note that this number can be negative or 
positive. 
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(2) If a ship enters a port in a new country (that is, if the previous port call was in a different 
country), we check the sign of 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖𝑂𝑂𝑂𝑂. If it is positive, we say that it is an import. If it is 
negative, we don’t count any imports on this trip, even if the ship later goes to another port in 
the same country and offloads some cargo. The reason is that we cannot determine if it is 
offloading foreign goods or goods that it picked up within the country (internal trade). 
 
(3) If at the first port of call in the country there was an import event as defined above, we 
keep counting as imports any subsequent drops in metric tons of cargo (i.e. so long as 
𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖+𝑗𝑗𝑂𝑂𝑂𝑂 ≥ 0 for every 𝑗𝑗 = 0, … , 𝐽𝐽 until 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖+(𝐽𝐽+1)

𝑂𝑂𝑂𝑂 < 0, i.e. up to the first instance in which 
the ship starts ‘gaining’ metric tons of cargo).  
 
This procedure yields a well-defined measure of imports, but there is an obvious timing 
issue: what should be the date of importation if the ship makes multiple importing port calls? 
We assign the date of each port call to the relevant portion of offloaded cargo. 
 
In order to define exported cargo we follow the same process as outlined above but starting 
backwards from the last port of the ships’ voyage through the country’s ports. That is, we 
first find the last port call within the country. If 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖𝑂𝑂𝑂𝑂 is negative (that is, the ship ‘gained’ 
metric tons of cargo), we say it is an export event. Then we go one port call back in the same 
country (if there is any). If the ship also gained cargo, we also say it is exports. And we count 
every previous loadings as exports, so long as the ship keeps (continuously) collecting cargo. 
 
After this process, we are able to group every port call into one of three categories: (i) 
importing; (ii) exporting, and (iii) internal trade. We also have cargo weight estimates for 
these events. We conclude by aggregating across the desired country groupings, vessel types 
and time periods. For example, we can create monthly country-level import and export 
volume indicators by adding up all the imported and exported cargo weight for each country 
and each month. If we were interested in weekly bilateral crude oil trade, we could focus 
only on crude oil tankers and aggregate by week and country pairs. 
 
 
VI.   RESULTS  

The results from our volume gauges for port-to-port voyages have applications at the 
aggregate macro-analyses level, can be used for sectoral analysis, and for event studies. We 
explore each of these applications in the three subsections that follow. 
 
A.   Macroeconomic nowcasting  

Table 6 presents the comparison of our economy-level GTI indices for exports, import and 
trade with official statistics as reported by CPB. The comparison is also done under different 
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transformations: the seasonally-adjusted data in levels, 3-month moving averages, and 3-
month/3-month growth rates. The results are ordered from worst to best performance on the 
basis of tracking the growth rate of import volumes (i.e. the third-to-last column). It is worth 
noting that, unfortunately, CPB was unable to share with us non-seasonally adjusted series. 
In all our comparisons, therefore, we aim to use the same seasonal adjustment process as 
CPB. These comparisons might look better if we could either compare non-seasonally 
adjusted series, or perform ourselves the seasonal adjustment of customs series as well as our 
GTI series.22 
 
At the global level, our world seasonally adjusted monthly import volume gauge has a 
correlation of 0.88 with official statistics. In 3m/3m growth rate terms, the correlation is of 
0.4, with the two series shown in Figure 9. The performance is fairly similar for the case of 
world exports, with only the growth rate of exports showing a slightly poorer tracking. For 
the 3-month moving averages in levels, the median correlation with the set of economies in 
the CPB sample is of 0.68 for imports, and of 0.46 for exports. In growth rates, the median 
correlations are of 0.27 for imports, and 0.18 for exports.23  
 
 

Figure 9. World: GTI Index and Official Data  
imports, 3m/3m growth rates, seasonally adjusted 

  

 
22 Relatedly, in Table 6 all correlations are using our index and CPB data contemporaneously, but – as in the 
case of the Euro Area – the lead that yields the best correlation with customs data differs by country. This 
should be taken into account when using the data for nowcasting. 

