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Ask yourself a question:

How do you think the unemployment rate is going to change in the coming
quarter?

e Personal Experience (Top 3 information source for 36.5% households);
e Media and News (Top 3 information source for 49.2% households);

e Social Connections (Top 3 information source for 52.3% households);

Agents use various sources of information to form expectation.
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quarter?
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e Media and News (Top 3 information source for 49.2% households);

e Social Connections (Top 3 information source for 52.3% households);
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But how?
e What's the functional form of agent’s expectation formation model?

e How do signals on past and future states about macroeconomy affect
household’s expectation?
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What's New in This Paper?
1. New Method:

e Generic Learning Framework: nests most of macroeconomic expectation
formation models.

¢ Flexible non-parametric method: Recurrent Neural Network (RNN).
e DML approach for inference.
2. New Empirical Findings:
e Non-linear and asymmetric expectation formation;
e Attention-shift along Business Cycle;
e Cause of Attention-shift: signals on unemployment and GDP growth.
3. (Not so new) Model for Explanation:

e Rational Inattention with Endogenous Value of Information
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Expectation Formation Models in Macroeconomics

Media
(e.g. TV, newspaper,
social media etc)

Personal Experience
(e.g. grocery shopping,
working experiences)

Social Connections
(e.g. Friends, Family etc)

Signals

6()

Rational Expectation
Noisy Information
Markov Switching Model
Constant Gain Learning
N etc /

Subjective Expectation
(e.g. unemployment or
inflation expectation)
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Agent’'s Problem:

Dynamic Structure Formalized by Generic Learning Framework

Public and Private Signals
Zi+

Unobserved Error
€i,t

Public and Private Signals
Zit1

Unobserved Error
€j,t—1

Signalat t — 1

Latent
States

at t

Subjective Expectation
Yit+1)e

Recurrency |

Latent
States
att—1

Subjective Expectation
Yi,t|t—1

Model of Expectation Formation

G()
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Agent’'s Problem:

Dynamic Structure Formalized by Generic Learning Framework

Public and Private Signals
Zi+

Unobserved Error
€it

s

Public and Private Signals
Zit—1

Unobserved Error
€it—1

Signalat t — 1

Latent
States
Ot

|
|
Recurrency |
1

Latent
States

Subjective Expectation

Yi,t+1\t

Subjective Expectation

Oi -1

Model of Expectation Formation

G()

\ 4

Yi,t|t—1

Updating: ©;; = H(©i 1, Zi,¢€i)

Forecasting:

\A/i,t+1\t - F(eryt)
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=g({Zir}7=0)
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Theoretically:

e Exist sufficient statistics 6;,; for ©;; such that:

g({Zir}r=0) = f(0ir)
0i,e = h(0i,t—1, Zit)

e Recurrent Neural Networks are Universal Approximators for Dynamic System (3) (Shaffer
and Zimmermman 2006);

A . 1,

Bron = argmin > > (Vi1 — 8w({Zir}5m0))?
RNN = 2

&wE9ron it

Empirically, RNN recovers correct:

e Functional form of g(.);

® Dynamic structure with latent states 6.

(3)
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Average Marginal Effect/Derivative:

E[az/]

® Plug-in estimator is biased, inference not available (Chernozhukov et al. 2018);

® Bias induced by over-fitting and regularization;

® Slow convergence speed (slower than \/n);

e (Near Neyman) Orthogonalized moment condition;

E[p(W, 8,1)] = E[*(W, )8 + ¢°(W,n)]

dIn(P({Zi,}7=0))
_ gy - %8 9In(P(Zir}m0))
6 - oz, o7, (Yi et

® | ess sensitivity to quality of functional estimator;

—&({Zi-}r=0))] =0

® Involve extra nuisance parameter to be estimated (density function);

® Speed requirement satisfied (Farrell et. al. 2020)
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e 27 signals:

o Current signals: realized change of unemployment rate, real GDP growth,
inflation etc.

e Future signals: SPF about change of unemployment rate etc.
e Local/individual signals;
e News exposure;
e Expectations: on unemployment, inflation, interest rate and economic

condition, from MSC.

e Synthetic panel quarterly 1988q1 to 2019q1.
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]E[g\‘u(ei,tfb Zi}ua Aut + 5))
- é—u(ef,tfla Z,'Ttua Aut)]

e Non-linearity: Slope
changes continuously.

e Asymmetry:
(Magnitudes of)
response to positive
and negative signals
differ significantly.

