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Abstract

We generalise a stochastic version of the workhorse SIR (Susceptible-Infectious-
Removed) epidemiological model to account for spatial dynamics generated by net-
work interactions. Using the London metropolitan area as a salient case study, we
show that commuter network externalities account for about 42% of the propaga-
tion of COVID-19. We find that the UK lockdown measure reduced total propaga-
tion by 57%, with more than one third of the effect coming from the reduction in
network externalities. Counterfactual analyses suggest that: i) the lockdown was
somehow late, but further delay would have had more extreme consequences; ii)
a targeted lockdown of a small number of highly connected geographic regions
would have been equally effective, arguably with significantly lower economic
costs; iii) targeted lockdowns based on threshold number of cases are not effec-
tive, since they fail to account for network externalities.
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Introduction

Facing the challenges of the COVID-19 pandemic, governments worldwide have re-

sorted to large scale lockdown policies to contain the infectious disease. However,

large scale lockdown policies have high economic costs. For example, according to the

Office for National Statistics (ONS), UK gross domestic product (GDP) fell in the sec-

ond quarter of 2020 – the period when the UK was in national lockdown – by 20.4%

compared with the previous three months. This is the biggest quarterly decline since

comparable records began in 1955. In this context, it is worthwhile to explore whether

it is possible to minimise the (expected) size of infected population by optimally choos-

ing the lockdown areas. Our estimation of the COVID-19 epidemic dynamic in London

allows us to investigate whether targeted lockdowns might have achieved the same

outcome, in containing the epidemic spreading, as the full-scale lockdown. Therefore,

this paper aims at providing information for the design of optimal lockdown policies

in order to lower their negative economic impact.

To capture the COVID-19 epidemic dynamic in London, we generalise the single-

population deterministic susceptible-infectious-recovered (SIR) model developed by

Kermack and McKendrick (1927).1 We incorporate stochastic transmission within

and between the heterogeneous subpopulations of the London boroughs that are con-

nected via the commuting network. Our model features multiple groups, allows dis-

ease spread dynamics in each of them to be different (autoregressive effects), and con-

nects them through commuter network links (network effects). In short, we name

it the Network-SIR model. We allow the model to account for potential confounding

variables such as the time-varying testing capacity and positivity ratio – the endemic

effects. To quantify the impacts of lockdown policies, we parameterise the model to

1The core ingredients of SIR models were first formulated by Lowell Reed and Wade Frost in the
1920s, but they were not published.
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reflect the changes induced by the nationwide lockdown in the UK on March 23, 2020.

We estimate the model for daily COVID-19 surveillance data across 32 London bor-

oughs. In particular, we decompose the contributing factors of the pandemic spread

into three components: 1) local dynamic (intra-location) effects (people spreading the

disease over time to others living in the same borough); 2) the network (inter-location)

effect (people spreading the disease to other boroughs via their commute to, and in-

teractions at, work locations); 3) the endemic effects (the confounding effects such as

e.g., testing policy regimes, as well as borough specific characteristics and unobserved

heterogeneity). Our estimation results confirm the essential role of network spillover

effects via the commuting network, with existing cases in one London borough trans-

mit the disease to residents in other boroughs. The estimated magnitude of these

network effects is large: they contribute to over 42% of all COVID-19 cases in Lon-

don. In comparison, local within-borough dynamics account for less than 35% of all

COVID-19 cases.

According to our estimates, the March 23 nationwide lockdown is effective in con-

taining the spread of COVID-19 cases in London. The policy reduces the number of

cases generated by local transmission by around 75% of its pre-lockdown level, lowers

the spillovers from workplaces to residential areas by about 12%, and decreases the

home-to-work transmissions by as much as 80%. We also find that a reduction in the

network transmission channel has occurred about one week before the official lock-

down, indicating self-imposed changes in behaviour by the London population in an

effort to avoid contracting the disease.

From our estimated stochastic Network-SIR model, a tight and salient upper-

bound can be computed for the so-called disease R0 (basic reproduction number). This

number represents the expected number of new cases that are directly infected by

one existing case within a given time span (one week in our benchmark). The point
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estimate is around 1.4 before the nationwide lockdown, and is reduced to about 0.8

afterwards. The reduction is large, and is especially encouraging as the upper bound

for R0 drops well below one after the policy change.

To identify the pivotal boroughs for the spreading of the COVID-19 pandemic, we

also derive and estimate the network impulse response functions (NIRFs) motivated

by Denbee, Julliard, Li, and Yuan (2020). We find that the Westminster/City of Lon-

don location, due to its centrality in the commuting network, dominates all other

London boroughs in terms of externalities generated: before the lockdown, one addi-

tional case at this location generates three new expected cases in the whole greater

London area within one week (despite Westminster/City of London ranking only 26th

out of 32 boroughs in terms of total local cases before the lockdown).

Finally, we simulate alternative targeted lockdown policies based on the estimated

dynamics of the Network-SIR model. When considering a lockdown limited to only

one borough, we find that isolating Westminster/City of London – the borough with

the largest NIRF, but very few local cases – minimises the total expected number of

infected cases. This result indicates that optimal lockdown should not only target

areas with large number of cases, but also the locations in the network that are key

for the COVID-19 propagation dynamics. Similarly, when constraining the optimal

lockdown to two boroughs only, we find that the optimal target areas are Westmin-

ster/City of London – again, the borough with the largest NIRF – and Southwark –

the borough with the highest number of cases. Therefore, optimal lockdown policies

should be based on both the number of cases and the network centrality in transmit-

ting the disease. Furthermore, our simulations suggest that a lockdown of just these

two boroughs would have achieved the same outcome, in terms of total infections in

the Greater London area, as the actual national lockdown. This finding questions the

optimality of the full-scale lockdown and calls for a careful redesign of the lockdown
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policies.

Related Literature. There is a heated ongoing discussion on the trade-off be-

tween sustaining economic output and saving lives in the context of the COVID-19

pandemic. A cornerstone of this literature is a well-specified disease transmission dy-

namic. Avery, Bossert, Clark, Ellison, and Ellison (2020) provide an overview of var-

ious models for the spread of COVID-19. The most dominant paradigm that emerges

from these models is still the SIR framework, and most existing works extend the

classical Kermack-McKendrick SIR model to account for richer and finer population

categorisations, transmission dynamics, and policy responses. Embedding them into

economic models featuring costs of lives or negative impacts on productivity (due to

infection) and, sometimes, calibrating these models to epidemiological data, are key

characteristics of this literature. Along this line of work, Rowthorn and Toxvaerd

(2012) analyse (non-pharmaceutical) prevention and treatment policy responses and

show that they are history-dependent. Alvarez, Argente, and Lippi (2020) formu-

late and solve the planner’s dynamic control problem. Garriga, Manuelli, and Sanghi

(2020) identify value of death as the major policy determinant. Eichenbaum, Rebelo,

and Trabandt (2020) illustrate the equilibrium interactions between economic deci-

sion and epidemic dynamics. Jones, Philippon, and Venkateswaran (2020) introduce

a healthcare congestion externality in addition to the classic infection externality to

the planner’s problem. Farboodi, Jarosch, and Shimer (2020) derive an optimal policy

which features nonrestrictive and discontinuous social distancing. Acemoglu, Cher-

nozhukov, Werning, and Whinston (2020) introduce heterogeneity in social interac-

tion and productivity among social groups by categorising the whole population by

their different risk profiles after contracting the disease (which is mainly driven by

age). Acemoglu, Chernozhukov, Werning, and Whinston (2020) calibrate their model

and demonstrate the benefits from lockdown policies that are tailored for each group

separately. Beyond calibration, there are also estimation exercises for the COVID-19
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epidemics. For example, Fernández-Villaverde and Jones (2020) estimate the deter-

ministic version of single-population SIR across multiple countries. Our paper de-

parts from this by estimating the network element in a stochastic environment and

demonstrating its relevance and policy potential.

Our paper is also related to the network literature on epidemiology (see e.g. Jack-

son (2008)2 and Easley and Kleinberg (2010)3). Our optimal lockdown policy targeting

either the level and NIRF key players is motivated by Ballester, Calvó-Armengol, and

Zenou (2006) and Denbee, Julliard, Li, and Yuan (2020), respectively.

1 A Network SIR Model

This section introduces our network SIR model. We first extend the deterministic

single-population SIR model to its stochastic counterpart and derive necessary distri-

butional results for mapping the model to disease surveillance data. Then, we extend

the statistical model to multiple subpopulations, with a special account for network

effects, formalising a network SIR framework. Finally, we enrich the framework by

introducing a parametrisation scheme tailored for analysing the spreading of COVID-

19 in London.