23 It is worth noting that the correlation for the world in aggregate is higher than for the individual economies 
presented in Table 6. There are at least two reasons that would explain this. First, because in many cases the 
port of importation/exportation might not belong to the country importing/exporting. This is also the likely 
explanation for why our index tracks much better the Euro Area as a whole than some of its individual 
members. Second, our index might feature a relatively good fit with countries for which we have been unable to 
get official monthly trade volume data. 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-5

-3

-1

1

3

5

7

GTI (t) CPB (t)



28 

 
We note that, in constructing our current indices, we add up the estimated metric tons of 
cargo across all types of ships. More generally, this might explain why the index we use may 
work particularly well with certain countries with less-diversified imports or exports. For 
example, the correlation with Argentina’s exports is the highest among all economies, as 
shown in Table 6 and illustrated in Figure 10. Appendix B explores the possibility of using 
nominal trade weights to construct our indices. 

 
Figure 10. Argentina: GTI Index and Official Data 

exports, 3m/3m growth rates, seasonally adjusted 

  
 

Finally, it is worth noting that, while we have produced results for every country in the world 
that has a coastline, we have only been able to benchmark our trade volume estimates for 43 
economies (including the Euro Area) and the world. This is the result of the current dearth of 
publicly available monthly trade volume data. While the set of individual economies we did 
benchmark covers most of global trade, our methodology might potentially also be very 
useful for a vastly larger number of cases. In particular, our benchmarking sample is heavily 
biased toward advanced economies, but several emerging market and developing economies 
feature a very high share of trade that takes place by sea. This is illustrated in Figure 11, 
where we plot every economy that, as of April 2020, has reported the mode of transportation 
in its annual COMTRADE data. Given this landscape, expanding the extent of benchmarking 
of our results seems important. 
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Figure 11. Share of trade by sea in 2017 

 
  Source: UN COMTRADE. 
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Table 6. Benchmarking GTI indices at the economy level 

 
 

 

 

