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Abstract

We propose a novel reinforcement learning approach to extract high-frequency aggregate

growth expectations from asset prices. While much expectations-based research in macroeco-

nomics and finance relies on low-frequency surveys, the multitude of events that pass between

survey dates renders identification of causal effects on expectations difficult. Our method al-

lows us to construct a daily time-series of the cross-sectional mean of a panel of GDP growth

forecasts. The high-frequency nature of our series enables clean identification in event studies.

In particular, we use our estimated daily growth expectations series to test the “Fed infor-

mation effect” and find little evidence to support its existence. Extensions of our framework

can obtain daily expectations series of any macroeconomic variable for which a low-frequency

panel of forecasts is available. In this way, our method provides a sharp empirical tool to

advance understanding of how expectations are formed.
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1 Introduction

Investor expectations play a central role in asset pricing, as demonstrated by the equation

Pt = Et [Mt+1Xt+1] (1)

where investors price assets based on their beliefs about the joint distribution of the stochastic

discount factor Mt+1 and the asset’s cash flows Xt+1. One of the key drivers of investor expec-

tations is news of macroeconomic events such as impending trade wars, interest rate changes, or

announcements of new tax policy. To examine the impact of such news events, researchers have ei-

ther examined the behavior of asset prices around announcement dates (Lucca and Moench (2015),

Neuhierl and Weber (2018)) or utilized surveys that directly measure expectations (Gennaioli et al.

(2016), Fuhrer (2017)). Each approach, however, suffers from certain shortcomings. The diversity

of information sources (e.g. news about future interest rates, growth, unemployment, etc.) that

affect asset prices limits the first method in targeting a specific type of expectation, while the low

frequency of survey data, which is quarterly or monthly at best, inhibits the second.

In this paper, we construct a daily time series of investor expectations of macroeconomic growth.

Since surveyed expectations are available at a quarterly frequency, our task is to recover the un-

observed daily series of expectations between two quarterly survey releases dates. We then repeat

this process quarter by quarter. While previous papers have proposed Kalman filtering (KF) and

regression-based approaches to estimate the latent expectations series, we propose an alternate

framework based on reinforcement learning (RL), a branch of machine learning with roots in dy-

namic programming. We utilize daily asset prices that reflect investors’ updated beliefs about

macroeconomic growth. Thus, as econometricians we tackle the inverse problem of extracting be-

liefs from daily asset prices.

Our main task of interest resembles that of Ghysels and Wright (2009), in which authors propose

a mixed frequency data sampling (MIDAS) approach for using asset price data to predict the

forecasts of professional forecasters. There are, however, several important points of departure in

our paper. First and foremost, we target a different quantity than Ghysels and Wright (2009) do.

At any day t within a quarter, MIDAS yields a prediction of the end-of-quarter survey expectation.

On the other hand, we seek to estimate the latent expectation at time t, which need not bear any

relation to the time t prediction of the end-of-quarter expectation. To this end, we use reinforcement

learning as our method of choice. Second, our approach greatly reduces the number of parameters

to be estimated. Third, instead of modeling the evolution of forecasts in a reduced form way as done

in Ghysels and Wright (2009), we construct a state-space of growth and returns that distinguishes

discount rate shocks from cash flow shocks. This approach enables our algorithm to use multiple
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assets and extract only the unexpected component of returns in constructing our forecasts.1

Two immediate questions arise: why reinforcement learning (RL), and why asset prices? The

short answer to the first question, which will be expanded upon in Section 3, is that RL achieves

a significant gain in efficiency over traditional filtering techniques such as the Kalman filter. RL

avoids an explicit model of the state dynamics and thus requires estimation of far fewer parameters.

To see this point more explicitly, consider the following simple model:

yt+1 = Hyt + et+1, et+1 ∼ N (0,Σ)

xt+1 = Fxt + ut+1, ut+1 ∼ N (0,Φ) (2)

where H,F,Σ,Φ are scalar coefficients. Here {yt} represents the observed series (e.g. asset prices),

{xt} represents the latent series (e.g. macroeconomic growth expectations), and et+1 and ut+1 are

assumed to be independent. In this example, the update rule for the estimate of x in the Kalman

Filter is

x̂t+1|t = F

(
x̂t|t−1 +

(
HΩt|t−1

Σ +H2Ωt|t−1

)
(yt − ŷt)

)
where Ωt|t−1 is variance of the state estimate. To compute the update increments, one must estimate

the parameters (H,F,Σ,Φ) using maximum likelihood estimation. When the data prove scarce

compared to the number of parameters, however, the parameters are estimated inefficiently and

the subsequent errors propagated to the state updates. RL avoids this problem by estimating the

update function directly:

x̂t+1|t = x̂t|t−1 + f (yt)

where f is a parsimoniously parameterized function of the observables, yt. The efficiency gain from

estimating fewer parameters lies at the core of why our reinforcement learning approach outperforms

existing methods in the task of interest.

The answer to the question of why asset prices may be useful in this task proves more nuanced.

First, since we construct a daily series of expectations within each quarter, we cannot use funda-

mental data such as dividend growth or GDP growth that is released at low frequency. Our data

must be available at a daily frequency, a constraint that makes asset prices the prime candidate.

However, prices reflect many variables besides growth expectations. Expectations of any variable

related to cash flow growth will appear in asset prices, as will discount rates. With a single as-

set, we cannot extract the component of asset returns driven solely by changes in expectations

of macroeconomic growth. But with multiple assets, a suitable linear combination of them can

1This is essentially the idea behind economic tracking portfolios in Lamont (2001).
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cancel the extraneous sources of return variation and deliver a estimate of the change in growth

expectations. In other words, the econometrician’s task can be interpreted as finding an optimal

combination of asset returns that correlates maximally with the change investors’ expectations of

future macroeconomic growth.

To illustrate the above intuition and motivate our empirical strategy, we start by providing

empirical evidence regarding the relationship between asset returns and expectations of macroeco-

nomic growth. As a proxy for aggregate expectations, we use the mean of a cross-section of GDP

growth forecasts obtained from the Survey of Professional Forecasters (SPF).

We then elucidate the differences among our RL algorithm, the Kalman Filter (KF) and MI-

DAS regression by presenting a stylized economy with Bayesian agents. We consider an economy in

which expected returns and dividend growth are linear in common factors, one of which is macroe-

conomic growth. To complete the analogy to our final empirical task at hand – estimating the

average expectation across forecasters – we also generate a panel of growth expectations by explic-

itly modeling a cross-section of Bayesian forecasters. Each forecaster employs a correctly-specified

Kalman Filter with a slightly different calibration of the underlying state-space model. We derive

the expressions for the RL, KF, and MIDAS estimators in this setting to demonstrate the greater

statistical efficiency of our RL approach.

Next, we take our RL algorithm to the real data. Specifically, we apply the algorithm to

forecasts from the Survey of Professional Forecasters (SPF) and construct a daily series of investor

expectations and disagreement. In a recursive out-of-sample estimation procedure, we train six

models with different lookback windows and average the resulting policy weights. Across the entire

out-of-sample period, we find that the constructed daily series of average growth expectations

realizes an R2 of 82.3% against the true quarterly series. These results prove far superior to the

results from the KF and MIDAS, which achieve R2 values of 2.3% and 39.2%, respectively.

Finally, we use our estimated daily series of growth expectations to test the existence of the Fed

information effect. Introduced by Romer and Romer (2000), the Fed information effect refers to

the notion that perhaps the Fed has private information about the current and future state of the

economy that is revealed by its actions. Part of the motivation for the Fed information effect comes

from regressions of the change in low-frequency surveyed growth expectations from before and after

an FOMC announcement on some measure of the monetary policy shock. These regressions yield

coefficients with the “wrong” sign: positive (Nakamura and Steinsson, 2018). Hawkish surprises

for interest rates correspond to increases in real GDP growth expectations and dovish surprises

correspond to decreases in real GDP growth expectations. The problem with this type of analysis

is that it uses low-frequency (e.g. monthly) surveys of expectations. Recent work has suggested that

news between the pre-FOMC survey and the FOMC announcement causes omitted variable bias

in these regressions. We bypass this omitted variables problem by moving to a higher frequency.

Specifically, we regress the FOMC announcement-day change in growth expectations using our
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RL-estimated series on the the monetary policy shock of Nakamura and Steinsson (2018). Our

high-frequency regressions provide no evidence of the Fed information effect: hawkish surprises

correspond to decreases in real GDP growth expectations.

To our knowledge, our paper represents the first serious application of reinforcement learning

in asset pricing. Our RL approach can be applied to obtain a daily series of expectations for any

macro variable for which a low-frequency panel of forecasts is available. Immediate candidates

include interest rate expectations and inflation expectations. Furthermore, the estimated daily

series of aggregate expectations has useful practical applications, such as for testing theories of

expectations formation and responses to unexpected macroeconomic events.

Econometrically, our paper relates to the literature on measuring latent economic and financial

variables in a time-series setting. Popular frameworks include balanced panel regressions (Stock

and Watson (1989)), state-space models (Bernanke et al. (1997), Evans (2005), Van Binsbergen

and Koijen (2010)), and latent VARs (Brandt and Kang (2004)). While we estimate expectations

of economic variables rather than the actual variables themselves, our core task shares common

features with the existing literature. In our setup, we treat the average forecast across a cross-

section of forecasters as a latent variable that our RL approach efficiently recovers.

Our paper contributes to a growing body of work that incorporates machine learning methods in

finance. Particularly in the asset pricing literature, researchers have used a wide array of methods

including shrinkage and selection (Rapach et al. (2013), Freyberger et al. (2017), Kelly et al. (2017),

Giglio and Xiu (2018), and Kozak et al. (2019)), neural networks (Hutchinson et al. (1994), Yao

et al. (2000), Sirignano et al. (2016), and Heaton et al. (2017)), and tree-based models (Moritz and

Zimmermann (2016)). Distinct from papers using the aforementioned methods, our paper focuses

on reinforcement learning. With roots in dynamical systems theory, reinforcement learning tries to

maximize a reward signal rather than find hidden structures and features in the data. Our contri-

bution is to show that a parsimonious estimation of the optimal policy function via reinforcement

learning can bring a significant efficiency gain relative to traditional filtering techniques.

The remainder of the paper proceeds as follows. Section 2 motivates our empirical strategy

by developing a framework for estimating the investor expectations at a daily frequency. Section

3 outlines the three methods we use: RL, KF, and MIDAS. Section 4 contains the results of the

empirical estimation of the daily growth expectations series. Section 5 presents our test of the Fed

information effect. Section 6 concludes.

2 Empirical Framework

In this section, we consider an economy in which expected returns and dividend growth across

assets and over all horizons are linear in common factors, one of which is macroeconomic growth.

We establish, both theoretically and empirically, that asset prices are useful in estimating growth
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expectations.

2.1 Data

We interpret asset prices broadly to include interest rates, spreads, returns, and various measures

related to the value of financial assets. Since we seek to construct a daily time-series, we require

assets for which liquid daily returns are available. For equities, we consider returns on the market

index, Fama-French industry portfolios, and Fama-French factors (size, value, and momentum). For

fixed income, we consider returns on treasury bonds, changes in the slope of the yield curve, and

changes in credit spreads. For exchange rates, we consider the change in the value of the U.S. dollar

versus a basket of other currencies.2 For derivatives, we consider changes in VIX index. Table 1

summarizes the data sources we use.

For macroeconomic growth, we use realized real GDP growth from the FRED database. Data on

real GDP is seasonally adjusted in billions of chained 2012 dollars, obtained via the FRED database

(GDPC1). We compute the annualized GDP growth rate as four times the quarterly percentage

change in real GDP.

