Predicting Inflation with Neural Networks
Livia Paranhos
Department of Economics, University of Warwick

Highlights
- This paper applies neural networks to predict US CPI inflation, and in particular a recurrent neural network
- Neural nets present better performance than usual benchmarks, especially at the one and two-year forecast
- Recurrent neural nets are at least as good as the traditional feed forward neural net at medium-long horizons
- Macroeconomic information is important during periods of high uncertainty
- The paper also addresses the impact of the stochastic initialization of parameters on forecasting performance

Econometric framework
Consider two sets of predictive variables:

\[\mathbf{x}_t = (x_{1t}, \ldots, x_{Nt})' \]: pool of economic predictors

\[\mathbf{y}_t = (y_{1t}, \ldots, y_{Mt})' \]: CPI and its components

Let \(\mathbf{z}_L^t \) be the set collecting the current and lagged values of \(\mathbf{z}_t = \mathbf{x}_t, \mathbf{y}_t \) or \((\mathbf{x}_t, \mathbf{y}_t) \)

I suppose that inflation, \(y_t \in \mathbb{R} \), evolves nonlinearly with respect to \(z_L^t \) through a function \(G \):

\[y_{t+h} = G(z_L^t; \Theta_h) + \epsilon_{t+h} \]

Fitting the unknown function \(G : z_L^t \rightarrow y_{t+h} \) to the data corresponds to estimating \(\Theta_h \) given a network architecture, \(\mathcal{A}_h \), by minimizing

\[L = \frac{1}{T} \sum_{t=1}^{T} \left(y_{t+h} - G(z_L^t; \Theta_h) \right)^2 \]

- \(\mathcal{A}_h \): neural net model & tuning parameters
- Universal approximation theorem (Cybenko, 1989): simple neural net model can approximate any continuous function up to an arbitrary degree of accuracy

Out-of-sample performance

<table>
<thead>
<tr>
<th>Model</th>
<th>Data</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCSV</td>
<td>CPI</td>
<td>1.13</td>
<td>1.05</td>
<td>1.03</td>
<td>1.02</td>
<td>1.00</td>
</tr>
<tr>
<td>FADL</td>
<td>Pool</td>
<td>1.05</td>
<td>1.09</td>
<td>1.08</td>
<td>1.01</td>
<td>1.00</td>
</tr>
<tr>
<td>FF-cpi</td>
<td>CPI</td>
<td>1.07</td>
<td>1.01</td>
<td>1.01</td>
<td>0.98</td>
<td>0.91</td>
</tr>
<tr>
<td>FF-pool</td>
<td>Pool</td>
<td>1.09</td>
<td>bold.02</td>
<td>bold.00</td>
<td>0.94</td>
<td>0.99</td>
</tr>
<tr>
<td>LSTM-pool</td>
<td>Pool</td>
<td>1.00</td>
<td>0.93</td>
<td>1.03</td>
<td>0.93</td>
<td>0.92</td>
</tr>
<tr>
<td>LSTM-all</td>
<td>All</td>
<td>bold.08</td>
<td>bold.04</td>
<td>bold.04</td>
<td>bold.02</td>
<td>0.91</td>
</tr>
<tr>
<td>FF-LSTM</td>
<td>All</td>
<td>1.06</td>
<td>0.99</td>
<td>0.99</td>
<td>0.97</td>
<td>bold.08</td>
</tr>
</tbody>
</table>

RMSE Loss ratios with AR(1)

References