
Estimating a Model of Decentralized Trade

with Asymmetric Information*

Tristan Hennig�

October 2020

Please click here for the latest version

Abstract

This paper demonstrates how to quantify search and information frictions
in OTC markets. I use transaction data for the U.S. corporate bond market
to estimate a model featuring both a search and information friction via the
simulated method of moments. The data support the notion that trades are
informative and uncertainty about the fundamental value diminishes as time
passes. Trading in bonds with different time to maturity exhibit different char-
acteristics which is reflected by differences in the estimated parameters. As
a result, changes in the trading frictions through regulatory interventions or
technological progress would have heterogeneous effects on the trading in dif-
ferent bonds. Increasing the probability of finding a trading partner by 20%
decreases spreads by 18 percent on average (25 percent for bonds with long
time-to-maturity), increases welfare by 21.8 percent on average (25 percent),
and decreases price volatility by 40 percent on average (51 percent). However,
these improvements come at the cost of a substantial slow-down in price dis-
covery. The speed of convergence of the price to the true value decreases by up
to 26 percent. This result serves as a caution regarding the impact of recent
regulation (such as MiFID II) that mandates some trading to be on-exchange
rather than OTC.
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1 Introduction

Many financial products trade in so-called over-the-counter (OTC) markets. Ex-

amples are corporate bonds, municipal bonds, derivatives and mortgage backed se-

curities. These markets are large and important: The gross market value of OTC

derivatives exceeded $12 trillion in 20191. Trade on OTC markets occurs directly

between two counterparties, without the involvement of a central exchange. As a

result, a transaction occurring on an OTC markets may not immediately be visible

to all market participants, but only to those who formed part of that transaction.

Moreover, those wishing to trade must search for a trading partner who is willing to

take the opposite side of the trade.

The markets in the above-mentioned products have undergone substantial changes

over recent years. The introduction of mandatory reporting has meant that market

participants are able to observe aggregate trading in many over-the-counter markets,

albeit sometimes with a small delay. One instance of this is the Financial Industry

Regulatory Authority’s TRACE system. More recently, regulators have also begun

to mandate that at least some trades be conducted on an exchange. Regulations to

this effect are, for example, included in the European Union’s Markets in Financial

Instruments Directive II (MiFID II). At the same time, technological advances such

as electronic quoting and trading systems have reduced the cost of finding a trading

partner.

Another characteristic of assets traded in OTC markets is that they usually in-

volve non-negligible fundamental risk. For instance, a company may default on the

bonds it has issued to investors. This fundamental risk affects trading behaviour.

When trading frictions are low, investors might be happy to buy a bond they know

will default eventually. Holding such a bond allows them to collect regular coupon

payments or satisfy other liquidity needs. When trading frictions are high instead,

investors would be reluctant to hold such a bond as they don’t know when they can

next get rid of it. As a result, a decrease in trading frictions would make investors’

trading behaviour less dependent on the fundamental value and more dependent on

their liquidity needs. This reduces the informativeness of trades and slows down

1Bank for International Settlement Statistical Release: OTC derivatives statistics at end-June
2019, available at https://www.bis.org/publ/otc_hy1911.pdf
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learning.

In this paper, I employ the model in Lester, Shourideh, Venkateswaran, and Zetlin-

Jones (2018) to quantify the effects of a reduction in search frictions. Contrary to

existing work, this model does not only include the search friction characteristic

of OTC markets (in the spirit of Duffie, Gârleanu, and Pedersen (2005)), but also

asymmetric information in the spirit of Glosten and Milgrom (1985). It thus manages

to capture the notion that the way investors’ optimal trading strategy depends on the

fundamental value of the asset may change with the severity of the search friction.

I use FINRA’s TRACE dataset which contains all transactions in US corporate

bonds. My sample period is the last 4 years available, October 2015 to September

2019. After cleaning the data, I split the transactions by time to maturity of the

bonds. I then estimate the model using the simulated method of moments. As

moments, I use the bid-ask spread, the fraction of the asset traded per week, the trade

imbalance, the variance of the price, the variance of the spreads and the variance of

the price relative to the trading volume.

The results indicate that the drivers of the trading behaviour – aggregate liquidity

shocks, individual liquidity shocks, and superior information about the fundamental

value all contribute differently depending on the bond grade and time to maturity.

Consistent with the notion that learning is a major driver of trading in bonds, prices

vary most relative to trading volume in bonds with high time to maturity and least

in those closest to maturing. Dealers are least willing to take bonds with long time-

to-maturity into their inventory.