Since we are interested in measuring the expectations of growth, we utilize GDP growth forecasts

from the Survey of Professional Forecasters (SPF). The SPF survey occurs every quarter, asking

participants for quarterly projections up to five quarters ahead as well as annual projections for the

current year and the following year. The forecast variables include GDP growth, various measures

of inflation including CPI inflation, and the unemployment rate. This paper focuses on the one-

quarter ahead GDP growth forecasts. For instance, we focus on the forecaster’s expectation of GDP

growth in 2018:Q4 (t) from surveys conducted in mid 2018:Q3 (t− 1).

Table 2 presents selected summary statistics for the SPF forecasts. We find that the surveys pro-

vide decently accurate forecasts of real GDP growth. Figure 1 plots the time-series of cross-sectional

mean and standard deviation of SPF forecasts from 1970 to 2018.3 We verify that the mean of the

forecasts is pro-cyclical while the standard deviation is counter-cyclical. The result accords with

Kozeniauskas et al. (2018), which documents that cross-sectional disagreement regarding growth is

countercyclical.

Growth forecasts also prove more persistent than realized GDP growth. The autocorrelation in

SPF one-quarter ahead forecasts from 1990:3Q to 2018:4Q is 0.7337 while the autocorrelation in

realized GDP growth during the same period is 0.3944.4 In addition, as shown in Figures 2 and 3,

2This is the variable “DTWEXM” from FRED.
3The first survey the Philadelphia Fed conducted in real time occurred in 1990:Q3. Thus, in our estimation

restrict our sample of forecasts to 1990:Q3 onward. However, this plot extends back to 1970:Q1 to highlight the
procyclicality and countercyclicality of the cross-sectional mean and standard deviation, respectively

4This result proves unsurprising. As an extreme example, if real GDP growth follows an i.i.d. process and agents
have access to a sufficiently long time series, then their forecasts each quarter will be the unconditional mean of
the GDP growth process. Thus, even though growth is serially uncorrelated, mean expectations will be perfectly
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we find that the forecast accuracy, as measured by correlation and root mean square error, declines

as the forecasting horizon increases.

2.2 Model of the Economy

To motivate our empirical analysis, we consider an economy in which GDP growth is persistent:

θt+1 = µ+ δθt + εt+1 (3)

where θt is the GDP growth at time t and εt+1 is a normal shock with variance σ2
ε . There are m

assets indexed by i, and we assume that GDP growth affects each asset’s dividend growth:

dit+1 − dit = γ + βiθt+1 + νt+1 (4)

where dit is the log dividend of asset i in period t and βi is the asset’s loading on contemporaneous

macroeconomic growth θt+1.

Furthermore, we assume that the conditional expected return of asset i depends linearly on

another latent factor ζt:

Et
[
rit+1

]
= α + φiζt (5)

and that ζt is persistent:

ζt+1 = τ + ψζt + ξt+1 (6)

where ξt+1 is a normal shock with variance σ2
ξ . For generality, we assume that innovations to θt and

ζt are correlated:

Corr (εt, ζt) = π (7)

Under this setup5, we prove in Appendix A that applying the approximation in Campbell and

Shiller (1988) delivers:

∀i = 1, ...m : rit+1 = γ +

(
βi +

δβi

1− ρδ

)
θt+1 −

(
δβi

1− ρδ

)
θt −

φi

1− ρψ
(ζt+1 − ζt) + νt+1 (8)

where

ρ =
1

1 + exp
(
d− p

)
and d− p is the average log dividend-price ratio. Therefore, the return rt+1 is a simple function of

θt+1, θt, ζt+1 − ζt and νt+1. Returns increase with contemporaneous growth θt+1 and the shock to

autocorrelated. In general, Bayesian agents with tight priors will have persistent mean expectations.
5This setup is equivalent to the present value system in Kelly and Pruitt (2013) with θt and ζt as two underlying

common factors. Factor models are sufficiently general to include a wide range of models in asset pricing that link
asset-specific expected returns and dividend growth to aggregate variables.
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the dividend process νt+1, and decrease with previous period’s growth θt and the change in ζt+1.

2.3 Relationship between Asset Prices and Growth Expectations

Equation (8) implies that asset prices should be useful for understanding changes in investor expec-

tations. To test this question empirically, we examine whether asset returns can explain innovations

in the average growth forecast. Specifically, we define the forecast innovation for period t as the

difference between the mean SPF forecast of period t-growth reported in period t and the mean

SPF forecast of period t-growth reported in period t−1, i.e. the difference between the nowcast and

the lag-one-period forecast for period t. For example, we compute the difference in the forecaster’s

expectation of GDP growth in 2018:Q4 (t) from surveys conducted in mid 2018:Q4 (t) (nowcast)

and mid 2018:Q3 (t− 1) (lag-one-period forecast). We then run time-series regressions of innova-

tions in mean growth expectations on asset returns. In the interest of parsimony, we only consider

bivariate pairs of assets in our test asset set. We discuss the impact of adding more assets in Section

4.2. We conduct this analysis at the frequency of the SPF forecast releases, which is quarterly.

Table 3 displays the results of these regressions. We find that the following pair of assets explains

the greatest amount of variance in the quarterly forecast innovations (R2 = 38.3%): the CRSP U.S.

Treasury five-year fixed-term index and the CRSP value-weighted portfolio. Other pairs of assets

involving bond returns, credit spreads, and VIX also yield sizable R2 values of over 25%. Thus, we

find empirically that asset returns contain useful information about forecast innovations.

2.4 Incorporating Bayesian Agents

In Section 2.2, we introduced the data-generating process for our simulated economy. To complete

the setup, we now incorporate Bayesian agents who observe realized returns and form expectations

of the latent growth process.

We start by generating the latent growth (θt) and return series (rit) from the state-space model

in Section 2.2. We then instantiate 20 agents who observe returns but cannot observe growth. We

assume these agents are Bayesians who form estimates of θt via the Kalman Filter.6 Each agent

uses the same state equation (10) and observation equation (11).

Given the substantial dispersion across forecasts in the SPF data, we introduce heterogeneity

among the simulated agents along two dimensions. First is prior-mean heterogeneity : the mean

of each agent’s prior belief regarding θt at the start of the quarter is drawn from a normal distri-

bution with mean θ0 and standard deviation 0.5θ0 where θ0 is a calibrated parameter. Second is

learning heterogeneity : for each parameter in equations (10) and (11), each agent draws his value

of the parameter from a normal distribution centered at the baseline parameter value with variance

6The output of the KF yields both estimates of θt and ζt, but empirically we are only interested in θt.
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parameterized by a fixed signal-to-noise ratio. Consequently, each agent updates his belief via cor-

rectly specified KF equations but with misspecified parameters. While prior-mean heterogeneity

decays monotonically over time, learning heterogeneity introduces a persistent level of heterogeneity

across forecasts in simulation. Having set up this environment, we next examine how to estimate

the cross-sectional moments of growth forecasts.

2.5 Learning the Cross-sectional Moments

We now discuss the task of an econometrician who seeks to estimate the daily mean from a cross-

section of GDP forecasts given observed returns on assets.

Consider an approach via the KF. One possibility is to estimate the parameters for each indi-

vidual agent via maximum likelihood using the agent-specific time-series of reported expectations.

While this approach enables the construction of an entire panel of expectations and the derived cross-

sectional moments, it inevitably requires estimating a large number of parameters. The resulting

inefficiency proves concerning given the dearth of growth expectations survey data. Therefore, we

consider a more parsimonious approach.

We propose estimating the moments directly rather than keeping track of the entire cross-section.

To emphasize that the target variable here is aggregate expectations of growth and not growth itself,

denote µi,t ≡ Eit [θt+1] as agent i’s period t expectation of growth at period t + 1, ∀i = 1, ..., N .

Under the model in Section 2, the expression for the optimal Kalman gain implies the following

relationship:

µi,t = ci0,t + ci1,tµi,t−1 +
(
ci2,t
)′

rt

where ci0,t, c
i
1,t are scalars; ci2,t is a vector of scalars; and rt is a vector of m asset returns in period t.

Averaging across all agents, we get the following expression for the cross-sectional mean of growth

expectations at period t, denoted as µt:

µt ≡
1

N

N∑
i=1

µi,t =
1

N

N∑
i=1

ci0,t +
1

N

N∑
i=1

ci1,tµi,t−1 +

(
1

N

N∑
i=1

ci2,t

)′
rt

Motivated by the expression, we use the following approximating moment:

µt = c0 + c1µt−1 + c′2rt ≈ c1µt−1 + c′2rt (9)

where the second approximation follows since c0 ≈ 0 in our calibration in Appendix C. Note that

the quality of this approximation depends on the degree of learning heterogeneity since ci0,t, c
i
1,t and

ci2,t are functions of the underlying structural parameters. Having established the approximation
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that underlies the estimation in remainder of this paper, we now proceed to characterize the three

approaches for estimating the cross-sectional mean.

3 Three Approaches to Estimation: KF, RL, and MIDAS

In this section, we provide a comparison of three approaches – Kalman filtering (KF), reinforcement

learning (RL), and mixed data sampling (MIDAS) – through which an econometrician can estimate

the latent factor processes. We also describe our RL method in detail and compare its features to

those of existing methods to provide a clear comparison.

3.1 The Kalman Filtering (KF) Approach

Rearranging the state-space and observation equations from our simulated economy yields a final

system of state and observation equations:

θt+1 = µ+ δθt + εt+1

ζt+1 = τ + ψζt + ξt+1 (10)

∀i = 1, ...,m : rit+1 = γ +

(
βi +

δβi

1− ρδ

)
θt+1 −

δβi

1− ρδ
θt −

φi

1− ρψ
(ζt+1 − ζt) + νt+1 (11)

The KF approach models the cross-sectional moments as latent variables and uses the Kalmlan

Filter for estimation. Substituting (8) into the approximation (9) yields:

µt = c1µt−1 + c′2rt

= c1µt−1 + c′2 [1γ + aθt + bθt−1 + c (ζt − ζt−1) + νt]

where the elements a,b, c are

ai = βi +
δβi

1− ρδ
, bi = − δβi

1− ρδ
, ci = − φi

1− ρψ

Adding µt as another latent variable to the state equation (10) and the observation equation (11)

yields the corresponding state equations:

θt+1 = µ+ δθt + εt+1

ζt+1 = τ + ψζt + ξt+1

µt+1 = c′2 (1γ + aµ+ cτ) + c′2 (aδ + b) θt + c′2c (ψ − 1) ζt + c1µt (12)
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and the observation equation:

c′2rt = µt − c1µt−1 (13)

There are 3m + 11 parameters to be estimated where m is the number of assets used. We fit the

model in-sample using maximum likelihood and then use the estimated KF to obtain daily estimates

out-of-sample. Note that by comparison, as will be detailed later, the cross-sectional RL method

requires estimation of only m+ 1 parameters.

Note that the KF described above is misspecified since approximation (9) does not describe

the true law of motion for the cross-sectional mean. The correctly specified filter would require

estimating N (2m+ 10) parameters, where N is the number of forecasters in the cross section. Given

the relatively short time-series available for surveyed expectations, this method would prove futile

from an efficiency perspective. Instead we admit bias into the KF by way of model misspecification

so that it achieves the same order of magnitude of efficiency as the cross-sectional RL method. This

step is explicitly undertaken to provide a fair comparison of KF against the RL approach.

