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Abstract

I develop Macroeconomic Random Forest (MRF), an algorithm adapting the canonical Machine

Learning (ML) tool to flexibly model evolving parameters in a linear macro equation. Its main

output, Generalized Time-Varying Parameters (GTVPs), is a versatile device nesting many

popular nonlinearities (threshold/switching, smooth transition, structural breaks/change)

and allowing for sophisticated new ones. The approach delivers clear forecasting gains over

numerous alternatives, predicts the 2008 drastic rise in unemployment, and performs well

for inflation. Unlike most ML-based methods, MRF is directly interpretable — via its GTVPs.

For instance, the successful unemployment forecast is due to the influence of forward-looking

variables (e.g., term spreads, housing starts) nearly doubling before every recession. Interest-

ingly, the Phillips curve has indeed flattened, and its might is highly cyclical.
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1 Introduction

The rise of Machine Learning (ML) led to great excitement in the econometrics community. In
applied macroeconomics, a first wave of papers took ML algorithms off the shelf and went hunt-
ing for forecasting gains. With the emerging consensus that some ML offerings can appreciably
increase predictive accuracy, a question emerges: what is the place of economics in all that?

The conditional mean is the most basic input to any empirical macroeconomic analysis. Any-
thing else that follows (e.g., structural analysis) depends on it. Thus, getting it right is not merely
useful, it is necessary. Clearly, in that regard, ML can help. However, while the latter gladly de-
livers prediction accuracy gains (and ergo a conditional mean closer to the truth), it is much
more reluctant to disclose its inherent model. Consequently, ML is currently of great use to
macroeconomic forecasting, but of little help to macroeconomics. I propose a simple remedy:
shifting the focus of the algorithmic arsenal away from predicting yt into modeling βt, which
are economically meaningful coefficients in a time-varying macroeconomic equation. The newly
proposed algorithm, Macroeconomic Random Forest (MRF) kills two coveted birds with one stone.
First, in most instances, MRF forecasts better than off-the-shelf ML algorithms and traditional
econometric approaches. Second, its main output, Generalized Time-Varying Parameters (GTVPs),
can be interpreted. Their versatility comes from nesting many popular specifications (structural
breaks/change, threshold effects, regime-switching, etc.) and letting the data decide whichever
combination of them is most suitable. Ultimately, we get a new methodology leveraging the
power of ML and big data to provide a modern take on the decades-old challenge of estimating
latent states driving linear macroeconomic equations.

THE STATE OF EMPIRICAL MACRO AFFAIRS. Answering positively two questions guaran-
tees a viable conditional mean: "are all the relevant variables included in the model?" and at a
higher level of sophistication, "is linearity a valid approximation of reality?". The first one led to
the successful development of factor models and large Bayesian Vector Autoregressions (VARs)
over the last two decades. To address the second, applied macroeconomic researchers have pro-
posed many non-linear time series models based on reasonable economic intuition. Most of
them amount to have regression coefficients βt in

yt = Xtβt + εt

evolving through time. The βt process can take many forms, and a choice must be made a
priori out of many equally plausible alternatives. Notable members of the vast time-variations
catalog are threshold/switching regressions (Hansen, 2011), smooth transition (Teräsvirta, 1994),
structural breaks (Perron et al., 2006; Stock, 1994), and random walk time-varying parameters
(Sims, 1993; Cogley and Sargent, 2001; Primiceri, 2005). While it is uncontroversial that factor
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models and large Bayesian VARs have gone a long way in meeting their original goals, less
victorious statements are available for the various time-variation proposals. Why?

More often than not, nonlinear time series models use little data and/or restrict stringently
the shape of βt’s path. While the consequences for forecasting are direct and obvious, those for
analysis of macroeconomic relationships are equally problematic. Is the evolving Taylor rule
characterized by switching regimes (Sims and Zha, 2006), a Volker structural break (Clarida
et al., 2000), or gradually evolving parameters (Boivin, 2005; Primiceri, 2005)? This discordance
interferes with our understanding of the past while impacting our expectations for tomorrow’s
βt. I now divide popular time-variation approaches into two strands, discuss their shortcomings,
and complete by explaining how MRF addresses them.

OBSERVABLE TIME-VARIATION VIA INTERACTION TERMS. Using interaction terms and re-
lated refinements is a parsimonious way to create time variation in a linear equation. For in-
stance, switching regimes based on an observed regressor can be obtained by interacting the
linear equation with the indicator function I(qt > c), where c is some value, and qt is a threshold
variable chosen by the researcher. However, using the FRED-QD US macro data set (McCracken
and Ng, 2016) reveals an overwhelmingly large number of candidates for qt. Additionally, there
may be multiple regimes interacting together. Or the "true" qt could be an unknown function of
available regressors. And structural breaks or slow exogenous variation could get in the way.
The list goes on. This renders a credible exploration of the threshold structures’ space impossible
and the enterprise of manually specifying the model very much compromised.

Here is an empirical example. Auerbach and Gorodnichenko (2012b) and Ramey and Zubairy
(2018) use a GDP/unemployment indicator to let the effects of fiscal stimulus (potentially) vary
with the state of the economy. Batini et al. (2012) allow for additional dependence on the origin
of the impulse (revenue or spending). Such honorable explorations could go on endlessly. MRF
provides a hammer solution to the problem. First, the near-universe of threshold structures
can be characterized by regression trees — see section 2.1. Second, MRF embeds, among other
things, a powerful greedy algorithm designed to explore such "structure" spaces.

LATENT TIME-VARIATION. Some methods with an aura of greater flexibility are labeled as
"latent change". In this line of work, βt either follows a law of motion (random walk, Markov
process) or could be subject to discrete breaks.1 At first glance, this appears to solve many of
the problems of interaction terms approaches. By treating βt as a state to be filtered/estimated
within the model, the complexity of characterizing its path correctly out of abundant data seems
to vanish. Alas, estimating βt’s path implies a great number of parameters (in fact, often greater
than the number of observations, Goulet Coulombe 2020a) which inevitably necessitates strong

1Simpler derivatives are often used in applied work. In forecasting, rolling-window estimation drops early
observations. In empirical macro, pre-defined subsamples are popular (Clarida et al., 2000; Del Negro et al., 2020).
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regularization. That regularization is the law of motion itself, a choice far from innocuous –
and akin to that of qt in "observable" change models. Accordingly, whether it is latent regime-
switching, exogenous breaks, or slow change, none can easily accommodate for the additional
presence of the other. Yet, these models are routinely fitted separately on the same data. Conse-
quently, methods often detect what they are designed to detect, in near-complete abstraction of
imaginable interference from other nonlinearities.

Additionally, while "latent" approaches may sometimes rationalize the data well in-sample,
many of them will struggle to outperform a simple benchmark out-of-sample. Often, the very
nature of βt’s law of motion creates forecasting headaches. Classical TVPs imply a two-sided vs
one-sided filtering problem. Analogously, detecting a structural break is much harder without
a great amount of data on both sides of it. Moreover, there is the obvious problem of statistical
efficiency. If the Phillips curve flattened because an economy became increasingly open, includ-
ing an interaction term with imports/exports is wildly more efficient than obtaining the whole
βt path non-parametrically. Thus, exogenous structural change should be, in some sense, a time
variation of last resort. The advantage of MRF is that it algorithmically search for "observable"
low-hanging fruits, and turn to split the sample with t only if necessary. Further, it implicitly
creates a forecasting function for βt which is an RF in its own right. This is, almost in any case,
much more powerful than existing alternatives – like random walks.

MECHANICS. The key difference when adding the M to MRF is the inclusion of a linear part
within each of the tree leaves, rather than just an intercept. Motivated in cross-sectional appli-
cations to improve the efficiency of nonparametric estimation (in the spirit of local linear regres-
sion), trees with linear parts have been considered (among others) in Alexander and Grimshaw
(1996) and Wang and Witten (1996). Friedberg et al. (2018) expand on this by considering an
ensemble of them (i.e., a forest) and focusing on the problem of treatment effect heterogeneity.
Of course, the difference here is that a linear part is much more meaningful when one can look
at βt as a process of its own – and as a synthesis of nonlinear time series models. Finally, it
is noteworthy that the approach may come in semiparametric partially linear clothing, yet it
makes no compromise on the range of nonlinearities it captures. This is a virtue of time-varying
coefficients models being able to approximate any nonlinear function (Granger, 2008).

The paper also introduces new devices enhancing MRF’s predictive and interpretability po-
tential. First, I propose Moving Average Factors (MAFs) as a simple way to compress ex-ante
the information contained in the lags of a regressor entering the RF part of MRF. They boost the
meaningfulness of tree splits and helps avoid running out of them quickly. The transformation
is motivated by the literature on constraining/regularizing lag polynomials (Shiller, 1973). Pre-
cisely, MAFs’ contribution is to induce similar shrinkage when there are no explicit coefficients
to shrink. When it comes to GTVPs themselves, I provide a regularization scheme better suited
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for time series which procures a desirably smoother path with respect to time. It is inspired
by the random walk shrinkage of the classical TVP literature and is implemented within the
tree procedure by weighted least-squares. Finally, a variant of the Bayesian Bootstrap provides
credible regions that are instrumental for the interpretation of GTVPs.

RESULTS. In simulations, the tool does comparably well to traditional nonlinear time series
models when the data generating process (DGP) matches what the latter is designed for. When
the time-variation structure becomes out of reach for classical approaches, MRF wins. Addition-
ally, it supplants plain RF whenever persistence is pervasive. In a forecasting application, the
MRFs gains are present for almost all variables and horizons under study, a rarity for nonlinear
forecasting approaches. For instance, the Autoregressive Random Forest (ARRF) almost always
supplant its resilient OLS counterpart. Also, an MRF where the linear part is a compact factor-
augmented autoregression generates very accurate forecasts of the 2008 downturn for both GDP
and the unemployment rate (UR). Inspection of resulting GTVPs reveals they behave differently
from random walk TVPs. For instance, in the UR equation, the contribution of forward-looking
variables nearly doubles before every recession — including 2008 where the associated βt is
forecasted to do so out-of-sample. This reinforces the view that financial indicators and other
market-based expectations proxies can rapidly capture downside risks around business cycle
turning points (Adrian et al., 2019). MRF learned and applied it to great success.

Inflation is subject to a variety of time-variations, detection of which would be compromised
by approaches lacking the generality of MRF. The long-run mean and the persistence evolved
slowly and in an exogenous fashion — this has been repeatedly found in the literature (e.g., Cog-
ley and Sargent 2001). More novel is the finding that the real activity factor’s effect on the price
level depends positively on the strength of well-known leading indicators, especially housing-
related. Following this lead, I complete the analysis by looking at a traditional Phillips’ curve
specification. I report that the inflation/unemployment trade-off coefficient decreased signifi-
cantly since the 1980s and also varies strongly along the business cycle. Among other things,
it is extremely weak following every recession. This nuances current evidence on the flatten-
ing Phillips curve, which, by design, focused almost entirely on long-run exogenous change
(Blanchard et al., 2015; Galí and Gambetti, 2019; Del Negro et al., 2020). Overall, MRF suggests
inflation can rise from a positive unemployment gap, but it goes down much more timidly from
economic slack. These findings are made possible by combining different tools within the new
framework, such as credible intervals for the GTVPs, new variable importance measures specif-
ically designed for MRF, and surrogate trees as interpretative devices for βt.

OUTLINE. Section 2 introduces MRF, motivates its use, considers practical aspects, and discusses
relationships with available alternatives. Sections 3 and 4 report simulations and forecasting
results, respectively. Section 5 analyzes various GTVPs of interest. Section 6 concludes.
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2 Macroeconomic Random Forests

This section introduces MRF. I first motivate the use of trees as basis functions by casting stan-
dard switching structures for autoregressions as special cases. Second, I detail the MRF mechan-
ics and how it yields GTVPs. Third, I discuss how the approach relates to both standard RF and
traditional random walk TVPs. Fourth, I discuss interpretability potential and provide a way to
assess parameter uncertainty.

2.1 Traditional Macro Non-Linearities as Trees

Within the modern ML canon, Random Forest (RF) is an extremely popular algorithm because
it allows for complex nonlinearities, handles high-dimensional data, bypasses overfitting, and
requires little to no tuning. This is in sharp contrast with, for example, Neural Networks, whose
ability to fail upon a bad choice of hyperparameters is largely unmatched. Thus, RF is a reason-
able device to look into for constructing GTVPs. But there is more: many common time series
nonlinearities fit within a tree structure. Hence, it will be all the more natural to think of MRF as
a generalization of previous nonlinear offerings. Overall, it eliminates the arbitrary search for a
specification. By creating a unified view, the myriad of time-variations suggested separately can
now be tackled jointly.

I now present two examples displaying how common time series nonlinearities imply a tree
structure for an AR process. Let us consider the inflation process in a country where inflation
targeting (IT) was implemented at a publicly known date (like in Canada). Let πt be inflation at
time t and t∗ is the onset date of IT. Additionally, gt is some measure of output gap. A plausible
model is reported in the tree graph below. The story is straightforward. Inflation behaved dif-
ferently before vs after IT. After IT, it is a simple AR process. Before IT, it was a switching AR
process which dynamics and mean depended on the sign of the output gap.2

Full Sample

t < t∗

gt−1 < 0

πt = c1 + φ1πt−1 + εt

gt−1 ≥ 0

πt = c2 + φ2πt−1 + εt

t ≥ t∗

πt = c3 + φ3πt−1 + εt

2Note that a standard regression tree would set all φ’s to 0.
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Here is a second (more intricate) example loosely inspired by Auerbach and Gorodnichenko
(2012a), Ramey and Zubairy (2018) and others. Let yt be GDP growth at time t and st be some
measure of government spending shock. The tree below tells us that only data post-1970 is of
"current" interest — the high-growth environment of pre-1970 being characterized by a different
process. The effect of spending st on growth yt depends on two variables: previous growth yt−1

(the state of the economy) and whether government spending st is expanding or contracting.
Hence, this tree allows for different mean/dynamics of growth and state-dependent effects of
spending conditional on three variables: t, yt−1 and st.

Full Sample

t ≥ 1970

yt−1 ≥ 2%

yt = c1 + φ1yt−1 + εt

yt−1 < 2%

st < 0

yt = c2 + φ2yt−1 + εt

st ≥ 0

yt = c3 + φ3yt−1 + β1st + εt

t < 1970

...

These are two stories out of many that trees can characterize. In practice, none of the above
is known. The structure, the splitting variables, and the splitting points could be different. This
is both good and bad news. It highlights the flexibility of trees. It also suggests that designing
the "true" one from economic deduction is a daunting task — equally plausible alternatives are
easily imaginable. Fortunately, algorithms can point out which trees in better agreement with
the data.

A global grid search is computationally unfeasible if either St is large or if we want to consider
more than a few splits (examples above included 2 and 3, respectively). A natural way forward
is recursive partitioning of the data set via a greedy algorithm (Breiman et al., 1984).3 A greedy
algorithm optimizes functions by iteratively doing the best local update, rather than directly
solving for a global optimum. As a result, it is prone to high variance (Friedman et al., 2001).
Hence, considering a diversified portfolio of trees appears as the most sensible route. To achieve
that, it is highly effective to use Bootstrap Aggregation (Bagging, Breiman 1996) of many de-
correlated trees. This is the famous Random Forest proposition of Breiman (2001).

3A single autoregressive tree was proposed in Meek et al. (2002).
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2.2 Generalized Time-Varying Parameters

The general model is

yt = Xtβt + εt

βt = F (St)

where St are the state variables governing time variation and F a forest. St is oberved macroe-
conomic data which composition is motivated in section 2.6 and laid out explicitly in section 4.
X determines the linear model that we want to be time-varying. For instance, an autoregressive
random forests (ARRF) – which generalizes the cases of the previous section – uses lags of yt for
Xt. The tree fitting procedure underlying plain RF is not adequate, as it sets Xt = 1 by default.
Thus, analogously to Friedberg et al. (2018), it is modified to

min
j∈J −, c∈IR

[
min

β1
∑

{t∈l|Sj,t≤c}
(yt − Xtβ1)

2 + λ‖β1‖2

+min
β2

∑
{t∈l|Sj,t>c}

(yt − Xtβ2)
2 + λ‖β2‖2

]
.

(1)

The purpose of this problem is to find the optimal variable Sj (so, finding the best j out of the
random subset of predictors indexes J −) to split the sample with, and at which value c of that
variable should we split.4 It outputs j∗ and c∗ which are used to split l (the parent node) into
two children nodes, l1 and l2. We start with the leaf l being the full sample. Then, we perform a
split according to the minimization problem, which procures us with 2 subsamples. Within each
of these two newly created subsamples, we run (1) again. Repeating this process recursively
constructs an ever-growing set of l’s which are of ever-shrinking size. Doing so until a stopping
criteria is met generates a tree.