Import Export Total Import Export Total Import Export Total
Malta 0.09 -0.23 -0.14 -0.21 -0.16 -0.27 -0.13 -0.19 -0.29
India 0.78 0.32 0.69 0.84 0.30 0.70 -0.13 0.17 -0.05
Estonia 0.05 0.28 0.13 0.07 0.43 0.20 -0.03 0.09 0.02
Rep. of Korea 0.41 0.37 0.42 0.46 0.59 0.54 -0.02 -0.11 -0.22
Taiwan Province of China -0.13 0.41 0.22 -0.21 0.51 0.23 0.02 0.22 0.19
Romania 0.61 0.16 0.55 0.74 0.05 0.70 0.03 0.15 0.16
Netherlands 0.05 0.62 0.55 0.18 0.72 0.71 0.04 0.21 0.24
Germany 0.44 -0.08 0.36 0.63 -0.04 0.57 0.05 -0.23 -0.13
Lithuania 0.62 0.63 0.73 0.83 0.83 0.92 0.07 0.48 0.16
New Zealand 0.63 0.32 0.62 0.84 0.68 0.84 0.08 0.32 0.32
Cyprus 0.14 -0.08 -0.19 -0.01 -0.26 -0.25 0.08 -0.01 -0.11
Brazil 0.32 0.43 0.35 0.54 0.56 0.55 0.11 0.62 0.42
USA 0.58 0.87 0.85 0.66 0.92 0.89 0.12 0.38 0.32
Russian Federation 0.03 0.87 0.59 0.05 0.89 0.67 0.19 0.19 0.13
United Kingdom -0.09 0.21 0.21 -0.26 0.37 -0.04 0.19 0.38 0.42
Canada 0.71 0.62 0.73 0.84 0.75 0.86 0.19 0.49 0.08
Finland 0.54 0.57 0.70 0.71 0.77 0.83 0.23 -0.23 0.05
Argentina 0.58 0.69 0.45 0.77 0.68 0.48 0.23 0.72 0.49
Indonesia 0.68 0.12 0.53 0.78 0.23 0.67 0.23 0.03 0.06
Slovenia 0.39 -0.25 0.26 0.64 -0.39 0.51 0.24 -0.06 0.20
Mexico 0.76 0.57 0.80 0.81 0.68 0.87 0.26 -0.12 0.08
Singapore 0.43 -0.29 0.18 0.56 -0.56 0.15 0.26 0.29 0.16
Greece 0.70 0.80 0.82 0.86 0.86 0.89 0.27 0.44 0.38
Poland 0.89 -0.30 0.85 0.95 -0.43 0.91 0.28 0.04 0.12
Belgium 0.41 0.24 0.40 0.69 0.48 0.66 0.28 -0.24 -0.01
Latvia 0.65 -0.37 0.50 0.82 -0.44 0.67 0.30 0.15 0.10
Ireland 0.57 -0.28 0.29 0.82 -0.52 0.45 0.31 -0.05 0.11
Portugal 0.20 -0.62 -0.49 0.28 -0.76 -0.63 0.31 0.42 0.24
Spain 0.67 0.73 0.74 0.85 0.82 0.86 0.31 -0.04 0.02
Denmark 0.44 0.31 0.55 0.75 0.56 0.78 0.33 0.15 0.40
Australia 0.48 0.24 0.53 0.69 0.15 0.63 0.33 0.46 0.19
Norway 0.36 0.27 0.33 0.59 0.40 0.60 0.33 0.22 0.09
Euro Area 0.76 0.76 0.83 0.89 0.89 0.93 0.34 0.11 0.04
France 0.45 0.10 0.46 0.67 0.03 0.54 0.34 0.37 0.31
China 0.56 0.69 0.71 0.56 0.76 0.75 0.39 0.49 0.46
Iceland 0.56 0.30 0.59 0.80 0.50 0.85 0.39 0.44 0.42
WORLD 0.85 0.85 0.86 0.88 0.87 0.88 0.40 0.32 0.40
Bulgaria 0.30 0.44 0.43 0.45 0.59 0.67 0.40 0.33 0.33
Hong Kong SAR, China 0.26 -0.37 -0.20 0.44 -0.48 -0.22 0.42 -0.18 0.00
Croatia 0.44 -0.10 0.38 0.58 -0.15 0.46 0.43 -0.06 0.29
Italy 0.27 -0.05 0.16 0.31 -0.11 0.12 0.47 -0.05 0.24
Japan 0.30 0.13 0.29 0.33 0.09 0.25 0.49 0.27 0.49
Sweden 0.66 0.03 0.62 0.76 -0.04 0.76 0.53 -0.12 0.30
Turkey 0.68 0.75 0.75 0.77 0.86 0.88 0.68 0.23 0.38

Raw (level) 3m mov. av. (level) 3m/3m growth
Transformation and Trade Flow
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B.   Sectoral analysis: Crude oil trade 

In most cases, AIS data on their own do not allow for analyses at the commodity level. Vast 
product varieties can be transported by two specific types of vessels: those designed to 
transport containers, and those designed to transport dry bulk commodities. The technology 
required to transport a narrower set of commodities, however, implies that only a few types 
of vessels can carry them. As noted by Adland et al. (2017), the most salient case is the that 
of crude oil. This provides an ideal testing ground to analyze the performance of our general 
methodology at a more granular level.24 
 
In this section we compare our estimated metric tons of cargo for crude oil tankers with data 
from the Joint Organization Data Initiative (JODI). JODI compiles and makes publicly 
available oil and gas international trade data for a wide range of economies. We use JODI’s 
monthly data on crude oil trade, measured in thousands of metric tons of oil. In addition to 
compiling volume-of-trade data, JODI also performs data quality assessments and encodes 
the results of this exercise in their databases. In order to understand where lack of fit to data 
is more likely a result of the need for refinements in our methodology, and where it might 
reflect data-quality issues, we present all results alongside JODI’s assessment code for the 
specific country and data flow shown. JODI’s quality assessment code can take four values: 
1 (Results of the assessment show reasonable levels of comparability), 2 (Consult 
metadata/Use with caution), 3 (Data has not been assessed), and 4 (Data under verification). 
 