3.2 The Mixed Data Sampling (MIDAS) Approach

We also implement the MIDAS regression forecasting method from Ghysels and Wright (2009) as a

benchmark to our RL approach. MIDAS regressions forecast low-frequency variables from higher-

frequency predictors. To be concrete, assume there is a low-frequency variable of interest denoted yt

for which we have quarterly observations. Let dt denote the day we observe yt. Additionally, there

are several high-frequency predictors riτ , i = 1, . . . ,m, that we observe daily. We seek to forecast yt

on day τ where dt−1 < τ < dt, so τ represents a day between the quarterly observation dates of yt.

To this end, for each day τ we fit the following model from Ghysels and Wright (2009):

yt, = ατ + ρτyt−1 +
m∑
i=1

βτi γ
τ (L)riτ + εt, (14)

where γτ (L) is a lag-polynomial of order l and the superscripts on the coefficients indicate that they

can vary across days τ . Therefore we have,

γτ (L)riτ =
τ∑

d=τ−l+1

γτdr
i
d.

To limit the number of parameters to estimate, we follow Ghysels and Wright (2009) and use the

beta lag specification from Ghysels et al. (2007), which parameterizes γτ (L) by two parameters: κ1

and κ2. Moreover, we follow Ghysels and Wright (2009) and use a maximal lag of l = 90 days. In

our setting, yt is µt, the quarterly observed cross-sectional mean survey expectation, and the high-

frequency predictors are daily asset returns. Each MIDAS regression involves estimating m + 4
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parameters.

3.3 The Reinforcement Learning (RL) Approach

In this subsection, we first describe the intuition behind our proposed RL algorithm, and then

formalize the RL setup in the context of our cross-sectional estimation and explain why RL achieves

more efficient estimation . We delegate the details of our RL algorithm to the online appendix.

3.3.1 Intuition

In general, RL algorithms enable an agent to learn the optimal policy that dictates what action

to take given the current state. In our setting, the agent’s state is the current expectation of next

quarter growth and the current asset returns. The policy is the function of the current state that

yields the agent’s new growth expectation, and action is the agent’s updated growth expectation.

The KF uses the same framework: the agent updates the growth expectation based on a linear

combination of the observed asset returns. Unlike the KF, however, RL is model-free in that it does

not require an explicit model of the underlying state transition dynamics of the environment. Instead

of using maximum likelihood to fit model parameters and then computing the optimal Kalman gain,

RL directly learns the policy function. Therefore, RL enables more efficient estimation by omitting

the model of the state transitions.

Specifically, let st denote the state in period t and

ϕ (st) =

[
µ̂t|t−1

rt

]
∈ Rm+1

be the state features in the agent’s information set in time t, where m is the number of assets.

Recall that µ̂t|t−1 is the agent’s expectation from period t−1 of period t growth, and rt is the vector

of period t asset returns. We can also write the policy function as

at = gλ (st)

where at is the action taken by the agent in period t and λ parameterizes the policy function. As

discussed previously, the action in our setup is the agent’s updated growth expectations: at = µ̂t+1|t.

The KF and RL diverge in how they learn the optimal policy gλ (·). In the KF, the expression

for the optimal Kalman gain gives rises to gλ (·) as a linear function with λ ∈ Rm+1 having a

closed-form expression that is a function of the structural parameters given in Section 3.1. Thus, to

compute gλ, the KF requires estimation of 3m+11 parameters. On the other hand, in our proposed
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RL algorithm, we do maintain the linearity restriction on gλ, namely:

gλ (s) = ϕ (s)> λ

but instead the algorithm learns λ directly from historical data. This approach requires estimation

of only m+ 1 parameters.

Translating this approach into our stylized setting, we consider an agent who starts with µ̂1|0 =

µ0 and follows gλ each day for one quarter, ultimately arriving at µ̂T |T−1 where T is the number

of days in a quarter. Our goal is to minimize the Euclidean distance between µ̂T |T−1 and µT , i.e.

solve the following minimization problem:

min
λ

∣∣∣∣gT−1λ (s1)− µT
∣∣∣∣ (15)

where gT−1λ (s1) is the value of µ̂T |T−1 achieved by following the policy gλ for T − 1 periods starting

with s1.

In our setting, µ0 and µT are the observed cross-sectional mean expectations of a survey of

forecasters in two consecutive quarters, and gλ is a policy function that yields daily estimates of

the latent cross-sectional mean between these two quarterly releases. Specifically, the RL agent

observes µ0 on the survey release date at the start of quarter j and iteratively uses observed asset

returns to construct daily estimates θ̂t|t−1 of the unobservable mean expectation for each day t in

quarter j. The agent continues this process until the next survey release date at the start of quarter

j + 1, at which point θT is revealed and the loss function in (15) can be computed. The optimal

policy minimizes the average end-of-quarter j loss. In Appendix B, we formalize this intuition in

order to discuss how our RL algorithm learns the optimal policy.

3.3.2 Cross-sectional Estimation: RL Approach

We apply our RL algorithm to learn the optimal policy for estimating µt. The state vector for

period t includes the period t− 1 cross-sectional mean, variance, and period t asset returns:

ϕ (st) =

 µ̂t−1

σ̂2
t−1

r′t

 ∈ Rm+2

where µ̂t−1 and σ̂2
t are the estimated cross-sectional mean and variance at period t− 1. The initial

state is

ϕ (s1) =

 µ0

σ2
0

r′1


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where µ0 and σ2
0 are the true cross-sectional mean and variance from the previous quarter’s survey

release. Following the approximation (9), we use the following policy function:

gλ (st) ≡

(
µt

σt

)
=

(
c1µt−1 + c′2rt√

c3σ2
t−1 + c′4rtr

′
tc4 + c′5rtµt−1

)
∈ R2

where

λ =


c1

c2

c3

c4

c5

 ∈ R3m+2

Notice that we are estimating both µt and σt jointly. In unreported set of results, we find that

estimating both moments jointly yields better estimates of µt. We derive the form of the policy for

updating σt through a similar set of approximations as thouse used to estimate µt.
7 The rewards

in this setting are defined as

rt
(
st
)

=


0 if t < T

−

∣∣∣∣∣∣
∣∣∣∣∣∣
 µ̂T |T−1

σ̂T |T−1

−
 µT

σT

∣∣∣∣∣∣
∣∣∣∣∣∣ if t = T

where µT and σT are the observed moments computed from the cross-section of forecasts released

quarterly. With this formalism, we can directly apply the algorithm to learn the optimal parameters

λ in-sample and subsequently use the learned gλ to estimate the daily cross-sectional mean.

7Since we have the following expression for the cross-sectional variance:

σ2
t =

1

N

N∑
i=1

(µi,t − µt)
2

substituting in the approximations

µi,t = ci0,t + ci1,tµi,t−1 +
(
ci2,t
)′
rt ≈ ci1,tµi,t−1 +

(
ci2,t
)′
rt

µt = c0 + c1µt−1 + c′2rt ≈ c1µt−1 + c′2rt

from 2.5 yields:

σ2
t =

1

N

N∑
i=1

[(
ci1,tµi,t−1 − c1µt−1

)2
+
((

ci2,t
)′
rt − c′2rt

)2
+ 2

(
ci1,tµi,t−1 − c1µt−1

) ((
ci2,t
)′
rt − c′2rt

)]
≈ c3σ2

t−1 + c′4rtr
′
tc4 + c′5rtµt−1
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3.4 A Three-Way Comparison

In this section we provide a brief comparison of the three cross-sectional estimation methods dis-

cussed above. The two main differences among the methods are 1) the interpretation of the output

of each method and 2) the bias-variance tradeoff each method incurs.

Whereas the RL and KF approaches yield daily estimates of the current latent cross-sectional

mean expectation, MIDAS produces a prediction of the end-of-quarter cross-sectional mean expecta-

tion. To be concrete, let FFt and FEt represent the time t information sets of the panel of forecasters

and the econometrician, respectively. In this notation, on date t within a quarter between two con-

secutive survey releases, the cross-sectional mean expectation µt is in FFt but is not in FEt . On day

t the RL and KF approaches generate estimates of E
[
µt | FEt

]
while MIDAS yields an estimate

of E
[
µT | FEt

]
. Note the difference in the subscripts on µ.8 In this setting, we explicitly seek to

estimate a daily series of E
[
µt | FEt

]
, not E

[
µT | FEt

]
. Thus, the RL and KF approaches prove

better suited to our setting than the MIDAS approach. Indeed, as we verify in simulations in the

next section, the {E
[
µT | FEt

]
}Tt=0 series output by MIDAS aligns poorly with the true underlying

{µt}Tt=0 series in a quarter.

Moreover, the RL approach proves more efficient in this setting due to its parsimony. All three

methods prove biased in this setting, as they all rely on the approximate law of motion of the cross-

sectional mean given in (9) as opposed to keeping track of the entire panel of individual forecaster

expectations. Nonetheless, the KF approach most closely exploits the structure of the state-space

system, and so should prove least biased.9 However, this reduction in bias comes at the expense

of greater variance. The KF approach necessitates estimation of 3m+ 11 parameters while the RL

method requires estimating only m+ 1 parameters, where m is the number of assets. On the other

hand, since we fit a separate MIDAS regression for each day in the quarter, the MIDAS approach

involves estimating 60 (m+ 4) parameters, assuming 60 trading days within a quarter. Thus, due

to its parsimony in the number of estimated parameters, the RL approach proves far more efficient

than the other two methods. In Appendix E, we verify in simulations of a stylized filtering task that

while the KF achieves lower bias than the RL approach, the RL method attains greater efficiency.

In Appendix C, we compare the performance of these three methods in a simulated version of

our cross-sectional expectation filtering task.

8Note that (9) implies that µt is not a FE
t -adapted martingale, so E

[
µt | FE

t

]
6= E

[
µT | FE

t

]
.

9More specifically, the Kalman filter should prove least biased asymptotically, but since maximum-likelihood
estimation of the filter parameters is biased in finite samples, which of the three methods proves least biased in our
setting remains an empirical question.
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4 Empirical Performance of RL

In this section, we use the cross-sectional RL approach from Section 3.3 to estimate a daily series

of cross-sectional mean of GDP growth forecasts. We also compare its performance to that of three

benchmarks: KF, MIDAS, and a “Naive” policy.

4.1 Results

We follow the estimation of our RL policy as described in Section 3.3 with a few minor modifications.

Recall that the policy function of interest is of the following form:

gλ (st) ≡

(
µt

σt

)
=

(
c1µt−1 + c′2rt√

c3σ2
t−1 + c′4rtr

′
tc4 + c′5rtµt−1

)
∈ R2

In a slight deviation from the setup in Section 3.3, we fix the coefficient on the one-day lag cross-

sectional mean (c1) to be equal to one. In unreported set of results, we find that this approach

performs better than freely estimating c1. This result proves reminiscent of Meese and Rogoff (1983)

in which the authors find that a random walk outperforms more sophisticated methods in forecasting

exchange rates out-of-sample.

We conduct a recursive out-of-sample estimation procedure as illustrated in Figure 4. For each

out-of-sample quarter t between 2005:Q3 and 2018:Q4, the RL policy is trained via COPDAC-

LSTDQ on a rolling lookback window of T quarters, from the SPF release date in quarter t− T to

the release date in quarter t. With the initial state set to the cross-sectional mean and standard

deviation of the SPF release at the end of quarter t, the trained policy updates the state each day

based on observed asset returns until the SPF release at the end of quarter t+ 1.

We compare the performance of our RL approach to that of three benchmarks. The first two

are KF and MIDAS where we follow the procedures described in Sections 3.1 and 3.2 on the Survey

of Professional Forecasters (SPF) data. The third benchmark is a naive policy that assumes that

the cross-sectional mean expectation only updates on survey release days; it is constant within each

quarter. For all benchmarks, to reduce estimation variance, we train six models on overlapping

lookback windows of T = 40, 44, 48, 52, 56, and 60 quarters and average the resulting output series.10

As discussed in Section 2, we use returns on the CRSP value-weighted portfolio and the CRSP U.S.