LET THE TREES RUN DEEP. Recursively splitting β0 into β1 and β2 eventually leads to βt.
However, βt, by construction, has very little company within its terminal node/leaf. As result,
a single tree has low bias, but also very high variance for βt. When fitting a single tree, the
(early) stopping point must be tuned to avoid overfitting. However, this is not necessary when
a sufficiently diversified ensemble of trees is considered. Originally, Breiman (2001) himself pro-
vided a bound on the generalization error that grows with the correlation between trees.5 In

4Note that, unlike Friedberg et al. (2018), St and Xt will differ, which is natural when motivated from a TVP
perspective (but not so much from local linear regression one). Forcing their equivalence is not feasible nor desirable
in a macro environment.

5Also, Duroux and Scornet (2016) derive a formula (for a "median" forest) linking tuning parameters related to
the depth of the trees and that of diversification.
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Goulet Coulombe (2020b), I go further by showing that RF’s out-of-sample prediction is equiva-
lent to the optimally "stopped" or "pruned" one, provided sufficiently diversified trees. The de-
sirable property is attributed to the peculiar behavior of "randomized greedy algorithms", which
are often overlooked as mere computational necessities. Those insights are of even greater use
when it comes to time series since dependence and structural change pose challenges to hyper-
parameter tuning. Given a large enough B, a reasonable mtry and standard subsampling rate,
we can be confident that the out-of-bag prediction and βt’s exclude fitted noise. In our specific
context, it means the sample will not be over-split, and we are not going to see time variation
when it is not there. Naturally, the credible regions proposed in section 2.7 will also help in that
regard. The property will be illustrated in section 3.2.

(M)RF prediction is the simple average from those of its single trees. Same goes for βt. RF
is a clever diversification scheme which generates sufficient randomization for that average to
inherit the above properties. To achieve that, it mixes elements of re-sampling and model aver-
aging: Bagging and de-correlated trees.6

BAGGING. Each tree is "grown" on a bootstrapped sample (or a random subsample) (Breiman,
1996). When the base learner is highly nonlinear in observation and/or unstable, gains from
Bagging can be large (Breiman, 1996; Grandvalet, 2004). Nonparametric (or "pairs" MacKinnon
2006) bootstrap is being used — i.e., we are not shuffling residuals.7 Rather, we are randomly
selecting many observations triples [yt Xt St] (or pairs [yt St] for Plain RF), and then fit a tree
on them. For reasons to be detailed in section 2.7, a slightly more sophisticated bootstrapping/-
subsampling procedure will be used for MRF.

DE-CORRELATION. The second ingredient, proposed in Breiman (2001), is to consider "de-
correlated" trees. RF is an average of many trees, and any averaging scheme reduces variance at
a much faster rate if its components are uncorrelated. In our context, this is obtained by growing
trees semi-stochastically. In equation (1), this is made operational by using J − ⊂ J rather than
J . In words, this means that at each step of the recursion, a different subsample of regressors
is drawn to constitute candidates for the split. This prevents the greedy algorithm (which, as
we know, only "thinks" locally) to always embark on the same optimization route. As a result,
trees are further diversified and computing time, reduced. The fraction of randomly selected
predictors is a tuning parameter typically referred to as mtry in the literature (and all software),
with a default value of 1

3 for regression settings. This, other algorithmic parameter settings, and
some practical aspects are discussed in appendix A.4.

6See Goulet Coulombe (2020b) for a discussion on how RF compares and contrast with the forecast combination-
s/averaging literature.

7Nonetheless, Bagging in itself is not estranged to macro forecasting (Inoue and Kilian, 2008; Hillebrand and
Medeiros, 2010; Hillebrand et al., 2020). However, nearly all studies consider the more common problem of variable
selection via hard-thresholding rules – like t-tests (Lee et al., 2020).

8



Plain RF has many qualities readily transferable to MRF. It is easy to implement and to tune.
That is, it has few tuning parameters that are usually of little importance to the overall perfor-
mance – robustness. It is relatively immune to the adverse effects of including many irrelevant
features (Friedman et al., 2001). Given the standard ratio of regressors to observations in macro
data, this is a non-negligible advantage. Furthermore, with a sufficiently high mtry, it can adapt
nicely to sparsity and discard useless predictors (Olson and Wyner, 2018). Finally, its vanilla
version already shows good forecasting performance for US inflation (Medeiros et al., 2019) and
macro data in general (Chen et al., 2019; Goulet Coulombe et al., 2019).

2.3 Random Walk Regularization

Equation (1) uses Ridge shrinkage which implies that each time-varying coefficient is implicitly
shrunk to 0 at every point in time. λ and the prior it entails can exert a significant influence.
For instance, if a process is highly persistent (AR coefficient lower than 1 but nevertheless quite
high) as it is the case for SPREAD (see section 4), shrinking the first lag heavily to 0 could incur
serious bias. Fortunately, this can easily be refined to a Minnesota-style prior if Xt corresponds
to a Bayesian VAR equation. If Xt is low-dimensional (as it will often be), a simpler alternative
consists in using OLS coefficients as prior means. Nonetheless, the specification of previous
sections implies that if λ grows large, ∀t βt = 0 (or whatever the prior mean is). βi = 0 is a
natural stochastic constraint in a cross-sectional setting, but its time series translation βt = 0 can
easily be suboptimal. The traditional regularization employed in macro is rather the random
walk

βt = βt−1 + ut.

Thus, it is desirable to transform (1) so that it implements the prior that coefficients evolve
smoothly, which is just shrinking βt to be in the neighborhood of βt−1 and βt+1 rather than
0. The random walk regularization ensure that the parameter’s path will be smooth to some
extent. This is in line with the view that economic states (as expressed by βt here) last for at
least a few consecutive periods. Moreover, such shrinkage will greatly facilitate interpretation
of resulting GTVPs.

I implement the desired regularization by taking the "rolling-window view" of time-varying
parameters. That is, the tree, instead of solving a plethora of small ridge problems, will rather
solve many weighted least squares problems (WLS) which includes close-by observations. The
latter are in the neighborhood (in time) of observations within current leaf. They are included in
estimation, but are allocated a smaller weight.

For simplicity and to keep computational demand low, the kernel used by WLS is rather
rudimentary: it is a symmetric 5-step Olympic podium. Informally, the kernel puts a weight of
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1 on observation t, a weight of ζ < 1 for observations t − 1 and t + 1 and a weight of ζ2 for
observations t − 2 and t + 2. Since some specific t’s will come up many times (for instance, if
both observations t and t + 1 are within the same leaf, podiums overlap), I take the maximal
weight allocated to t as the final weight w(t; ζ).

Formally, define l−1 as the "lagged" version of leaf l. In other words, l−1 is a set containing
each observation from l, with all of them lagged one step. l+1 is the "forwarded" version. l−2

and l+2 are two-steps equivalents. For a given candidate subsample l, the podium is

w(t; ζ) =



1, if t ∈ l

ζ, if t ∈ (l+1 ∪ l−1)/l

ζ2, if t ∈ (l+2 ∪ l−2)/ (l ∪ (l+1 ∪ l−1))

0, otherwise

where ζ < 1, a tuning parameter guiding the level of time-smoothing. Then, it is only a matter of
how to include those additional (but down weighted) observations in the tree search procedure.
The usual candidate splitting sets

l1(j, c) ≡ {t ∈ l|Sj,t ≤ c} and l2(j, c) ≡ {t ∈ l|Sj,t > c}

are expanded to include all observations of relevance to the podium

for i = 1, 2 : lRW
i (j, c) ≡ li(j, c) ∪ li(j, c)−1 ∪ li(j, c)+1 ∪ li(j, c)−2 ∪ li(j, c)+2.

The splitting rule becomes

min
j∈J −, c∈IR

[
min

β1
∑

t∈lRW
1 (j,c)

w(t; ζ) (yt − Xtβ1)
2 + λ‖β1‖2

+min
β2

∑
t∈lRW

2 (j,c)

w(t; ζ) (yt − Xtβ2)
2 + λ‖β2‖2

]
.

(2)

Note that the Ridge penalty is kept in anyway, so the final model has in fact two sources of
regularization. With ζ → 0, we are heading back to pure Ridge.

Although not considered in the main applications of this paper, models with a larger linear
part Xt are possible. For instance, one could estimate, equation by equation, a high-dimensional
VAR. In practice, this simply requires harsher regularization via higher values of λ, ζ and a
larger minimum leaf size. Nevertheless, the forecasting benefits from this strategy could prove
limited: MRF is "high-dimensional" whenever St is large. The time-varying constant in MRF is
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a RF in its own right. It can be seen as a complex misspecification function (in the deep learning
jargon, it is effectively called the bias) that adaptively controls for omitted variables in a way
that is both non-linear and strongly regularized via randomization. Consequently, the cost from
omitting a regressor of minor importance in Xt is low since it can be picked up by the time-
varying intercept.

Of course, the small Xt strategy treats the extra regressors as exogenous, which could be
at odds with some researchers’ will to investigate a large web of impulse response functions.
Anyhow, both approaches are possible. It turns out large VAR specifications also deliver good
results within MRF. In appendix A.1, the high-dimensional VAR MRF (HD-VARRF) provides the
best 1-year ahead forecasts for both unemployment and GDP – signaling a (albeit smaller than
realized) recession up to a year ahead.

2.4 Relationship to Random Walk Time-Varying Parameters

GTVPs have many advantages over classical TVPs. While it is known that any nonlinear model
can be approximated by a linear one with TVPs (Granger, 2008), nothing is said about how
efficient that estimation is going to be. As it turns out, efficiency crucially matters in a macro
context, and random-walk TVPs can be quite inefficient (Aruoba et al., 2017). For example, if the
true βt follows a recurrent switching mechanism, random walk parameters already have two
strikes against them. Some dimensionality reduction techniques – like reduced-rank restrictions
(de Wind and Gambetti, 2014; Stevanovic, 2016; Chan et al., 2018; Goulet Coulombe, 2020a) –
can help, but nothing in that paradigm can come close to the parsimony of simply interacting Xt

with relevant variables. In contrast, MRF considers all time-variations options, and choose the
"obvious thing", which may or may not be splitting on t. Also, it is absolutely possible that the
resulting F pools both latent and observable time variation.

Even though MRF is remarkably flexible, its variance remains low thanks to the diversi-
fied portfolio of trees. The variance of classical TVPs can be controlled by cross-validation
(Goulet Coulombe, 2020a) or via an elaborate hierarchical prior (Amir-Ahmadi et al., 2018). A
number of applications opt for a "manual" approach (D’Agostino et al., 2013). However, it is
understood that no tuning, however careful it may be, can overcome the hardship of fitting
random-walks when the true βt’s look nothing like it.

Econometrically, one way to more formally connect this paradigm to recent work on TVPs is
to adopt the view that RF are adaptive kernel estimators (Meinshausen, 2006; Athey et al., 2019;
Friedberg et al., 2018). That is, the tree ensemble is a machine generating kernel weights. Once
those are obtained, estimation amounts to weighted least squares (WLS) problem with a Ridge
penalty. By running (1) recursively, one obtains terminal nodes/leaves Lb() to construct kernel
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weights

αt (x0) =
1
B

B

∑
b=1

1 {Xt ∈ Lb (x0)}
|Lb (x0)|

to use in

∀t : argminβt

{
T

∑
τ=1

αt (sτ) (Yτ − Xτβτ))
2 + λ‖βt‖2

}
. (3)

As shown in Goulet Coulombe (2020a), standard random walk TVPs are in fact a smoothing
splines problem, and for those, a reproducing kernel exists (Dagum and Bianconcini, 2009). Gi-
raitis et al. (2014) drop the random walk altogether and proposed to use kernels directly. Any-
how, in both cases, the only variable entering the kernel is t. In other words, only proximity in
time is considered for the clustering of observations. This makes the seemingly flexible estima-
tor in fact quite restrictive – and dependent on its inherent smoothness prior. Moreover, stan-
dard kernel methods are known to break down even in medium dimensions (say <10 variables)
(Friedberg et al., 2018). Therefore, augmenting t with additional regressors is not an option. No
such constraints bind on the RF approach.

2.5 Relationship to Standard Random Forest

The standard RF is a restricted version of MRF where Xt = ι, λ = 0 and ζ = 0. In words, the only
regressor is a constant and there is no within-leaf shrinkage. Previous sections motivated MRF
as a natural generalization of non-linear time-series models. At this point, a reasonable question
emerges from a ML standpoint. Why should we prefer the partially linear MRF to the fully
nonparametric RF? One reason is statistical efficiency. The other is potential for interpretation.

2.5.1 Smooth Relationships are Hard Relationships (to estimate)

In finite samples, plain RF can have a hard time learning smooth relationships – like a AR(1)
process. This is bad news for time series applications. For prediction purposes, estimating

yt = φyt−1 + εt

by OLS implies a single parameter. However, approximating the same relationship with a tree
(or an ensemble of them) is far more consuming in terms of degrees of freedom. To get close
to the straight line once parsimoniously parametrized by φ, we now need a succession of many
step functions.8 With short time series, modeling smooth/linear relationships in such a way is a

8In a standard regression setup, nobody would model a continuous variable as an ordinal one unless some wild
nonlinearities are suspected.
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luxury one rarely can afford. The mechanical consequence is that RF will waste many splits on
capturing the linear part, and may run out of them before it gets to focus more subtle nonlinear
phenomena.9 In a language more familiar to economists, this is simply running out (quickly)
of degrees of freedom. MRF provides a workaround. Modeling the linear part concisely leaves
more room to estimate the nonlinear one. By its more strategic budgeting of degrees of freedom,
the resulting (estimated) partially linear model could be, in fact, more non-linear than the fully
nonparametric one.

This paper is not the first to recognize the potential need for a linear part in tree-based models.
For instance, both Alexander and Grimshaw (1996) and Wang and Witten (1996) proposed linear
regressions within a leaf of a tree, respectively denominated "Treed Regression" and "Model
Trees". More focused on real activity forecasting, Woloszko (2020) and Wochner (2020) blend
insights from macroeconomics to build better-performing tree-based models.10 On a different
end of the econometrics spectrum, Friedberg et al. (2018) proposed to improve the nonparametric
estimation of treatment effect heterogeneity by combining those ideas developed for trees into a
forest.11 To my knowledge, this paper is the first to exploit the link between this strand of work
and the sempiternal search for the "true" state-dependence in empirical macroeconomic models.

2.5.2 A Note on Interpretability

The interpretation of ML outputs is now a field of its own (Molnar, 2019). RF is widely regarded
as a black box model which needs to be interpreted using an external device. Indeed, it usually
averages over 100 trees of substantial depth, which makes individual inspection impossible.
MRFs partially circumvent the problem by providing time series βt which can be examined, and
have a meaning as time-varying parameters for the linear model. Thus, whatever one may do
with TVPs, it can be done with GTVPs. There are also some new avenues. For instance, Variable
Importance (VI) measures usually deployed to dissect RF’s prediction can be used to inspect
what is driving βt’s. Those will be used in section 5.3.

A popular approach to dissect a standard RF is to use interpretable surrogate tree models to
partially replicate the black box model’s fit. The idea can be transferred to MRF (Molnar, 2019).
In fact, partial linearity facilitates such an exercise. The linear part in MRF splits the nonpara-
metric atom into different pieces (Xt,kβt,k) which can be analyzed separately. Each time series βt,k

can be dissected with its own surrogate model, and meaningful combination/transformations

9One necessary (but not sufficient) symptom is AR terms being flagged as really important by typical RF variable
importance measures (one example is Borup et al. (2020b)).

10Specifically, Wochner (2020) also note that using trees in conjunction with factor models can improve GDP
forecasting. An analogous finding will be reported in section 4.

11More broadly, this is extending to trees and ensemble of trees the "classical" non-parametrics literature’s knowl-
edge that local linear regression usually has much better properties (especially at the sample boundaries) than the
Naradaya-Watson estimator.
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of coefficients can be considered.

2.6 Engineering St

This section discusses principles guiding the composition of St, which is the raw material for F
in both MRF and plain RF. Macroeconomic data sets (e.g. FRED, McCracken and Ng 2020) typi-
cally contains many regressors and few observations. After incorporating lags for each variable,
it can easily be the case that predictors outnumber observations. The curse of dimensionality
has both computational and statistical ramifications. The former is mostly avoided in RF since it
does not rely on inverting a matrix. However, the statistical curse of dimensionality, a feature of
the regressors/observations ratio, remains a difficulty to overcome.
NO NEED TO CHOOSE. There are two extreme ways of reducing dimensionality: sparse or
dense. The former selects a small number of features out of the large pool in a supervised way
(e.g. LASSO), the latter compresses the data in a set of latent factors that should span most of
the original regressors space. This is often seen as a necessity to choose one of them.12 However,
in a regularized model, both can be included, and we can let the algorithm select an optimal
combination of original features and factors. This is useful — it is not hard to imagine a situation
where opting for one or the other would prove suboptimal to a more nuanced solution.