The structural approach then allows me to conduct a counterfactual analysis and

quantify the effects of a reduction in trading frictions. I find that a decrease in trading

frictions of 20% decreases spreads by 18 percent on average. However, it also slows

down learning. By one measure, the chance that the price of a bond converges to

within 5% of its true value within 1000 periods drops by 26%. The effects are biggest

for bonds with long time-to-maturity and smallest for bonds closest to maturing. In

the appendix, I also report results for a complete removal of search frictions where

the direction of the results is the same, but the magnitude is larger.

The rest of this paper is structured as follows. Section 2 describes the data together

with the features motivating the analysis in this paper. Section 3 contains a very brief
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summary of the Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2018) model.

This is followed by a description of the estimation methodology in Section 4. Section

5 presents and discusses the results which allow the counterfactual analysis in Section

6. Section 7 concludes.

2 Related literature

The theoretical literature on decentralized markets using random search starts with

Duffie, Gârleanu, and Pedersen (2005) and now consists of a vast body of work. As the

contribution of this paper is empirical, the reader is referred to Weill (2020) for a sur-

vey. Within this literature, the model presented by Lester, Shourideh, Venkateswaran,

and Zetlin-Jones (2018) (henceforth LSVZ) is unique in the sense that it combines

a model of trade based on random search with a Glosten and Milgrom (1985)-style

pricing mechanism. It therefore offers a unified framework to study the corporate

bond market under both a trading friction and asymmetric information. The present

paper takes this framework to the data.

This paper relates to the growing empirical literature studying over-the-counter

markets. Brancaccio, Li, and Schürhoff (2017) look at how dealers acquire information

through experimentation in municipal bond markets. Li and Schürhoff (2019) and

Hagströmer and Menkveld (2019) examine the network structure of OTC markets.

Edwards, Harris, and Piwowar (2007) and Bessembinder, Maxwell, and Venkataraman

(2006) study transaction costs and the effect of mandatory reporting requirements in

the corporate bond market. This paper makes use of the data collected through

mandatory reporting, but abstracts from experimentation motives and network ef-

fects.

This paper aims to quantify the effects of a reduction in search frictions in a decen-

tralized market which may come about through the rise of electronic trading. O’Hara

and Zhou (2019) examine the implications of electronic trading on OTC markets

whereas Vogel (2019) derives conditions which ensure that the presence of electronic

trading is beneficial. Another potential reason for reduced search cost is regulation

which mandates to be moved from over-the-counter markets to a centralised venue

where the search problem disappears. Papers comparing the two market structures

3



include Biais (1993), Glode and Opp (2018), Dugast, Üslü, and Weill (2019). This

paper contributes to the literature by focusing on asymmetric information.

In terms of methodology, I use a structural estimation to uncover the fundamental

parameters of the Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2018) model

from transaction data. Compared to a reduced form approach, this allows me to esti-

mate parameters that are not readily observable and then use the estimates to perform

a counterfactual analysis. Due to these possibilities, structural estimations have been

used to study many different markets with search frictions such as the housing mar-

ket (Carrillo (2012)), labour market (Eckstein and Wolpin (1990)), and commercial

aircraft market (Gavazza (2016)). Focusing on financial markets, Feldhütter (2012)

demonstrates how to identify periods of high selling pressure in the corporate bond

market. Liu (2020) performs a structural estimation of the fully decentralized model

in Hugonnier, Lester, and Weill (2020), but with endogenous dealer search intensities.

To the best of my knowledge, the present paper is the only paper estimating a model

that takes not just the search friction, but also the information friction into account.

3 Data

I combine data from several sources. First, I use the Mergent FISD database to

obtain characteristic information (such as issue date, maturity, amount outstanding,

etc.) on all corporate bonds issued in the U.S. As is standard in the literature, I

focus only on bonds that do not have special characteristics. In particular, for a bond

to be included in my sample, I require that the bond pay a fixed coupon, that it

be non-convertible, non-exchangeable, non-putable, not private-placed (Rule 144a),

not asset-backed and not perpetual. I set the sample period to be the most recent 4

year period available which is October 2015 to September 2019. I also exclude bonds

which were traded for less than 3 months inside this window. This returns a total of

46,477 bonds.