1.1 The deterministic SIR dynamics

We begin with notation. For a given population of fixed size N, the triplet {St, It, Rt}

represents, respectively, the cumulative numbers of susceptible (S), infectious (I), and

recovered (R) individuals at time t. Susceptible individuals get infected through mix-

2Chapter 7, Sections 7.1,7.2.
3Chapter 21.
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ing with infectious individuals, featuring the dynamic

Ṡt = −θI
It

N
St, (1)

in which the overdot notation represents derivatives with regard to time; It/N is the

level of disease prevalence in the current population; θI is a parameter measuring

the contact rate (times the probability of infection per contact). Infected individuals

recover at a rate θR, which implies

Ṙt = θR It. (2)

The sum St + It + Rt equals the total population N, constant by assumption. There-

fore, Ṡt + İt + Ṙt = 0. Plugging in (1) and (2) and rearranging terms,

İt =

(
θI

St

N
− θR

)
It. (3)

Our analysis will focus on the dynamics of the infected population It. We make a

simplifying assumption that St/N ≈ 1. For COVID-19 in London, this ratio is greater

than 99.7% in our sample period. Treating each London borough separately, this ratio

ranges from 99.6% (Brent, four cases per thousand population) to 99.8% (Islington,

two cases per thousand population). Based on this assumption, a constant, namely

α, defined as α , θI − θR ≈ θISt/N − θR, is sufficient to capture the dynamics of the

infectious and infected subpopulations in our investigation sample. The framework

can be generalised to allow, as we do below, time variation in α.
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1.2 The stochastic SIR model

To map the deterministic SIR model to the data, we need to introduce probabilistic

“error” terms. However, arbitrarily introduced errors such as Gaussian errors may

reduce statistical power due to misspecified likelihood functions. The issue is more

pronounced when the number of disease incidents is relatively small (compared with

the total population size), which is the case in our data (less than three detected cases

per thousand people in London by the end of the lockdown period). Thus, we aim

to derive this distribution coherently from a well-defined probabilistic analogue to

the deterministic SIR dynamics. The natural stochastic extension to the differential

equation dIt/dt ≈ αIt is a continuous-time Markov chain of the form:

P [y new infections in (t, t + dt) | It = x] =


αxdt, y = 1

o(dt), y ≥ 2,

1− αxdt− o(dt), y = 0

, (4)

where o(dt) satisfies o(dt)/dt → 0 as dt → 0. Interpreting this probabilistic state-

ment is straightforward. Given the current number of infective individuals x, within

an infinitesimally short time interval, one additional person can contract the disease

with probability αxdt. This random process is a simple birth process (also known as

the Yule-Furry process, see for example, Grimmett and Stirzaker (2001, p. 250)).

When working with surveillance data of infectious diseases, we only observe num-

bers of new cases within discrete time intervals (say, one day or one week). Based on

the specification of (4), we can solve for the distribution of new case counts within a

time interval of length h (instead of length dt which goes to zero), denoted by

ph(y | x) = P [y new infections in (t, t + h) | It = x] .
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Solving the implied Kolmogorov forward equation (see Grimmett and Stirzaker (2001,

p. 250)), the simple birth process in (4) yields an analytical expression of the proba-

bility mass function ph(y | x):

ph(y | x) =
Γ(y + x)

Γ(x)Γ(y + 1)

(
e−αh

)x (
1− e−αh

)y
, (5)

where Γ(·) represents the gamma function. The above expression describes a negative

Binomial distribution – a mixture of Poisson distributions with mixing of the Poisson

rate driven by a gamma distribution. It provides the chance of y successes after

exactly x failures in a sequence of independent Bernoulli trials, each having a proba-

bility of success p = 1− e−αh. The negative Binomial is an appropriate representation

for discrete arrival data over an unbounded positive range whose sample variance

exceeds the sample mean. In such cases, the observations are overdispersed with re-

spect to a Poisson distribution (for which the mean is equal to the variance). Since the

negative binomial distribution has one more parameter than the Poisson distribution,

the second parameter can be used to adjust the variance separately from the mean.

Furthermore, it implies that first and second conditional moments are positively cor-

related – a feature consistent with epidemic dynamics. The probability p(= 1− e−αh)

also has a clear interpretation in our context of disease transmission. Let y = 0 and

x = 1 in (5), then p is the probability that an existing disease case infects at least

one person within a period of length h (since e−αh = 1− p = ph(0 | 1), implying that

p = 1− ph(0 | 1) = ∑y≥1 ph(y | 1)).

Denote the daily count of new infected individuals as yt, t = 1, . . . , T. Normalising

the length of the time interval h to one day and denoting with Ft the information

available up to time t, we have

yt | Ft−1 ∼ NegBinom (p, xt−1) , (6)
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where p = 1− e−α. Conditional expectations of new disease cases can be computed

directly as

E [yt | Ft−1] = µt = axt−1 (7)

where a = eα − 1 = p/(1 − p) can be understood as the odds ratio comparing the

probability that an infected person does transmit the disease against that he does

not. This simple linear relationship between the conditional expectations of new case

numbers and existing infectious individuals is the key modelling assumption that we

adopt throughout our analysis. Equation (7) also implies that

p =
µt

xt−1 + µt
(8)

which offers a simple mapping from the conditional expectations µt to the probability

parameter p in the negative binomial distribution (5).

From the negative binomial distribution, we can also calculate the conditional

variance of new case counts as

var [yt | Ft−1] = (a + 1)axt−1. (9)

If a + 1 = 1/(1− p) → 1, that is p → 0, which means that the disease transmission

rate is extremely small, the conditional variance of yt equals its conditional mean.

This corresponds to a Poisson distribution specification for yt as yt ∼ Pois(axt−1).

Equations (7) and (9) imply a positive correlation between the first and second mo-

ments for the number of new infected individuals – a feature consistent with the data

under analysis.

The remaining issue is how to determine the number of actively infectious cases

xt. This issue arises because people who have been infected might recover (or they

may die), as we have initially discussed in the SIR model. We adopt the following
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formulation for xt:

xt =
L−1

∑
`=0

ν(`)yt−`, (10)

which assumes that infected individuals can transmit the disease for L periods. The

decay function ν(`) ∈ (0, 1) characterises ‘the ‘rate of infectivity,” in the language

of Kermack and McKendrick (1927).4 That is, for a person who has been infected

for ` periods, the chance of transmitting the disease to another person is reduced to

100× ν(`) percent of the initial level. Another way of interpreting this specification is

that 100[1− ν(`)] percent of the infected individuals are no more infectious ` periods

after having the contracted the disease. Taken together, equations (7) and (10) imply

an autoregressive dynamic for the number of new infections.

1.3 A stochastic network SIR model

Now, we extend the stochastic model introduced above to account for multiple sub-

populations connected in a network. In the context of the COVID-19 spread in Lon-

don, we treat London boroughs as subpopulations of constant sizes Ni, i = 1, . . . , n.

Time-t conditional expectations of new case counts are concatenated into a vector

µt = [µ1t, . . . , µnt]>, where µit = E[yit | Ft−1] is the expected number of new cases

in borough i at time t. The distribution of newly infected individuals yit follows the

negative Binomial structure in (6)–(8), specified as follows:

yit ∼ NegBinom (pit, xi,t−1) where pit =
µit

xi,t−1 + µit
. (11)

To extend the conditional mean equation (7) to the multivariate case, we specify

4The simple SIR, especially that with constant rate of recovery as in (2), is a tractable special case
considered in Kermack and McKendrick (1927). In the general setup of their model, constant rate of
recovered is replaced with a specification similar as in (10).
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µt as

µt = Axt−1 + µEN
t = µAR

t︸︷︷︸
diag(A)xt−1

+ µNE
t︸︷︷︸

(A−diag(A))xt−1

+ µEN
t (12)

where xt = [x1t, . . . xnt]> = ∑L−1
`=0 ν(`)yt−` is the vector of infectious individuals in the

London boroughs and A is an n × n matrix of coefficients. The first term in (12),

Axt−1, and the definition of x, imply vector autoregressive dynamics in the disease

propagation. The additional term µEN
t , which we call the endemic term, aims to cap-

ture variations in disease dynamics that are not explained by the epidemic component

Axt−1. Such endemic forces aim to accommodate seasonality, behavioural responses,

or transmission dynamics induced by external forces.5 This endemic/epidemic decom-

position is commonly adopted in the empirical analysis of epidemiological surveillance

data (see, e.g. Finkenstädt and Grenfell (2000), Held, Höhle, and Hofmann (2005),

Lawson (2013)).

By further separating the endemic effect in equation (12) into its intra- and inter-

borough elements, we have a natural decomposition of the conditional expectation of

new infections into three components: the local (intra-borough) autoregressive effects

µAR
t , the network (inter-boroughs) effects µNE

t , and the endemic effects µEN
t .

Autoregressive effects The local autoregressive effects capture disease dynam-

ics as if each subpopulation were in isolation – i.e., as if new cases were driven only

by infectious residents within the same borough. These are equivalent to assigning

the single-population dynamic in equation (7) independently for each subpopulation.