To appreciate this point, let us put RF aside for a moment, and look at a high-dimensional
linear regression problem. Suppose we define St = [Xt Ft] and by construction the factors are
some linear combination of original features (Ft = XtR).13 We can estimate

yt+1 = Xtβ + XtRγ + ut (4)

using LASSO. Of course, this would not run with OLS because of perfect collinearity, which is
the standard motivation for not mixing dense and sparse approaches. By Frisch-Waugh-Lowell
theorem and the factor model

Xt = ΛFt + et,

(4) above is equivalent to
yt+1 = etβ + Ftγ + ut.

At first sight, this has more parameters than either the dense or sparse approach. However, with
some adequate penalization of β and γ, the model can balance a proper mix of dense and sparse.
For instance, activating some β’s "corrects" the overall prediction when the factor model repre-

12In macro forecasting work using RF, Goulet Coulombe et al. (2019) follow a dense approach by only including
factors while Borup et al. (2020a) opt for sparsity by proposing a Lasso pre-selection step.

13Note that in this section only, Xt denotes generic raw regressors rather than MRF’s linear part. This switch
allows for the use of familiar-looking notation.
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sentation is too restrictive for the effect of a specific regressor Xk on yt+1.14 This representation
has been studied in Hahn et al. (2013) and Hansen and Liao (2019) to enhance hard-thresholding
methods’ performance (like LASSO) in the presence of highly correlated regressors. Coming
back to RF, this means its strong regularization/selection allows for both the original data and
its rotation to be included in St. This also suggests it is relatively costless to explore alternative
rotations of Xt.
LAG POLYNOMIALS. From a predictive standpoint, residuals autocorrelation implies there is
forecasting power left on the table. To get rid of it, many lags might be necessary. In multivariate
contexts (like that of a VAR), doing so quikcly pushes the model to overfit. A standard solution
is Bayesian estimation and the use of priors in the line of Doan et al. (1984), which are specially
designed for blocks of lags structures. Outside of the VAR paradigm, there is an older literature
estimating restricted/regularized lag polynomials in Autoregressive Distributed Lags (ARDL)
models (Almon, 1965; Shiller, 1973). More recently, these methods have found new applications
in mixed-frequency models (Ghysels et al., 2007) where the design of the model leads to an
explosion of lag parameters.

(M)RF experiences an analogous situation. A tree may waste many splits trying to efficiently
extract information out of a lag polynomial: for instance, splitting on the first lag, then the 7th
one, then the 3rd one. In linear parametric models, the above methods can extract the relevant
information out of a lag polynomial without sacrificing many degrees of freedom. A significant
roadblock to this enterprise in the RF paradigm is that there are no explicit lag polynomials
to penalize. An alternative route is to exploit the insight that RF can choose for itself relevant
restrictions. We just have to construct regressors that embodies those, and include them in St.

MOVING AVERAGE FACTORS. To extract the essential information out of the lag polynomial of
a specific variable, a linear transformation can do the job. Consider forming a panel of P lags of
variable j:

X1:P
t,j ≡ [Xt−1,j ... Xt−P,j] .

We want to form weighted averages of the P lags so that it summarizes most efficiently the
temporal information of the feature indexed by j.15 The weighted averages with that property
will be the first few factors (extracted by PCA) of X1:P

t,j .16 This can be seen as the time-dimension
analog to the traditional cross-sectional factors. The latter are defined such as to maximize their
capacity to replicate the cross-sectional distribution of Xt,j fixing t while the Moving Average
Factors (MAFs) proposed here seek to represent the temporal distribution of Xt,j for a fixed j

14That problem has been documented in Bai and Ng (2008) and others.
15P is a tuning parameter the same way the set of included variables in a standard factor model is one.
16While I work directly with the latent factors, a related decomposition called singular spectrum analysis works

with the estimate of the summed common components. Since this decomposition naturally yields a recursive for-
mula, it has been used to forecast macroeconomic and financial variables (Hassani et al., 2009, 2013).
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in a lower-dimensional space.17 By doing so, our goal to summarize the information of X1:P
t,j

without modifying the RF algorithm (or any other) is achieved: rather than using the numerous
lags as regressors, we can use the MAFs which compress information ex-ante. As it is the case
for standard factors, MAF are designed to maximize the explained variance in X1:P

t,j , not the fit
of the final target. It is the RF part’s job to select the relevant linear combinations among St so
to maximize the fit. Finally, it is noteworthy that MAFs facilitate interpretation. As these are
moderately sophisticated averages of a single time series, they can be viewed as a smooth index
for a specific (but tangible) economic indicator. This is arguably much easier to interpret than a
plethora of lags coefficients.

The take-away message from this subsection can be summarized in three points. First, there
is no need to choose ex-ante between sparse and dense when the model performs selection/reg-
ularization. We can let the algorithm find the optimal balance. Second, to make the inclusion
of many lags useful, we need to regularize the lag polynomial. Third, such compression can be
achieved most easily by generating MAFs and using those as regressors in RF – or any algorithm.

2.7 Quantifying Uncertainty of βt’s Estimates

Taddy et al. (2015) and Taddy et al. (2016) interpret RF’s prediction as the posterior mean of
a tree functional T (the splitting algorithm) obtained by an approximate Bayesian bootstrap.18

Through those lenses, each tree is a posterior draw. Seeing T as a Bayesian nonparametric
statistic (independently of the DGP) is of even greater interest in the case of MRF.19 It provides
inference for meaningful time-varying parameters βt rather than an opaque conditional mean
function. Such techniques, originating from Ferguson (1973), have seldomly found applications
in econometrics, such as Chamberlain and Imbens (2003) for instrumental variable and quantile
regressions.

While the Bayesian Bootstrap desirably does not assume many things about the data, it yet
makes the assumption that Zt = [yt Xt St] is an iid random variable. Thus, it cannot be used
directly as a proper theoretical motivation for using the bag of trees directly to conduct inference.
I propose a block extension to make Taddy et al. (2015)’s convenient approach amenable to this
paper’s setup.

17In the spirit of the Minnesota prior, one can assign decaying (in p) weights to each lag before running PCA. This
has the analogous effect of shrinking more heavily the distant lags and less so the recent ones.

18The connection between Breiman (1996)’s bagging and Rubin (1981)’s Bayesian Bootstrap was acknowledged
earlier in Clyde and Lee (2001).

19An alternative (frequentist) inferential approach is that of Friedberg et al. (2018). However, their asymptotic
argument requires estimating the linear coefficients and the kernel weights on two different subsamples. This is
hard to reconciliate with our goal of modeling time-variation and different regimes throughout the entire sample.
Furthermore, when the sample size is small, splitting the sample in such a way carries binding limitations on the
complexity of the estimated function.
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BLOCK BAYESIAN BOOTSTRAP. BBB is a conceptual workaround to reconcile time series data
with multinomial sampling. First, I briefly review the standard Bayesian Bootstrap. Let all the
available data be cast in the matrix Zt = [yt Xt St]. Z is considered as a discrete iid random vari-
able with T support points. Define Nt = ∑T

τ=1 I (Zτ = zt), which is the number of occurrences of
zt in the sample. The goal is to conduct inference on the data weight vector θ1:T, and then obtain
credible regions for the posterior functional βt = T (θ1:T). To do so, we need to characterize the
posterior distribution of vector θ (stripped of its subscript for readability)

π(θ|z) = f (z|θ)π(θ)∫
f (z|θ)π(θ)dθ

.

Conditional on θ, the likelihood of the data is multinomial. The prior is Dirichlet. Since Dirichlet
is the conjugate prior of the multinomial distribution, the posterior is also Dirichlet. That is, it
can be shown that combining the likelihood

f (z|θ) = N!
N1! · · ·NT!

T

∏
t=1

θNt
t with prior distribution π(θ) =

1
B(α1:T)

T

∏
t=1

θNt+αt−1
t

gives rise to the posterior distribution

π(θ|z) = 1
B(ᾱ1:T)

T

∏
t=1

θNt+αt−1
t .

where ᾱt = αt + Nt and B(ᾱ1:T) = ∏T
t=1 Γ(ᾱt)

Γ(∑T
t=1 ᾱt)

. Using the uninformative (and improper) prior

αt = 0 ∀t, we can simulate draws from the (proper) posterior using θt ∼ Exp(1). The object of
scientific interest is typically not θ per se but rather a functional of it. In Taddy et al. (2015), the
functional of interest is a tree and inference is obtained by computing T (θ1:T) for each θ1:T draw.

BBB is a simple redefinition of Z so that it is plausibly iid. Hence, in the spirit of traditional
frequentist block bootstrap (MacKinnon, 2006), blocks of a well-chosen size will be exchangeable.
Thus, a new variable can be defined Zb ≡ [yb:b̄ Xb:b̄ Sb:b̄]. There will be a total of B = T/block size

fixed and non-overlapping blocks. Under covariance stationarity, Z̃b = vec(Zb) are iid, for a
properly chosen block length.20 The derivations above can be carried by replacing t by b and
T by B. Practically, this implies drawing θb ∼ Exp(1) which means observations within the
same block (b : b̄) share the same weight. As an alternative to this BBB that would also be
valid under dependent data, Cirillo and Muliere (2013) provide a more sophisticated urn-based
approach with theoretical guarantees. It turns out their approach contains the well-known non-
overlapping block bootstrap as a special case, which the above is only its Bayesian rendition.

20In practice, I will use block of two years for both quarterly or monthly data.
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Analogously to Taddy et al. (2015), block-subsampling is preferred to BBB in implementations
since it is faster and gives nearly identical results.

It is reasonable to wonder how the above procedure deals with the possible presence of het-
eroscedasticity. Fortunately, the nonparametric bootstrap/subsampling that RF uses is in fact the
"pairs" bootstrap of Freedman et al. (1981) which is valid under general forms of heteroscedastic-
ity (MacKinnon, 2006).21 From a Bayesian point of view, Lancaster (2003) show that the obtained
variance for OLS from using such a bootstrap is asymptotically equivalent to that of White’s
sandwich formula.22 Hence, in the spirit of heteroscedasticity-robust estimation, no attempt will
be made at directly evolving volatility (which is a GLS approach). Rather, it will be reflected in
larger bands for periods of smaller signal-to-noise ratio.

3 Simulations

Simulations are divided in two parts. The first shows that Autoregressive Random Forest (ARRF)
delivers forecasting gains over standard nonlinear time series model when the true DGP mixes
both endogenous and exogenous time-variation. Moreover, the former is very resiliant against
traditional approaches, even when the DGP matches the latter’s restrictive assumptions. Addi-
tionally, those simulations will numerically document the superiority of ARRF over RF when the
AR part is pervasive (as discussed in section 2.5.1). Overall, this helps rationalizing forecasting
results from section 4, where ARRF supplants ∼TARs for the vast majority of targets.

The second simulations section considers simpler linear parts and look at how the algorithm
behaves when St is large. Further, I focus on βt itself and its credible regions. The main point is
to visually show that (i) GTVPs adapts nicely to a wide range of DGPs and (ii) are not prone to
crying wolf on time-variation.

3.1 Comparison of ARRF to Traditional Nonlinear Autoregressions

I consider 6 DGPs: Autoregression (AR), two Self-Exciting Threshold ARs (SETAR), SETAR with
a structural break, AR with a structural break and finally a SETAR model that collapse to an
AR (via a structural break). Those DGPs allow to span the space of time-variations I wish to
investigate: endogenous, exogenous and both together. Precisely, the DGPs include two types of

21From a purely predictive point of view, Grandvalet (2004) also stresses the point that bagging provides impor-
tant improvements when there is "badness" in the data, that is, the presence of uninformative leverage points. Those
improvements are shown to be especially meaningful for unstable algorithms such as regression trees.

22Poirier (2011) propose better priors and Karabatsos (2016) incorporate such ideas into a generalized ridge re-
gression.
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switching variable: yt−1 and t.23 For all DGPs, Xt = [1 yt−1 yt−2]. The simulated series sample
size is either T = 150 or T = 300.24 The last 40 observations of each sample consist the hold-out
sample for evaluation. I forecast 4 different horizons: h = 1, 2, 3, 4. Models are estimated once at
the last available data point.

MODELS. SETAR, Rolling-Window (RW) AR, Random Forest (RF) and Autoregressive Random
Forest (ARRF) are included. Iterated SETAR forecasts are obtained via the standard bootstrap
method (Clements and Smith, 1997) and all the others are generated via direct forecasting. That
is, in the latter case, I fit the model directly on yt+h rather than iterating forward the one-step
ahead forecast. To certify that the observed differences between SETAR and other models is not
merely due to the choice of iterated vs direct forecasts – a non-trivial choice in many environ-
ments (Chevillon, 2007) –, I also include SETAR-d where "d" means its forecasts were alterna-
tively obtained by direct forecasting.

In all simulations, ARRF’s St includes 8 lags of yt and a time trend, which match what will
be referred to in section 4 as "Tiny ARRF". Thus, unlike ∼TARs, it is "allowed" to split on what
we know (by the DGP choices) to be useless regressors (especially at horizon h = 1).

PERFORMANCE METRIC. Performance is evaluated using the mean squared prediction error
(MSPE). In simulation s, for the forecasted value at time t made h steps ahead, I compute

RMSEh,m =

√√√√ 1
40× 100

100

∑
s=1

∑
t∈OOS

(ys
t − ŷs,h,m

t−h )2.

100 different simulations are considered, which means the total number of squared errors being
averaged for a given horizon and model is 100×40=4000. To provide a visually useful normal-
ization, bar plots report RMSEh,m’s relative to that of the oracle. Formally, the metric is

∆oRMSEh,m =
RMSEh,m

RMSEh,o
− 1.

It is worth specifying what is meant by "oracle". It knows perfectly the law of motion of time-
varying parameters βt. Precisely, if the model has a break and a switching variable, it knows
exactly the break points, thresholds and AR parameter values in each regime. The only things the
oracle does not know are the future shocks (εt+h), and the out-of-sample evolution of parameters
(βt+h) – unless the latter is purely deterministic.

23Since a structural break is just a threshold effect with respect to variable t, one can conclude without loss of
generality that similar results would be obtained using different additional switching variable.

24∼TAR packages in R provide functions to simulate from nonlinear models.
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3.1.1 No Time-Variation

Given the incredible resilience of AR models in any macroeconomic forecasting exercise, a time-
invariant DGP is the inevitable place to start.

DGP 1: Plain AR(2). The first DGP being considered is an autoregressive process of order 2

yt = Xtβ + εt, εt ∼ N(0, 0.252)

β = [0.7 − 0.2]

which results are reported in Figure 1a. As it should be, AR is the best model for all horizons
and both sample sizes. The RW-AR suffers from high variance and it is assumed that tuning the
window length in a data-driven way would help, but is not the point here. Plain RF struggles,
irrespective of the sample size.25 For the smaller sample, ARRF performs as well as the tightly
parametrized SETARs. Their marginal increases in RMSE with respect to the oracle are typically
less than 10%, which is small in contrast to simulations yet to come. More observations generally
helps AR, the iterated SETAR, and ARRF especially at longer horizons.

3.1.2 Endogenous Time-Variation

I now consider cases where parameters vary according to past values of yt itself.

DGP 2: SETAR. The DGP represents an endogenous switching process which could plausibly
suit well real activity variables: it includes high/low regimes, and mildly different dynamics in
each of them. In this first SETAR example

yt = Xtβt + εt, εt ∼ N(0, 0.52)

βt =

[2 0.8 − 0.2], if yt−1 ≥ 1

[0 0.4 − 0.2], otherwise,

AR models are doing badly by not capturing the change in mean and dynamics. It is notewor-
thy that in this DGP, predictive power quickly vanishes after h = 1, which is why we observe
little performance heterogeneity at longer horizons in Figure 1b: those are dominated by the
unshrinkable prediction error.

Specifically tailored for this class of DGPs, the two SETARs are offering the best perfor-
mance. A less trivial observation is that ARRF and RF, while much more general, perform only
marginally worse than SETARs. The tie between ARRF and RF is attributable the importance of

25This will be a recurring theme. If the DGP is linear, RF never performs well. The strength of this finding is only
magnified when Xt’s dimension grows, in line with the discussion in section 2.5.1.
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(a) DGP is AR(2).

(b) DGP is SETAR.

(c) DGP is Persistent SETAR.

Figure 1: Displayed are increases in relative RMSE with respect to the oracle.
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the switching constant in the current DGP, which both models allow for.

DGP 3: MORE PERSISTENT SETAR. The increased persistence in

yt = Xtβt + εt, εt ∼ N(0, 0.52)

βt =

[2 0.8 − 0.2], if yt−1 ≥ 0

[0.25 1.1 − 0.4], otherwise

makes results at higher horizons of greater interest in Figure 1c. In the previously considered
SETAR, the forecasting ability of the oracle was practically null beyond h = 2. For all horizons
and sample sizes considered, ARRF is practically as good as SETAR, the optimal model in this
context. With the increased importance of changing dynamics relative to that of a changing
mean, RF is now trailing behind with RW-AR. Nevertheless, the former improves substantially
at shorter horizons when the sample size increase. Finally, AR is resilient at longer horizons but
is much worse than ARRF and SETAR at shorter ones.