My main data source is the enhanced version of the “Trade Reporting And Compli-

ance Engine” (TRACE), maintained by the Financial Industry Regulatory Authority

(FINRA). This database contains the universe of all transactions in U.S. corporate

bonds. One advantage of the enhanced TRACE dataset is that volume information
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is not top-coded. In the standard version of the dataset, the volume of transactions

is capped at USD 5 million for investment grade and USD 1 million for high yield

bonds. I merge the list of bonds obtained from the Mergent FISD database with the

TRACE Masterfile which contains information on the “grade” of each bond. This

allows me to classify each bond as either “high yield” (N = 6, 755) or “investement

grade” (N = 39, 722).

Finally, I query the enhanced TRACE database to obtain all transactions in these

bonds in the sample timeframe. Broker-dealers have to report every transaction to

the TRACE within 15 minutes of the trade being executed. However, entries in the

TRACE database cannot be amended or modified once they have been entered into

the system. If there is a correction or cancellation of a trade, a separate report has

to be filed, followed by another report with the correct transaction. Dick-Nielsen

(2014) describes how to clean the data so as to avoid double or triple counting of

some transactions. After applying this cleaning procedure, my sample has roughly

46.3 million transactions left. Of those, 33 million are in investment grade and 13.3

million in high yield bonds.

Tables 1 and 2 contain summary statistics split by grade and maturity. It reveals

that most bonds are traded quite infrequently with the median number of trades per

week between 3 and 10. It also reveals heavily skewed distributions for the number

of trades, trade size and to a smaller extent the amount outstanding. That is, most

weeks see few trades, but some see many; most trades are “small”, but some are very

large. These findings are in line with existing studies of the corporate bond market,

some of which study different sample periods of the same dataset.

To estimate the model in the next section, I also require an estimate of the bid-

ask spreads for each bond. As the TRACE data only lists transactions and their

prices, I use the literature standard “Imputed Roundtrip” (IRT) method developed

by Feldhütter (2012) to infer the spread. An IRT consists of at least two transactions

in the same security for the same par value amount that occur within 15 minutes of

each other. These will be a customer selling to a dealer, followed by possibly several

inter-dealer trades, and concluded by the last dealer selling to a customer. The

inferred spread is the difference between the highest and lowest price in the sequence

of transactions.
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Time to maturity

High yield < 1 year 1-3 years 3-10 years > 10 years

Mean amount outstanding 642m 572m 498m 364m

Median amount outstanding 500m 468m 400m 200m

Mean trade size 552k 450k 531k 548k

Median trade size 25k 25k 27k 25k

Mean number of trades per week 17 15 19 13

Median number of trades per week 9 8 10 5

Table 1: Summary statistics on the trading activity in high yield bonds

Time to maturity

Investment grade < 1 year 1-3 years 3-10 years > 10 years

Mean amount outstanding 660m 651m 589m 514m

Median amount outstanding 500m 500m 400m 350m

Mean trade size 615k 421k 428k 789k

Median trade size 30k 25k 25k 50k

Mean no. of trades per week 16 16 16 7

Median no. of trades per week 8 8 7 3

Table 2: Summary statistics on the trading activity in investment grade bonds
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By trade size < 25k 25k − 100k 100k − 500k > 500k

HY 47 51 28 13

IG 53 53 26 11

By Maturity < 1 year 1-3 years 3-10 years > 10 years

HY 15 27 48 73

IG 13 23 46 77

Over time 15Q4 - 16Q3 16Q4 - 17Q3 17Q4 - 18Q3 18Q4 - 19Q3

HY 52 44 39 36

IG 57 49 44 38

Table 3: “Imputed Roundtrip” spreads for the corporate bonds in my sample. Values
are in USD cents.

Table 3 contains summary statistics on the IRT-based spreads in my sample.

Again, we can observe that some of the well established stylised facts for the corporate

bond market also hold in this sample. Spreads for investment grade bonds are overall

slightly lower than spreads for high yield bonds. Spreads are largest for small trade

sizes and fall in the trade size. In contrast, they are monotonically increasing in

the time to maturity. The fact that spreads in bonds with different maturities differ

substantially indicates that the effect of moving trading from OTC to an exchange

will likely also have differential effects on these bonds.