Treasury five-year fixed-term index as our test assets.

Overall, we find that the RL approach yields a daily estimated cross-sectional mean series that

accurately reflects the true quarterly mean series. We judge the accuracy of our daily series by

comparing the estimated cross-sectional mean from the RL policy on SPF release dates to the

10For the RL approach, averaging the output series is equivalent to averaging the policy weights. Therefore the
averaging is akin to a simplified version of a method known as bootstrap aggregating or “bagging” in the machine
learning literature.
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actual counterparts of those values on those dates. For example, the true cross-sectional mean from

the SPF release on August 15th, 2005 is 3.46%, whereas the daily estimated value on that day is

3.79% from the RL policy. This yields an absolute error of 0.33%.

Table 4 and Figures 5–8 present these out-of-sample estimation results for the RL approach and

the three benchmarks. Across the entire out-of-sample period, the RL-estimated series realizes a

RMSE of 0.449 percentage points and an R2 of 82.3% versus the true quarterly series. These results

prove far superior to those attained by our benchmarks: naive policy (RMSE of 0.588 percentage

points and R2 of 64.7%), MIDAS (RMSE of 0.916 percentage points and R2 of 39.2%), and KF

(RMSE of 39.103 percentage points and R2 of 2.37%).

Figure 5 compares the daily cross-sectional mean series from the RL approach to the true SPF

quarterly counterpart, and Table 5 displays the summary statistics of the daily series. Comparing

the values in Table 5 to those in Table 2, we see that the RL daily series has a similar mean and

standard deviations to its true quarterly counterpart. However, the RL daily series prove sfar more

persistent than the quarterly version. Moreover, the daily series is highly kurtotic, both in levels

(7.006) and in changes (17.282) due to the high kurtosis of the underlying daily asset returns.

In Table 6, we compute the correlations among the estimated daily series and the returns of

assets used in our estimation. For the RL approach, we see that the daily cross-sectional mean

innovations from the RL approach are positively correlated with U.S. equity returns (0.87) and

negatively correlated with 5-year bond returns (−0.16). The KF series does not seem to load on

either asset. The MIDAS series loads slightly on U.S. equity returns (.11).

Figure 9 plots the one-year rolling correlation between changes in the RL-estimated daily cross-

sectional mean series and returns to our two assets: CRSP value-weighted portfolio and the CRSP

five-year fixed-term index. These correlations display significant time-variation, which may explain

significant time-variation in the policy weights from the RL approach as depicted in Figure 10.

As a further validation of our measure, we compare the most significant innovations in our cross-

sectional mean series and compare them to macroeconomic events. Table 7 exhibits the ten largest

absolute daily innovations in the cross-sectional mean series.11 We find that most of these days

correspond to significant macroeconomic events in response to which investors likely did update

their growth expectations. As an example, the most significant update in our sample is August

8th, 2011 or the “Black Monday,” the first trading day after Standard & Poor’s downgraded the

United States’ sovereign debt rating. On that day, our series indicates that investors lowered their

expectations for the next quarter’s GDP growth by 0.65%. The next day when the Federal Reserve

released a statement pledging to keep rates “exceptionally low” until mid 2013, investor expectations

of next quarter’s GDP growth rose by 0.51%. Most of other dates occur in late 2008 and early 2009

and correspond to developments in the Great Recession.

11We exclude SPF release dates from this table since, by construction, the daily series jump on those days to
match the true cross-sectional moments.
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4.2 Discussion

Origins of RL’s Outperformance The core difficulty of our task is obtaining a daily law of

motion for expectations given quarterly training data. The KF approach accomplishes this task

by imposing parametric assumptions and using maximum likelihood. The RL approach builds

upon the KF approach by directly estimating the Kalman gain using a linear learning rule, and we

have illustrated the bias-efficiency trade-off that occurs at this step. The MIDAS benchmark also

estimates a linear learning rule from quarterly data.

Recall that in Section 4, we fix the RL policy coefficient on the lag-one-day mean at 1. Thus, at

any day in the quarter, the current estimate is the sum of the value from the start of the quarter

and a series of daily asset returns. On the other hand, if we do not fix the coefficient at 1, then

current estimate is an exponentially-weighted moving average of the value from the start of the

quarter and the daily returns since its release.

As discussed in Section 3.4, unlike the KF and RL approaches, MIDAS estimates {E
[
µT | FEt

]
}Tt=0

instead of {E
[
µt | FEt

]
}Tt=0. However, this feature does not hinder the performance of MIDAS in the

context of the results in Table 4 since we do not observe the intra-quarter expectations and so only

compare end-of-quarter estimates to end-of quarter observed values (i.e. we compare E
[
µT | FET

]
versus µt for all four methods). Thus, we cannot attribute MIDAS’s poorer performance here to

the fact that it estimates a quantity different from that of interest. Indeed, focusing just on the

last-day-of-quarter estimates, the RL and MIDAS approaches involve estimating similar numbers

of parameters (m + 1 for RL and m + 4 for MIDAS), so we cannot attribute the RL approach’s

significant outperformance here to a large efficiency advantage.12 Instead, the primary difference

between the two methods in the context of Table 4 appears to be how each approach treats lagged

asset returns. The RL approach uses only asset returns since the start of the last survey release,

weighting them uniformly, while the MIDAS approach applies a non-monotonic weighting scheme

to 90 days of lagged asset returns, which extend back roughly 1.5 quarters.13 Empirically, the RL

approach’s treatment of lagged asset returns proves more useful.

On the other hand, we do attribute the RL approach’s superior performance versus the KF to

the large efficiency advantage the RL approach realizes by estimating fewer parameters than the

KF. This point was illustrated in detail in Section 3.4 and the Appendix.

Hyperparameters Our RL algorithm involves two hyper-parameters: the step size and the noise

in behavioral policy.

The step size appears in each iteration of the COPDAC-LSTDQ algorithm, which is based on

12Of course, when it comes to estimating the daily series of expectations across the entire quarter, the RL approach
proves much more efficient than the MIDAS approach, since a separate MIDAS model must be fit for each day in
the quarter.

13We repeated the analysis using 30 days but the results were not materially different.
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gradient ascent. If the step size is too small, one may get stuck in a local maximum. If the step

size is too large, the algorithm may have trouble converging.

The noise in the behavioral policy regulates the tradeoff between exploration and exploitation.

In RL, exploration refers to the notion that performing ex-ante suboptimal actions can improve long-

term model performance due to the information gained from pursuing these actions. Exploitation

refers to performing the ex-ante optimal action to maximize short term reward. In our setting,

adding noise to the behavioral policy allows the algorithm to explore a wider set of potentially

policy weights. Too little exploration will result in a suboptimal policy; too much exploration will

prevent the algorithm from making proper gradient updates to the weights because any reduction

in loss from changing the parameters will be drowned out in the noise.

While our baseline model currently uses a fixed step size and noise, a proper hyperparameter

optimization procedure would involve the following steps:

1. Divide the sample into a training subsample and a pseudo-testing subsample.

2. From a grid of hyperparameters, train a model at each grid point on the training subsample

and test on the pseudo-testing subsample.

3. Choose the set of hyperparameters that performs best in the pseudo-testing subsample to use

in the RL algorithm for fitting the policy to the entire in-sample series.

Asset Selection Since the optimal policy in the RL approach is a linear function of the returns,

a reasonable bound on the number of parameters is critical for efficiency. One way of imposing

such a bound is to run a LASSO regression of forecast innovations on asset returns. Then one

can consider modeling the optimal policy as a function of returns on these assets that survive the

selection process.

An alternate approach is “boosting.” We would start with only the five-year fixed term index,

which has the highest R2 in univariate regressions of quarterly forecast innovations on asset returns,

apply the RL algorithm and construct quarterly residuals between the true SPF data and the

estimated mean series. Then we would run univariate regressions of the residuals on quarterly

returns of the remaining assets and select the asset with the highest R2. Continued application of

these steps yields an iterative approach in selecting assets to be used in our RL policy function.

5 Testing the “Fed Information Effect”

In this section, we use our obtained daily time-series of real GDP expectations to sharply identify

the effect of FOMC announcements on growth expectations. Using our measure, we find no evidence

of the “Fed information effect.”
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Nakamura and Steinsson (2018) regress the change in real GDP growth expectations from be-

fore and after an FOMC announcement on the monetary policy shock from the announcement.

Specifically, they use the monthly Blue Chip survey for growth expectations and the first principal

component of the thirty-minute changes around FOMC announcements for five interest rate instru-

ments.14 This regression yields the “wrong” sign: positive. Hawkish surprises for interest rates

correspond to increases in real GDP growth expectations and dovish surprises correspond to de-

creases in real GDP growth expectations. This empirical result proves contrary to standard macro

models in which positive shocks to interest rates are viewed as contractionary. Some researchers

have viewed the wrong sign in these regressions as evidence that forecasters view hawkish surprises

as a signal that the Fed’s private forecasts of GDP growth are more positive than their own. Thus,

forecasters revise their growth expectations upward.

The shortcoming of this line of analysis is that the low frequency of surveys prevents identification

of the effect of monetary policy shocks on growth expectations. Nakamura and Steinsson (2018)

use monthly changes in growth expectations. But surely the monetary policy shock is not the

only relevant macro development in any month; investors may update their expectations due to

many other factors. Bauer and Swanson (2020) provide anecdotal evidence of the absence of Fed

information effects using the daily forecasts of a single forecaster. Bauer and Swanson (2020)

also argues that the observed positive coefficient in the usual Fed information effect regressions is

also consistent with both the forecasters and the Fed responding to common macro news released

between survey dates.

Indeed, the usual Fed information effect regression is

Et+15 [gQ]− Et−15 [gQ] = β0 + β1Shockt + εt, (16)

where Et+15 [gQ]− Et−15 [gQ] is the one-month change in surveyed expectations around the FOMC

announcement on day t and Shockt is the monetary policy shock on the FOMC announcement. In

this regression, there is an omitted variable: economic news released between day t − 15 and day

t−1. If the omitted economic news is positively correlated with both the montary policy shock and

the monthly change in growth expectations, then the estimated β1 in (16) will be positively biased.

Bauer and Swanson (2020) provide evidence of these positive correlations by demonstrating that

non-farm payroll numbers released between t− 15 and day t− 1 correlate positively with both the

monthly change in Blue Chip growth expectations and with the Nakamura and Steinsson (2018)

monetary policy shock.

Therefore, we have reason to believe that the puzzling positive sign of the estimated β1 in

(16) may simply arise due to omitted variable bias instead of from a Fed information effect. The

14The five instruments are: the expected Fed funds rate for immediately following the current and next FOMC
meetings (extracted from Fed funds futures) and the expected three-month eurodollar interest rates at horizons of
two, three, and four quarters (extracted from eurodollar futures).

20



announcement-day change (from t−1 to t) in our daily series of growth expectations is uncorrelated

with omitted economic news since the growth expectation at time t − 1 already incorporates all

news from t− 15 and day t− 1. Hence, we can run regression (16) without fear of omitted variable

bias.

In Table 8, we report the response of our expected growth series to policy and federal funds rate

shocks. Specifically, we estimate a regression of the following form:

∆CXMeant = β0 + β1Shockt + εt (17)

at a daily frequency where the CXMeant is the daily series of growth expectations obtained from

our RL algorithm. The policy news and federal funds rate shocks are obtained from Nakamura and

Steinsson (2018).