We adopt the simplest specification for the autoregressive effects by treating them

as homogeneous among subpopulations. This implies that diag(A) = γI, where the

coefficient γ can be understood as the odds ratio parameter a in equation (7).6

5This is to be partially distinguished from the concept of “endemic diseases”, which command sta-
tionary transmission dynamics due to the combination of slow propagation rate and temporary immu-
nity.

6The specification is easily generalisable to location specific local dynamics by setting diag(A) =
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Network effects Moving from one homogeneous population to multiple subpop-

ulations, a key new component is the network effects µNE
t , which is the main fo-

cus of our analysis. These effects are driven by a network (or multiple networks)

of connections between subpopulations. Individuals contact and transmit the dis-

ease along predefined network links; the intensity of transmission is captured by the

“strength” of links (i.e., varying edge values of the network). These network effects

of disease transmission have long been acknowledged and were brought to light by

Newman (2002). The network effects can also be interpreted as matching intensities

between individuals from different subpopulations as in Acemoglu, Chernozhukov,

Werning, and Whinston (2020). In particular, given an observable adjacency matrix

W = {wij}1≤i,j≤n capturing the connections among London boroughs, we model the

network effects µNE
t in (12) as

µNE
it = φ

(
∑
j 6=i

wijxj,t−1

)
. (13)

Under this formulation, for residents of borough i, the chance of being infected by res-

idents from borough j is proportional to the strength of connections between the two

boroughs, as describe by the network topology W . The constant φ determines the over-

all strength of these network effects. The specification in (13) can be extended to allow

for multiple networks, with adjacency matrices given by W (g) =
{

w(g)
ij

}
1≤i,j≤n

, g =

1, . . . , G, as follows:

µNE
i,t =

G

∑
g=1

φ(g)

(
∑
j 6=i

w(g)
ij xj,t−1

)
. (14)

Here, the topology specific coefficients φ(g) capture the strength of the disease propa-

gation though the various sets of links considered.

The above assumptions about the autoregressive and network effects directly trans-

diag
({

γj
}n

j=1

)
.
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late into a parametric specification for matrix A in (12):

A = γI +
G

∑
g=1

φ(g)W (g). (15)

Hence, our formulation implies that the conditional expectation of new infections is

driven by both local autoregressive, as well as spatial, dynamics.

The set of parameters
{

γ, φ(1), . . . , φ(G)
}

, jointly with the adjacency matrices W (g),

fully determine matrix A, which is essential for understanding the disease trans-

mission dynamics. We expect these parameters to be non-negative for the data-

generating process to be well defined, and impose this restriction by working with

exponential forms. Furthermore, as the lockdown policy may affect these fundamen-

tal parameters, we model them as time varying. That is:

γ ≡ γt = exp (γ0 + Dtγ) , (16)

φ(g) ≡ φ
(g)
t = exp

(
φ
(g)
0 + Dtφ

(g)
)

, g = 1, . . . , G, (17)

where Dt ∈ {0, 1} is a dummy variable equal to zero before the lockdown and one

afterwards. The impact of the policy change is therefore quantified as exp(γ) for

autoregressive effects and exp
(

φ(g)
)

for network effects, multiplicatively. For ex-

ample, if exp(γ) = 0.70, then the policy reduces the local autoregressive effects by

100× (1− 0.7)% = 30%.

Endemic effects The endemic effects in (12) are specified as

µEN
i,t = exp

(
z>t β + ηi

)
Ni, i = 1, . . . , n (18)

which is proportional to the size of subpopulations Ni. The vector zt contains de-

terministic time trends such as polynomial and trigonometrical functions of time t.

13



Additional time-varying terms for control, such as time-varying testing intensity and

positive-to-test ratio, are also included in this vector. Location-specific fixed effects ηi,

are added in the endemic terms to account for static demographic and socioeconomic

heterogeneities among subpopulations. In particular, control variables in the endemic

term are specified as

zt =
[
t, t2, t× Dt, t2 × Dt, positive-to-test ratio, number of tests

]
.

Linear and quadratic terms of time are motivated by the hump-shaped disease spread

trend (see, e.g., Li and Linton (2020)). These deterministic trends are allowed to

change after the lockdown policy, with two interaction terms, t×Dt and t2×Dt, added

in. The two testing-related variables are both smoothed. Numbers of tests are scaled

to per one million population, and are seven-day moving averages. The positive-to-

test ratio is, by definition, the number of positive cases divided by the number of

tests, both are also rolling seven-day statistics. Since we do not have granular data

regarding the number of tests at the level of local authorities, these two controls are

all based on nationwide statistics. We add these two controls to account for common

variations across time due to limited testing capacity, especially in the early stage of

the disease outbreak in UK.

Estimation of the model parameters is performed via maximum likelihood. The

tuning parameter ρ of the exponential decaying kernel ν(`) = exp(−ρ`) is selected via

(maximising) the profile likelihood of each model. Standard errors are all calculated

based on the outer product of the score vectors à la Berndt, Hall, Hall, and Hausman

(1974).

We focus on performing inferences about parameters that determine the epidemic

(autoregressive and network) effects. For parameters governing the baseline (before-

policy) disease spread dynamics, we test whether their exponentials are significantly
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greater than zero, that is, exp(γ0) > 0 and exp
(

φ
(g)
0

)
> 0 for all g ∈ G are our null

hypotheses. These tests evaluate if there are substantial autoregressive or network

effects during the COVID-19 pandemic in London. For parameters quantifying the

policy impacts, we ask if their exponentials are significantly smaller than one, that is,

if our null hypotheses are exp(γ) < 1 and exp
(

φ(g)
)
< 1. This is because (the expo-

nentials of) these parameters all measure (gross) percentage changes from baseline

estimates after the lockdown policy is implemented.

2 Data and Estimation

This section surveys the multiple data sources, including networks of London bor-

oughs we use in this study, and presents estimation results and their implications.

2.1 COVID-19 data and demographic information

Disease surveillance data are provided by the UK government.7 This database re-

ports the number of daily new cases found in each local authority of the UK. We focus

on local authorities of London, consisting of 32 London boroughs.8 Our sample pe-

riod is from March 1 to June 4, 2020. We begin our analysis from March because the

number of reported cases is small from January to February in London.9

We illustrate in Panel (A) of Figure 2 the total number of reported COVID-19

cases in each borough until June 4, 2020. In general, the number of cases of the

pandemic in each borough correlates with subpopulation sizes, which is shown in

Panel (B) of the same figure. The correlation is 0.78 throughout our sample period.

7https://coronavirus.data.gov.uk/
8The city of London, strictly speaking, is not an official London borough (but, still a local authority),

and in our dataset it is merged with Westminster. It is noteworthy that the city of London has an
extremely small number of residents (less than ten thousand) and only thirteen disease cases in total
(till June 4, 2020).

9There are only fifteen cases in total, with Southwark borough having the largest number, which
is only three.
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This association corroborates our specification for the endemic terms in equation (18),

which is proportional to the subpopulation sizes.

There are three major policy dates for COVID-19 in the UK. They are March 16

when citizens were recommended to avoid traveling and stay home, March 20 when

schools and pubs were closed, and March 23 from which full nationwide lockdown

measures became effective. We choose March 23 as our policy date and evaluate the

impacts of nationwide lockdown measures on the autoregressive and network effects

using the specifications in (16) and (17).

Additionally, for subpopulation (borough) sizes, we use records from a housing-led

population projection conducted by the Greater London Authority (GLA).10 The GLA

demography team constructs these projections based on trends in fertility, mortality

and migration, and housing development on an annual basis. The starting point of

these projections is dwelling records from the 2011 UK census.11

We use the UK nationwide testing data from the GitHub repository of Our World

in Data (OWID).12 Since May 23, 2020, the UK government has stopped publishing

data regarding the number of “people tested”. OWID uses instead the official data

for the number of “tests performed” since then. For these numbers, only official swab

tests count and all serology tests are disregarded.13 Available data for both series,

the numbers of people tested and tests performed, are plotted in Figure 1. Within

their overlapping time window (April 26 to May 22, 2020), the two series agree well.

10Link: https://data.london.gov.uk/dataset/housing-led-population-projections
11Population census across all four UK countries is taken every ten years. The 2011 census is the

most recent. We also use the census data for constructing our networks, as we discuss below.
12Link: https://github.com/owid/covid-19-data/tree/master/public
13Official swab tests are those conducted in Public Health England (PHE) labs and National Health

Service (NHS) hospitals, as well as those processed in-person under government guidance for a wider
population. Swab tests for surveillance purpose undertaken by PHE, Office for National Statistics
(ONS), Biobank, universities, and other partners do not count.
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2.2 Network construction

We construct networks connecting residents of different boroughs through commut-

ing links. We use data from the 2011 UK Census to create a directed and weighted

graph, of which 32 nodes denote the London boroughs14. Edges of this graph quan-

tify employment links between boroughs. For example, an edge of value 10, 000 from

Camden to Southwark means that there are 10, 000 individuals living in Camden who

go to work in Southwark. We ignore all self-pointing edges, meaning that we drop

the numbers of people working in the same boroughs where they live, since the local

effects are already meant to be captured by the autoregressive component µAR
t . In

other words, the adjacency matrix of this graph has a diagonal of constant zeros.