So far, the literature on trade in corporate bond markets has paid little attention

to the existence of asymmetric information and the effects of its presence. Exist-

ing models have instead focused on dealers’ market power arising due to the search

friction. An investor who wishes to trade a large sum is likely a well-connected and so-

phisticated investor such as a hedge fund rather than a retail investor. Sophisticated

investors have better outside options. If the dealer they have matched with doesn’t

offer competitive prices, the investor will find them easy to refuse due to their high

ability to find another trading partner. Put another way, dealers have market power

over investors due to the search friction in the market. This power (and therefore the
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ability to set spreads) is highest vis-a-vis unsophisticated investors who trade smaller

sums and have higher costs to finding an alternative trading partner. Overall, this

gives rise to the pattern present in Table 3 – transaction spreads decrease in trade

size. This stands in stark contrast to centralized limit order book markets where large

trades would incur higher spreads than small trades.

In this paper, I abstract from the trade size pattern induced by market power

and focus instead on the pattern with respect to time to maturity. Bonds with

low maturities contain a relatively smaller amount of uncertainty regarding their

fundamental value than bonds with more time to maturity. If dealers are concerned

about being adversely selected, they should therefore set larger spreads on bonds

with long times to maturity which is exactly what we observe in the data. The model

reflects this by making investors choose only between trading or not trading and by

employing a price mechanism as in Glosten and Milgrom (1985).

4 The corporate bond market

This section (i) presents evidence of search and information frictions in the corporate

bond market, (ii) outlines how the corporate bond market has changed in recent years,

and (iii) argues that the analysis in this paper is relevant for future policy.

Not just one, but several recent developments in corporate bond markets have

meant that search costs have been reduced. The first development is the rise of

electronic trading. The corporate bond market is traditionally voice-operated and

has severely lagged behind other markets (most notably the equity market) in terms

of the percentage of trade conducted electronically. Electronic trading systems make

it easier for investors to survey the market despite the absence of a central exchange.

For instance, through so-called “Request-for-Quote” (RFQ) systems investors can

send a trade request to multiple dealers at the same time. Dealers can respond with

a quote and the investor can then pick the most attractive option.

O’Hara and Zhou (2019) examine the rise of electronic trading in the corporate

bond market in detail. Among other things, they find that dealers who conduct more

electronic trading than competitors offer lower prices in voice-based trades as well.

They argue that, as electronic trading allows dealers to better find customers, dealers
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need to rely less on the inter-dealer market to offload their positions. This reduces

cost, which the dealer can then use to make their quotes more competitive.

Given its apparent benefits, and the much higher market share of electronic trad-

ing in other markets, O’Hara and Zhou (2019) also investigate why electronic trading

is not even more prominent. One reason appears to be the market structure. Many

bonds are illiquid and trade infrequently. Contrary to equities, large trades are not

typically split up into many small trades. Dealers want to retain control of these

trades, particularly for high-yield bonds, where trades are more likely to be informa-

tionally sensitive. Nonetheless, electronic trading now takes up a substantial share of

the market and continues to grow. According to a recent report by SIFMA2, electronic

trading made up 30% of all trading volume in investment grade bonds in 2019, up

from 19% the year before. This has brought down search cost in the corporate bond

market, intensified dealer competition, and improved access to relevant information

for all market participants.

The second development is the introduction of regulation, partly in response to

the global financial crisis of 2008/2009. In Europe, the European Union’s Market

in Financial Instruments Directive II (MiFID II) has expanded pre-trade and post-

trade transparency requirements to non-equity financial instruments such as corporate

bonds. Pre-trade transparency refers to the availability of information (most notably,

quotes) that market participants have access to before they engage in the search for

a trading partner. Post-trade transparency requires the reporting of trades (i.e. the

transaction price, volume, and time) that have taken place over the counter to the

regulator or a private company approved for collection and dissemination of trade

data. The regulation now in force in both Europe and the U.S. permits the model

assumption that market participants can observe anonymised, aggregate trading ac-

tivity despite the decentralized nature of the market. Lastly, regulation like MiFID

II and its global counterparts contain rules that require some trades to be conducted

on-exchange which further reduces search cost.

2SIFMA Insights Electronic Trading Market Structure Primer, October 2019, available at https:
//www.sifma.org/resources/research/electronic-trading-market-structure-primer/
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5 Model

This section contains a very condensed version of the model in Lester, Shourideh,

Venkateswaran, and Zetlin-Jones (2018). The only modification I make is that I treat

all meetings between dealers and investors as “competitive” (to use the terminology

in their paper) and do away with “monopoly” meetings3. Readers familiar with the

model can skip this section.