Tables 7 and 8 below show the correlations of our metric tons of cargo estimates with JODI’s 
crude oil data for imports and exports, respectively. In each table, economies are sorted first 
by JODI’s assessment code, and second by the volume of trade. Unlike the case of Table 6 
above, in these tables trade data are not seasonally adjusted.25  
 
In their comparisons using annual data for 2013-2015, Adland et al. (2017) noted that the 
match of seaborne trade estimates to JODI statistics is affected by the use of pipelines and 
transshipments. Despite these inherent problems, the results presented in the tables below 
show a reasonably good fit for global crude oil imports. The correlation in levels for global 
imports is of 0.73 in the raw data, and of 0.81 on a 3-month moving average basis. In growth 
rates, the correlation is as high as 0.47. This fit between the GTI and JODI growth series is 
illustrated in Figure 12. 
 

 
24 Finished vehicles are also mostly transported by one type of vessel, known as roll-on/roll-off vessels. 
Compared to crude oil, however, they represent a wider set of product varieties, requiring e.g. the construction 
of deflators to perform volume comparisons. 
25 This responds to two reasons. First, in the analysis of Table 6 we had no alternative but to seasonally adjust 
our series in order to make them comparable to the seasonally adjusted CPB series. Secondly, it is less clear to 
us that oil trade should exhibit seasonal patterns and we therefore refrained from manipulating the original data 
thereby possibly introducing noise. 
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At the country level, the import gauge does not always track JODI data as well. In some 
important cases, as in Germany and the Netherlands, this is most likely due to the port of 
arrival differing from the actual destination. Possibly as a result of this, the GTI index does 
not track well every Euro Area country, but does a good job for the Euro Area as a whole, 
with correlations in levels and growth rates well above 0.5. 
 
The case of exports is quite different, and this might reflect data quality issues. As can be 
seen in Tables 7 and 8, JODI’s global imports far exceed global exports (by over 15 percent). 
Possibly even more important, imports with a JODI assessment code of 1 represent 83 
percent of global imports, but the same figure for global exports is of a mere 39 percent. In 
this context, it is not surprising that our tracking of JODI’s export data is poor at the global 
level, as well as for many large exporters. Our index, which is free from weaknesses in 
statistical reporting, may in some cases be useful as a source of independent information on 
oil exports. 
 

Figure 12. World: GTI and JODI crude oil import growth 
imports, 3m/3m growth rates, seasonally adjusted 
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Table 7. Benchmarking crude oil imports 

  

JODI data 
quality 
code

Thousands 
of metric 

tons
Raw (level) 3m mov.av. 

(level)
3m/3m 

(growth)