This graph is visualised in Figure 3. The size of a node in this figure is proportional

to its in-degree (total number of people coming to work in this borough). For clarity,

an edge is drawn only if its value exceeds the 80% percentile of all edge values. Widths

of these plotted edges are also proportional to their values. A clear pattern of Figure

3 is that Westminster/City of London attracts a disproportional amount of London

workforce with a total in-degree that is significantly larger than any other London

borough. In addition, Camden and Tower Hamlets also attract a relatively large

amount of workforce.

We denote by K = {kij}1≤i,j≤n the adjacency matrix of this graph, where i indexes

home and j indexes work. We have constructed other networks based on this K ma-

trix. Specifically, we consider three networks, W (1) = K, W (2) = K>, and W (3) = KK>,

defined respectively through adjacency matrices.15 These three adjacency matrices

14The 2011 census covers detailed employment information which includes office locations. Thus,
for any local authority, the number of its people working in other local authorities can be calcu-
lated. Aggregate data regarding these statistics are available from https://data.london.gov.
uk/dataset/place-residence-place-work-local-authority.

15Notations here are to provide basic ideas. In detail, when estimating the network SIR models, we
always divide K and K> by the largest singular value of K to rescale their spectral norms to one. This
operation improves numerical stability (of nonlinear maximum likelihood estimation) and ensures
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capture transmission from different contact networks: 1) “work-to-home" transmis-

sion, which measures the spreading of disease from residents in commuter’s work

borough to residents in commuter’s home borough; 2) “home-to-work" transmission,

which is from the opposite direction; and 3) “home-to-home" transmission, which is

between different places of residence via a common workplace.

Generally speaking, left-multiplying the vector of active cases xt by the matrix

W (1) as in equation (14) features the transmission of COVID-19 from workplaces to

residential areas. To be clear, for borough i, the vector
[
w(1)

ij

]
j 6=i

will overweight bor-

oughs where more of borough i’s residents go to work. For example, for many London

boroughs, their residents are more likely to go to work at Westminster/City of London.

Thus, the propensity for contact and infection from Westminster/City of London is set

to be higher by this network. Intuitively, larger nodes of the graph shown in Figure 3

are more emphasised in the transmission dynamics.

Similarly, left multiplying xt by W (2) characterises the disease spread from resi-

dential areas to workplaces. Panel (A) of Figure 4 shows the graph defined by W (2).

Edges are again thresholded at the 80% for presentation. Node sizes are also propor-

tional to their total in-degrees. As we can see from Panel (A) of Figure 4, network

effects commanded by this graph highlight the role of boroughs such as Wandsworth,

Lambeth, Lewisham, and Southwark. These boroughs are those with large numbers

of residents going to work in other boroughs.

Interpreting the impact of our third network on the disease spread dynamics –

the home-to-home network – is also straightforward. The adjacency matrix of this

network is symmetric with element (i, j) and (j, i) defined by ∑n
`=1 ki`k`j. It quantifies

comparability across network parameters. For computing the adjacency matrix of the third network,
namely W (3), we first normalise each row of K to sum one, then calculate the product of it with its
transpose. Diagonal elements of this product are also replaced with zero. The resulting matrix is
then divided by its largest singular value (which is also its largest eigenvalue because this matrix is
symmetric).
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the propensity of residents of borough i and j to contact and infect each other with

the disease via common workplaces. Specifically, if work and home locations were

independent, the entries of this particular adjacency matrix would be proportional to

the probability of individuals from the two locations meeting each other. Panel (B)

of Figure (4) visualises the graph of this network. Nodes with large in-degrees such

as Westminster/City of London, Camden, and Tower Hamlets should be influential in

driving the disease spread dynamics mediated through this network. These boroughs

are also featured in the work-to-home network graphed in Figure 3. In addition,

Wandsworth, Lambeth, and Southwark, which emerge as pivotal nodes in the home-

to-work graph, are also highlighted here, meaning that boroughs with large numbers

of residents working outside those boroughs also have strong network effects. An

exception to this appears to be Lewisham, which does not appear to be influential in

the graph.

3 Empirical Findings

The main estimation results are presented in Table 1. Five specifications are in-

cluded: three specifications with one of the networks (G = (1), (2), (3)) each; one

specification containing all three networks (G = (1, 2, 3)); and one specification incor-

porating the first two networks (G = (1, 2)). The first three specifications serve the

purpose of univariate analysis. Parameter estimates and standard errors are reported

in the table, as well as the pseudo-R2 defined as

pseudo-R2 = 1− ∑n
i=1 ∑T

t=1(yit − µ̂it)
2

∑n
i=1 ∑T

t=1(yit − y)2
,

where µ̂it is the conditional expectation of daily new COVID-19 cases calculated from

the model using estimated parameters; y stands for simple average across time and

boroughs.
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Before-policy estimations for the autoregressive effects, that is, estimates of exp(γ0),

are always significantly greater than zero. Across the five specifications, the small-

est estimate is 0.252 with a standard error of 0.041. As this parameter quantifies

within-borough disease transmission dynamics, this finding confirms that serious

community-acquired infection has occurred during the initial outbreak of COVID-

19 in London in early 2020. The nationwide lockdown policy on March 23 has re-

duced the infection significantly: except for the second specification (which is 5%) the

magnitude ranges from 24% to 38%. The reduction is economically and statistically

significant as exp(γ) is significantly smaller than one (again with model (2) as an

exception). The analysis shows that the lockdown policy is effective in cutting down

within-community transmission rates.

Estimation results from the first specification (column 1 of Table 1) show that the

impact of the work-to-home network is large in magnitude: the before-policy coeffi-

cient exp
(

φ
(1)
0

)
is around 0.5, which implies strong directional spillover effects from

people living in major workplaces such as Westminster/City of London to residents in

other boroughs via the work-to-home contact network. We also find that the work-

to-home disease spread is partially reduced after the lockdown. The magnitude of

reduction is around 12% for the first specification and around 18% after controlling

for other networks, while being not statistically different from one. The effectiveness

of the lockdown policy on blocking cross-borough transmission is questionable at this

level. It seems that transmitting from pivotal places such as Westminster/City of Lon-

don, Camden, and Tower Hamlets to other boroughs still remains active even after

the nationwide lockdown.

We find that the impact of the home-to-work network on the epidemics of COVID-

19 in London is relatively smaller (column 2 of Table 1). The baseline estimation

exp
(

φ
(2)
0

)
is less than 0.12.16 This parameter is around 0.06 after controlling for other

16Our parameter estimates for different networks are comparable because all graph adjacency ma-
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contact networks. Though smaller in magnitude, it is significantly greater than zero

except when including the home-to-home network. We find that the lockdown policy

has a stronger impact on this home-to-work spreading. After the lockdown policy is

enforced, the spreading through home-to-work network is reduced by over 80% after

controlling for other network effects.

We find a strong home-to-home network effect when estimating it alone (column

3 of Table 1), but it is insignificant after controlling for the work-to-home and home-

to-work networks (column 4 of Table 1). Thus, we choose to use the last specification

including both work-to-home and home-to-work networks as the benchmark specifi-

cation (column 5 of Table 1). The maximised log-likelihood function for the fourth

and the fifth specifications are −7335.229 and −7335.153, respectively. A likelihood

ratio test simply fails to offer any definitive evidence on including the home-to-home

network. Therefore, we report further analyses of the network effects based on this

benchmark specification for expositional clarity in the rest of the paper.

Table 1 also reports results for testing-related variables in vector zt that drives

the endemic effects. Regression coefficients for the number of tests (i.e. lag test)

are consistently positive across specifications, being around 1.8 with standard errors

around 0.3. That is, we find that greater testing capacity leads to larger endemic ef-

fects and predicts a larger number of new cases. There are two potential explanations

for this result. Firstly, testing efforts are motivated by the past disease propagation

trajectory, which also determines the number of new cases. The association between

testing numbers and new case counts is thus due to the fact that they both relate to

the current epidemic severity. The second explanation points toward under testing.