3.1.3 Exogenous Time-Variation

I report results for a simple case where βt varies exogenously – that is, according to time t.

DGP 4: AR(2) WITH A BREAK. Results for

yt = Xtβt + εt, εt ∼ N(0, 0.32)

βt =

[0 0.7 − 0.35], if t < T/2

[0.15 0.6 0], otherwise

are reported in Figure 1e. In this setup, RW-AR is expected to have an edge, with the estimation
window excluding pre-break data. At horizon 1, both RW-AR and ARRF are the best model,
beating the robust AR by a thin margin. For h > 1, ARRF emerges as the best model at both 150
and 300 sample sizes. Naturally, RW-AR is always close behind.26 As expected, the two models
are better than the remaining alternatives by allowing for exogenous structural change (which
SETARs and AR do not) and explicitly modeling the autoregressive part (which RF does not).

3.1.4 Exogenous & Endogenous Time-Variation

The two sources of time-variation are now combined to display ARRF’s edge in these not so
implausible situations.

26Although not reported here, I considered a simple linear model where I search for a single break (in time) and
use the data after the break for forecasting. This option does as well as ARRF for this particular DGP.
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(d) DGP is AR(2) with structural break.

(e) DGP is SETAR with a break.

(f) DGP is SETAR morphing into AR(2).

Figure 1: (Continued) Displayed are increases in relative RMSE with respect to the oracle.
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DGP 5: SETAR WITH A STRUCTURAL BREAK. Until now, I have focused on dynamics that
can be captured successfully by currently available time series models. The point of this paper
is that most of these models may suffer from serious misspecification issues when estimated
on real data. Hence, I introduce here what is possibly the simplest example where structural
breaks and switching interact.27 SETARs are expected to fail because they are not designed to
catch breaks. RW-AR is also expected to fail because it does not model switching. RF is general
enough, but is anticipated to be inefficient. All these heuristics for

DGP 4 =

DGP 2, if t < T/2

DGP 3, otherwise

are verified in Figure 1d: ARRF is the better model followed closely by RW-AR and RF for short
horizons. With 300 observations, the lead of ARRF, as well as the second position of RF, are both
strengthened. At longer horizons, all models perform poorly (including the oracle) due to the
fundamental unpredictability of the law of motion for βt. For these horizons, misspecification
only plays a minor role in total forecast error variance, explaining the small and homogeneous
decrease in performance with respect to the oracle.

DGP 6: SETAR MORPHING INSTANTLY INTO AR(2). The goal of this last DGP is to consider
a mixture of endogenous and exogenous time-variation with more interesting results at longer
horizons. Further,

DGP 6 =

DGP 2, if t < T/2

DGP 1, otherwise

can rightfully be hypothesized for some economic time series: complex dynamics up until the
mid-1980’s followed by a very simple autoregressive structure during the Great Moderation.
ARRF comes out as the best model for all horizons in the smaller sample. For horizon 1, RW-AR
does equally well, which is expected in this DGP. With respect to the plain exogenous time-
variation scenario in Figure 1e, both SETAR and RF’s performances have further deteriorated in
the smaller sample size.

ABOUT MISSPECIFICATION IN ARRF. Most of the reported gains from using ARRF come from
avoiding misspecification when a more complex DGP arises. What happens if the arbitrary
linear part in ARRF, Xt, is itself misspecified? Figure 15 in the appendix report corresponding
results. For all DGPs under consideration, a "Bad" ARRF, where Xt is composed of two white

27Without loss of generality, the threshold according to t could be replaced by a threshold according to any other
variable.
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noise series (instead of the first two lags of yt), performs similarly well (or bad) as plain RF.28

SUMMARY. First, when the true DGP is that of the tightly parametrized classical nonlinear time
series model, those perform better than ARRF – but marginally. Second, when it is not the
case, the more flexible ARRF does better. Third, when there are pervasive linear autoregressive
relationships, plain RF struggles. Fourth, ARRF and RF relative performance both increase with
the number of observations but ARRF’s one increases faster if the linear part is well-chosen.

3.2 A Look at GTVPs when St is Large

A notable difference between the simulations presented up to now and the applied work being
carried in later sections is the size of St. In many macro applications, there is no shortage of
variables to include in MRF’s F . For instance, the FRED-QD data base (McCracken and Ng,
2016) contains over 200 potential predictors that can join lags of y and a time trend within St.
In addition to lessened misspecification concerns, RFs will also benefit from more data through
increased randomization (Breiman, 2001). Precisely, it prevents fully-grown trees (or any greedy
algorithm) from overfitting (Goulet Coulombe, 2020b).

The additional simulations go as follow. First, I simplify the analysis by looking at a static
model with mutually orthogonal but autocorrelated regressors X1 and X2, both driving yt ac-
cording to some process. I simulate each of them for 1000 periods and estimate the models with
the first 400 observations. The remaining 600 are used to evaluate the out-of-sample perfor-
mance. The signal to noise ratio is calibrated to 2/3 which is about what is found (out-of-sample)
for most models in the empirical section.

The only remaining questions are that of the constitution of St and the generation of βt’s. I
create two autocorrelated (but not cross-correlated) factors. Out of each of them, I create 50 series
with a varying amount of additional white noise.29 Joining those 100 series with lags of yt and a
time trend, the final size of St is slightly above 100. Finally, βt’s are functions of the underlying
first factor which (like the second) is not directly included in the data set. In certain DGPs, some
βt’s will also be a pure function of t (like random walks, structural breaks).30 Table 1 summarizes
the six DGPs in words. More illustratively, Figure 16 plots one example of each DGPs as well as
the estimated GTVPs and their credible region (as discussed in section 2.7). It is visually obvious

28This result may not hold, however, when the law of motion for the intercept is highly complex and requires a
great number of split (unlike what is considered here). This is due to the linear part restricting the depth of trees
(with to what plain RF could allow for), especially if observations are scarce. In that regard, increasing the ridge
penalty (via λ) will help. Nevertheless, in practice, it is a safer bet to use a small linear part if uncertainty around its
composition is high. More on this and the effect of hyperparameters can found in appendix A.4.

29To be precise, their standard deviation is U[0.5, 3]% that of the original factor standard deviation.
30To clarify, the second factor and underlying series are completely useless to the true DGP – arguably mimicking

the inevitable when using a data base of the size of FRED-QD.
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that GTVPs are adaptive in the sense that it can discover which kind of time-variation is present
in the data while estimating it.

Table 1: Summary of Data-Rich Simulations DGPs

DGP # Intercept βX1
t βX2

t Residuals Variance

1 Switching Switching Switching Flat
2 Flat Switching Slow Change (function of t) Flat
3 Flat Switching Structural Break Flat
4 Flat Latent factor directly Slow Change (function of t) Flat
5 Flat Random Walk Random Walk Flat
6 Flat Flat Flat Stochastic Volatility

Figure 17 reports distributions of RMSE differentials with respect the oracle (the forecast that
knows the βt’s law of motion). MRF performance is compared to OLS, Rolling-Window OLS
(RW-OLS) and plain RF. As expected, MRF outperforms all alternatives by wide margins for
most DGPs. By construction, RW-OLS and OLS also perform well for DGP 5 (random walks)
and DGP 6 (constant parameters). Nonetheless, it is reassuring to see that MRF either performs
much better than OLS or worse by a thin margin (in cases with no time-variation).

4 Macroeconomic Forecasting

In this section, I present results for a pseudo-out-of-sample forecasting experiment at the quar-
terly frequency using the dataset FRED-QD (McCracken and Ng, 2020). The latter is publicly
available at the Federal Reserve of St-Louis’s web site and contains 248 US macroeconomic
and financial aggregates observed from 1960Q1. The forecasting targets are real GDP, Unem-
ployment Rate (UR), CPI Inflation (INF), 1-Year Treasury Constant Maturity Rate (IR) and the
difference between 10-year Treasury Constant Maturity rate and Federal funds rate (SPREAD).
These series are representative macroeconomic indicators of the US economy which is based on
Goulet Coulombe et al. (2019) exercise for many ML models, itself based on Kotchoni et al. (2019)
and a whole literature of extensive horse races in the spirit of Stock and Watson (1998b). The
series transformations to induce stationarity for predictors are indicated in McCracken and Ng
(2020). For forecasting targets, GDP, UR, CPI and IR are considered I(1) and are first-differenced.
For the first two, the natural logarithm is applied before differencing. SPREAD is kept in "levels".
Forecasting horizons are 1, 2, 4, 6 and 8 quarters.

The pseudo-out-of-sample period starts in 2003Q1 and ends 2014Q4. I use expanding win-
dow estimation from 1961Q3. Models are estimated (and tuned, when applicable) every two
years. For all models except SETAR and STAR, I use direct forecasts, meaning that ŷt+h is ob-
tained by fitting the model directly to yt+h rather than iterating one-step ahead forecasts. ∼TAR
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Table 2: Composition of St

What Why How

8 lags of yt Endogenous SETAR-like dynamics –

t Exogenous "structural" change/breaks –

2 lags of FRED Fast switching behavior –

8 lags of 5 traditional factors F Compress cross-sectional information ex-ante Usual PCA

2 MAFs for each variable j Compress lag polynomial information ex-ante PCA on 8 lags of j

iterated forecasts are calculated using the block-bootstrap method which is standard in the liter-
ature (Clements and Smith, 1997).

Following standard practice, the quality of point forecasts is evaluated using the root Mean
Square Prediction Error (MSPE). For the out-of-sample (OOS) forecasted values at time t of vari-
able v made h steps ahead, I compute

RMSEv,h,m =

√
1

#OOS ∑
t∈OOS

(yv
t − ŷv,h,m

t−h )2.

The standard Diebold and Mariano (2002) (DM) test procedure is used to compare the predic-
tive accuracy of each model against the reference AR(4) model. RMSE is the most natural loss
function given that all models are trained to minimize the squared loss in-sample.

It has been argued in section 2.6 that feature engineering matters crucially when the number
of regressors exceeds the sample size. St, the set of variables from which RF can select, is mo-
tivated by such concerns. Its exact composition is detailed in Table 2. Among other things, it
includes both cross-sectional and moving average factors, which are compressing information
along their respective dimensions.

MODELS. To better understand where the gains from MRF are coming from, I include models
that use different subsets of ideas developed in earlier sections. Those are summarized in Table
3. The competitive data-rich models are in the benchmarks group. Non-linear time series models
are also included as they share an obvious familiarity with ARRF. "Tiny" versions of both ARRF
and RF are considered to gauge the effect from only having access only to a small St — this
could be the case for many non-US applications. Conversely, this helps quantify how a data-rich
environment contributes to the success of ARRF versus its plain flexibility. Indeed, Tiny ARRF
corresponds to what was shown in the "data-poor" simulations (section 3) to be a generalization
of ∼TARs and related models.

Here are some remarks motivating some inclusions and specifications choices. To assess the
marginal effects of MAFs alone, Lasso, Ridge and RF are considered using St — those are known
to handle high-dimensional feature space. When it comes to FA-ARRF, I opt for a parsimonious
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linear specification including one lag of the first two factors. First, concise models make interpre-
tation easier. Second, considering compact linear specifications within MRF is usually the better
strategy. Parameters (including the intercept) are all RFs in their own right and can palliate to
the omission of marginally important features, if need be. Consequently, it is desirable to fix a
humble linear part and let βt’s take care of the rest.31 Finally, as discussed in McCracken and Ng
(2020), the first factor mostly loads on real activity variables while the second is a composite of
forward-looking indicators like term spreads, permits and inventories. They are baptized and
interpreted accordingly.

Table 3: Forecasting Models

Name Acronym Linear Part (Xm
t ) RF part

Autoregression AR [1, yt−{1:4}] ∅

Factor-Augmented Autoregression FA-AR [1, yt−{1:4}, F1,t−{1:2}, F2,t−{1:2}] ∅

Plain Random Forest RF ∅ Raw data32

Low-Dimensional Plain RF Tiny RF ∅ [yt−{1:8}, t]

Plain RF but using St RF-MAF ∅ St

RF-MAF on de-correlated yt AR+RF Filter yt first with an AR(2), then RF St

Autoregressive Random Forest ARRF [1, yt−{1:2}] St

Low-Dimensional Autoregressive RF Tiny ARRF [1, yt−{1:2}] [yt−{1:8}, t]

Factor-Augmented Autoregressive RF FAARRF [1, yt−{1:2}, F1,t−1, F2,t−1] St

Vector Autoregressive RF33 VARRF [1, yt−{1:2}, GDPt−1, IRt−1, INFt−1] St

Self-Exciting Threshold AR SETAR [1, yt−{1:2}] ∅

Smooth Transition AR34 STAR [1, yt−{1:2}] ∅

10 years Rolling-Window AR RW-AR [1, yt−{1:2}] ∅

Time-Varying Parameters AR35 TV-AR [1, yt−{1:2}] ∅

LASSO using St LASSO-MAF St ∅

Ridge using St Ridge-MAF St ∅

Notes: models are classified in 3 categories: benchmarks, MRFs (and related prototypes), and misc (non-linear time
series models, other reasonable additions). The main analysis in section 4.1 omits the 3rd club for parsimony.

31Further backing a parsimonious choice (with MRF), McCracken and Ng (2020) report that the first two factors
account for 30% of the variation in the data while adding two more only bumps it up to 41%, making the last two
presumably more disposable in our context.

32Precisely, this means 8 lags of FRED-QD, after usual transformations for stationarity have been applied.
33Note that the VAR appellation refers to the linear equation consisting of typical "small monetary VAR". The

model remains univariate and direct forecasts are used.
34The state variable is yt−1, as in SETAR.
35Estimated and tuned via the Ridge approach proposed in Goulet Coulombe (2020a).
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4.1 Main Quarterly Frequency Results

Violin plots are used throughout to summarize dense RMSEs tables (like Table 4). I report the
distribution of RMSEv,h,m/RMSEv,h,AR. This is informative about the overall ranking and ver-
satility of considered models. Of course, being ranked first does not imply being the best model
for every h and v. Rather, it means that it performs better on average, over all targets.

Figure 2: The distribution of RMSEv,h,m/RMSEv,h,AR. The star is the mean and the triangle is the median.

Here are interesting observations from Figure 2. Clearly, MRFs deliver important gains over
both the AR and FAAR benchmarks (the latter is second to last). ARRF has a noticeably small
mass above the 1 line. In other words, there are no targets for which ARRF does significantly
worse than its OLS counterpart, which makes it atypically adaptable among nonlinear autore-
gressions. A look at Table 4 confirms this observation also extends to FA-ARRF vs FA-AR. The
simplification AR+RF, ranks third with a performance that is much more volatile. This suggests
that imposing time-invariant dynamics can sometimes help (see one example in Figure 5), but
can also be highly detrimental (as reported for inflation). Of course, that we do not know ex-ante,
and it is why AR+RF does not inherit ARRF’s "off-the-shelf" quality.

MAFs are useful: RF-MAF does much better than RF which uses the raw data. The latter only
exhibits conservative gains over the benchmark. Thus, it is understood that a fraction of MRFs’
forecasting gains emanates from considering more sensible transformations of time series data
– and which are trivially implementable. The relevance of MAFs is studied more systematically
in Appendix A.3 by comparing workhorse high-dimensional models (RF, Lasso, Ridge) with
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different information sets.36

FAARRF provides very substantial improvements, but can also fail. This is the linear part’s
doing: FAAR will mostly work well for real activity variables while AR is a jack of all trades.
Thus, it is not surprising to see FAARRF inherit some of these uneven properties, albeit to a
much milder extent. For instance, in Table 4, FAAR is noticeably worse than AR for all inflation
horizons, while FAARRF beats AR for all of them. This phenomenon is well summarized by
FAAR being second to last overall, well behind FA-ARRF. VARRF has a behavior similar to that
of FAARRF, but with less highly noticeable gains.

Does a large St pay off? Most of the time, yes. It is worth re-emphasizing that restricting St

restricts the space of time-variations possibilities as well as the potential for trees diversification.
Nonetheless, if the restrictions are "true", gains are possible.37 This is reported to be a rare occur-
rence, with ARRF � Tiny ARRF (and RF � Tiny RF) for almost any target. Thus, we can safely
conclude that a rich St is desirable, with F being tasked with selection of relevant items.

As discussed in earlier sections, ARRF connects to the wider family of nonlinear autoregres-
sive models. It clearly does better on average than SETAR and Smooth-Transition TAR. This
advantage is attributable to both a more flexible law of motion and a large St. Tiny ARRF is bet-
ter than the ∼TAR group, while ARRF is much better. Linking this result to those of simulations,
this means that no ∼TAR is likely the true model.