China 1 35,510 0.28 0.19 0.20
USA 1 31,082 0.52 0.71 0.46
Japan 1 12,799 0.52 0.46 0.30
Rep. of Korea 1 12,203 0.05 0.04 -0.32
Germany 1 7,403 -0.12 -0.09 0.08
Spain 1 5,492 0.50 0.63 0.74
Italy 1 5,269 0.40 0.48 0.34
Netherlands 1 4,542 0.17 0.33 0.27
France 1 4,451 0.42 0.55 0.65
Thailand 1 3,772 0.21 0.32 0.10
Taiwan Province of China 1 3,616 0.03 -0.17 0.10
United Kingdom 1 3,605 0.44 0.62 0.47
Canada 1 3,182 0.02 -0.11 0.40
Belgium 1 2,766 0.19 0.26 0.21
Poland 1 2,164 0.37 0.46 0.38
Turkey 1 2,153 0.26 0.36 0.35
Greece 1 1,938 0.30 0.39 0.26
Sweden 1 1,606 0.28 0.08 0.29
Australia 1 1,372 0.22 0.44 0.16
Portugal 1 1,096 0.43 0.30 0.27
Finland 1 934 0.21 0.41 0.29
Brazil 1 782 0.22 0.44 -0.04
Chile 1 723 0.17 0.26 0.13
New Zealand 1 430 0.30 0.11 0.25
Denmark 1 380 0.21 0.15 0.15
Peru 1 330 0.11 0.14 0.44
Ireland 1 257 0.21 -0.21 0.12
Uruguay 1 190 0.45 0.35 0.31
Trinidad and Tobago 1 170 0.39 0.41 0.09
Norway 1 161 0.53 0.72 0.01
Dominican Rep. 1 98 0.65 0.60 0.22
Jamaica 1 87 0.45 0.47 0.54
Nicaragua 1 56 -0.19 -0.47 0.24
Colombia 1 55 0.62 0.74 0.78
Russian Federation 1 30 -0.05 0.01 0.44
Argentina 1 14 -0.10 -0.36 -0.59
Mexico 1 3 0.03 -0.02 0.80
India 3 18,069 0.39 0.55 -0.12
Singapore 3 3,705 0.10 0.42 0.02
South Africa 3 1,039 0.02 -0.07 -0.06
Indonesia 3 1,021 0.16 0.24 0.48
Bahrain 3 908 0.06 0.11 0.12
Malaysia 3 899 0.22 0.48 -0.02
Lithuania 3 789 -0.17 -0.01 0.10
Philippines 3 784 -0.08 -0.09 0.08
Romania 3 648 0.23 0.53 0.49
Bulgaria 3 539 0.26 0.20 0.15
Egypt 3 444 -0.06 -0.16 -0.22
Croatia 3 214 0.21 0.40 0.02
United Arab Emirates 3 141 0.24 0.36 0.31
Papua New Guinea 3 101 0.46 0.52 0.21
Ukraine 3 58 0.27 0.55 0.05
Ecuador 3 56 0.10 0.25 0.18
Tunisia 3 46 0.23 0.47 0.01
Morocco 3 28 0.01 0.03 -0.24
Venezuela 3 27 0.08 -0.03 0.08
Algeria 3 15 -0.07 -0.09 -0.06
Oman 3 1 -0.09 -0.28
Georgia 3 1 -0.06 0.02 0.87
Albania 3 0 -0.02 -0.06
WORLD 180,254 0.73 0.81 0.47
Euro Area 34,936 0.58 0.68 0.60

Transformation
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Table 8. Benchmarking crude oil exports 

 
 

JODI data 
quality 
code

Thousands 
of metric 

tons
Raw (level) 3m mov.av. 

(level)
3m/3m 

(growth)

Russian Federation 1 21,159 0.13 0.23 -0.34
Canada 1 12,018 0.49 0.65 0.21
USA 1 6,030 0.92 0.96 0.54
Norway 1 5,360 0.52 0.60 0.57
Mexico 1 5,160 -0.07 -0.25 -0.20
Brazil 1 4,498 0.57 0.79 0.40
United Kingdom 1 2,976 0.18 -0.06 0.26
Colombia 1 939 0.50 0.73 -0.15
Australia 1 878 0.51 0.69 0.43
Brunei Darussalam 1 422 0.10 0.18 -0.88
Denmark 1 292 0.05 -0.21 0.02
China 1 228 -0.08 -0.27 -0.06
Argentina 1 184 0.37 0.40 0.25
New Zealand 1 113 0.17 0.28 0.23
Thailand 1 98 -0.14 -0.16 0.25
Trinidad and Tobago 1 50 -0.20 -0.34 0.41
Italy 1 44 0.07 0.23 0.04
Netherlands 1 30 0.00 -0.02 -0.06
Guatemala 1 30 0.36 0.36 0.09
Poland 1 20 -0.20 -0.39 -0.25
Sweden 1 19 0.34 0.43 0.89
Greece 1 14 0.01 0.03 -0.12
Peru 1 7 -0.13 -0.24 0.01
Germany 1 7 0.03 -0.05 0.18
Ireland 1 6 0.00 0.19 -0.40
Saudi Arabia 3 30,228 -0.20 -0.18 -0.34
Iraq 3 15,011 0.46 0.57 0.02
Kuwait 3 8,385 -0.24 -0.28 -0.26
United Arab Emirates 3 7,658 0.39 0.46 0.16
Nigeria 3 7,629 0.03 0.19 0.25
Angola 3 5,921 0.47 0.70 0.15
Iran 3 5,174 0.40 0.57 0.01
Venezuela 3 2,285 0.39 0.46 0.07
Algeria 3 1,896 0.00 -0.23 -0.09
Ecuador 3 1,697 0.13 0.21 -0.21
Qatar 3 1,570 -0.02 -0.05 0.17
Malaysia 3 1,323 -0.07 -0.26 0.00
Indonesia 3 834 0.12 0.32 0.12
Gabon 3 683 0.06 0.17 -0.18
Oman 3 677 -0.38 -0.57 0.44
Egypt 3 551 0.09 0.11 0.06
Bahrain 3 435 0.38 0.64 -0.11
Tunisia 3 130 -0.20 0.04 -0.02
Equatorial Guinea 3 94 -0.09 -0.13 0.94
Albania 3 56 -0.09 -0.19 -0.94
Philippines 3 46 -0.01 -0.11 -0.12
Singapore 3 16 0.08 -0.02 0.04
Lithuania 3 4 -0.10 -0.15 -0.09
Romania 3 3 0.11 0.18 -0.06
Croatia 3 2 -0.12 -0.16 -0.69
Ukraine 3 2 0.47 0.36
Georgia 3 0 -0.06 0.03 -0.46
WORLD 155,446 0.07 0.01 0.11
Euro Area 105 0.08 0.24 -0.12