If there is a serious under testing problem, increased testing capacity will artificially

pick up cases that have been omitted early on, thus increasing the expected number

of cases. This explanation is partly supported by the significantly negative coeffi-

trices have been rescaled by their largest singular value before feeding into our models.
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cients for positive-to-test ratios in Table 1. Across models, this regression coefficient

is at least −1.09 with a standard error being at most 0.49. Higher positive rates pre-

dict weaker future endemic effects. Intuitively, high positive rates are more likely

to be a result of serious under testing (assuming testing kit technologies remain un-

changed), which artificially discounts the expected number of cases. This view has

been discussed in the media, for example,

“The thinking is that higher positive test rates equate to more missed cases”

(Bloomberg Opinion, July 1, 2020)

Our findings that both larger testing capacity and smaller positive rates are as-

sociated with more future cases are suggestive of under testing, which may cause

reported cases deviating from the actual number. Adding these two test-related vari-

ables into endemic effects serves as an adjustment to this issue.

3.1 Decomposition of expected daily new cases

We now plug the estimated parameters into expected new case numbers µt as defined

in (12) to evaluate and compare the contribution of autoregressive, network, and en-

demic components in explaining the observed data. We rely on parameter estimates

from the benchmark specification incorporating the work-to-home and home-to-work

networks (column 5 in Table 1) to perform this decomposition in this section.

Panel (A) of Figure 5 graphs the decomposition of the contribution of the autore-

gressive, the network, and the endemic components to the total cases aggregating

across the 32 London boroughs in the sample period. That is, we plot the time-series

of the three ratios
(
1>µ̂AR

t
)

/
(
1>µ̂t

)
,
(
1>µ̂NE

t
)

/
(
1>µ̂t

)
, and

(
1>µ̂EN

t
)

/
(
1>µ̂t

)
as de-

fined in Section 1.3. The graph demonstrates a substantial and persistent network

effect, accounting for 42% of the expected total daily new cases in London. The au-
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toregressive and endemic effects contribute to 35% and 23%, respectively.

In Panels (B) and (C) of the same figure, we present the decomposition result for

each London borough. We plot the time series of the fractions of conditional means ex-

plained by each of the three components, µ̂AR
it /µ̂it, µ̂NE

it /µ̂it, µ̂EN
it /µ̂it, for each borough.

Light-coloured bands in these plots show 10% to 90% percentiles across all boroughs,

delineating cross-sectional heterogeneity. Solid lines represent the median levels.

The left graph in Panel (B) shows community transmission (autoregressive effects)

rises quickly rand remains a strong driver of the disease spread since March. The

middle graph in Panel (B) shows a similar pattern for network effects but with an

additional peak in mid-March. The right graph in Panel (B) shows that at the very

early stage, endemic effect is a dominating component, which we interpret as infec-

tions being brought in by people coming from outside of London. Endemic effects keep

dropping in early March and remain stable for a while. They are diminished to a low

level in late May. Comparing all three graphs in Panel (b), we find that the fading

endemic impact is largely subsumed by the network effects.

In Panel (C) of Figure 5 we further decompose the network effects by examin-

ing the contributions of the work-to-home and the home-to-work network to the to-

tal network effect across time in our sample period, respectively. Based on plots in

this panel, we observe that almost all network effects in our sample period can be at-

tributed to the work-to-home network, highlighting the importance of boroughs where

many people go to work in transmitting the disease. This finding results from param-

eter estimates in Table 1, where the network coefficient for the second specification

exp
(

φ
(2)
0

)
is almost ten times smaller than its counterpart for the first specification

exp
(

φ
(1)
0

)
. Although weaker in terms of magnitude, we also observe that the home-

to-work network effects have undergone much stronger reduction after the lockdown

policy (i.e. exp
(

φ(2)
)
< exp

(
φ(1)

)
).
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In the graphs in all three panels, we highlight March 23, the lockdown date. Pan-

els (B) and (C) show that the reductions in autoregressive and (work-to-home) net-

work effect have occurred at least one week before March 23, indicating that a sig-

nificant number of London residents have started observing social distancing within

their communities and working from home before the official policy announcement

date.

3.2 Disease R0

Our model offers guidance on the basic reproduction number R0, which quantifies the

expected number of new cases directly generated by one existing case. To be more

specific, since our model features borough-level heterogeneity, the expected number

of new cases varies with regard to the residence of the existing infected cases. Thus,

if the “one” existing case comes from borough i, we have a basic reproduction number

R(i)
0 . What we aim to compute here is an estimated upper bound on the maximum

maxi∈{1,...,n} R(i)
0 .

To proceed, we first calculate a simple plugging-in estimator of matrix A in equa-

tion (12), denoted by Â. For one additional case in borough i, denoted by vector ei in

which only the i-th element equals one and all other elements equal zero. This case

remains contagious for L periods by assumption. The total (expected) number of new

cases created directly by ei can be estimated as ∑L−1
`=0 exp (−ρ̂`) Âei. This quantity

above is uniformly bounded by ∑L
`=0 exp (−ρ̂`) σmax

(
Â
)

because ‖ei‖ = 1, in which

σmax(·) represents the function that computes the largest singular value of a matrix.

Thus, we have an upper bound for the estimates of R0 as follows:

R̂0 ≤ max
i∈{1,...,n}

{
L−1

∑
`=0

exp (−ρ̂`) Âei

}
≤

L

∑
`=0

exp (−ρ̂`) σmax

(
Â
)

.
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Estimates of (upper bounds of) R0 are presented in Table 2. According to our

specification in Section 1.3, we have separate estimates of Â before and after the

lockdown policy. Thus, the table shows the largest singular values and R0s both before

and after the policy date. The disease R0 is around 1.4 before the lockdown policy and

is around 0.8 afterwards based on our benchmark specification of incorporating work-

to-home and home-to-work networks (last two columns of Table 2). The magnitude

of reduction is large though not statistically significant. This reduction is due to the

impacts of lockdown policies on both the autoregressive and network effects.

3.3 The network impulse response functions

To further understand how innovations in daily new COVID-19 cases propagate through

networks, we define and calculate the network impulse response function (NIRF) of

our model motivated by the analysis in Denbee, Julliard, Li, and Yuan (2020). For a

unitary shock (or change in levels) of disease incidents in borough i, its impact on the

expected total number of cases across all locations τ-period ahead is measured by

NIRFi(τ) =
n

∑
j=1

∂E
[
yj,t+τ | Ft

]
∂yit

. (19)

The empirical model we work with allows an analytical formula for the NIRF, as

detailed in the Appendix.

Plots in Figure 6 illustrate NIRFs across each borough for the time horizon of one

week, that is τ = 7. Panel (A) shows the impulse responses before the lockdown.

The Westminster/City of London subpopulation strongly dominates all other London

boroughs. For one additional case that emerges in this area, three more cases are

expected to occur in the whole Greater London area, even after one week. This iden-

tifies the Westminster/City of London area as a “key player” for shock propagations
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through the network in the language of Denbee, Julliard, Li, and Yuan (2020). Cam-

den, Tower Hamlets, Southwark, as well as Lambeth are among the other key players

that appear to show strong network impulse responses, but the magnitude is much

weaker than for Westminster/City of London. Panel (B) presents results after the

lockdown. It offers another angle for us to understand the effectiveness of the lock-

down policy, as there is a distinct reduction in the NIRF measure for the key areas

such as Westminster/City of London and other boroughs.

Analysing network impulse responses is valuable for designing “smart” partial

lockdown policies that selectively lockdown a few regions instead of deploying a full-

scale lockdown. When prescribing a partial lockdown plan, the conventional wisdom

is to shutdown areas that have witnessed the largest number of existing cases and

are undergoing rapid growth in new cases.17 Our network impulse response analy-

sis offers another perspective. In addition to focusing on regions that have reported

severe outbreaks, lockdown policies should also target areas that are key to the dis-

ease transmission. Isolating subpopulations that are key players in the network can

forestall rapid spread among the whole population, even if few cases have occurred in

these areas. Optimal (partial) lockdown policies should combine both perspectives, as

we demonstrate in our counterfactual analysis in the next session.

4 Counterfactual Simulations

This section presents simulations to evaluate counterfactual outcomes from alterna-

tive policy interventions. We start by investigating the impacts of earlier or later

nation-wide lockdown measures, and compare them with actual numbers. We then

compute optimal partial lockdown arrangements and their potential outcomes. We

emphasise on comparing optimal policies with “naive” policies that only target areas

17See, for example, the lockdown of Hubei province in China and Lombardy region in Italy, both of
which were the epicentres of COVID-19 outbreaks when the policies came out.
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with the largest number of existing cases. Our goal when making these comparisons

is to illustrate the importance of shutting down pivotal nodes of the network as a

preventive measure against disease transmission.

4.1 Alternative dates for nationwide lockdown

The UK government implemented a nationwide lockdown on March 23. The timing

of this policy has been under intense public scrutiny. Dr. Neil Ferguson who, with

his research group’s “Imperial College” model, has facilitated the lockdown decision

of the UK government said:

“Had we introduced lockdown measures a week earlier, we would have re-

duced the final death toll by at least a half.” (BBC News, June 10, 2020)

Similar arguments have been made by scientists such as Dr. James Annan and Dr.