REAL ACTIVITY TARGETS. Figure 3 reports results for UR. FAARRF dominates strongly. Table
4 confirms it is the best model for all horizons but the last one (8 quarters ahead, where the
encompassed RF-MAF is the best). Clearly, at an horizon of one quarter, the preferred model
successfully predicts the drastic rise in unemployment during the Great Recession. Rather than
responding with a lag to negative shocks (which is what we observe from AR and ARRF), the
model visibly predicts them. As a result, improvements in RMSE are between 25% and 30%
over AR for all horizons. Specifically, predicting UR (change) with FAARRF at h = 1 yields an
unusually high out-of-sample R2 of about 80%. The nearly perfect overlap of the yellow and
black lines highlight the absence of a one-step ahead shock around 2008. Note that FA-AR and
STAR forecasts are omitted from Figure 3b to enhance visibility. STAR forecasts are either similar
or worse than the benchmark (as often found for nonlinear time series models). FA-AR forecasts
at h = 1 follows a proactive pattern similar to the yellow line, but with a 1 to 2 quarter delay –
hence the inferior results.

For h = 2, the quantitative rise is nowhere near the realized one, but it reveals 6 months
ahead the arrival of a significant economic downturn. Additionally, ARRF and FAARRF both
flag one year ahead the arrival of a rise in unemployment, which is a quality shared by very few

36Goulet Coulombe et al. (2020a) explores MAFs and more sophisticated derivatives at a larger scale.
37An interesting specific case is Tiny ARRF being close behind ARRF for inflation. This is intuitive given that INF

has often been associated with exogenous time variation.
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(a) RMSPEUR,h,m/RMSPEUR,h,AR(4)

(b) A look at some forecasts

Figure 3: Zooming on best model within each group for UR (change)

models. The barplot in Figure 3 (and Table 4) provides a natural decomposition of FAARRF’s
gains. Adding the MAFs to an otherwise plain RF procures an improvement of roughly 15%
across all horizons (RF-MAF � RF, in Table 4). The linear FAAR part and the rest of algorithmic
modifications discussed in section 2 provide an additional reduction of 10% to 15% depending
on the forecasted horizon (FAARRF � RF-MAF and FAARRF � FAAR). It is noteworthy that
good results for h = 1 are mechanically close to impossible with a plain RF since it cannot
extrapolate – i.e., predict values of yt that did not occur in-sample. In contrast, this is absolutely
feasible within MRF thanks to the linear part.

GDP is known to have a lower signal-to-noise ratio. In Figure 18, FAARRF exhibits a bit
less than a 20% drop in RMSE over the AR and nicely grasp the 2008 drop one quarter ahead.38

38Diebold and Rudebusch (1994) proposed an empirically sucessful regime-switching factor model. Given that
line of work and more recent results in Wochner (2020), the FAARRF’s success is not an anomaly.
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However, FAARRF performance does not stand apart as much as it did for UR. One reason can
be traced visually to predicting higher post-recession growth than its competitors. Finally, RF-
MAF closing in on ARRF will be investigated on its own in section 5.2.1. In short, this occurs
because once the time-varying intercept is flexibly modeled by RF, there is very little room left
for autoregressive behavior (at the quarterly frequency).

SPREAD AND INFLATION. VARRF shines for SPREAD (Figure 19) by capturing key movements,
even up to a year ahead. The simpler AR+RF also does remarkably well. FAARRF provides
successful one-year ahead forecasts. Overall, these results highlight the common importance
of the autoregressive part, which is no surprise given SPREAD’s persistence. For INF, Table 4
displays that RF-MAF is the leading model (with ARRF close behind) reducing RMSEs by 12-
15% for all horizons. I investigate this with GTVPs in section 5.2.1.

In appendix A.1, I demonstrate that larger VAR linear parts are possible, and sometimes quite
helpful. By increasing the strength of MRF’s three main regularizers (λ,ζ, and the minimal leaf
size), impressive results are reported for a VARRF-ALL which linear part includes all of FRED
(i.e, over 200 regressors). In Figure 13d, UR’s forecast implies the detection of a recession a year
ahead.

4.2 Monthly Frequency Results

I run a similar exercise as in Goulet Coulombe et al. (2019) which is very close to what has been
precedently conducted for quarterly data. FRED-MD is now used. It contains 134 monthly US
macroeconomic and financial indicators observed from 1960M01 (McCracken and Ng, 2016). To
match the experimental design of Goulet Coulombe et al. (2019) for ML methods, Industrial
Production (IP) replaces GDP and IR is dropped. The horizons of interest are h = 1, 3, 9, 12, 24
months. The forecast target is the average growth rate ∑h

h′ yv
t+h′/h which is much less noisy than the

monthly growth rate. For example, for inflation 24 months ahead, I target the average inflation
rate over the next two years – rather than the monthly inflation rate in 2 years. The OOS period
is the same as before.

In Figure 4, VARRF is now doing much better on average, ranking first in terms of mean
improvement over AR. ARRF still provides great insurance against doing worse than a plain
AR counterpart (here AR(12)).39 FAARRF remains very competitive. The models that do not
have the MAFs (benchmarks) are clearly outperformed by the rest that do. This unsurprisingly
indicates that lag polynomial compression can be of even greater use at the monthly frequency.

Table 5 reports specific RMSEv,h,m/RMSEv,h,AR’s with Diebold-Mariano tests. Broadly, they
show that (i) MAFs are without any doubt the major improvement for the first three variables (IP,

39This is also true for the more parsimonious AR, see Table 5.

32



Figure 4: The distribution of RMSEv,h,m/RMSEv,h,AR for monthly data. The star is the mean and the triangle is
the median.

UR, SPREAD), (ii) simpler approaches like RF-MAF and AR+RF do well (except for INF) (iii) all
MRFs do very well for inflation. Particularly, for (iii), ARRF and Tiny ARRF provide significant
gains of 33% and 45% over the benchmark at h = 12 and h = 24, respectively. It is clear from
this evidence, and that of the quarterly section, that forcing time-invariant inflation dynamics is
costly in terms of RMSPE. GTVPs will confirm that, in accord with classic evidence on the matter
(Cogley and Sargent, 2001).

Gains for INF are miles ahead from the usual competition. Table 5 includes forecasts inspired
by the contribution of Atkeson et al. (2001): 1, h and 12 months moving averages are consid-
ered (where h is the targeted horizon). As in the original paper, the "AO-12" forecasts prove
remarkably resilient, but are bested with sizable margins at each horizons by ARRF, Tiny ARRF,
and FAARRF. For instance, at h = 24, the next best non-MRF forecast delivers 16% gains over
the benchmark AR, whereas the worst MRF provides a gain of 27%. Tiny ARRF supremacy at
longer horizons is sensible given that restricting St emphasizes long-run exogenous change, a
usual suspect for INF.

Another interesting observation emerges from MRFs successes with monthly inflation. FAARRF
is often close to the best model, and that, at all horizons. Naturally, this is intriguing as FAARRF
can be thought of as a Phillips’ curve forecast, which recurrent failures are well documented
(Atkeson et al., 2001; Stock and Watson, 2007). Moreover, it is reported that FAAR, in contrast,
does really bad. To sort this out, FAARRF’s underlying GTVPs are studied in section 5.3.2.
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4.3 External Validity

Much attention has been paid to the prediction of US economic aggregates. An even greater chal-
lenge is that of forecasting the future state of a small open economy. Such an application is be-
yond the scope of this paper but is considered in Goulet Coulombe et al. (2020b). The study con-
siders the prediction of more than a dozen key economic variables for Canada and Québec using
the large Canadian data base of Fortin-Gagnon et al. (2018). Forecasts from about 50 models and
different averages of them are compared, with ARRF and FAARRF among them. MRFs gener-
ate substantial improvements especially at the one-quarter horizon for numerous real activity
variables (Canadian GDP, Québec GDP, industrial production, real investment). In such cases,
ARRF or FAARRF provide reductions (with respect to autoregressive benchmark) that are siz-
able and statistically significant, going up to 32% in RMSE. That performance is sometimes miles
ahead from the next best option (among Complete Subset Regression, Factor models, Neural
Networks, Ridge, Lasso, plain RF and different model averagaging schemes). Goulet Coulombe
et al. (2020b)’s results suggest that MRFs forecasting abilities generalize beyond the traditional
exercise of predicting US aggregates.

5 Analysis

Based on forecasting results, I concentrate on FAARRF’s GTVPs. Additionally, its parameters are
easier to interpret (given factors are labeled) since regressors are mechanically orthogonal. First,
I look at βt and analyze their behavior around the Great Recession. Second, I compare GTVPs to
random walk TVPs, ex-post vs ex-ante, with a focus on the recessionary episode. Finally, I use a
surrogate model approach to explain of the parameters’ paths in terms of observed variables.

5.1 Forecast Anatomy

βt’s characterize completely MRF’s forecasts. Thus, we can investigate GTVPs to understand
results from the previous section. The FAARRF forecasting equation is

yt+h = µt + φ1,tyt + φ2,tyt−1 + γ1,tF1,t + γ2,tF2,t + ut+h.

and naturally βt = [µt φ1,t φ2,t γ1,t γ2,t]. To avoid overfitting, β̂t’s are (as in section 3.2) the
mean over draws that did not include observations t− 4 to t + 4 (a two-year block) in the tree-
fitting process. Intuitively, this mimics in-sample the real out-of-sample experiment that starts
here in 2007Q2.40

40Note that this is partially different from what gave the results reported in section 4.1, where the model was
re-estimated every 2 years. Here, estimation occurs once in 2007Q2.
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Figure 5: GTVPs of the one quarter ahead UR forecast. Persistence is defined as φ1,t + φ2,t. The gray bands are
the 68% and 90% credible region. The pale orange region is the OLS coefficient ± one standard error. The vertical
dotted blue line is the end of the training sample. Pink shading corresponds to NBER recessions.

Figure 5 displays GTVPs underlying the successful one-step ahead UR change forecast. The
intercept clearly alternates between at least two regimes and the "increasing UR" one is in ef-
fect circa 2008. In levels, this translates to UR alternating between a positive and negative (al-
beit small) trend. Overall persistence is strikingly time-invariant, and marginally smaller than
for OLS estimates. The effect of F1, the real activity factor, is generally within OLS confidence
intervals, suggesting that while γ1,t almost doubles around recessions, this is subject to great
uncertainty.

What is less uncertain, however, is the magnified contribution of the forward-looking factor
F2 during recessionary episodes, which stands out as the key difference with OLS. γ2,t smooth-
switching behavior can be best interpreted by remembering that F2 is highly correlated with
capacity utilization, manufacturing sector indicators, building permits and financial indicators
(like spreads) (McCracken and Ng, 2020). Many of those variables are considered "leading"
indicators and have often been found to increase forecasting performance, mostly before and
during recession periods (Stock and Watson, 1989; Estrella and Mishkin, 1998; Leamer, 2007).
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Recently, there has been renewed attention on the matter, with financial indicators highlighted
as capable of capturing economic activity downside risk (Adrian et al., 2019; Delle Monache
et al., 2020). This brand of nonlinearity can translate to a more active γ2,t around business cycle
turning points. MRF learns that, while OLS provides a clumsy average of two regimes. In Figure
5, the obvious consequence of OLS’ rigidity is being over-responsive to leading indicators during
tranquil economic times, and under-responsive when it matters.

Section 5.3 will investigate formally the underlying variables driving this time variation. Fig-
ure 21 displays equivalent βt for GDP one quarter ahead. The pattern γ2,t is also visible for GDP,
but it is quantitatively weaker and more uncertain – which is is no surprise given GDP being
generally noisier than UR. Additionally, slow and relatively mild long-run change is observed.
Interestingly, γ1,t has been shrinking since the mid 1980s, and its regime dependence exhibited
in the first four recessions is no more.

5.2 Comparing Generalized TVPs with Random Walk TVPs

The relationship between random walk TVPs and GTVPs was evoked earlier. I compare them for
the small factor model. I estimate standard TVPs using the ridge regression technique developed
Goulet Coulombe (2020a). Conveniently, the procedure incorporates a cross-validation step that
determines the optimal level of time variation in the random walks.41

As Figure 5 suggested for µt and γ2,t, parameters can be subject to recurrent, rapid and statis-
tically meaningful shifts. Such behavior creates difficulties for random-walk TVPs, which put the
accent on smooth and slow structural change. Figure 6 confirms this conjecture. Standard TVPs
look for long-run change when regime-switching behavior is the main driving force. As a result,
they are flat and within OLS confidence bands, as often reported in the literature (D’Agostino
et al., 2013). Of course, more action will mechanically be obtained for TVPs when considering a
smaller amount of smoothness than what cross-validation proposed. In appendix A.5, I report
the same figures, but using the optimal smoothing parameters (as picked by CV) divided by
1000. This provides much more volatile random walk TVPs that are inclined, at certain specific
moments, to follow the GTVPs. However, it is clear in Figure 6 that the end-of-sample/revision
problem is worsen by the forced lack of smoothing.

It is known in the traditional TVP literature that there is a balance between flexible (but often
erratic) βt paths and very smooth ones where time variation may simply vanish.42 Since random-
walk TVPs are unfit for many forms of the time-variation present in macroeconomic data, high
bias estimates are usually reported as only them can keep variance at a manageable level. This

41I show with simulations that this much easier approach performs similarly well (and sometimes better) to
traditional Bayesian TVP-VAR, for model sizes that the latter is able to estimate.

42In the case of ridge regression-based TVPs, cross-validation is just a data-driven way of backing this necessary
empirical choice.
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Figure 6: UR equation βt’s obtained with different techniques. Persistence is defined as φ1,t + φ2,t. TVPs estimated
with a ridge regression as in Goulet Coulombe (2020a) and the parameter volatility is tuned with k-fold cross-
validation — see Figure 26a for a case where TVP parameter volatility is forced to be higher. Ex Post TVP means
using the full sample for estimation and tuning as opposed to only using pre-2002 data as for GTVPs. The pale
orange region is the OLS coefficient ± one standard error. Pink shading corresponds to NBER recessions.

can have serious implications. Relying too much on time-smoothing can create a mirage of
long-run change and/or dissimulate parameters that mostly (but not solely) vary according to
expansions/recessions.

Another concern, particularly consequential to the act of forecasting, is the boundary prob-
lem. As discussed earlier, random-walk TVP models forecasts can suffer greatly from it because
by construction, forecasts are always made at the boundary of the variable on which the ker-
nel is based – i.e., time. One can deploy a 1-sided kernel, but this only alleviate a few pressing
symptoms without attacking the heart of the problem. In sharp contrast, GTVPs use a large in-
formation set St to create the kernel, which implies that the likelihood of making a forecast at the
boundary is rather low, unless the RF part constantly selects t as splitting variable.

Figures 6 and 22 show, for both random walk and generalized TVPs, their full-sample ver-
sions (up to the end of 2014, "ex post") and their version with a training sample ending in 2007Q2
(the dashed blue line). There are two main observations. First, GTVPs are much less prompt
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to rewrite recent history than random-walk TVPs. Indeed, the green line and the magenta one
closely follows each other all the way up to the end of the training sample. Second, while GTVPs
can change many quarters after 2007Q2 (like the GDP constant), they are generally very close to
each other at the boundary – especially when the time variation is statistically meaningful (like
that of µt and γF2,t), which is what matters for forecasting. This is much less true of random
walk TVPs as there are clear examples where the two version differ for a long period of time (for
instance, the intercept and the coefficient on F2 in the GDP equation), and this often culminates
at the boundary.43

5.2.1 Why and When MRF Can Fail to Deliver Better Forecasts

MRF can sometimes be outperformed by simpler alternatives, like standard RF that incorporate
MAFs. When that occurs, it is usually due to the inadequacy of the linear part rather than GTVPs
themselves. Unlike traditional TVPs, GTVPs rarely provides a model worse than OLS.

Trivially, βt helps understanding relative performance. For instance, in the case of forecasting
inflation with the quarterly data set, ARRF does not supplant RF-MAF. The critical difference
between ARRF (reported in Figure 7a) and its restricted analog is that the two autoregressive
coefficients of the former are shut to 0.44 In Figure 7a, the estimates of ARRF broadly agree
with the view that inflation persistence has substantially decreased during and following Volker
disinflation (Cogley and Sargent, 2001; Cogley et al., 2010).