Transformation
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C.   Event studies 

Since our AIS-derived trade gauges are built at the port level, our results can also be used for 
micro-level analyses around specific events. We illustrate this by looking at the effects of  
Hurricane Maria, which made landfall in Puerto Rico on September 20, 2017. The 
catastrophic Category 5 hurricane is estimated to have caused as many as 4,600 deaths 
(Kishore et al., 2018), and its total USD damage makes it one of the top five costliest 
disasters for the U.S. (Smith, 2020). Figure 13 illustrates the disruption caused in the 
immediate aftermath of the hurricane. Accounting for seasonal patterns, the trade gauge 
shown in Figure 13 shows that offloading vessel traffic declined by as much as 75 percent 
and took around 10 days to recover, in coincidence with U.S. President Trump temporarily 
waiving the 1920 Jones Act26 that puts restrictions on the ships and ships’ crews that are 
allowed to transport goods between U.S. ports. 
 

Figure 13. Hurricane Maria in Puerto Rico 

 
 
Since our results are at a daily frequency, we can also use them to bring into focus country-
level patterns that may not always show up as crisply in monthly data. Furthermore, since the 
results can be produced in real time, they can also help guide policy makers during crises as 
they unfold. The current COVID-19 pandemic has in fact dramatically increased the demand 
for tools to monitor economic activity in real time. 
 
To give a visual sense of the effects of what has been dubbed the Great Lockdown 
(Gopinath, 2020), Figure 14 shows the frequency of ship messages around the Port of 
Ningbo, one of the busiest ports in China, over three different weeks in 2020. The panel on 
the left corresponds to the first week of 2020, where the port is seemingly teeming with 
activity. The panel in the middle shows a week in the midst of the strictest pandemic 
containment measures. By the account of this picture, things went quite dark. The right panel 

 
26 See e.g. “Trump Waives Jones Act for Puerto Rico, Easing Hurricane Aid Shipments,” The New York Times, 
September 28, 2017. 
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shows the second week of April – lights are up again, but on close inspection maybe not as 
bright as pre-crisis. 
 

Figure 14. Port of Ningbo, China  
frequency of AIS messages with speed above 0.5 knots, 2020 data 

Jan 6 to Jan 13 

 

Feb 10 to Feb 17 

 

Apr 6 to Apr 13 

 
 
Visual aids can be very powerful, but more structure is needed to create economically-
meaningful, policy-relevant indicators to help answer simple questions such as: How big is 
the drop in trade activity? Should it be attributed mostly to exports or to imports? 
 