For the full sample (January 2004 to March 2014), we find that the estimated coefficient β1 is

statistically significant with magnitude of −0.83. Note that Nakamura and Steinsson (2018) scale

their policy news shock variable such that its effect on the one-year nominal Treasury yield is equal

to one. Therefore, the coefficient of −0.83 is interpreted as saying a policy news shock that is

equivalent to a 100 bps increase in one-year Treasury yield leads to on average 83 bps decrease in

real GDP growth expectations. The size of this effect is economically meaningful as a policy news

shock as large as a 100 bps increase in one-year Treasury yield is quite rare. Note that Nakamura

and Steinsson (2018) find a significantly positive coefficient over a similar time period.

In the remaining cells of the table, we report results for a subsample that excludes the height

of the Great Recession and an analysis using the fed funds rate shock instead of the policy rate

shock. The sign and magnitude of the coefficient, as well as its statistical significance, implies that

investors adjust their growth expectations downward in responses to hawkish surprises. Thus, we

do not find evidence of the Fed information effect.

Furthermore, in Figures 11 (full-sample) and 12 (excluding 2008:06 – 2009:06), we display the

results from running regression (17) within each year from 2004 to 2013. We find significantly

negative or insignificant coefficients across all years (with the exception of 2008 and 2009 in Figure

12, in which the regressions exclude the height of the Great Recession 2008:06 – 2009:06). Thus,

we do not find evidence of time-varying Fed information effects across the business cycle.

6 Conclusion

We propose a simple reinforcement learning approach using asset prices to estimate high-frequency

expectations of macroeconomic growth. Specifically, we provide a framework for constructing daily

series of the cross-sectional mean of growth forecasts and find that our method proves efficient

and robust to model specifications. Our approach achieves greater efficiency than the traditional
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Kalman filter and the MIDAS regression by estimating the optimal gain directly rather than via

the structural parameters of an underlying state-space model.

We apply our RL approach to obtain a daily time-series of growth expectations, which we use

to test the existence of the Fed information effect. While traditional tests of the Fed information

effect use low-frequency changes in surveyed expectations around FOMC announcements, our RL-

estimated daily time series allows us to capture the high-frequency change in growth expectations on

these days. Doing so obviates the omitted variable bias that plagues regressions with low-frequency

changes in expectations. Using our RL-estimated series, we find no evidence of the Fed information

effect: hawkish monetary surprises correspond to decreases in growth expectations.

Our paper is the first serious application of reinforcement learning in the growing literature

that uses machine learning methods in finance. We have presented reinforcement learning as a

more efficient improvement over traditional filtering methods. Given the low frequency of surveyed

expectations and abundance of asset price data, our RL approach proves promising for extracting

investor expectations of macroeconomic variables.

Our RL approach can obtain a daily series of expectations for any macroeconomic variable with

a low-frequency panel of forecasts. The accuracy of the daily series would depend on the availability

of training data and the relevance of the macroeconomic variable for asset returns. Thus, interest

rates and inflation expectations represent good candidates given their long time-series and impact on

government bond returns. Existing literature uses derivatives to construct high-frequency interest

rate expectation series, so it would be interesting to see how our approach compares to existing

methods.

Testing theories of expectations formation represents another application of our framework.

For example, suppose we want to test the hypothesis that agents update their expectations about

growth after observing commodity prices. One way to empirically test this hypothesis is to include

commodity returns in the state vector and fit the optimal policy for updating growth expectations.

The coefficient on commodity returns in the optimal policy reflects if an agent would find it optimal

to use commodity returns in updating his expectation of growth.

Finally, our method can be used to construct firm-specific cash flow expectations at a daily

frequency. Instead of using value-weighted equity and bond returns, we can use firm’s equity

returns and corporate bond returns. We can also use quarterly expectations from analyst forecasts

to conduct the same exercise and obtain daily expectations.
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A Appendix: Campbell-Shiller Approximation

Recall the state-space model:

θt+1 = µ+ δθt + εt+1, εt+1 ∼ N
(
0, σ2

ε

)
ζt+1 = τ + ψζt + ξt+1, ξt+1 ∼ N

(
0, σ2

ξ

)
dit+1 − dit = γ + βiθt+1 + νit+1, νit+1 ∼ N

(
0, σ2

ν

)
Et
[
rit+1

]
= α + φiζt

Corr (εt, ξt) = π

Campbell and Shiller (1988) develop a useful approximation to the present-value formula:

pit ≡ logP i
t =

κ

1− ρ
+ (1− ρ)

∞∑
j=0

ρjEt
[
dit+j+1

]
−
∞∑
j=0

ρjEt
[
rit+j+1

]
(18)

where

ρ =
1

1 + exp
(
d− p

) , κ = − log ρ− (1− ρ) log

(
1

ρ
− 1

)
From the law of motion for θt, we obtain:

Et [θt+j] =
(
µ+ δµ+ · · ·+ δj−1µ

)
+ δjθt = µ

1− δj

1− δ
+ δjθt

Similarly iterating Et
[
rit+1

]
yields:

Et[rit+j+1] =

α + φiτ 1−ψj

1−ψ + φiψjζt j > 1

α + φiζt j = 1

Therefore:

∞∑
j=0

ρjEt[r
i
t+j+1] = Et

[
rit+1

]
+
∞∑
j=1

ρj
[
α + φiτ

1− ψj

1− ψ
+ φiψjζt

]
=
(
α + φiζt

)
+

αρ

1− ρ
+

φiτρ

(1− ρ) (1− ψ)
− ψρφiτ

(1− ψ) (1− ψρ)
+

φiρψ

(1− ρψ)
ζt

=
α

1− ρ
+

φiτρ

(1− ρ) (1− ψ)
− ψρφiτ

(1− ψ) (1− ψρ)
+

φiζt
(1− ρψ)

(19)
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Proceeding analogously for E [dt+j+1], denote gt+1 = dt+1 − dt and write:

Et [dt+j+1] = dt +

j∑
k=0

Et [gt+k+1]

Et [gt+k+1] = γ + βiµ

(
1− δk+1

1− δ

)
+ βiδk+1θt

Combining the expressions:

∞∑
j=0

ρjEt [dt+j+1] =
∞∑
j=0

ρj

{
dt +

j∑
k=0

Et [gt+k+1]

}

=
dt

1− ρ
+
∞∑
j=0

ρj
j∑

k=0

Et [gt+k+1]

=
dt

1− ρ
+
∞∑
j=0

ρj
j∑

k=0

{
γ + βiµ

(
1− δk+1

1− δ

)
+ βiδk+1θt

}

Simplifying the algebra yields:

∞∑
j=0

ρjEt [dt+j+1] =
dt

1− ρ
+

γ

(1− ρ)2
+

βiµ

(1− δ) (1− ρ)2
− δβiµ

1− δ
1

(1− ρ) (1− ρδ)
+

δβiθt
(1− ρ) (1− ρδ)

(20)

Using (19) and (20) to simplify (18), we arrive at:

rit+1 ≡ pit+1 − pit

=
(
dit+1 − dit

)
+

δβi

1− ρδ
(θt+1 − θt)−

φi

1− ρψ
(ζt+1 − ζt)

Using the expression for dt+1 − dt, we arrive at the desired expression:

rit+1 = γ +

(
βi +

δβi

1− ρδ

)
θt+1 −

δβi

1− ρδ
θt −

φi

1− ρψ
(ζt+1 − ζt) + νt+1 (21)

�
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B Appendix: Formal Representation of the RL Algorithm

We now formalize the intuition provided above using the familiar notation of a generic dynamic

programming problem. In general, RL algorithms address the following maximization problem:

V (s0) = max
{at}∞t=1

∞∑
t=1

γtrt
(
st
)

such that st+1 = T (at, st)

where γ is the discount factor, st = (s1, ..., st) is a history of states, rt (st) is the reward at period

t given history st, and T is the state transition function. Rewriting this problem in the recursive

form yields:

V (st) = max
at

{
rt
(
st
)

+ γV (T (at, st))
}

Now define the action-value function:

Q (at, st) = rt
(
st
)

+ γV (T (at, st)) (22)

which gives the value of taking action at in state st. Using Q, the optimal policy is defined as

g (st) ≡ arg max
at

Q (at, st) (23)

In our setting, at is the agent’s updated growth expectation in period t. We correspondingly define

the rewards as:

rt
(
st
)

=

0 if t < T

−
∣∣∣∣µ̂T |T−1 − µT ∣∣∣∣ if t = T

Thus, the agent only earns a reward at the end of the quarter based on the distance between his

terminal growth expectation
(
µ̂T |T−1

)
and the surveyed growth expectation (µT ) that he observes

at the end of the quarter.

The most basic RL algorithms discretize the state and action spaces into a finite grid and then

estimate Q (at, st) nonparametrically by randomly exploring different actions in different states and

observing the resulting rewards. Note that it is Q that is being estimated, not V . After having

estimated Q, the optimal policy directly comes from (23). These methods, however, prove inefficient

in high-dimensional and continuous state and action spaces, such as our setting since at = µ̂t+1|t is

continuous.

We instead use linear approximations to the optimal policy and action-value functions to improve

the estimation efficiency. To efficiently learn the optimal policy weights λ, we propose the COPDAC-

LSTDQ algorithm, inspired by the COPDAC-Q algorithm of Silver et al. (2014). We delegate the

details of COPDAC-LSTDQ to Appendix D. Here we discuss the intuition behind the original

COPDAC-Q algorithm and our subsequent improvement.
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The COPDAC-Q algorithm performs gradient ascent on a linear approximation of the action-

value function Q with respect to the policy parameter vector λ. Every time the agent performs

an action and earns a reward, the algorithm uses that reward to 1) update the approximate Q

function and 2) move λ in the direction of ∇λQ. Unfortunately, as noted by Silver et al. (2014)

this iterative approach known as “Q-learning” has poor convergence properties due to noise in the

individual updates (i.e. the learned gλ may not converge to the optimal policy). Thus, to reduce

the update variance, we propose a modified method that we call COPDAC-LSTDQ. To be concrete,

instead of updating the action-value and policy functions after each action, we let the agent take

a sequence of actions, observe the resulting rewards, and essentially update the action-value and

policy function parameters based on the average reward realized. While the reward to a single

action may prove noisy, averaging the rewards over a batch of actions should yield lower variance

parameter updates.15 We refer the reader to the online appendix D for a more detailed discussion.

For the remainder of the paper, we refer to the application of the COPDAC-LSTDQ to learn

the optimal policy function gλ as the “RL approach.”

C Appendix: Comparison of KF, RL, and MIDAS in Sim-

ulations

In this section, we compare the performance of the three methods in a simulated version of our

cross-sectional expectation filtering task.

The main task of interest is to estimate the mean of a cross-section of GDP growth forecasts

at a daily frequency, given corresponding moments from a quarterly survey. In this section, we

illustrate in a simulated economy that RL outperforms KF and MIDAS in this task. The measures

of performance are the RMSE and correlation between the estimated and true moment series.

To start the simulation, we first calibrate the system by estimating equations (3) – (6) and (8)

using annual data. The calibration is summarized in Table 9. Parameters for GDP growth (µ, δ, σ2
ε , )

are estimated by fitting an AR(1) to annual real GDP growth from 1931 to 2018. Parameters for

dividend growth (γ,E [βi] , σ2
ν) are estimated by regressing annual dividend growth of the S&P 500

on contemporaneous annual GDP growth from 1994 to 2018. Parameters for dynamics of the latent

factor
(
τ, ψ, σ2

ξ

)
are estimated by fitting an AR(1) to the year-end market-to-book ratio of the S&P

500 from 1977 to 2018. Parameters for the dynamics of conditional expected returns (α,E [φi]) are

obtained from the following regression: Rt+1 = α + β (B/M)t + ut+1 using S&P 500 returns and

book-to-market ratio. The term from the Campbell-Shiller expression (ρ) is estimated from the

dividends and price of S&P500 from 1994 to 2018, and the correlation between innovations (π) is

15The name “COPDAC-LSTDQ” stems from our use of batch “LSTDQ updates” to the action-value approximat-
ing function instead of iterative “Q updates.”