In terms of anticipated forecasting performance, such decline in persistence suggests a con-
strained version simply including µt may do better. The OOS evaluation period corresponds
to the region of Figure 7a where φ1,t + φ2,t is the nearest to 0. Given that observation, RF-MAF
mildly improving upon ARRF is less surprising. An analogous finding emerges for GDP at
many horizons. ARRF does not outperform RF-MAF like FAARRF and larger VARs versions of
MRF do. GTVPs showcased in Figure 7b provide a simple explanation. There is only a limited
role for persistence when allowing for a forest-driven µt. φ1,t + φ2,t is below the OLS counterpart
most of the time and the credible 68% credible region frequently includes 0. The ensuing forecast
is essentially a time-varying constant, which is what RF-MAF does. In sum, unlike many ML
offerings, MRF successes and failures can be understood via a time-varying parameter interpre-
tation. The helpfulness of this attribute cannot be overstated when thinking about future model
improvements.

43In (real) practice, all models would be re-estimated each quarter. However, it is worth pointing out that re-
estimating every period is much more important for random-walk TVP than it is for GTVPs. For such reasons, the
TV-AR in section 4 was the sole model estimated every period rather than every two years.

44Of course, lags of INF can still enter the forest part for µt, so RF-MAF does not suppress entirely the link between
current and recent inflation.
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(a) Inflation

(b) GDP

Figure 7: GTVPs of the one-quarter ahead forecasts using ARRF. Persistence is defined as φ1,t + φ2,t. The gray
bands are the 68% and 90% credible regions. The pale orange region is the OLS coefficient ± one standard error.
The vertical dotted line is the end of the training sample. Pink shading corresponds to NBER recessions.

5.3 Cutting Down the Forest, One Tree at a Time

Evolving βt can limit macroeconomists in their ability to use the model for counterfactuals. Com-
plementarily, policy-makers will complain about the limited use for a model in which tomor-
row’s parameters are unknown (random walks). Fortunately, GTVPs may be the result of an
opaque ensemble of trees, but they are made out of observables rather than a multiplicity of
latent states. That is, they change, but according to a fixed structure. Hence, the reduced-form
coefficients could easily change, and yet remain completely predetermined as long as F itself is
stable. In this paradigm, a changing βt is not necessarily empirical evidence supporting Lucas
(1976)’s critique – rather, a changing F could be. Hence, dissecting F is inherently interest-
ing. One way to get started on this is to use well-established measures of Variable Importance
(VI), originally proposed in Breiman (2001). Those extract features driving the prediction. Con-
veniently, they can be adapted to inquire βt. Then, one can capitalize on VI’s insights to build
interpretable small trees parsimoniously approximating βt,k’s path.
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The construction of upcoming graphs consists in two steps. I start by computing 3 differ-
ent VI measures: VIOOB (out-of-bag predictive performance), VIOOS (out-of-sample predictive
performance) or VIβ (for a specific coefficient rather than the whole prediction). Appendix A.2
contains a detailed explanation those and a discussion on how the current approach relates to
recent work in the ML interpretability literature. As a potential data set for the construction of
a surrogate tree, I consider the union of the 20 most potent predictors as highlighted by any of
the three VIs. The tree is pruned with a cost-complexity factor (usually referred to as cp) of
0.075. That tuning parameter is set such as to balance its capacity to mimic the original GTVP
and potential for interpretation.

5.3.1 Unemployment Equation

I limit the attention µt and γ2,t paths, which were argued of greater importance to FAARRF’s
success in forecasting UR. Also, the nature of their variation is easier to characterize with a single
tree (ex-post). Figures 8b and 8d show that paths can sometimes be summarized succinctly using
a handful of predictors.

Most of µt can be captured by two states which are determined by a cut-off on total private
sector employees (USPRIV): 0.021 (increasing unemployment) and -0.018 (decreasing). This first
layer basically classifies recession vs expansions in a very parsimonious way, which is inevitably
crude and imperfect. The additional split on a MAF of non-financial leverage provides a more
refined classification: there are more of less three states. The time series plot shows the alterna-
tion between two symmetrically opposed states of 0.021 and -0.025 (respectively entering and
exiting a recession) and a transitory (and seldomly visited) middle ground around 0.

The impact of F2 on UR switches significantly, and most of the action can be summarized by
a private sector employees dummy (USPRIV). The indicator’s movement downwards – which
usually commence from the onset of a recession – can double the effect of F2 on UR in absolute
terms. However, some high (absolute) γ2,t episodes would be left behind when merely using
USPRIV. Those are retrieved by an additional split with a MAF of average corporate bonds yield
with a BAA rating (lower medium grade).

The GTVP (green line) often plunges earlier than the ex-post surrogate tree’s replica (orange).
This is important, especially from a forecasting perspective. In Figure 23b, it is clear that leading
indicators (especially financial ones) play a prominent role in driving the GTVP γ2,t – well before
USPRIV starts showing signs of an imminent downturn. Since F2 is already composed mostly of
forward-looking variables, this hints at a convex effect of market-based expectations proxies.

Lastly, a word of caution. Given the points raised earlier in section 2.1, it is more appropri-
ate to see these surrogate trees as suggestive of one potential explanation. It is an open secret
that their exact structure is sensitive to small changes in the estimated path. For instance, little
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(a) µUR,h=1
t : Surrogate Model Replication (b) µUR,h=1

t : Corresponding Tree

(c) γUR,h=1
t,F2

: Surrogate Model Replication (d) γUR,h=1
t,F2

: Corresponding Tree

Figure 8: Surrogate βt,k Trees. Shade is 68% credible region. Pink shading is NBER recessions.

variation in βt is needed to observe a change in the exact choice of variables itself. As a result,
some of them may rightfully seem exotic when singled out in such a simple tree. GTVPs, as the
product of a forest, will more often than not rely on a multitude of indicators from a specific
group (which we observe in Figure 23a) rather than a single indicator.

5.3.2 Monthly Inflation Equation

As discussed briefly earlier, FAARRF is a very competitive model for monthly inflation at all hori-
zons. By its use of F1, the real activity factor, it has the familiar flavor of a Phillips’ curve (PC).45

This is of interest given PCs have at best a very uneven forecasting track record (Atkeson et al.,

45As noted in Stock and Watson (2008), the plethora of output gap indicators used in literature makes the use of
a common statistical factor a credible alternative.
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2001; Stock and Watson, 2008; Faust and Wright, 2013). For instance, simple autoregressive/ran-
dom walk/historical mean benchmarks often do much better.

Given its paramount importance within New Keynesian models, many explanations have
been proposed for PC forecasts failures. The curve could be time-varying in a way that anni-
hilates its forecasting potential (Stock and Watson, 2008). Closely related, some have stipulated
the PC is nonlinear (Dolado et al., 2005; Doser et al., 2017; Lindé and Trabandt, 2019; Mineyama,
2020). If that were to be true, this should be exploitable. Lastly, an adjacent point of view, which
became increasing popular following the Great Recession, is that the PC has irreversibly flat-
tened to the point of predictive desuetude (Blanchard et al., 2015; Blanchard, 2016; Del Negro
et al., 2020). Unlike the first two propositions, this one is, by nature, terminal.

Of course, all those explanations amount to hypotheses on the nature of γ1,t’s time variation,
of which MRF provides a very flexible account. It is worth emphasizing that MRF is estimated
up to 2007Q2, unlike many of the above models explaining the "missing disinflation" after ob-
serving that it took place.46 The variable importance measures reported in Figure 24 showcase a
"consensus" subset of variables that matters for inflation time variation. Three popular ones are
the trend, MAF of building permits and MAF of housing starts. The leading role for the trend
suggests that exogenous time variation is important to explain inflation – to no one’s surprise
(Cogley and Sargent, 2001). Studying βt-specific VI’s suggest that this is mostly a feature of the
intercept and persistence.

Figures 9, 25a and 25b allow to re-conciliate PC forecasting evidence. For instance, a visible
PC death zone spans all of the 90s, which constitutes most of the sample used in Atkeson et al.
(2001).47 It also includes the post-2008 period, which motivated Blanchard et al. (2015)’s inquiry.
Most interestingly, for the latter era, γ1,t is predicted to head toward 0 out-of-sample. To clarify,
the parameter is driven by post-2008 data, but the structure itself (F ) is not re-evaluated past the
dotted line.

By looking at predictive performance results ex-post, Stock and Watson (2008) report that
Phillips’ curve forecasts usually outperform univariate benchmarks around turning points, but
suffer a reversal of fortune when the output/unemployment gap is close to 0. They note that the
finding "cannot yet be used to improve forecasts" because their gap relies on a two-sided filter.
More recently, Kotchoni et al. (2019) reinforce this view by showing an ARMA(1,1) is triumphant
for inflation except in recessionary periods, where a data-rich environment can be helpful. But
to capitalize on this, one needs a recession/expansion forecast. MRF recognize this potential
and relies on leading indicators of the housing market to activate γ1,t in a timely manner. This
is particularly evident from looking at γ1,t’s VI measure in Figure 24 and its resulting GTVP

46Indeed, they do so either by fitting the post-2008 data directly, or by choosing a specification (or building a
theoretical model) directly inspired by the experience of the Great Recession.

47The decade-long wedge between the OLS estimate and GTVP in Figure 25b nicely explains PC failures.
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(a) γINF,h=1
1,t : Surrogate Model Replication (b) γINF,h=1

1,t : Corresponding Tree

(c) γINF,h=12
1,t : Surrogate Model Replication (d) γINF,h=12

1,t : Corresponding Tree

Figure 9: Surrogate βt,k Trees for Inflation. Shade is 68% credible region. Pink shading is NBER recessions.

in Figure 9. Overall, we see that the relationship between inflation and economic activity is
episodic, as conjectured by Stock and Watson (2008), and often prevails before recessions (but
not all). Figure 9 proposes a clear-cut answer: inflation responds to the real activity factor when
the housing market is booming.

For a long time, housing sector indicators have been known as predictors of future economic
activity (Stock and Watson, 1998a; Leamer, 2007). However, when it comes to forecasting infla-
tion itself, including leading indicators (like permits) does not remedy Phillips’ curve forecasts
failures (Stock and Watson, 2007). FAARRF differs by not using housing permits/starts as a
replacement and/or additional output gap proxy. Rather, its role is to increase the curvature
when the time is right. As mentioned above, one explanation is that housing starts and permits
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are proxying for future economic activity, resolving the conundrum posed by Stock and Watson
(2008). Overall, this implies a PC which would be highly nonlinear in real activity, as further in-
quired in section 5.4. Another hypothesis is that MRF discovers – through aggregate data – how
to leverage Stock and Watson (2019)’s insights that some components of inflation are much more
cyclically sensitive than others. Stock and Watson (2019) show that the most cyclical component
of inflation is housing, followed closely by food components. Accordingly, MRF activating γ1,t

with building permits and housing starts is the algorithm’s way of predicting when more cycli-
cally sensitive components take the front stage – and by doing so, revive the Philipps’ curve. In
sum, nonlinearities would be a consequence of aggregation.

Anyhow, the predictive PC studied here differs in many aspects to those studied, for instance,
in Blanchard et al. (2015). Most importantly, F1 summarize indicators that are (for most of them)
in first differences. A typical output/unemployment gap measure will be much more persistent.
Economically, this means the gap can remain negative for many years following a downturn. In
contrast, F1, which is strongly correlated with the first difference of UR, will go back up as soon
as UR stops growing. To validate current insights and obtain new ones, I complete this section
by looking at a prototypical Phillips’ Curve.

5.4 A More Traditional Phillips’ Curve

The behavior of inflation since the Great Recession – starting with the missing disinflation and
followed by "missing inflation" of recent years – sparked renewed interest in the Phillips curve.
Much attention has been given to its hypothesized flattening (Blanchard et al., 2015; Galí and
Gambetti, 2019; Del Negro et al., 2020). This body of work supports the view that the PC coef-
ficient (either reduced-form or semi-structural) has substantially declined over the last decades.
The focus on slow structural change is operationalized by the modeling strategy – either ran-
dom walk TVPs or sample splitting at a specific date. Coibion and Gorodnichenko (2015) show
less worry about PC’s health. They rationalize post-2008 inflation with a simple OLS PC where
expectations are based on consumer survey data rather than lags or professional forecasters.
Del Negro et al. (2015) demonstrate that a standard DSGE (which encompasses a structural
New Keynesian PC) is not baffled by post-2008 inflation since it relies on model-based forward-
looking expectations of future marginal cost. More recently, Lindé and Trabandt (2019) and
Mineyama (2020) articulate theories supporting a nonlinear specification for the reduced-form
PC, which could also account for the inflation puzzles punctuating the last 12 years. Given this
background and forecasting results reported earlier, a traditional PC must be a fertile ground for
MRF-based detective work.

I contribute to the literature by fitting an MRF which linear part corresponds to an expectations-
augmented Phillips’ curve. Xt is inspired by what Blanchard et al. (2015) (henceforth BCS) con-
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siders:

πt = θtπ̂
LR
t + (1− θt)π̂

SR
t + φtuGAP

t + ψtπ
IMP
t + εt, (5)

where πt stands for CPI inflation, π̂LR
t and π̂SR

t respectively for long-run and short-run inflation
expectations. uGAP

t represents the (negative) unemployment gap and π IMP
t is import prices in-

flation. I translate this to the MRF framework by making µt = θtπ̂
LR
t the time-varying intercept,

letting βt,1 = 1− θt and by obtaining uGAP
t by means of Hodrick-Prescott filtering.48 As in BCS,

π̂SR
t is the average inflation over the last four quarters. Hence, the estimated equation

πt = µt + β1,tπ̂
SR
t + β2,tuGAP

t + β3,tπ
IMP
t + εt (6)

does not impose the constraint implied by θt in equation (5). However, estimation results will
desirably have β1,t ∈ [0, 1] at almost any point in time. St is the same as that considered in the
forecasting section. The data set runs up to 2019Q4.

Figure 10: The gray bands are the 68% and 90% credible regions. Pink shading corresponds to NBER recessions.

Figure 10 reports GTVPs of interest: the weight on short-run expectations and the output
gap coefficient. Additionally, it contains traditional TVP estimates as means of comparison. The
latter convey the usual wisdom: inflation expectations slowly start to be more anchored from
the mid 1980s. Around the same time, the unemployment/inflation trade-off begins its slow
collapse. The updated data shows that the TVP-based Phillips’ curve has further flattened to
plain 0 in the last decade.

For β1,t, the weight on short-run expectations, both methods agree that it has been decreasing
steadily after the 1983 recession. But GTVPs highlight an additional pattern for the importance

48Specifically, both this gap and that of BCS get out of negative territory around 2014.
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of π̂SR
t : it tends to increase during economic expansions, collapse during recessions then start

increasing again until the next downturn. Note that the phenomenon is also observed in Figure
7b for the simpler ARRF on quarterly inflation. The decrease in the coefficient (usually of about
0.25) is observed for every recession and usually last for some additional quarters after the end of
it. The linear rise in the coefficient occurs for all expansions except those preceding the early 90s
and 2000s recessions, where the pattern is punctuated with additional peaks and troughs. The
increased importance of short-run expectations with the age of the expansion is also observed
for recent expansionary periods. Hence, the phenomenon is not merely a matter of the 70s and
80s recessions being preceded by a sharp acceleration of inflation.

From a more statistical point a view, the sharp decline in β1,t following every recession sug-
gests that in the aftermath of an important downward shock, the long-run inflation expectation
is a more reliable predictor as it is minimally affected by recent events. As the expansion slowly
progress (and recessionary data points get out of the short-run average), π̂SR

t becomes a more up
to date and reliable barometer of future inflation conditions. This narrative is corroborated by
variable importance (Figure 27) for β1,t, which highlights the importance of the trend, but also
recent lags of inflation.

When it comes to the low-frequency movement of the unemployment gap coefficient, both
methods agree about a significant decline starting from the 80s. However, GTVPs uncover addi-
tional heterogeneity. First and most strikingly, β2,t gets very close to 0 following every recession.
This suggests a nonlinear Philipps’ curve where inflation responds strongly to a very positive
uGAP

t but not so much to a negative one. Second, the 70s and early 80s are characterized as a
series of peaks (preceding the first three recessions of the sample) rather than a sustained high
coefficient. Traditional TVPs, by excessive time-smoothing, dissimulate the effects of inflation-
ary spirals on β2,t. Such pre-recession accelerations still occur during the Great Moderation but
in a much milder way.

Third, VI measures (in Figure 27) confirm the importance of activity indicators (like Total Ca-
pacity Utilization (TCU)) in driving β2,t itself. The correlation between β2,t and TCU is 0.81, and
the correspondence between the two variables is striking in Figure 11. Many notable increases
in β2,t are nicely matched (between the two 70s recessions and before 2008). Of course, this sim-
ple characterization remains imperfect since it misses some highs (like the end of the 70s) and
predicts a higher β2,t in the years following the 2008-2009 recession. Generally, given the strong
co-cyclicality between TCU and uGAP

t , this is evidence of a convex PC.
The collapse of β2,t following recessions is not unique to 2008: it happened following every

recession since 1960. As a result, inflation will rise when the economy is running well above
its potential, but much more timidly will it go down from economic slack. Recently, Lindé and
Trabandt (2019) have shown that such a phenomenon can be rationalized by a New Keynesian
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Figure 11: "What Goes Around Comes Around": Capacity Utilization is substantially correlated with the inflation-
unemployment trade-off. The gray band is the 68% credible region. Pink shading corresponds to NBER recessions.