Figure 15 shows our daily estimated metric tons of exports for China in the first three and a 
half months of 2020. The series is normalized by the estimated volume of exports for the 
previous three years. To purge the results from any calendar effects, these base years are 
adjusted for the Lunar New Year. The results show the dramatic fall in Chinese exports in the 
wake of lockdown measures to contain the spread of the novel coronavirus. Exports resumed 
in early to mid-March, though by mid-April the recovery remained incomplete. 
 

Figure 15. China: Estimated metric tons of exports 
relative to 2017-2019 avg, 30-day moving average, LNY-adjusted 

 
 

Figure 16 shows the real-time estimates of world trade, for exports and imports. To shed light 
on the potential heterogeneous effects at the sectoral level, the results are broken down by 
broad vessel categories. As China started reopening its economy, world exports initially 
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recovered across the board. In the specific case of oil and related products, the recent export 
performance is especially strong but is not fully matched by an increase in world imports – in 
line with reports that crude oil is being stored at sea. More recently, however, exports of less 
commoditized goods (those transported in containers, and finished vehicles) appear on course 
for a second dip. The situation is perhaps best reflected in the very weak readings for vehicle 
exports and imports as companies halt production and households postpone purchases of 
durable goods. 
 

Figure 16. Real-time estimates of world trade 
relative to 2017-2019 average, 30-day moving averages 

exports 

 

imports 

 

 
 
 
VII.   ONGOING DEVELOPMENTS AND VENUES FOR FUTURE IMPROVEMENTS 

Our proof of concept clearly demonstrates that it is possible to build a real-time global trade 
nowcasting system relying only on raw AIS data and off-the-shelf machine learning 
algorithms. However, there are several areas where ongoing efforts we are currently 
undertaking will likely enhance the performance and granularity of our nowcasts. The 
planned improvements on our agenda fall under three categories: (i) refinements in the 
algorithms that do not require new data or any external information; (ii) changes in trade 
volume estimation that require information not included in the raw AIS data; and finally (iii) 
modifications that require deep domain knowledge about some segments of the shipping 
industry or particular ports. The next paragraphs provide specific examples in all these 
categories, setting up a roadmap for the next phase of the development of our Global Trade 
Intelligence index. 
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First, there is room to upgrade the construction of port polygons using more sophisticated 
spatial clustering algorithms. DBSCAN is very efficient in identifying clusters with arbitrary 
size and shape, and it handles outliers (e.g. erroneous GPS positions) very well. However, it 
struggles to find clusters with significantly differing densities. In our application, some ports 
are substantially busier than others either because of their importance in the trade network or 
because of the vessel types they specialize in (e.g. containers vs tankers). Since DBSCAN 
uses a constant density-threshold to find locally dense areas, it may miss some low-traffic 
ports or lump them together with nearby high-traffic ports. Ideally, instead of looking for 
areas above a set density threshold, we would like the find contours on the map where ship 
density suddenly drops. We are therefore in the process of implementing an alternative 
algorithm to produce our port polygons. The algorithm, called OPTICS (Ankerst et al., 
1999), is well-suited for exactly this purpose, and it is likely to improve the automatic 
identification of port boundaries. 
 
Second, we can significantly improve the forecasting properties of our trade index by 
predicting ships destination while they are still sailing the oceans. In our current 
methodology, we only estimate trade flows when ships arrive at a port or leave a port. 
However, manually entered (unstructured) textual information in the AIS messages about the 
vessel’s destination, the stability of main shipping routes and the history of the vessel’s 
previous voyages enable us to infer the likely destination port. Since voyages between 
regions of the world often take many weeks, this enhancement of the methodology could 
increase the forecasting capability from one month to 2-3 months. Again, machine learning 
algorithms can be very useful to predict ship trajectories from loosely structured data. 
 
Third, more detailed vessel information could increase the precision of our cargo weight 
estimation. Our current methodology only requires AIS messages and publicly available 
information, which we see as an advantage, because we do not need to rely on proprietary, 
expensive and hard-to-verify external information such port calls. Nonetheless, vessels’ 
physical characteristics from ship registers would allow us to use more precise formulas for 
cargo weight estimation. Our current method assumes that cargo weight changes linearly 
with the ship’s draught, which is equivalent to assuming that the ship’s hull is a rectangular 
cuboid. This is obviously not the case, and in the engineering literature various form 
coefficients (for example, the block coefficient) are used to describe the shape of the hull 
(MAN, mimeo). These coefficients would make it possible to adjust our metric tons 
calculations (Jia, Prakash, and Smith, 2019). Similarly, we are forced to estimate vessels’ 
ballast draught from the observed AIS data, but in principal we could get more precise 
information from a ship register. 
 