26



computed from covariance of θt and ζt.

Next, we simulate panels of growth expectations and returns as described in Section 3. We

first generate a forty-quarter series of daily growth expectations and asset returns for m = 10

assets. We generate a panel of daily growth expectations by having each of N = 20 agents form

his expectations about growth from observed asset returns via a Kalman filter, as described in

Section 2.4. For asset returns, we calibrate the first asset to have βi = E [βi] and φi = E [φi]

from the calibration; for the remaining nine assets, we draw random pairs of (βi, φi) where βi is

independently uniformly distributed between 0 and 1 and φi is independently uniformly distributed

between −0.1 and 0.16 As done in the real SPF survey data, we compute the daily cross-sectional

means from of the expectations panel and sample those series quarterly. Thus, we have a 40-

quarter in-sample training series of quarterly cross-sectional means and daily asset returns. We

then simulate 1,000 out-of-sample testing quarters of daily cross-sectional means and asset returns

in this same manner.

With the constructed samples, we estimate four different update policies in-sample, and then

test each on the 1,000 out-of-sample quarters. The first three methods for estimating the update

policy are the RL, KF, and MIDAS approaches discussed in Section 3. As a baseline, we also

consider a “naive” approach that estimates today’s cross-sectional mean as its lag value. So each

daily cross-sectional mean series updates only on the SPF release day and retains that value for

the entire quarter until the next release. For each out-of-sample quarter and for each method,

we compute the RMSE and correlation between the true and estimated daily cross-sectional mean

series.

To examine the impact of heterogeneity, we conduct this simulation exercise for different degrees

of learning heterogeneity.17 We parameterize learning heterogeneity with a single signal-to-noise ra-

tio that determines the variance of the distribution from which each agent draws his KF parameters.

Specifically, for a signal-to-noise ratio of s and a true parameter value of θ0, the distribution from

which agents draw their values of this parameter is N
(
θ0, (θ0/s)

2). A lower signal-to-noise ratio

therefore implies higher learning heterogeneity.

Figures 13 and 14 display the cross-sectional mean estimation results of these simulations. The x-

axis is the signal-to-noise ratio, ranked from smallest learning heterogeneity (value of 10) to highest

learning heterogeneity (value of 1). Figure 13 exhibits the average relative RMSE, defined as the

RMSE divided by the average absolute cross-sectional mean, across all 1,000 out-of-sample quarters

16Given the expression for returns:

rit+1 = γ +

(
βi +

δβi

1− ρδ

)
θt+1 −

δβi

1− ρδ
θt −

φi

1− ρψ
(ζt+1 − ζt) + νt+1

βi and φi along with the calibrated parameters are sufficient to simulate returns.
17Earlier, we defined learning heterogeneity to refer to the fact that each agent draws his value of the parameter

from a normal distribution centered at the true parameter value.
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at varying levels of learning heterogeneity. We see that the RL approach achieves relative RMSEs of

at most 1.02 across all signal-to-noise ratios. The MIDAS and KF approaches realize much higher

relative RMSEs (consistently about 1.40 for MIDAS and between 2.74 and 6.87 for the KF). Indeed,

the KF performs more poorly than the naive approach of setting each day’s expectation estimate

equal to the observed value at the start of the quarter.

Figure 14 exhibits the average correlation across all 1,000 out-of-sample quarters at different

levels of learning heterogeneity. For signal-to-noise ratios of two and below, the RL approach

achieves correlations of greater than 0.79 while MIDAS fails to deliver a positive correlation, the

KF fails to deliver a correlation greater than 0.15, and the naive approach achieves a correlation of

zero (by construction).

In terms of both RMSE and correlation, the RL approach’s performance degrades with higher

learning heterogeneity, while the MIDAS and KF performances remain unaffected but poor. The

degradation in RL’s performance can be attributed to the poorer approximations in (9) as noise

increases. MIDAS performs so poorly, especially in terms of correlation, precisely for the reason

discussed in Section 3.4: MIDAS estimates {E
[
µT | FEt

]
}Tt=0, which in this setting need not bear

any relation to the series of interest {µt}Tt=0. Moreover, the MIDAS approach estimates a very large

number of parameters, thereby rendering its output high-variance. The KF’s poor performance

versus the RL approach also derives from its lack of efficiency.

Thus, we see that the RL approach outperforms the other approaches in cross-sectional mean

estimation across essentially all levels of learning heterogeneity. The RL approach’s outperformance

derives, as we continue to emphasize, from its greater estimation efficiency. For m assets, the KF

and MIDAS approaches must estimate 3m+11 and 60(m+4) parameters, respectively, while the RL

approach need only estimate m+1 parameters. Overall, these results indicate that the RL approach

proves most useful for estimating cross-sectional forecast moments due to its greater efficiency and

ability to perform well at relatively high levels of learning heterogeneity. Motivated by these results,

we take these methods to actual forecasts from the Survey of Professional Forecasters (SPF) and

construct daily series of expectations from asset returns.
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Table 1: Summary of Data Sources (US)

Asset Type Data Source

Equity
Market CRSP Value-weighted Return CRSP
Industry Industry Returns Fama-French Library
Factors Factor Returns Fama-French Library

Fixed Income
Government Bonds Return on Fixed-term Indices CRSP Treasuries
Government Bonds Slope of Yield Curve CRSP Treasuries
Credit Change in AAA-10Y Spread FRED
Credit Change in BAA-10Y Spread FRED

Exchange Rates
USD Change in Weighted Average of Forex Value FRED

Derivatives
Options Change in VIX Index CRSP Treasuries

Surveys
Forecasts Survey of Professional Forecasters (SPF) Philadelphia Fed

The table summarizes the data sources. For equities, we consider daily returns on the CRSP value-
weighted portfolio, Fama-French industry portfolios, and Fama-French factors. For government
bonds, we consider daily returns on U.S. Treasury fixed-term indexes from CRSP, which comprise
fully taxable, non-callable, non-flower bonds that best represent each term. The slope of the yield
curve is defined as the return on the ten-year index minus five times the return on the two-year
index. For credit, we consider the changes in spread betweeen the yields on corporate bonds with
AAA and BAA Ratings. For exchange rates, we consider change in the weighted average of the
foreign exchange value of the U.S. dollar (variable ‘DTWEXM’ from FRED), and for derivatives
we use the change in the VIX index. For growth forecasts, we use quarterly forecast data from the
Survey of Professional Forecasters (SPF).

Source: CRSP, FRED, Philadelphia Fed
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Table 2: Summary Statistics of GDP Growth and Forecasts

Panel A: No Winsorization

# Forecasters # Months CX Mean CX Median CX Std Real GDP Growth

Mean 38.816 114 2.542 2.510 0.825 2.520
Std Dev 6.846 114 0.927 0.946 0.331 2.307
Autocorr(1) · 114 0.734 0.735 0.449 0.359

Panel B: Winsorization at 5% Level

# Forecasters # Months CX Mean CX Median CX Std Real GDP Growth

Mean 35.956 114 2.531 2.510 0.683 2.520
Std Dev 6.014 114 0.929 0.946 0.228 2.307
Autocorr(1) · 114 0.742 0.735 0.730 0.359

Panel C: Winsorization at 10% Level

# Forecasters # Months CX Mean CX Median CX Std Real GDP Growth

Mean 31.860 114 2.527 2.510 0.586 2.520
Std Dev 5.445 114 0.932 0.946 0.203 2.307
Autocorr(1) · 114 0.745 0.735 0.722 0.359

The table reports the summary statistics for selected cross-sectional moments of one-quarter
ahead forecasts from the Survey of Professional Forecasters (SPF) and realized GDP growth from
FRED. In constructing the time-series, we perform the winsorization on each quarterly cross section.

Source: Survey of Professional Forecasters
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Table 5: Summary Statistics of Estimated Daily Series

RL Naive MIDAS KF

Panel A: Daily Series

Mean 2.476 2.401 2.445 32.888
Std Dev 1.044 0.946 0.911 19.139
Autocorr(1) 0.997 0.997 0.673 0.960
Skewness -2.431 -2.475 -2.912 2.652
Excess Kurtosis 7.006 7.208 27.095 12.608

Panel B: Change in Daily Series

Mean 0.002 0.000 -.001 0.570
Mean of Absolute Values 0.036 0.000 0.385 0.597
Std. Dev. 0.060 0.000 0.736 1.923
Skewness -0.670 0.000 0.920 6.998
Kurtosis 17.282 0.000 75.606 61.905

The table reports summary statistics for the daily cross-sectional mean estimated using the four
approaches. Panel A provides the values computed for the levels of the daily series and Panel
B provides the values computed for the daily changes in each series. The RL approach learns
the weights using our COPDAC-LSTDQ algorithm. The naive method places a weight of one
on the lag cross-sectional moments and zero on all of the asset return terms. The RL approach
uses For assets, we use returns on the CRSP value-weighted portfolio and the CRSP five-year
fixed-term index. The MIDAS approach fits a separate model for each day where we use the “Beta
Lag” specification from Ghysels et al. (2007). In the KF approach, we fit the model’s structural
parameters to the generated time-series via maximum likelihood, and the estimated parameters
are used to compute the Kalman gain. For all methods, the resulting output series are aver-
aged across outputs from estimation based on 40, 44, 48, 52, 56, and 60 quarters of training periods.

Source: CRSP, Survey of Professional Forecasters (SPF)
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Table 6: Correlation Structure of Time-Series Changes in Daily Series

USA ret 5yr RL MIDAS KF Naive

USA 1.00 -0.41 0.87 0.11 0.01 -
ret 5yr -0.41 1.00 -0.16 -0.03 0.02 -
RL 0.87 -0.16 1.00 0.14 0.01 -
MIDAS 0.11 -0.03 0.14 1.00 -0.01 -
KF 0.01 0.02 0.01 -0.01 1.00 -
Naive - - - - - -

This table reports the daily correlations computed for the following series: CRSP value-weighted
portfolio returns, CRSP five-year fixed-term-index returns, daily changes in estimated cross-
sectional means from RL, naive, MIDAS, and KF approaches. We exclude the SPF release
dates in our computation. The RL approach learns the weights using our COPDAC-LSTDQ
algorithm and uses policy weights averaged across 40, 44, 48, 52, 56, and 60 quarters of training
periods. The naive method places a weight of one on the lag cross-sectional moments and zero
on all of the asset return terms. The RL approach uses For assets, we use returns on the CRSP
value-weighted portfolio and the CRSP five-year fixed-term index. The MIDAS approach fits
a separate model for each day where we use the “Beta Lag” specification from Ghysels et al.
(2007). In the KF approach, we fit the model’s structural parameters to the generated time-
series via maximum likelihood, and the estimated parameters are used to compute the Kalman gain.

Source: CRSP, Survey of Professional Forecasters (SPF)
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Table 7: Top Ten Changes in RL Daily CX Mean Series with Corresponding Events

Mean Event

2011-08-08 -0.65 U.S. credit rating downgrade
2011-08-09 0.51 Fed promises to keep interest rates near zero for two years
2008-10-15 -0.51 Weak Fed economic forecasts, Bernanke comments
2008-10-28 0.50 Unclear
2011-08-04 -0.45 Weak jobs data, Japan weakens Yen, ECB re-enters bond market
2008-10-09 -0.44 Unclear
2009-03-23 0.44 Treasury announces TARP
2008-09-29 -0.43 House rejects bank bailout plan
2011-08-11 0.40 Jobless claims fall, strong earnings
2009-03-10 0.38 Citi earnings positive (were expected to be negative)

The table reports the dates of the ten largest absolute changes in the daily cross-sectional mean
series and any significant macroeconomic events that occurred on those days. We also report the
estimated daily standard deviation change on these dates. We exclude the SPF release dates.