Expected likelihood of unemployment rate increase

-0.05

Average change of E;Au¢; 1 when Au; change by 6

—— pointwise estimate
95% confidence interval

-2 0 2
6: deviation from Au¢
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past signal Ay; in recession

Past signal Ay,: realized real GDP growth (%)

-2
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Past signal Ay,: realized real GDP growth (%)

IS

-2

-4

Lower weight on past signal Ay; in recession
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3. Roadmap
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1. Agent's Past Signal (0.003) (0.001) (0.001) (0.001)
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Introduction Expectation: EiAyii EiAuriq

i Comics: Signal ﬁrecession ﬁordinary Brec = 5ord Brecession Bordinary Brec = 6ord
2. Questions (std) (std) (p-val) (std) (std) (p-val)
3. Roadmap
Sl Ay 0.004*  0.017**  <0.01 —0.006"*  —0.01*** 0.04
1. Agent's Past Signal (0.003) (0.001) (0.001) (0.001)

o Aug —-0.006  —0.021*** 0.04 0.005 0.012*** 0.08

. Flexibilit (0.006) (0.004) (0.004) (0.002)

4.Methodolo;
Application Filyryr  0.049** 0016 <0.01 —0.022***  —0.009"* < 0.01
2 Non-lineari Future Signal (0.005) (0.003) (0.002) (0.001)

e FiAupy  —0.037***  0.009* < 0.01 0.029*** 0.007*** <0.01
Shift

Appendix (0.004) (0.002) (0.003) (0.002)

* Results are using panel with 12000 observations. HAC standard errors are reported in brackets. * ** *¥** stands for significant
at 10%, 5% and 1% level.
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Conclusion

® New Method:

e Generic Learning Framework.
e Non-parametric method for estimation: RNN.
e DML for inference.

® New empirical findings on expectation formation:

e Non-linearity and asymmetry. Expectation more sensitive to bad news.

o Attention-shift. Adaptive learner in ordinary period, forward looking in recession.
©® Model with Rational Inattention:

e |nformation becomes more valuable in bad states due to non-linearity in optimal

choices.
e Agents seek for more information about future when economic status worsen.
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Architecture RNN

Table 1: Architecture RNN

Tuned Hyper Parameter

Configuration

Num. of Recurrent Neurons 32
Feed-forward Neurons 20
Dropout on recurrent layer 0.5
Epochs 200
Learning Rate le—®
Depth 2(4)

Un-tuned Hyper Parameter

Configuration

Type of Recurrent Layer
Activation Function:

Long-Short Term Memory (LSTM)
Relu




Introduction to RNN: Simple Example

(Output: Expected unemployment)
(Latent Variable)

(Input Signals:
e.g. unemployment rate)

Consider we use this simple RNN to model expected unemployment:
e Observable: two signals x,-lt,x,-zt, expected unemployment u; ¢ 1¢;

e Unobserved: 2 recurrent hidden neurons: 6}, and 6?2,



Introduction to RNN: Simple Example

@ (Output: Expected unemployment)
@ @ ‘ ‘ (Latent Variable)

(Input Signals:
‘ ‘ e.g. unemployment rate)

At time t — 1: information {x}, _;,x?, ;} updated into hidden neurons
02 .
{9, 1> i7t71} and used to form u; 4¢_1;



Introduction to RNN: Simple Example

0 (Output: Expected unemployment)
@‘ (Latent Variable)
—

(Input Signals:
e.g. unemployment rate)

Updating: (1) past values of {6}, ;,67, ;} are used to update {6} ,,67,}




Introduction to RNN: Simple Example

(Input Signals:
e.g. unemployment rate)

Updating: (2) new signals arrive and are used to update {9,-17”9,%}



Introduction to RNN: Simple Example

(Output: Expected unemployment)

(Latent Variable)

(Input Signals:
e.g. unemployment rate)

1
1,t?