DSGE model. Indeed, by allowing for additional strategic complementarity in firms price- and
wage-setting behavior and solving the nonlinear model (rather than considering the linear ap-
proximation around the steady state), the authors obtain a state-dependent PC which becomes
very flat during large downturns. This can explain both the small coefficient during recessions
and its subsequent timid increase. Theoretically, convexity can also emerge from downward
wage rigidities (Mineyama, 2020), but its empirical plausibility for the post-2008 era has been
contested (Coibion and Gorodnichenko, 2015).

This pattern remains when adding controls in the linear part for supply shocks and monetary
policy shocks. Those are the usual confounding factors suspected of blurring the relationship
by introducing a positive correlation between unemployment and inflation.49 The economic
suspicion particular to this application is that omitting them could create a downward bias in β2,t

that only occurs locally, generating the cyclical pattern. As it turns out, controls make cyclicality
even more obvious in Figure 28, especially for the later part of the sample.50 However, the
overall strength of the coefficient is smaller (especially for the 70s).

Many hypotheses can be accommodated by a model estimated on two disjoint samples, like
in Del Negro et al. (2020). Much fewer of them are compatible with the richer β2,t path extracted
by MRF. This is important: learning the type of nonlinearity, rather than partially imposing it,
helps in discriminating economic suppositions. Figure 11 and recent theoretical developments

49While the time-varying constant can go a long way at controlling for such factors – being a RF in itself, including
them in the linear part makes them "stand out" as everything going through the intercept is inevitably heavily
regularized.

50Results being similar for both curves is reminiscent of Galí and Gambetti (2019) who report little differences
between paths of reduced-form and semi-structural wage PCs (although they focus on long-run change).
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both suggest that much of the PC’s decline is attributable to upward nonlinearities being less
solicited in the last 3 decades. This is in accord with the policy hypothesis: since Paul Volker’s
chairmanship the monetary authority has responded much more aggressively to inflationary
pressures, limiting the spirals that gave rise to high β2,t’s in the 70s. Two conclusions emerge
from this observation. First, exogenous change cannot so simply be ruled out. Second, knowing
what were MRF beliefs about PC nonlinearities at different points in time could be enlightening.

5.4.1 Conditional Coefficient Forecasting

β2,t’s lows are getting lower, and longer. Should we have known? Much of the recent work on
PC is directly inspired by Great Recession aftermath, and aims at explaining it. Whether it is
theoretical or empirical work, much of it could be overfitting: a model can replicate one or two
facts it is trained to replicate, but fails to generalize. That is, even if models are tested out-of-
sample (which is itself not so often the case in the literature), the choice of nonlinearity itself is
often determined in attempt to match the OOS. Beyond the linear part being a PC, MRF does
not assume much — and its nonlinearities are certainly not "personalized" to the recent inflation
experience. Thus, it is interesting to ask: what was MRF "thinking" about β2,t in 2007? in 1995?
Did it know something we did not, or did it learn (as most economists) of PC’s collapse from the
post-2008 experience? I conduct a β2,t dynamic learning exercise to find out.

To make this operational, MRF is estimated up to 1995, 2007 and 2019, and GTVPs are pro-
jected out-of-sample from those dates (when applicable). To be clear, β̂2,t|1995 = F̂1995(St) means
the coefficient predictive structure is last estimated in 1995. Coefficients keep moving out-of-
sample because St does. F̂1995(St) and F̂2007(St) will differ for two main reasons. The first is
estimation error – both in terms of precision and re-evaluating which nonlinearity seems more
appropriate.51 The second is structural change, perhaps completely exogenous or triggered by
policy interventions.

Much can be learned from Figure 12. First, GTVPs are all very alike for the pre-1995 period,
suggesting little was observed post-1995 that made MRF change its reading of the past. Similarly,
the green and the magenta line, which both share the 1995-2007 period within their training sets,
are close to one another. Overall, this indicates that OOS difference between paths are very
unlikely due to a better re-estimation and/or a completely new choice of F .

Second, unlike what we have seen for the unemployment equation (Figure 5), there are im-
portant disparities between the ex-ante and the ex-post paths out-of-sample. Thus, one can right-
fully hypothesize that structural change got in the way, making F̂1995’s attempt of replicating
the strong nonlinearities of the 70s into the 2000s go wildly off course. An analogous (yet far
less noticeable gap) punctuates the post-2007 period. This suggests that while β2,t was expected

51The second part has the flavor of model selection "error".
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Figure 12: Conditional β2,t Forecasting. The gray band is the 68% credible region for GTVPs estimated up to
2019Q4. Pink shading corresponds to NBER recessions. For enhanced visibility, GTVPs are smoothed with 1-year
moving average. The vertical dotted lines are the end of the training samples.

to fall marginally following the crisis and stay low thereafter (according to F̂2007), it was not
expected to go that low. Indeed, only F̂2019 hits 0 and stays in its vicinity.

Of course, by design, exogenous structural change cannot be captured out-of-sample – with
the results that we know (F̂1995). This dismal predicament does not apply to cyclical behavior:
it has been forecastable at least since 1995. Indeed, F̂1995 propose a β2,t for 2000 and 2008 that
is very similar to that of 70s inflation spirals. Moreover, β̂2,t|1995’s collapse following 2008 is of
a magnitude only seen during Arthur Burns’ days. Hence, a much weaker PC following large
downturns is hardly new. However, what β̂2,t|2007 and β̂2,t|2019 tell us is that the overall amplitude
(and level) of those variations has evolved exogenously, forcing MRF to update F repeatedly.

This exercise may rightfully seem exotic, with no obvious analog in the literature. The simple
explanation is that traditional time variations only give "trivial" parameter forecasts by construc-
tion, and there is no clear "leaning" process to analyze. For example, the "forecasted" random
walk TVP would be a straight line over the whole OOS. Doing so with a threshold model would
only inform us of the increasing precision of estimation as sample size grows – i.e., the model
itself cannot be re-evaluated.

An avenue to be explored in future work is to specify, under clear conditions, the meaning
of β̂2,t|2007 − β̂2,t|1995. For instance, if we are willing to assume that any change in structure MRF
fails to capture dynamically origins from policy shifts (like evolving monetary policy), then the
difference is the treatment effect of policy change on the reduced-form coefficients – i.e., the mea-
surable effect of the Lucas critique. In the PC case, β̂2,t|2007− β̂2,t|1995 indicates that the difference
is most salient during periods of economic overheating (within which we know the monetary
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authority is now more active). This sort of analysis is possible because, unlike traditional non-
linear methods, MRF provides non-trivial "counterfactual" βt paths out-of-sample. Indeed, it
discovers structural change rather than imposing it. Essentially, this line of work could extend
some of the conditional forecasting toolbox and insights (Waggoner and Zha, 1999) to condi-
tional coefficients forecasting.

6 Conclusion

I proposed a new time series model that (i) expands multiple non-linear time series models, (ii)
adapts Random Forest for Macro forecasting and (iii) can be interpreted as Generalized Time-
Varying Parameters. On the empirical front, the methodology provides substantial empirical
gains over RF and competing non-linear TS models. The resulting Generalized TVPs have a very
distinct behavior vis-à-vis standard random walk parameters. For instance, they adapt nicely to
regime-switching behavior that seems pervasive for unemployment – while not neglecting po-
tential long-run change. This finding is facilitated by the fact that GTVPs lend themselves much
more easily to interpretation than either standard RF or random-walk TVPs. Indeed, rather than
trying to open the back-box of an opaque conditional mean function (like one would with plain
RF), MRFs can be compartmentalized in different components of the small macro model. Fur-
thermore, GTVPs can be visualized with standard time series plots and credible intervals are
provided by a variant of the Bayesian Bootstrap.

When looking at Phillips’ curves in general, MRF finds both structural change in the persis-
tence and regime-dependent behavior in the economic activity/inflation trade-off. In particular,
a recurrent theme across all specifications is that the slowly decaying curve is also much steeper
when the economy is overheating – in line with the convexity/nonlinearity hypothesis. Hence,
MRF can be of great help sorting out what is plausible and what is not when it comes to macroe-
conomic equations with a history of controversy. Since there is no shortage of those, MRF holds
many possibilities for future research.
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A Appendix

A.1 Can Larger Linear Parts Help?

As argued earlier, an advantage of MRF over plain RF is that by taking the TVP view of non-
linearities, we are in a much better position to attempt an interpretation of the successful model.
One could rightfully retort that while FAARRF performs nicely, its potential for interpretation
is spoiled using factors rather than raw data. While this critique is partially addressable by
putting names on factors such as "real activity" and "forward-looking" factors, it is worthwhile to
consider alternative dimensionality reductions schemes that keep the data in the original space.

(a) RMSPEGDP,h,m/RMSPEGDP,h,AR(4) (b) A look at forecasts

(c) RMSPEUR,h,m/RMSPEUR,h,AR(4) (d) A look at forecasts

Figure 13: Large Linear Part Results

Since the 4 variables VARRF results are not necessary sterling, the expectations for VARRF of
bigger size are rather low. Regardless, Figure 13 show promising results for both a VARRF with
20 variables (in the spirit of Bańbura et al. (2010)’s medium VAR) and a VARRF that includes all
FRED-QD 200+ variables. In both cases, especially the later, regularization must be stringent to
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keep estimation variance low. Indeed, in VARRF-ALL, the linear part has more regressors than
observations even before any split is attempted. This implies a much higher value of λ, ζ = 1
and the use of a single lag in the linear part. Quite strikingly, Figure 13d report that VARRF-
ALL tracks UR at h = 1 remarkably well, in addition to providing forecasts that clearly hint at a
recession for both UR and GDP up to a year ahead. In that latter regard, VARRF-ALL is the best
model of the whole lot. Hence, larger models, while not the center of interest for this paper, can
be handled by MRF and provide excellent forecasts given proper regularization.

This subsection’s results point out that the tool can be easily (and desirably) extended to
estimate large GTVP-VARs. The dynamic coefficients can be estimated by either fitting MRF
equation by equation. Another possibility (left for future research) is to simply modify the split-
ting rule in (2) to be multivariate so that each tree is fitted jointly for all equation – pooling
time-variation across equations. Finally, elements of the covariance matrix of residuals can be
fitted separately with a plain RF, which is very fast.

A.2 More on Surrogate βt Trees

The approach described in section 5.3 belongs to a family of methods usually referred to as "sur-
rogate models" (Molnar, 2019). Attempting to fit the whole conditional mean obtained from a
black-box algorithm using a more transparent model is a global surrogate. An obvious critique
of this approach is that if the complicated model justifies its cost in interpretability with its pre-
dicting gains, it is hard to believe a simple model can reliably recreate its predictions. Conversely,
if the surrogate model is quite successful, this casts some doubts about the relevance of the black
box itself. In this line of work, a more promising avenue is a local surrogates model as proposed
in Ribeiro et al. (2016), which fits interpretable models locally. By following Granger (2008)’s in-
sights, we already have this: by looking at the βt paths directly, we effectively have a local model
– in time. The purpose of surrogate models is to learn about the model, not the data. The former
is much easier in MRF than in standard RF since the vector βt fully characterizes the prediction
at a particular point in time.52 Moreover, the coefficients are attained to predictors that can have
themselves a specific economic meaning. Considering this and the earlier discussion of section
2.1, it is natural in a macro time series context to fit surrogate models to time-varying parameters
themselves – a blatant divide-and-conquer strategy.

A.2.1 About VIOOB, VIOOS and VIβ

I now explain the motivation and mechanics behind the different VI measurements. The first
measure, VIOOB, is the standard out-of-bag (hence OOB) VI permutation measure widely used

52More generally, any partially linear model in the spirit of MRF has a potential for local surrogate analysis along
the linear regression space rather than the observations line.
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in RF applications (Wei et al., 2015). It consists of randomly permuting one feature Sj and com-
paring predictive accuracy to the full model on observations that were not used to fit the tree.53

This pseudo evaluation set is convenient because it is a direct byproduct of the construction
of the forest. Under a well-specified model that includes enough lags of yt, autocorrelation of
residuals will not be an issue. This condition is likely to be met here since the analysis focuses
on results for h = 1. 54 VIOOS considers a different testing set more natural for time series data:
the real OOS, which in this section spans from 2007q2 to the end of 2014. By construction, this
measure focuses on finding variables which contribution paid off during a specific forecasting
experiment, rather than throughout the whole sample. This is not bad per se but is a different
concept that can be of independent interest. Finally, both VIOOB and VIOOS focus on overall fit.
VIβ implements the same idea as VIOOB but is calculated using a different loss function. That is,
VIβk,j reports a measure of how much the path of βk is altered (out-of-bag) when variable Sj is
randomly permuted in the forest part. Finally, I use the various VI measurements as devices to
narrow down the set of predictors for the construction of intuitive trees.

I restrict the number of considered variables (for the next step) to be 20 for each VI criteria.
When VI suggest that a parsimonious set of variables matter, it is very rarely more than 3 or 4
variables. Thus, restricting it to 20 is a constraint that only binds if all variables contribute, but
marginally, in the spirit of a Ridge regression (Friedman et al., 2001). When it comes to that, the
cut-off is simply the natural reflection of a trade-off between interpretability and fit.

A.3 Further Investigation of the Importance of St

Do MAFs matter? For 3 standard ML models (standard RF, LASSO, Ridge) that can handle
high-dimensional data sets, I investigate the usefulness of the MAFs advocated in section 2.6.
The codes to describe the different information sets are

CSF : only standard cross-sectional factors (5 factors, 8 lags of them),

MAF : St,

ALL : St + all the raw data (8 lags),

X : 8 lags of the raw data.

Figure 14 summarizes results over 18 targets (6 variables and the first 3 horizons). The first
striking fact is that the four best models are RF, followed by the LASSO block, Ridge and FAAR.

53This is thought as the equivalent for a black-box model to setting a specific coefficient to 0 in a linear regression
and then comparing fits. However, VI as implemented here (and in most applications) does not re-estimate the
model after dropping Sj. This differs from a t-test since it is well known that the latter is equivalent to comparing
two R2’s – the original one and that of a re-estimated model, under the constraint.

54Notwithstanding, at longer horizons, VIOOB could paint a distorted picture in the presence of autocorrelation –
the same way K-fold cross validation can be inconsistent for time series data (Bergmeir et al., 2018). This worry can
be alleviated by using a block approach like in section 2.7.

59



This suggests, with an unprecedented level of surprise, that models matter. For RFs, the best
model is the one using St followed closely by the one that also adds the raw data to it. However,
if we drop the MAFs, we incur a significant loss and obtain the worst of RFs, (so-called RF-X).
The RF with cross-sectional factors only performs quite well in an unequal fashion.

Figure 14: On the usefulness of St.

The best LASSO models must include the raw data. Models with either standard factors
or MAFs only do not perform as well. This is not true for Ridge where the best model is the
one that uses St. It is however important to note at this point of the ranking that these mod-
els are already lagging RFs in a significant way. The usefulness of MAFs is further studied in
Goulet Coulombe et al. (2020a) and found to help, mostly with tree-based algorithms. However,
it is found supplanted by a more computationally demanding (but more general) transformation
of the raw data that Goulet Coulombe et al. (2020a) propose specifically for ML-based macroe-
conomic forecasting.

A.4 On Tuning Parameters

The bulk of the discussion on the algorithm’s specifics is deferred to the R package. None of
the RFs reported in the text were tuned. This is not heresy, as minuscule performance gains
from doing so (like optimizing mtry) are the norm rather than the exception. Additionally, re-
straining the terminal nodes size can only alter performance very mildly and it is now clear why
(Goulet Coulombe, 2020b). Nonetheless, reviewing some of those untuned tuning parameters
can be insightful about MRFs inner workings.
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• RWR: stands for Random Walk Regularization strength as discussed in 2.3. It is the ζ in
equation (2).

• RL: stands for Ridge Lambda (λ) in equation (1). Prior means are OLS estimates.

• Minimal Node Size: Minimal parent leaf size to consider a new split. Set to 10 for
quarterly data and 15 for monthly.

• MLF: stands for Minimum Leaf Fraction. It is the parameter in MRF that has a role comple-
mentary to that of minimum node size. The so-called "fraction" is the ratio of parameters
in the linear part to that of observations in any node (which includes most importantly the
terminal ones). Here is an example. Set MLF = 2, the linear part has 3 parameters, and we
are trying to split a subset of 15 observations. This setting implies that any split that results
in having less than 6 observations in the children note will not be considered. This specific
setting ensures that the ratio of parameters to observations never exceeds 1/2 in any node.
This ensure stability, especially if the two aforementioned HPs are set to 0. However, when
RWR and RL are active, it is possible to consider MLF = 1 or even lower, like for the large
VARs specifications of section A.1. The extra regularization allows in the latter case to have
base regressions that have parameters/observations ratio exceeding 1 (high-dimensional
setting). This is very desirable in a quarterly macro setting because setting MLF > 2 or
higher seriously restricts the depth of the trees being grown.