Kit Yates.18 In the meantime, Dr. Yates has acknowledged that

“There had been an ‘overreliance’ on certain models when determining how

fast the epidemic had been doubling; ...that some of the modelling groups had

more influence over the consensus decisions than others.”

(BBC News, June 10, 2020)

We attempt the same inspection using our model, although within a limited scope,

by only focusing on the case of London. With our estimates, we change the policy in-

dicator Dt by allowing for different policy intervention dates and simulate the model

18These proponents have been broadly covered by the media. James Annan’s conclusion was drawn
upon his calculation made public on May 12, 2020 through a blog post, which is available at https://
bskiesresearch.wordpress.com/2020/05/12/the-human-cost-of-delaying-lockdown/.
Citing James Annan’s calculation, Kit Yates wrote “locking-down a week earlier translates to begin-
ning lockdown with roughly a quarter of the total cases...” in an essay to HuffPost on May 22, 2020.
Details can be found at https://www.huffingtonpost.co.uk/entry/lockdown-uk-deaths_
uk_5ec6efd8c5b68038a74a50ad?utm_hp_ref=uk-opinion.
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outcomes. Specifically, we base simulation exercises on parameter estimates from the

benchmark specification (work-to-home and home-to-work networks) reported in Ta-

ble 1. We consider policy dates two weeks or one week, both before and after March 23.

We simulate each of the resulting models 10, 000 times and then average the 10, 000

paths of daily case counts across all London boroughs as our counterfactual outcomes.

Throughout our simulations, we fix the endemic terms, although this element of the

model, by definition, is also affected by the specific date of the policy due to variables

such as t× Dt and t2 × Dt. Under this simulation design, we are indeed treating the

endemic term as a deterministic force in the model. The endemic effects are intro-

duced only to isolate the autoregressive and network effects through controlling for

variations that are not epidemic. By doing so, we are also ignoring the impacts of

alternative policies on the nationwide positive-to-test ratio.19

Simulation results are presented in Figure 7. Plots in this figure show the cumu-

lative number of all London cases from March 1 to June 4. The plot on the left panel

compares the simulated outcomes from locking-down one or two weeks earlier with

the actual outcome. Based on our results, locking down two weeks earlier translates

into a reduction of 12% total cases (3, 283 cases on the absolute level) in London during

the period under study. The number is 9% (2, 553 on the absolute level) if lockdown

would have been one week earlier. These numbers indicate that, at least for London,

positive action earlier than the March 23 lockdown dates would have yielded some

reduction in total cases but the magnitude is not large.

The right panel plots alternative situations in which lockdown takes place one or

two weeks later. Delaying the March 23 lockdown would cause serious consequences

in terms of a large increase in the number of people infected. If the lockdown would

have happened one week later, the total number of infected cases up till June 4 would

19In practice, each simulation creates new time-series of London cases, which should count as part
of the total positive cases in Britain, thus changing the numerator of this ratio.
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have increased by 17% (4, 514 on the absolute level). Postponing the lockdown for two

weeks would have led to an even larger increase of 56%, that is, over fifteen thousand

more people in London would have been infected.

4.2 Optimal partial lockdowns

This section discusses optimal lockdown policies. With the parameter estimates for

our network SIR model, we are able to map out the dynamics of COVID-19 spread

across London boroughs. This knowledge makes it possible for us to answer the fol-

lowing question: at any given time, what is the optimal borough-specific lockdown

scheme that can minimise the number of infected cases in the future? For clarifi-

cation, our definition of optimality is a constraint on the number of boroughs being

locked down. That is, we are searching for optimal solutions to problems such as:

“If only three London boroughs are to be shut down for controlling the spread, which

ones are they?”

To address these types of questions, we simulate the dynamics of COVID-19 trans-

mission in London based on parameter estimates of the benchmark in Table 1. We

then consider policies that shut down different combinations of London boroughs on

the exact same date of the actual nationwide lockdown, March 23. A total of 10, 000

paths of disease case counts is generated from simulations. For each path, we evalu-

ate potential outcomes of all possible partial lockdown policies. For example, if two out

of the 32 London boroughs are allowed to be locked down, we then have

32

2

 = 496

different lockdown designs. The outcomes we focus on are the total number of COVID-

19 infections in London, averaged across all simulations.

The effects of locking down a particular borough are quantified in two ways. The

first is more “optimistic” in the sense that boroughs being locked down will no longer
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interact with other boroughs through the networks at all. That is, corresponding

columns and rows of matrix W (1) and W (2) are shifted to zero. The second borrows

information from our estimates for the impact of nationwide lockdown policies. Un-

der this setting, for boroughs that are locked down, corresponding columns and rows

of matrix W (1) and W (2) are downscaled to 82.7% and 16.6% of their original val-

ues, respectively.20 Both ways of evaluating lockdown plans ignore the impact on the

autoregressive and endemic effects. Hence, the resulting outcomes are conservative

when compared with the actual numbers (which can be regarded as direct outcomes

due to the March 23 nationwide lockdown that have changed the dynamics of all three

effects).

We start with the simplest case of lockdown policy: only one borough is placed on

lockdown. Simulation results are presented in Figure 8. The left panel corresponds

to the case where, when shutting down a borough, all in-flow and out-flow through

the network via this borough are blocked. The right panel uses parameters from

our estimation results as described above. In either one of the two panels, the red

line represents the cumulative case numbers across time if there are no lockdown

policies implemented at all. The blue line shows the real number. Outcomes from

different lockdown plans are marked in grey. We highlight the policy of shutting

down only one borough with the highest cumulative number of infected cases (the

borough of Lambeth) on the policy date (March 23) in orange. This type of case-

targeting policy reflects the conventional wisdom. For comparison, we characterise

the optimal policy in pink. This policy is optimal in the sense that it minimises the

total (expected) number of infected cases. In our analysis, the optimal single-borough

lockdown plan is to lockdown Westminster/City of London, which features the largest

network impulse responses as shown in Figure 6. The results confirm that lockdown

20The relevant quantities here are exp
(

φ(1)
)

= 0.827 and exp
(

φ(2)
)

= 0.166 for the benchmark
specification in Table 1 (column 5).
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plans which only pay attention to the current number of infected cases are far from

optimal (by comparing the orange and pink lines). Shutting down the region that is

a pivotal node for the network propagation of shocks brings major improvements: a

reduction of around 15, 000 total cases in London.

We proceed to consider the case of locking down two or three boroughs. Results

are shown in Figures 9 and 10, respectively. The optimal arrangement of locking

down two boroughs is to pick Westminster/City of London and Southwark, outcomes

of which are shown in pink lines in Figure 9. Up till the date of March 23, the top

two boroughs that have witnessed the most severe outbreak are Lambeth and South-

wark. Locking down these two boroughs gives rise to outcomes shown in orange in

the same figure. We can observe again that the optimal lockdown policy of target-

ing Westminster/City of London and Southwark leads to major improvements over

the policy that only targets regions with the largest existing number of cases. It is

noteworthy mentioning that the two boroughs with the highest NIRFs are Westmin-

ster/City of London and Camden. Therefore, we find that the optimal lockdown policy

is a combination of two targets: highest number of COVID-19 cases (the inclusion of

Southwark) and largest NIRF (the inclusion of Westminster/City of London). Both

targets are essential for the design of optimal lockdown policies.

Similar findings appear in Figure 10 when investigating polices that lockdown

three boroughs down. The optimal policy dictates shutting down Westminster/City of

London, Southwark, and Lambeth. By comparison, the top three boroughs that have

been most harshly hit by the pandemic up till March 23 are Lambeth, Southwark,

and Brent; while boroughs with the largest NIRFs are Westminster/City of London,

Camden, and Tower Hamlets. Two boroughs out of the highest number of COVID-19

cases category are included to the optimal policy and the most pivotal node with the

largest NIRF, Westminster/City of London, is also incorporated.
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Our simulations show that the partial lockdown plans are powerful substitutes of

the full-scale lockdown. Suppose that locked-down regions are completely removed

from the network of London boroughs, an optimistic assumption, the optimal two-

borough lockdown plan (locking down Westminster/City of London and Southwark)

achieves almost the same outcome as the actual nationwide plan (see the left panel of

Figure 9). The optimal three-borough lockdown plan (locking down Westminster/City

of London, Southwark, and Lambeth) surpasses the nationwide plan and lowers the

number of total cases in London by around 2, 000 (see the left panel of Figure 10).

This optimistic assumption is not an exaggeration, in that locking down on a smaller

scale in targeted areas can be much better administered. If we are more cautious in

regarding the implementation of partial lockdown and quantifying its impact using

the numbers we estimated for the nationwide lockdown, the optimal three-borough

lockdown plan still leads to similar outcomes compared with the actual nationwide

lockdown, increasing the total number of cases in London by less than 3, 000. We

would like to point out that all comparisons above are highly conservative in terms

of favouring partial lockdown plans, because we totally ignore the potential changes

these plans can bring to the autoregressive and endemic components of epidermic

transmission.