Source: News releases, Simulations
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Table 9: Calibrated Parameters of the Simulated Economy

Growth Dynamics: θt+1 = µ+ δθt + εt+1

µ 0.0174
δ 0.5291
σ2
ε 0.001501

Dividend Growth Dynamics: dit+1 − dit = γ + βiθt+1 + νt+1

γ 0.0408
E[βi] 0.6835
σ2
ν 0.00745

Market-to-Book Dynamics: ζt+1 = τ + ψζt + ξt+1

τ 0.2952
ψ 0.8970
σ2
ξ 0.1234

Conditional Expected Returns Dynamics: Et[rit+1] = α + φiζt

α 0.1900
E[φi] -0.0387

Term from Campbell-Shiller Expression: ρ = 1/(1 + exp(d− p))

ρ 0.9845

Correlation in Error Terms: π = Corr(εt+1, ξt+1)

π 0.0762

The table reports the calibrated parameters of the model. Here we present the calibration to
annual data, but we convert these values to their daily counterparts in the simulations. Parameters
for GDP growth (µ, δ, σ2

ε , ) are estimated by fitting an AR(1) to annual real GDP growth from 1931
to 2018. Parameters for dividend growth (γ,E [βi] , σ2

ν) are estimated by regressing annual dividend
growth of the S&P500 on contemporaneous annual GDP growth from 1994 to 2018. Parameters for
dynamics of the market-to-book ratio

(
τ, ψ, σ2

ξ

)
are estimated by fitting an AR(1) to the year-end

market-to-book ratio of the S&P500 from 1977 to 2018. Parameters for the dynamics of conditional
expected returns (α,E [φi]) are obtained from the following regression: Rt+1 = α+β (B/M)t +ut+1

using S&P500 returns and book-to-market ratio. The term from the Campbell-Shiller expression
(ρ) is estimated from the dividends and price of S&P500 from 1994 to 2018, and the correlation
between innovations (π) is computed from covariance of θt and ζt.

Source: Compustat, CRSP, FRED
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Figure 1: Cyclicality / Counter-cyclicality of SPF Forecasts
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The graph plots the cross-sectional mean and standard deviation of current-quarter forecasts from
the entire SPF sample. Each cross-section is winsorized at the 5% level.
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Figure 2: SPF Accuracy by Forecast Horizon (RMSE)
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The graph plots the Root Mean Square Error (RMSE) between the mean forecast and the realized
GDP growth in the corresponding quarter for different forecasting horizons. For realized GDP
growth, we use both the advance and the final estimates. Each cross-sectional mean is computed
after winsorization at the 5% level.
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Figure 3: SPF Accuracy by Forecast Horizon (Correlation)
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The graph plots the correlation between the mean forecast and the realized GDP growth in the
corresponding quarter for different forecasting horizons. For realized GDP growth, we use both the
advance and the final estimates. Each cross-sectional mean is computed after winsorization at the
5% level.
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Figure 4: Timeline of Recursive Out-of-sample Estimation Procedure

Quarterst− T . . . t− 1 t t+ 1

Training period

Testing period

This figure illustrates the timeline of our recursive out-of-sample estimation procedure. The RL
policy weights are learned on the in-sample lookback window of T quarters. We then apply these
weights to one out-of-sample quarter to construct the daily cross-sectional moment series, with the
initial state in the out-of-sample testing period set to the cross-sectional moments from the quarter-t
SPF release.
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Figure 5: Estimated Daily Series and True Quarterly Series (RL)
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The figure plots the daily cross-sectional mean series estimated using our RL approach and the
true quarterly SPF cross-sectional mean series. The daily series is constructed from out-of-sample
estimates.
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Figure 6: Estimated Daily Series and True Quarterly Series (Naive)
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The figure plots the daily cross-sectional mean series estimated using the naive approach and the
true quarterly SPF cross-sectional mean series. The daily series is constructed from out-of-sample
estimates.
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Figure 7: Estimated Daily Series and True Quarterly Series (MIDAS)
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The figure plots the daily cross-sectional mean series estimated using the MIDAS approach and the
true quarterly SPF cross-sectional mean series. The daily series is constructed from out-of-sample
estimates.

47



Figure 8: Estimated Daily Series and True Quarterly Series (KF)
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The figure plots the daily cross-sectional mean series estimated using the KF approach and the
true quarterly SPF cross-sectional mean series. The daily series is constructed from out-of-sample
estimates.
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Figure 9: Correlations between Returns and Changes in Estimated Daily Series from
the RL Approach
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The figure plots the one-year rolling correlation between changes in the daily cross-sectional mean
series obtained using the RL approach and returns on the CRSP value-weighted portfolio and the
CRSP five-year fixed-term-index. We exclude the SPF release dates in our calculation.
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Figure 10: Policy Weights of RL Approach
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The figure plots the policy weights from the RL approach for estimating the daily cross-sectional
mean series. For each out-of-sample quarter, we fit a model from each of the the trailing window
of ∈ {40, 44, 48, 52, 56, 60} quarters and average the policy weights across all models.
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Figure 11: Response of Expected Output Growth to Policy and Federal Funds Rate
Shock (Yearly Regressions) - Full Sample

This table reports the coefficients and 95% confidence intervals from a regression each year of daily
changes in growth expectations on policy news and federal funds rate shocks from 2004 to 2013.
The dependent variable is the change in daily growth expectations obtained from our method. The
policy news shock and fed funds rate (FFR) shocks are identical to the ones used in Nakamura
and Steinsson (2018). The policy news shock is the first principal component of the unanticipated
change over the 30-minute windows in a set of interest rates. Note that in 2014 there are no non-zero
policy
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Figure 12: Response of Expected Output Growth to Policy and Federal Funds Rate
Shock (Yearly Regressions) - Excluding Height of Great Recession

This table reports the coefficients and 95% confidence intervals from a regression each year of daily
changes in growth expectations on policy news and federal funds rate shocks from 2004 to 2013,
excluding the height of the Great Recession 2008:06 – 2009:06. The dependent variable is the change
in daily growth expectations obtained from our method. The policy news shock and fed funds rate
(FFR) shocks are identical to the ones used in Nakamura and Steinsson (2018). The policy news
shock is the first principal component of the unanticipated change over the 30-minute windows in
a set of interest rates. Note that in 2014 there are no non-zero policy
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Figure 13: RMSEs from Simulated Cross-sectional Mean Estimation
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The graph plots the relative RMSE (the average value of the ratio of the RMSE to the average
absolute cross-sectional mean) across different levels of learning heterogeneity. Specifically, we train
both the Kalman filter and reinforcement learning policy on forty quarters of daily returns and
quarterly cross-sectional mean observations generated via the model described in Section 2 using
ten assets. We then test both models on 1,000 out-of-sample quarters. For each out-of-sample
quarter, we estimate the daily growth series using each model and compute the RMSE versus the
true daily latent cross-sectional mean series. We conduct this exercise for different levels of learning
heterogeneity, which we parameterize using a single signal-to-noise ratio. Specifically, for a signal-
to-noise ratio of s and a true parameter value of θ0, the distribution from which agents draw their
values of this parameter is N

(
θ0, (θ0/s)

2). A lower signal-to-noise ratio therefore implies higher
learning heterogeneity
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Figure 14: Correlations from Simulated Cross-sectional Mean Estimation
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The graph plots the average correlation for different levels of learning heterogeneity parametrized
by the signal-to-noise ratio. Specifically, we train both the Kalman filter and reinforcement learning
policy on forty quarters of daily returns and quarterly cross-sectional mean observations generated
via the model described in Section 2 using ten assets. We then test both models on 1,000 out-of-
sample quarters. For each out-of-sample quarter, we estimate the daily growth series using each
model and compute the correlation versus the true daily latent cross-sectional mean series. We
conduct this exercise for different levels of learning heterogeneity, which we parameterize using a
single signal-to-noise ratio. Specifically, for a signal-to-noise ratio of s and a true parameter value
of θ0, the distribution from which agents draw their values of this parameter is N

(
θ0, (θ0/s)

2). A
lower signal-to-noise ratio therefore implies higher learning heterogeneity.
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D Online Appendix: Detailed Description of RL Algorithm

To efficiently learn the optimal policy we employ the deterministic policy gradient (DPG) framework

of Silver et al. (2014). Specifically, we adapt the Compatible Off-Policy Deterministic Actor Critic-

Q Learning (COPDAC-Q) algorithm.

We start with the assumption of a linear policy function, gλ(s) = ϕ(s)>λ. Following 23, we

seek λ that solves maxλQ(gλ(s), s). The natural means to solving this optimization problem is to

iteratively improve λ via gradient ascent in the direction of the gradient of Q(·, ·) with respect to λ.

The chain rule decomposes ∇λQ(gλ(s), s) into two factors: ∇aQ(gλ(s), s) and ∇λgλ(s). However,

since we do not know the true action-value function Q(·, ·), we replace it with a compatible function

approximator Qw(·, ·) such that

∇aQ(gλ(s), s) = ∇aQw(gλ(s), s)

As per Silver et al. (2014), one such compatible function approximator is

Qw(s, a) = (a− gλ(s))>∇λgλ(s)w + Vv(s),

= ϕ(s, a)w + Vv(s),

where ϕ(s, a) = (a − gλ(s))>∇λgλ(s) and Vv(·) is any differentiable baseline function18. We use a

linear baseline, Vv(s) = ϕ(s)>v.

In brief, the COPDAC-Q algorithm of Silver et al. (2014) operates as follows:

1. Instantiate λ0,w0, and v0.

2. For each state st:

(a) Draw action at from a behavioral policy πλ(·|st). The behavioral policy is the density

function of a distribution centered at gλ(·). Adding noise in action selection helps ensure

adequate exploration of the parameter space in order to prevent convergence to a local

maximum. This practice is known as off-policy learning.

18Baseline functions reduce the variance in gradient updates
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(b) Update λt,wt, and vt via the following Q-learning updates (Watkins, 1989):

δt = rt + γQw (st+1, gλ (st+1))−Qw (st, at)

λt+1 = λt + αθ∇λgλ (st)
(
∇λgλ (st)

>wt

)
wt+1 = wt + αwδtϕ (st, at)

vt+1 = vt + αvδtϕ (st)

3. Repeat Step 2 until some stopping criterion (e.g. λt converges or a maximum number of

iterations is reached).