Forecasting: updated {6} ,,602,} are used to form Uj t41)t



Introduction to RNN: Weight Updating

(Input Signals:
e.g. unemployment rate)

Each branch that connects two neurons has a weight, which is parameter RNN
learns;



Introduction to RNN: Weight Updating

0ir=aWex:+ Wybi 1)

(Input Signals:
e.g. unemployment rate)

at time t, RNN compute:
(1) iy = a(Wixi: + Wyl : 1)



Introduction to RNN: Weight Updating

) )
Uitt1e = Zj:l W2J€f,r

0ir=aWex:+ Wybi 1)

(Input Signals:
e.g. unemployment rate)

at time t, RNN compute:

(1) i = a(Wixi:+ Wyl :_1)
) 4

(2) Ui t+1)t = Zj:l W2J9;7t



Introduction to RNN: Weight Updating

) .
Ujtr1)e = Zj:l WZJ‘%J

0it=a(W.xi:+ Wgb; ;1)

(Input Signals:
e.g. unemployment rate)

All weights wo j, W and Wj are chosen by Gradient Descent;



Monte Carlo Example:
Noisy Information Model with Linear Kalman Filter

The Gaussian Linear State Space Model agent believes in (Perceived Law of
Motion);

|:7Zt:| = Xt = Athl + €t
t

Observe noisy signal:

[m’t] = Ot = GXe + Vi
St

Use Kalman Filter to form forecast:

T
[L{,t+llt] = Xi,t+1\t = A(Xi7t|t_1 + K(O,',t - GXi,t\t—l))
i,t+1|t



Monte Carlo Example:

ASF from Noisy Information Model
(a) E'meyyy when m; change by §

ASF from 100 samples
—— mean ASF across 100 samples from RNN

19— ASF Truth

ion Rate By

(b) Emyyqy when s, change by 0

ASF from 100 samples
— mean ASF across 100 samples from RNN

—— ASF Truth

&
=

2

-2 —10

10




Monte Carlo Example:

Marginal Effect

Table 2: Performance of RNN v.s. OLS

MSE T Sit

(1) RNN 291 0.82 0.276
(0.054) (0.037) (0.003)
(2) OLS mis-specified ~ 3.296 0.720 0.279
(0.023) (0.033) (0.001)

(3) OLS correct 2.835 0.841 0.277
(0.014) (0.005) (0.001)
Truth 0.842 0.277

" The first column is mean squared error on the whole
sample, the second column is estimated marginal effect
on signal 7 and third column is estimated marginal effect
on signal s; . In brackets | report the standard deviation
of the statistics using 100 simulated random samples.



Monte Carlo Example:

Noisy Information Model with Linear Kalman Filter

IRF from mis-specified OLS (missing L;)
IRF for m;, 100 random sample

IRF for s; ¢, 100 random sample
== Truth == Truth
0.8 1 — OLS — OLS
1 95% Cl 0.25 95% Cl
1
1
0.6} 0.20 4
1
1
1
Eten ]
0.4 4

Erﬁz-'o-'lls 1

0.10 4
0.2

0.05 A
0.01

periods

periods



Monte Carlo Example:

Noisy Information Model with Linear Kalman Filter

0E 4

0.6 4

Esflisn

0.2 4

—0.2 1

IRF from RNN (LSTM)

IRF for m;, 100 random sample

IRF for 5, ¢ 100 random sample

== Truth
LSTM
95% CV

0.25 1

0.20 4

0.15 A

Eme st

0.10 4

0.05 4

0.00 4

== Truth
LSTM
95% CV

periods




Monte Carlo Example:
AME from Noisy Information Model

—— AME across 100 samples
AME for cach sample

1.0

marginal effect
=
fi=)

=
oo

0.7 1

016 =
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RNN Architecture

Table 3: Architecture RNN

Tuned Hyper Parameter Configuration
Num. of Recurrent Neurons 32
Feed-forward Neurons 20
Dropout on recurrent layer 0.5
Epochs 200
Learning Rate le ®
Depth 2(4)
Un-tuned Hyper Parameter Configuration
Type of Recurrent Layer Long-Short Term Memory (LSTM)
Activation Function: RelLu
Total parameters: 8,424

* Tuned hyper parameters are picked using 6-Fold cross-validation across in-
dividuals. This satisfies the requirement for fast enough convergence of es-
timated Average Structural Function so that functional estimators from this
Neural Network can be used to obtain inference on DML estimators.
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