5 Conclusions

In this paper, we present and estimate a network-SIR model of the spreading of

COVID-19 disease in London. Our estimates show that network play a major role

in transmitting COVID-19 disease and they cannot be ignored. Based on the esti-

mated epidermic dynamics, we investigate whether a certain target lockdown policy

could contain the spread of COVID-19 disease as much as the full scale lockdown and,

hence, have a lower economic cost. Our simulations show that an optimal lockdown

should target areas that not only have the highest number of existing case, but also
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those that play a key role in transmitting disease in the contact network among the

population. In our case, the contact network corresponds to the commuting network

in London. In designing a lockdown policy, our finding calls for special attention to

be focused on the network role of the COVID-19 transmission. These network could

be train or flight networks, or any other traffic networks at the national or inter-

national level including the migration network (from hard-hit COVID-19 hotspots)

identified by Coven, Gupta, and Yao (2020). As networks potentially connect regions

with different jurisdictional governments, our finding indicates that coordinated re-

gional quarantine and lockdown policies are essential in containing the spread of the

COVID-19 pandemic, a conclusion echoed by the theoretical work in Chandrasekhar,

Goldsmith-Pinkham, Jackson, and Thau (2020).
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Table 1: Estimation results of the Network-SIR model of Section 1.3. Results in columns
(1)-(3) correspond, respectively, to specifications with only one of the following transmission
networks: “work-to-home;” “home-to-work;” “home-to-home”. Column (1,2,3) considers the
three networks jointly while column (1,2) uses only the first two networks.

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Autoregressive effect

exp (γ0) 0.311 0.035 0.286 0.040 0.286 0.037 0.252 0.041 0.253 0.041
exp (γ) 0.617 0.077 0.958 0.136 0.750 0.102 0.760 0.129 0.754 0.127

Network effect

W (1) = K:
exp

(
φ
(1)
0

)
0.477 0.070 0.503 0.144 0.510 0.073

exp
(

φ(1)
)

0.885 0.136 0.821 0.169 0.827 0.127

W (2) = K>:
exp

(
φ
(2)
0

)
0.115 0.022 0.062 0.036 0.064 0.023

exp
(

φ(2)
)

0.374 0.080 0.148 0.218 0.166 0.181

W (3) = KK>:
exp

(
φ
(3)
0

)
0.261 0.035 0.000 0.085

exp
(

φ(3)
)

0.570 0.082 0.284 0.000

Testing-related endemic effect

pos-to-test −1.37 0.47 −1.09 0.28 −1.46 0.41 −1.46 0.48 −1.46 0.49
lag test 1.85 0.31 1.77 0.23 1.88 0.28 1.91 0.32 1.91 0.32

pseudo-R2 82.09% 82.00% 82.02% 82.12% 82.12%
# obs. 3008 3008 3008 3008 3008
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Table 2: Estimation-implied upper bound for the basic reproduction number R0 of COVID-19
in London. σmax denotes the largest singular value of the estimated matrix A in equation (15).

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Before Lockdown Policy: Dt = 0

σmax 0.840 0.590 0.511 0.106 0.639 0.287 0.853 0.533 0.766 0.537
R0 1.467 1.030 1.577 0.327 1.531 0.688 1.391 0.876 1.369 0.953

After Lockdown Policy: Dt = 1

σmax 0.510 0.369 0.270 0.038 0.301 0.123 0.501 0.398 0.422 0.392
R0 0.891 0.644 0.832 0.118 0.722 0.296 0.818 0.649 0.754 0.701
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Figure 1: UK nationwide COVID-19 tests: people tested and tests performed
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Figure 6: Network impulse response functions (one-week horizon), from equation (19), be-
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43



Mar Apr May Jun

0
10

00
0

20
00

0

Date

C
um

ul
at

iv
e 

N
um

be
r 

of
 C

as
es

Lockdown Date: −14
Lockdown Date: −7
Lockdown Date: Exact

Mar Apr May Jun

0
10

00
0

30
00

0

Date

C
um

ul
at

iv
e 

N
um

be
r 

of
 C

as
es

Lockdown Date: +14
Lockdown Date: +7
Lockdown Date: Exact
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Figure 8: Cumulated number of cases over time: actual (blue line); counterfactual without
lockdown (red line); counterfactual with lockdown of only one borough (all cases, grey); coun-
terfactual with lockdown of only the borough with the most cases (orange line); counterfactual
with optimally chosen borough (purple line). In the left figure, the counterfactual lockdown
effects are computed by severing all linkages to and from those assumed to be in lockdown,
while in the right figure, instead the corresponding columns and rows of matrix W(1) and
W(2) are downscaled, respectively, to 82.7% and 16.6% of their original values.
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Figure 9: Cumulated number of cases over time: actual (blue line); counterfactual with-
out lockdown (red line); counterfactual with lockdown of only two boroughs (all cases, grey);
counterfactual with lockdown of only the two boroughs with most cases (orange line); counter-
factual with optimally chosen two boroughs (purple line). In the left figure, the counterfactual
lockdown effects are computed by severing all linkages to and from those assumed to be in
lockdown, while in the right figure, instead the corresponding columns and rows of matrix
W(1) and W(2) are downscaled, respectively, to 82.7% and 16.6% of their original values.
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Figure 10: Cumulated number of cases over time: actual (blue line); counterfactual without
lockdown (red line); counterfactual with lockdown of only two boroughs (all cases, grey); coun-
terfactual with lockdown of only the three boroughs with most cases (orange line); counterfac-
tual with optimally chosen three boroughs (purple line). In the left figure, the counterfactual
lockdown effects are computed by severing all linkages to and from those assumed to be in
lockdown, while in the right figure, instead the corresponding columns and rows of matrix
W(1) and W(2) are downscaled, respectively, to 82.7% and 16.6% of their original values.
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Appendix for “COVID-19 Spread in London: Network

Effects and Optimal Lockdowns?”

A MLE details

Under a model G, the log-likelihood function given the observed panel of daily new case numbers Y for

parameters Θ(G) =
{

γ0, γ,
{

φ
(g)
0

}
g∈G

,
{

φ(g)
}

g∈G
, β, {ηi}n

i=1

}
can be written as

`(Θ | Y , G)

=
n

∑
i=1

T

∑
t=1

{
log Γ (yit + xi,t−1)− log Γ (xi,t−1)− log Γ(yit + 1)

− (xi,t−1 + yit) log
(

1 + µitx−1
i,t−1

)
+ yit

(
log µit + x−1

i,t−1

)}

where Γ(·) is the standard gamma function; µit is the conditional mean of daily new cases defined as

µit = exp (γ0 + Dtγ) xi,t−1︸ ︷︷ ︸
µAR

it

+ ∑
g∈G

exp
(

φ
(g)
0 + Dtφ

(g)
)(

∑
j 6=i

w(g)
ij xj,t−1

)
︸ ︷︷ ︸

µ
NE,(g)
it

+ exp
(

z>t β + ηi

)
Ni︸ ︷︷ ︸

µEN
it

.

Taking derivative, we have the following set of score functions:

S(Θ) =

{
Sγ0 , Sγ,

{
S

φ
(g)
0

}
g∈G

,
{

Sφ(g)

}
g∈G

, Sβ, {Sηi}
n
i=1

}
(Θ)

defined as

Sγ0(Θ) =
∂`

∂γ0
=

n

∑
i=1

T

∑
t=1

yit − µit

1 + x−1
i,t−1µit

µAR
it

µit
, Sγ(Θ) =

∂`

∂γ
=

n

∑
i=1

T

∑
t=1

yit − µit

1 + x−1
i,t−1µit

µAR
it

µit
Dt,

S
φ
(g)
0
(Θ) =

∂`

∂γ
=

n

∑
i=1

T

∑
t=1

yit − µit

1 + x−1
i,t−1µit

µ
NE,(g)
it
µit

, Sφ(g)(Θ) =
∂`

∂γ
=

n

∑
i=1

T

∑
t=1

yit − µit

1 + x−1
i,t−1µit

µ
NE,(g)
it
µit

Dt

for any g ∈ G, and

Sβ(Θ) =
∂`

∂β
=

n

∑
i=1

T

∑
t=1

yit − µit

1 + x−1
i,t−1µit

µEN
it

µit
zt,

Sηi (Θ) =
∂`

∂ηi
=

T

∑
t=1

yit − µit

1 + x−1
i,t−1µit

µEN
it

µit

for each i = 1, . . . , n.

Our MLE estimator Θ̂ solves the system of score equations, that is S(Θ̂) = 0. Standard errors are

then computed as

√
diag

({
S(Θ̂)S(Θ̂)>

}−1
)

, based on the outer product of score vectors à la Berndt,
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Hall, Hall, and Hausman (1974).