• mtry: how many Sj’s do we consider as potential "splitter" at each split? It is easier to
think about it as a fraction of the total number of predictors. For regression settings, the
suggested value is 1/3. The lower it gets, the more random tree generation gets, and bet-
ter diversification may ensue. Moreover, mtry directly impacts computational burden.
It is often found, in a macro context, that lowering mtry to 0.2 does not alter perfor-
mance noticeably, while reducing appreciably computations. In fact, running RF-MAF
with mtry∈ {0.1, 0.2, 0.33, 0.5} delivers nearly identical performance for all variable/hori-
zon pairs of the quarterly exercise. This is likely attributable to macro data having a factor
structure. If Sj is "not available" for a split when it would in fact maximize fit locally, there
is another strongly correlated Sj′ ready for the task. For instance, if the unemployment rate
is discarded by mtry, then there are more than 20 other labor indicators that can possibly
substitute for it. If those 20 variables are all a noisy representation of the same latent vari-
able the model wants to split on, then the probability of having none to split with at a given

point is
(

1− mtry
#regressors

)20
≈ 0.

• Trend Push: Some minorities may end up being underrepresented as a result of mtry’s
discriminating action. While there are 20+ labor indicators in the data base, there is only
one trend. Since exogenous change should most certainly not be underrepresented, its
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"personalized" probability of inclusion can be pushed beyond what mtry suggests.

• Subsampling Rate: is set at 75%.

A scaled down quarterly forecasting exercise was conducted to see whether tuning any of
those could help. Precisely, horizons 1, 2, and 4 quarters were considered and models (ARRF,FA-
ARRF,VARRF) were estimated once at the beginning of the OOS period (2002). Tuning pa-
rameters were optimized targeting 1998-2002 data as an artificial test set. Possible values were
RWR∈ {0, 0.5, 0.95}, RL∈ {0.1, 0.5}, mtry∈ {0.2, 0.33, 0.5} and min.node.size∈ {10, 40}. It is
found that results are largely invariant to pre-optimized HPs. As mentioned earlier, what mat-
ters most in the linear part. It is observed that optimizing tuning parameters can help reduce
marginally RMSEs of MRFs that were sometimes struggling (like VARRF). Results are available
upon request.

Algorithm 1 How the key tuning parameters enter MRF, and other practical aspects
1: Draw blocks of some size (8 for quarterly, 24 monthly), that makes for Subsampling Rate% of the

sample. To simply get the mean prediction, 100 trees are usually more than enough. To get credible
regions to stabilize, 200-300 trees are typically needed.

2: • For each subsample: run (2) recursively on that sample given λ and ζ values until each (poten-
tial) parent nodes are smaller than Minimal Node Size.

• A total of mtry predictors are considered at each splitting step J − is randomly picked out of
J . Those probabilities are all 1/dim(J ) by default. Trend Push pushes that of the trend further
if judged appropriate for a given data set.

• When evaluating potential splits, discard those that would not meet MLF’s requirements on
resulting children nodes.

• This outputs one tree structure T .

3: When inputted with new observations of Xt and St, each tree produces a forecast. MRF forecast is the
mean of the those.

4: Same goes for βt: each tree predicts its own βt out-of-sample and the posterior mean is the average
of all those.

5: In-sample βt’s need an extra step: only draws that did not use observation t to construct the tree (that
is, for which t was left out of the subsample) are used to characterize the distribution of βt.
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A.5 Additional Figures and Tables

(a) DGP 1 (b) DGP 2

(c) DGP 3 (d) DGP 4

(e) DGP 5 (f) DGP 6

Figure 15: Investigation of the consequences of Xt’s misspecification, as exemplified by "Bad ARRF". Instead of
the first two lags of yt, Xt is replaced by randomly generated iid (normal) variables. Total number of simulations is
50, and the total number of squared errors is thus 2000.
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(a) DGP 1

(b) DGP 2

(c) DGP 3

Figure 16: The grey bands are the 68% and 90% credible region. After the blue line is the hold-
out sample. Green line is the posterior mean and orange is the truth. The plots include only the
first 400 observations for visual convenience.
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(d) DGP 4

(e) DGP 5

(f) DGP 6

Figure 16: (Continued) The grey bands are the 68% and 90% credible region. After the blue line is
the hold-out sample. Green line is the posterior mean and orange is the truth. The plots include
only the first 400 observations for visual convenience.
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Figure 17: The distribution of RMSE dis-improvements with respect to the oracle’s forecast for 4 models: OLS,
Rolling-Window OLS, plain RF, MRF. 50 simulations of 750 OOS forecasts each.

(a) RMSEGDP,h,m/RMSEGDP,h,AR (b) A look at forecasts

Figure 18: GDP results in detail
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(a) RMSESPREAD,h,m/RMSESPREAD,h,AR (b) A look at forecasts

Figure 19: SPREAD results in detail

(a) RMSEINF,h,m/RMSEINF,h,AR (b) A look at forecasts

Figure 20: INF results in detail
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Figure 21: GTVPs of the one-quarter ahead GDP forecast. Persistence is defined as φ1,t + φ2,t. The grey bands are
the 68% and 90% credible region. The pale orange region is the OLS coefficient ± one standard error. The vertical
dotted blue line is the end of the training sample. Pink shading corresponds to NBER recessions.
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Figure 22: GDP equation βt’s obtained with different techniques. Persistence is defined as φ1,t + φ2,t. TVPs
estimated with a ridge regression as in Goulet Coulombe (2020a) and the parameter volatility is tuned with k-fold
cross-validation. Ex Post TVP means using the full sample for estimation and tuning as opposed to only using
pre-2002 data as for GTVPs. The pale orange region is the OLS coefficient ± one standard error. Pink shading
corresponds to NBER recessions.
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(a) GDP horizon 1

(b) UR horizon 1

Figure 23: 20 most important series according to the various variable importance (VI) criteria.
Units are relative RMSE gains (in percentage) from including the specific predictor in the forest
part. VIOOB means VI for the out-of-bag criterion. VIOOS is using the hold-out sample. VIβ is an
out-of-bag measure of how much βt,k varies by withdrawing a certain predictor.
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(a) One month ahead inflation forecast

(b) Average inflation over the next 12 months

Figure 24: 20 most important series according to the various variable importance (VI) criteria.
Units are relative RMSE gains (in percentage) from including the specific predictor in the forest
part. VIOOB means VI for the out-of-bag criterion. VIOOS is using the hold-out sample. VIβ is an
out-of-bag measure of how much βt,k varies by withdrawing a certain predictor.
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(a) One-month ahead

(b) 12-months ahead

Figure 25: GTVPs of monthly inflation forecast. The grey bands are the 68% and 90% credible regions. The pale
orange region is the OLS coefficient ± one standard error. The vertical dotted line is the end of the training sample.
Pink shading corresponds to NBER recessions.

72



(a) UR equation

(b) GDP equation

Figure 26: βt’s obtained with different techniques. TVPs estimated with a ridge regression as in Goulet Coulombe
(2020a) and the parameter volatility λ is tuned with k-fold cross-validation, then divided by 100. This means the
standard deviation of parameters shocks is allowed to be about 10 times higher than what CV recommends. Ex Post
TVP means using the full sample for estimation and tuning as opposed to only using pre-2002 data as for GTVPs.
The pale orange region is the OLS coefficient ± one standard error.
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Figure 27: 20 most important series according to the various variable importance (VI) criteria.
Units are relative RMSE gains (in percentage) from including the specific predictor in the forest
part. VIOOB means VI for the out-of-bag criterion. VIOOS is using the hold-out sample. VIβ is an
out-of-bag measure of how much βt,k varies by withdrawing a certain predictor.

Figure 28: β3,t in (6) with additional controls for supply and monetary policy shocks. Capacity Utilization is still
substantially correlated with the inflation-unemployment trade-off. The grey band is the 68% credible region. Pink
shading corresponds to NBER recessions.
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Table 4: Main Quarterly Results

FA-AR LASSO-MAF Ridge-MAF RF RF-MAF AR+RF Tiny RF FA-ARRF ARRF Tiny ARRF VARRF SETAR STAR TV-AR
GDP

h=1 1.02 0.96 0.89** 0.94 0.86 0.89 1.03 0.86 0.93 1.04 1.20 1.01 1.03 0.99
h=2 0.96 0.98 0.98 0.99 0.91 0.93 1.01 0.97 0.94** 1.03 0.99 0.97 0.98 1.03
h=4 1.03 0.98 0.99*** 1.00 0.98 0.99 1.03 0.97 0.95 0.98 0.89 0.97*** 0.96*** 0.96
h=6 1.36 0.98 0.98 0.98 1.00 1.00 1.08 1.01 0.97 0.98 1.00 0.98 0.95 0.98
h=8 1.37 1.00 0.99 0.99 0.99 0.96 1.15 1.06 1.00 1.01 1.04*** 1.00 0.97 1.00

UR
h=1 0.83 0.99 0.99 1.00 0.85* 0.84 1.24** 0.72 0.90*** 1.00 1.24 1.18 1.10 1.00
h=2 0.80 0.98 0.92* 0.98 0.85 0.84 1.15* 0.76 0.90 0.96 0.89 1.03 0.97 0.99
h=4 0.88 0.96*** 0.94** 0.96* 0.87* 0.84* 1.37 0.79 0.87 0.92 0.91 1.02 1.01 1.34
h=6 1.18* 0.98 0.98 1.01 0.94 0.90 1.60* 0.89 0.95 0.97 0.95 1.07 1.04 1.14
h=8 1.25 0.98 1.01 1.01 0.95 0.95 1.57 1.01 0.98 0.98 1.04 1.09 1.06 1.11**

SPREAD
h=1 1.28 2.16*** 0.93 0.91 0.95 0.79** 0.96 1.08 0.89** 1.06 0.77** 1.51*** 1.53*** 0.98
h=2 1.13 1.20 0.77 0.66** 0.78 0.72*** 0.93 0.80 0.78** 1.11 0.74** 1.19 1.20 1.04
h=4 0.86 0.95 1.01 0.81 0.69** 0.61** 1.48* 0.66** 0.73** 1.07 0.69** 1.04 1.06 1.30
h=6 1.51 0.80* 1.13 0.98 0.80 0.80 1.43 0.72** 0.82 1.05 0.74* 1.03 1.06 1.19
h=8 1.28 0.76** 0.96 0.92 0.83 0.89 1.36 0.82 0.88 0.99 0.85 1.11 1.14 0.99

INF
h=1 1.01 0.93 0.95 0.98 0.88 1.23 0.90 0.94 0.89 0.87* 0.96 1.05 1.00 0.93
h=2 1.01 0.96 0.92 0.92 0.82 1.00 0.88 0.94 0.86 0.87 0.91 0.86* 0.86 0.89
h=4 1.08 0.92 0.87 0.94 0.85** 0.96 0.86 0.89 0.91* 0.95* 0.87* 0.90* 0.87* 0.91
h=6 1.32 0.96 0.90 1.01 0.88 1.00 0.86 0.91 0.85 0.92** 0.87 0.94 0.89 0.98
h=8 1.21 0.98 1.27 1.44 0.88* 0.94 0.88 0.91* 0.92 0.94 0.91* 0.96 0.92 0.98

HOUST
h=1 1.13 1.04 0.94* 0.92* 1.00 1.01 1.24*** 1.08 0.94** 0.95 1.09 1.01 0.99 1.00
h=2 1.13 0.99 0.94** 0.95* 1.01 1.02 1.10* 1.06 1.00 1.02 0.99 0.94 0.97 1.01
h=4 1.11 0.98** 0.97* 0.97 1.01 1.03 1.12 1.02 1.00 1.02 1.02 0.95 0.96 1.08
h=6 1.40 0.96 0.96 0.96 0.96*** 1.01 1.16 0.97*** 0.99 1.00 0.98 0.95 0.96 0.99
h=8 1.04 0.95 0.95 0.95 0.99 1.02 1.44 0.96 0.99 1.01 1.00 0.95 0.95 1.03

IR
h=1 1.85 1.02 1.55 1.17 1.11 0.97 0.99 1.29 0.94 0.92 1.43 1.39 1.20 0.97
h=2 1.49 0.96 1.01 1.00 0.93 0.98 1.29*** 1.22 0.93 0.92 1.10 1.15 1.11 1.04
h=4 0.96 1.00 1.03 1.03 1.04 0.99 1.39* 0.99 0.97 1.12 0.97 1.08 1.07 1.09
h=6 1.87 0.95 0.99 1.00 0.93 0.93 1.23* 0.98 0.95* 1.07 1.12 1.19 1.14 1.06**
h=8 1.58 0.98 1.02 1.03 0.96 0.96 1.20 1.04 0.96 1.10 0.98 1.25** 1.20** 1.06

Notes: This table report the root MSPE of the model m with respect to the root MSPE the AR(4). Best forecast of the row is in bold. Diebold-Mariano
test is conducted for each model against the AR(4). "*", "**" and "***" means p-values of below 10%, 5% and 1%.
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Table 5: Monthly Results

AR4 AO-12 AO-h FAAR RF RF-MAF AR+RF ARRF FA-ARRF Tiny ARRF VARRF
IP

h=1 1.00 1.11* 1.14 0.96 1.03 0.94* 0.97 0.99 0.96 1.02 1.02
h=3 1.02 1.17* 1.02 0.99 1.12 0.98 0.96 1.03 1.01 1.02 1.08
h=9 1.01 1.04 1.03 1.06 1.02 1.06 1.02 1.04 1.10 1.09 1.03
h=12 1.01 1.00 1.00 1.05 0.99 0.97 0.91 0.97 1.05 1.13 0.96
h=24 1.00 0.84 0.84 1.17 0.92 0.86 0.86 0.88 0.95 1.11 0.89

UR
h=1 1.01 1.03 1.09 0.95 0.97 0.87*** 0.95 0.91*** 0.90** 0.98 0.94**
h=3 1.00 1.10 1.05 0.86 1.05 0.81*** 0.92 0.89** 0.82* 1.03 0.89***
h=9 0.99 1.11 1.10 0.92 1.02 0.96 0.91 0.97 0.98 1.16* 0.97
h=12 0.99 1.07 1.07 0.96 0.97 0.96 0.91 0.99 0.94 1.17 0.96
h=24 1.02** 1.02 1.03 1.06 0.91* 0.84 0.81 0.91 0.97 1.28 0.87

SPREAD
h=1 0.99 2.88*** 1.23*** 1.21** 3.52*** 1.07 0.91*** 0.99 0.98 0.96 0.93**
h=3 1.01 1.68*** 1.07 1.25 1.69*** 0.82** 0.81*** 1.06 0.85** 1.00 0.88**
h=9 1.01 1.36 1.27 1.06 0.94 0.73** 0.72** 0.70*** 0.62*** 1.07 0.67***
h=12 1.02 1.28 1.28 1.05 0.80*** 0.66*** 0.60*** 0.68*** 0.65*** 1.07 0.64***
h=24 1.03 1.34* 1.34* 0.96 0.80* 0.70* 0.71* 0.69** 0.63*** 0.90 0.70**

INF
h=1 1.02 1.11* 1.18* 0.99 1.07 1.06* 1.01 0.95 0.96 0.95 0.93**
h=3 1.04 1.02 1.24* 1.04 0.93 0.88 1.05 0.90 0.88 0.90 0.88
h=9 1.07 0.92 1.01 1.16 0.86 0.78 1.15* 0.72 0.82 0.73 0.76
h=12 1.09* 0.91 0.91 1.21 0.88 0.79 1.15* 0.73 0.67 0.67* 0.70
h=24 1.04 0.90** 0.86** 1.35 1.00 1.12 1.12 0.71 0.69 0.55** 0.73

HOUST
h=1 1.00 1.10** 1.35*** 1.07 1.08** 1.02 1.00 1.01 1.02 1.02 1.01
h=3 0.96** 1.06 1.34*** 1.15 1.03 1.07 1.03 1.04 1.03 1.01 1.04
h=9 0.98 1.05 1.12 1.35 0.98 1.02 1.01 1.02 1.14 1.03 1.03
h=12 0.98 1.05 1.05 1.32 0.95 1.00 1.01 1.00 1.12 1.11 1.03
h=24 0.95 1.09 1.07 1.17 0.87 0.94 0.95 1.00 1.15 1.23 1.06

Notes: This table report the root MSPE of the model m with respect to the root MSPE the AR(4). Best forecast of the row is in bold. Diebold-Mariano
test is for each model against the AR(4). "*", "**" and "***" means p-values of below 10%, 5% and 1%. "AO-i" means i-months moving average forecasts
à la Atkeson et al. (2001).
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