Finally, we must admit that no machine learning algorithm can handle all possible real-life 
situations. Sometimes ports feature unusual geographies. Oil platforms and floating 
production, storage and offloading units (FPSOs) in the deep seas, or riverside ports 
accommodating large ocean-going vessels can present a challenge. Similarly, certain vessel 
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or cargo types can have unique characteristics. For example, the practice of lightering of oil 
tankers means that anchoring large oil tankers offload cargo to smaller tankers or barges, 
which then carry the oil to shore. In these cases, we may double count imported cargo if we 
register both events as port calls. To handle all these special cases, deep domain knowledge 
of the particular ports or the specific segment of the maritime shipping industry is needed. 
Incorporating this kind of expert knowledge should improve our results significantly. 
However, having an automated system that produces trade nowcasts with minimal human 
intervention, such as our proposed methodology, is an indispensable prerequisite to any such 
manual fine-tuning.  
 
VIII.   CONCLUDING REMARKS  

In this paper we have proposed an end-to-end solution for the construction of trade volume 
indicators relying solely on AIS data and publicly available sources of information. Our 
methodology achieves a good fit with official trade statistics for many countries and for the 
world in aggregate. We have also shown the usefulness of our approach for sectoral analyses 
of crude oil trade, and for different event studies where granular data are essential. In all, we 
think our results are an encouraging first step in using AIS data to monitor world trade 
activity. Going forward, ongoing refinements of our algorithms, additional data on vessel 
characteristics, and country-specific knowledge should help further improve the performance 
of our general approach for several country cases. Finally, monthly official trade volume 
statistics for more countries than the ones benchmarked here will also be essential to 
understand the potential our results might have for a very large set of less developed 
countries that rely heavily on seaborne trade and that might benefit substantially from 
reliable nowcasting tools. 
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APPENDIX 

A.   Further analysis of false negatives 

Figure A1. Missed port calls of self-discharging bulk carriers 

 
 
 
B.   Trade-weighted indices 

For some countries, it might be possible to improve upon our baseline approach by using 
trade weights, e.g. by assigning to the estimated metric tons of cargo of dry bulk carriers a 
weight equal to the non-oil commodity trade of that specific country, etc. To test this 
alternative approach, we first constructed a coarse vessel classification. We then mapped this 
classification to HS 4-digit codes (see Table A1).27 Then, using COMTRADE data for 2012-
2014, we created weights for each coarse vessel type. We then applied these weights when 
constructing the trade indices. 

 

 

 

 

 

 

 
27 For an alternative mapping from vessel types to HS codes, see Liu et al. (2019). 
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Table A1. Mapping vessel types to HS codes 

 

 

Figure 11 illustrates how this alternative approach compares to our baseline approach of 
simply adding up all estimated metric tons of cargo. Our fit improves for some economies, 
but certainly not for all. Notably, in the case of imports the improvements are less ambiguous 
when the series are measured in levels. In growth rates, on the other hand, the performance is 
overall worse. At least when considered in isolation, this alternative approach does not 
appear to yield unambiguous improvements in our performance. 

Figure A2. GTI-CPB correlations: Unweighted v. Weighted GTI Indices 
 Imports Exports 

   

   

Coarse vessel classification HS codes
Dry bulk 09-14, 17, 25-26, 27 (except 2709-2711), 68, 72-81
Container/General cargo 06, 18-24, 30-67, 69-71, 82-86, 87 (except 8701-8705), 90-97
Oil & chemicals 2709-2710, 28-29
Roll on/roll off 8701-8705
LPG & LNG tankers 2711
Foodstuff (other than dry bulk) 01-05, 07-08, 15-16
Memo:
Unassigned HS codes 88-89
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