B Network impulse response function

To compute the NIRFs, we begin from the following fully vectorized representation. Define an (n ×
L)-dimension vector ỹ>t =

[
y>t , y>t−1, . . . , y>t−L+1

]> which concatenates the current and lagged-(L− 1)
observations. Then

E [ỹt+1 | Ft] =


Axt + µEN

t
yt

yt−1
...

yt−L+2



=


A ∑L−1

`=0 ν(`)yt−`
yt

yt−1
...

yt−L+2

+


µEN

t
0
0
...
0



=


Aν(0) Aν(1) · · · Aν(L− 2) Aν(L− 1)

I 0 · · · 0 0
0 I · · · 0 0
...

...
...

...
...

0 0 · · · I 0


︸ ︷︷ ︸

Ã(L)

ỹt +


µEN

t
0
0
...
0

 .

As a result, E [ỹt+τ | Ft] =
[

Ã(L)
]τ

ỹt + const., which implies that

NIRFit(τ) =
n

∑
j=1

∂E
[
yj,t+τ | Ft

]
∂yit

=
n

∑
j=1

[
Ã(L)

]τ

ji
,

where the subscript (ji) of a matrix denotes its element on the j-th row and the i-th column. Estima-
tions of the NIRFs are then calculated through plugging parameter estimates into the expression for
matrix A.
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Table A1: Estimation results of the Network-SIR model of Section 1.3 without controlling
for test-related variables. Results in columns (1)-(3) correspond, respectively, to specifica-
tions with only one of the following transmission networks: “work-to-home;” “home-to-work;”
“home-to-home”. Column (1,2,3) considers the three networks jointly while column (1,2) uses
only the first two networks.

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Autoregressive effect

exp(γ0) 0.381 0.033 0.456 0.034 0.424 0.032 0.365 0.036 0.344 0.038
exp(γ) 0.472 0.050 0.519 0.045 0.446 0.042 0.492 0.057 0.522 0.066

Network effect

W (1) = K:
exp

(
φ
(1)
0

)
0.563 0.066 0.496 0.091 0.592 0.071

exp
(

φ(1)
)

0.694 0.098 0.594 0.189 0.637 0.102

W (2) = K>:
exp

(
φ
(2)
0

)
0.076 0.021 0.000 0.000 0.041 0.021

exp
(

φ(2)
)

0.598 0.175 0.000 0.000 0.203 0.424

W (3) = KK>:
exp

(
φ
(3)
0

)
0.280 0.035 0.056 0.048

exp
(

φ(3)
)

0.518 0.073 0.696 0.779

pseudo-R2 81.86% 80.90% 81.58% 81.89% 81.89%
# obs. 3008 3008 3008 3008 3008
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Table A2: Estimation results of the Network-SIR model of Section 1.3 adding day fixed
effects. Results in columns (1)-(3) correspond, respectively, to specifications with only one
of the following transmission networks: “work-to-home;” “home-to-work;” “home-to-home”.
Column (1,2,3) considers the three networks jointly while column (1,2) uses only the first two
networks.

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Autoregressive effect

exp(γ0) 0.301 0.024 0.295 0.018 0.283 0.025 0.261 0.026 0.261 0.026
exp(γ) 0.455 0.049 0.468 0.032 0.483 0.050 0.523 0.064 0.523 0.064

Network effect

W (1) = K
exp

(
φ
(1)
0

)
0.271 0.041 0.266 0.043 0.266 0.043

exp
(

φ(1)
)

0.278 0.108 0.271 0.110 0.271 0.110

W (2) = K>

exp
(

φ
(2)
0

)
0.061 0.020 0.053 0.020 0.053 0.020

exp
(

φ(2)
)

0.000 0.000 0.000 0.000 0.000 0.000

W (3) = KK>

exp
(

φ
(3)
0

)
0.132 0.025 0.000 0.000

exp
(

φ(3)
)

0.000 0.000 1.840 0.000

pseudo-R2 86.32% 86.36% 86.32% 86.34% 86.34%
# obs. 3008 3008 3008 3008 3008
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Table A3: Estimation results of the Network-SIR model of Section 1.3 adding week fixed
effects. Results in columns (1)-(3) correspond, respectively, to specifications with only one
of the following transmission networks: “work-to-home;” “home-to-work;” “home-to-home”.
Column (1,2,3) considers the three networks jointly while column (1,2) uses only the first two
networks.

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Autoregressive effect

exp(γ0) 0.302 0.033 0.323 0.020 0.274 0.032 0.259 0.036 0.260 0.035
exp(γ) 0.621 0.079 0.660 0.077 0.718 0.109 0.716 0.094 0.716 0.114

Network effect

W (1) = K
exp

(
φ
(1)
0

)
0.351 0.062 0.362 0.065 0.355 0.064

exp
(

φ(1)
)

0.810 0.174 0.666 0.219 0.797 0.175

W (2) = K>

exp
(

φ
(2)
0

)
0.082 0.035 0.070 0.026 0.064 0.024

exp
(

φ(2)
)

0.102 0.213 0.000 0.000 0.000 0.000

W (3) = KK>

exp
(

φ
(3)
0

)
0.216 0.038 0.000 0.000

exp
(

φ(3)
)

0.420 0.101 1.562 0.000

pseudo-R2 81.25% 80.12% 81.96% 81.42% 81.27%
# obs. 3008 3008 3008 3008 3008
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Table A4: Sensitivity analysis of the Network-SIR model of Section 1.3. Results in columns
(1)-(3) correspond, respectively, to specifications with only one of the following transmission
networks: “work-to-home;” “home-to-work;” “home-to-home”. Column (1,2,3) considers the
three networks jointly while column (1,2) uses only the first two networks. The policy date is
changed to March 16.

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Autoregressive effect

exp (γ0) 0.355 0.046 0.285 0.049 0.294 0.052 0.248 0.051 0.251 0.051
exp (γ) 0.567 0.078 0.995 0.175 0.767 0.139 0.812 0.172 0.805 0.168

Network effect

W (1) = K:
exp

(
φ
(1)
0

)
0.266 0.083 0.264 0.389 0.308 0.097

exp
(

φ(1)
)

1.523 0.475 1.528 2.255 1.307 0.413

W (2) = K>:
exp

(
φ
(2)
0

)
0.197 0.042 0.117 0.095 0.130 0.043

exp
(

φ(2)
)

0.233 0.055 0.000 0.000 0.005 0.084

W (3) = KK>:
exp

(
φ
(3)
0

)
0.310 0.066 0.048 0.294

exp
(

φ(3)
)

0.436 0.102 0.000 0.000

Testing-related endemic effect

pos-to-test −2.30 0.49 −1.50 0.33 −1.70 0.41 −2.19 0.48 −2.34 0.49
lag test 2.04 0.31 2.07 0.23 2.02 0.27 2.04 0.30 2.05 0.31

pseudo-R2 81.98% 81.84% 81.88% 82.00% 82.00%
# obs. 3008 3008 3008 3008 3008
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Table A5: Sensitivity analysis of the Network-SIR model of Section 1.3. Results in columns
(1)-(3) correspond, respectively, to specifications with only one of the following transmission
networks: “work-to-home;” “home-to-work;” “home-to-home”. Column (1,2,3) considers the
three networks jointly while column (1,2) uses only the first two networks. The policy date is
changed to March 20.

Model G (1) (2) (3) (1,2,3) (1,2)
Value est. se. est. se. est. se. est. se. est. se.

Autoregressive effect

exp (γ0) 0.333 0.040 0.301 0.044 0.314 0.042 0.282 0.046 0.282 0.046
exp (γ) 0.596 0.078 0.946 0.140 0.703 0.098 0.709 0.122 0.708 0.120

Network effect

W (1) = K:
exp

(
φ
(1)
0

)
0.362 0.078 0.377 0.230 0.384 0.085

exp
(

φ(1)
)

1.134 0.247 1.073 0.664 1.059 0.234

W (2) = K>:
exp

(
φ
(2)
0

)
0.120 0.026 0.057 0.053 0.057 0.028

exp
(

φ(2)
)

0.374 0.090 0.040 0.290 0.025 0.190

W (3) = KK>:
exp

(
φ
(3)
0

)
0.245 0.044 0.004 0.143

exp
(

φ(3)
)

0.621 0.116 0.104 9.481

Testing-related endemic effect

pos-to-test −2.45 0.56 −1.79 0.35 −2.44 0.50 −2.58 0.57 −2.60 0.57
lag test 2.06 0.32 2.05 0.24 2.09 0.29 2.08 0.32 2.08 0.32

pseudo-R2 81.98% 81.86% 81.87% 81.99% 81.99%
# obs. 3008 3008 3008 3008 3008
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