As noted in Silver et al. (2014), off-policy Q-learning with linear function approximation may

diverge. To achieve better convergence properties, we thus propose the COPDAC-LSTDQ algorithm

in which we replace the Q-learning updates in step 2(b) with batch LSTDQ (least-squares temporal-

difference Q-learning) updates (Lagoudakis and Parr, 2003). LSTDQ updates find the w and v

vectors such that the total Q-update for these vectors is zero:

T∑
t=1

αwδtϕ (st, at) = 0 (24)

T∑
t=1

αwαvδtϕ(st) = 0. (25)

Since we use a linear approximation for Qw, (24) and (25) have the simple analytic solutions. The

details of COPDAC-LSTDQ are shown below:

1. Set hyper-parameters γ, α,Σπ

2. Initialize s0,λ
0,w0,v0

3. For each iteration in i ∈ [0, 1, 2, · · · ]:

(a) Obtain a history of the states (s0, ..., sT ) and (a0, ..., aT ) by iteratively computing:

at ← πλi (st)

st+1 ← T (st, at)
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(b) Make the following LSTDQ batch update to wi to wi+1:

wi+1 ←

(
2500∑
t=1

ϕ (st, at) {ϕ (st, at)− γϕ (st+1, µθi (st+1))}>
)−1

×

(
T∑
t=1

ϕ (st, at) (rt + V v (st+1)− V v (st))

)

(c) Make the following LSTDQ batch update to vi to vi+1:

vi+1 ←

(
2500∑
t=1

ϕ (st, at) {ϕ (st)− γϕ (st+1)}

)−1

×

(
T∑
t=1

ϕ (st, at)
(
rt + γϕ (st+1, µθi (st+1))

>wi+1 − ϕ (st, at)
>wi+1

))

(d) For each period t ∈ [1, 2, ..., T ], iteratively update:

λt+1 ← λt + α∇λgλ (st)
>
(
∇λgλ (st)

>wi

)
, λ0 = λi

and update λi to λi+1 by:

λi+1 ← λt+1

4. Repeat Step 3 until some stopping criterion.

This technique of iterating over an entire history of states multiple times is known as action replay.

Once the algorithm terminates, we can use the learned policy gλ(·) out-of-sample.

E Online Appendix: Empirical Comparison of KF and RL

To illustrate the performance of the RL approach and examine its theoretical properties versus the

KF approach, we apply both RL and KF to simulated time series generated by the model described

in Section 2.2. In this stylized example, we depart from our main task of interest. Instead, each

approach seeks to estimate the daily series of growth when it can only observe quarterly growth

numbers. As a preview of the results, we find that the RL approach outperforms the KF in terms

of root mean-square error (RMSE) and correlation between the estimated and true, latent growth

series.

Our procedure to compare the performance of two approaches is as follows.

1. We generate a forty-quarter time series of θt and rit for each asset i = 1, ...,m. Our default

calibration uses m = 5 assets.
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2. We learn the optimal policy gλ via the two approaches.

� In the KF approach, we fit the model’s structural parameters to the generated time-series

via maximum likelihood. The estimated parameters can be used to compute the Kalman

gain and gλ.

� In the RL approach, we learn the policy parameters λ directly via COPDAC-LSTDQ.

3. We apply the learned policy to 1,000 out-of-sample quarters.

� For each out-of-sample quarter and for each approach, we calculate the RMSE and the

correlation between the estimated series and the true underlying gorwth series.

To assess the sensitivity of each approach’s performance to the precise calibration of the structural

parameters, we conduct the simulation exercise for 356 different calibrations, as detailed in Table

A.1. Specifically, we consider seven different combinations, each of which involves varying a subset

of the structural parameters while holding the others fixed at their baseline values.

Figures A.1 and A.2 display the results of the simulations. They demonstrate that the RL

approach outperforms the KF across a wide range of calibrations. Each dot represents the average

RMSE / correlation across all 1,000 out-of-sample quarters for a given calibration. Figure A.1

illustrates that the RL approach achieves a median RMSE of 0.00252 across all calibrations, while

the KF realizes a median RMSE of 0.007972. Figure A.2 shows that the RL approach achieves a

median correlation of 0.5566 across all calibrations compared to a median correlation of 0.3181 for

the KF approach. In fact, the KF outperforms RL in only 14 calibrations in terms of RMSE and

in 23 calibrations in terms of correlation. While the calibrations for which the KF achieves lower

RMSEs follow no distinct pattern, we do find that several of the calibrations in which KF performs

better involve high persistence in the latent growth process.19

To explicitly demonstrate the greater efficiency of the RL approach, we conduct block-bootstrap

simulations to decompose the RMSE into bias and variance terms. By avoiding an explicit model

of state dynamics, we expect the RL approach to deliver lower-variance estimates. Moreover, while

the correctly specified KF is unbiased, finite-sample maximum-likelihood is not. Thus, for a finite

sample, the RL approach may in fact yield a lower bias than the KF.

The block-bookstrap proceeds as follows. We generate a training sample of 60 quarters of quar-

terly growth observations and daily returns for m = 5 assets under the baseline parameterization

of the model in Section 2.2. We then draw 100 block-bootstrap subsamples of 30 quarters from

the sample, and for each subsample we estimate the optimal policy using both RL and KF. We

apply both policies to one out-of-sample quarter, calculate the RMSEs between estimated and true

19These calibrations set the quarterly first-order autoregressive coefficient for the growth process to δ = 0.9 instead
of the baseline value of δ = 0.53.
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growth series, and compute the bias and variance terms via the following decompositions:

E
[(
θt − θ̂t|t

)2]
︸ ︷︷ ︸

MSE

=
(
θt − E

[
θ̂t|t

])2
︸ ︷︷ ︸

Bias2

+E
[(

E
[
θ̂t|t

]
− θ̂t|t

)2]
︸ ︷︷ ︸

Variance

where all expectations are taken across the 100 bootstrap models.

Figure A.3 displays the results of these bootstrap simulations. We see that although the RL

approach realizes higher bias (0.00687 versus 0.00587), it achieves significantly lower variance

(0.0000130 versus 0.0000287) and therefore delivers a lower out-of-sample RMSE. In unreported

simulations, we also find that increasing the number of assets and decreasing the training sample

length both improve RL performance relative to the KF. In these situations, the RL approach

sometimes achieves lower bias than the KF in addition to greater efficiency.

F Online Appendix: Sensitivity to Training Periods

The weights in the learned RL policy prove sensitive to the training sample, so bootstrap aggregating

or “bagging” can help reduce estimation variance. In our setting, we average across models learned

from different training periods. Typically, bootstrap aggregating involves the following steps:

1. For a given number of training sample, take subsamples and fit a model to each. For example,

we would take subsamples of forty quarters from a given sixty-quarter window.

2. In the out-of-sample testing phase, the output of each bootstrapped model is averaged, or

alternately the weights from each model would be averaged to yield the policy function.

For the RL, KF, and MIDAS approaches, we train six models – from 40, 44, 48, 52, 56, and 60

quarters of training data – and average the estimated series for each approach to get the final output

series.

In Figures A.4 and A.5, we illustrate the benefits of bagging. Having ranked the six RL mod-

els from the lowest to highest RMSE, we start with the best model and iteratively “bag” worse

models. We see that incrementally adding the worse models increases the R2 and decreases the

RMSE. Bagging improves performance because the individual models perform reasonably well and,

importantly, have imperfectly correlated outputs. Intuitively, we can consider each output series or

set of policy weights as the true signal plus some noise. Averaging across models averages out the

noise, which is akin to raising the Sharpe ratio of a portfolio by adding in non-perfectly correlated

assets.
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Table A.1: Variations in Calibrated Parameters of the Simulated Economy

Experiment Parameter Variations

1 µ 4.0e-7, 2.0e-5, 3.9e-5, 6.8e-5, 7.9e-5, 1.2e-4, 1.6e-4
γ 3.9e-5, 7.9e-5, 1.2e-4, 1.6e-4, 1.9e-4, 2.3e-4, 2.7e-4

2 E[βi] 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
E[φi] 0.0, -0.1, -0.2, -0.3, -0.4, -0.5, -0.6, -0.7, -0.8, -0.9

3 δ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
4 σε/σν 0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.1, 1.25, 1.5, 1.75, 2, 5, 10
5 δ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

E[φi] 0.0, -0.1, -0.2, -0.3, -0.4, -0.5, -0.6, -0.7, -0.8, -0.9
6 T 4, 8, 20, 40, 60, 80, 100, 120, 200, 400
7 E[φi] 0.0, -0.1, -0.2, -0.3, -0.4, -0.5, -0.6, -0.7, -0.8, -0.9

d 1, 2, 5, 10, 15, 20

This table reports the different calibration variations we use in the simulations from Appendix E.
For each experiment, we use all all possible combinations of the corresponding parameters and
maintain the baseline values for the remaining ones. The baseline calibration can be found in Table
9. For example, the seven different values of both µ and γ give rise to 49 different calibration
variations in Experiment 1. Across all seven experiments we have a total of 356 different calibrations.

Source: Simulations
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Figure A.1: RMSE from KF and RL Approaches in Simulated Growth Estimation
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The graph plots the average root mean square errors (RMSEs) between the estimated and true
growth rate series across a variety of calibrations of the underlying state space model from Section
2. Specifically, for each calibration, we train both the Kalman filter and reinforcement learning
policy on 40 quarters of daily returns and quarterly growth observations. We then test both models
on 1,000 out-of-sample quarters. For each out-of-sample quarter we estimate the daily growth series
using each model and compute the RMSE versus the true daily latent growth series. Each point
represents the average RMSE from all 1,000 out-of-sample quarters for a specific calibration. We
test 356 different calibrations in total (detailed in Table A.1). The box horizontal lines correspond
to the 25th, 50th, and 75th percentile RMSEs among all 356 values for each method, while the
whiskers extend to the 5th and 95th percentiles.
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Figure A.2: Correlations from KF and RL Approaches in Simulated Growth Estimation
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The graph plots the average correlations between the estimated and true growth rate series across
a variety of calibrations of the underlying state space model from Section 2. Specifically, for each
calibration, we train both the Kalman filter and reinforcement learning policy on 40 quarters of
daily returns and quarterly growth observations. We then test both models on 1,000 out-of-sample
quarters. For each out-of-sample quarter we estimate the daily growth series using each model and
compute the correlation versus the true daily latent growth series. Each point represents the average
correlation from all 1,000 out-of-sample quarters for a specific calibration. We test 356 different
calibrations in total (detailed in Table A.1). The box horizontal lines correspond to the 25th, 50th,
and 75th percentile correlations among all 356 values for each method, while the whiskers extend
to the 5th and 95th percentiles.
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Figure A.3: Bias-variance Decomposition of MSE for KF and RL Approaches
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The graph plots the bias-variance decomposition of the mean square error (MSE) for the KF and
RL approaches in estimating the growth rate series. Specifically, we generate sixty quarters of daily
returns and quarterly growth observations under our baseline calibration of the state-space model
from Section 2. From this generated series, we draw 100 block-bootstrap samples of 30 quarters.
We train a Kalman filter and reinforcement learning policy on each block-bootstrap sample. We
then apply all 100 models for each method to one out-of-sample quarter and compute the MSEs
between the estimated daily growth series and the true latent growth series. We then decompose
the average MSE across all 100 models into bias and variance terms via the following decomposition:

E
[(
θt − θ̂t|t

)2]
=
(
θt − E

[
θ̂t|t

])2
+ E

[(
E
[
θ̂t|t

]
− θ̂t|t

)2]
where all expectations are taken across the 100 bootstrapped models. The first term is squared bias
and the second is variance.
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Figure A.4: Number of Averaged Models and RMSE from the RL Approach
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The figure plots the RMSE attained using the RL approach as we vary the number of models
averaged. Specifically, we first fit a model from the trailing window of ∈ {40, 44, 48, 52, 56, 60}
quarters and rank the models in terms of RMSE. Then starting with the best model, we iteratively
add in the next best model. For any given set of models, we average the policy weights to obtain
the optimal policy.
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Figure A.5: Number of Averaged Models and R2 from the RL Approach
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The figure plots the R2 attained using the RL approach as we vary the number of models averaged.
Specifically, we first fit a model from the trailing window of ∈ {40, 44, 48, 52, 56, 60} quarters and
rank the models in terms of R2. Then starting with the best model, we iteratively add in the next
best model. For any given set of models, we average the policy weights to obtain the optimal policy.
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