The environment. There are two states of the world, j ∈ {h, l}. There is a

single risky asset with fundamental value vj, vh > vl. Time t is discrete and infinite.

However, at the start of every period the game terminates with chance δ.

The agents. There are two types of agents in the model, a mass N of traders

(investors), and a mass 1 of dealers. All agents are risk-neutral, live forever, and

do not discount the future. Dealers can take unrestricted positions in the asset, but

traders are only allowed to hold at most one unit of it at any time (that is, they are

either “owners” or “non-owners”).

Payoffs. When the game terminates, an agent holding the asset receives payoff

vj. Additionally, for every period she holds the asset, trader i receives a flow payoff

of ωt + εit where ωt
iid∼ N (0, σω) is an aggregate liquidity shock and εit

iid∼ N (0, σε) is

an idiosyncratic liquidity shock. Denote the cdfs of these distributions by F and G

respectively. Dealers do not receive flow payoffs.

Trading. Every period, a trader meets a dealer with probability π. The dealer

then quotes the trader two prices. The “Ask” price At at which the dealer is willing

to sell to the trader and the “Bid” price Bt at which the dealers is willing to buy

from the trader. After observing the prices, the trader decides whether to buy a unit

of the asset, sell a unit, or walk away. Due to the restriction on traders’ holdings, a

trader can only sell if he currently owns the asset and buy if he does not currently

own the asset.

Information. Traders perfectly know the state of the world whereas dealers do not.

Dealers also do not observe traders’ flow payoffs. However, dealers can observe traders’

aggregate behaviour and use this information to learn about the state. They have

a common prior Pr(j = h) = µ0 and their beliefs do not disperse over time. That

3The model presented here therefore obtains by setting αc = 1 in the model presented in Lester,
Shourideh, Venkateswaran, and Zetlin-Jones (2018)
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is, because observing aggregate behaviour is a superset of observing an individual

traders’ behaviour, all dealers have the same belief at the start of every period.

Traders’ optimal behaviour. If a trader does not meet a dealer, she has no choice

but to hold her position until the next period. If she does meet a trader, she observes

the bid and ask prices and optimally decides whether to trade or not. Formally, let

W q
j,t be the maximal value of holding q ∈ {0, 1} at the beginning of period t when the

true state is j. Then,

W 0
j,t = (1− δ) · 0 + δEω,ε

[
πmax(ωt + εi,t +W 1

j,t+1 − At,W 0
j,t+1) + (1− π)W 0

j,t+1

]
and

W 1
j,t = (1− δ) · vj + δEω,ε

[
πmax(−ωt − εi,t +Bt +W 0

j,t+1,W
1
j,t+1) + (1− π)W 1

j,t+1

]
.

Subject to meeting a dealer, a non-owner will decide to buy iff εi,t > ε̄j,t and an owner

will decide to sell iff εi,t < ε̄j,t where the thresholds are found by solving

ωt + ε̄i,t +W 1
j,t+1 − At = W 0

j,t+1

−ωt − εi,t +Bt +W 0
j,t+1 = W 1

j,t+1.

This is equivalent to

ε̄i,t = At − ωt −W 1
j,t+1 +W 0

j,t+1 = At − ωt −Rj,t+1

εi,t = Bt − ωt −W 1
j,t+1 +W 0

j,t+1 = Bt − ωt −Rj,t+1

where we have defined the reservation value Rj,t = W 1
j,t −W 0

j,t so that

Rj,t = (1− δ)vj + δEω,ε(Rj,t+1) + δπΩj,t (1)

with

Ωj,t = Eω,ε (max(−ωt − εi,t −Rj,t+1 +Bt, 0)−max(ωt + εi,t +Rj,t+1 − At, 0)) .
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Dealers’ pricing. As in Glosten and Milgrom (1985), dealers are assumed to face

unmodelled price competition so that all their profits are competed away. This drives

the price to equal the expectation of the value of the asset conditional on all available

information at that point. Formally, the ask price At and bid price Bt must satisfy

At =
Ej,ω (vj(1−G(ε̄j,t(µ, ω)))

Ej,ω ((1−G(ε̄j,t(µ, ω)))
(2)

Bt =
Ej,ω

(
vjG(εj,t(µ, ω)

)
Ej,ω

(
G(εj,t(µ, ω)

) . (3)

Note that the thresholds ε̄j,t, εj,t depend on the price At and Bt respectively. A spread

between bid and ask arises due to the adverse selection problem facing dealers. A

trader wishing to buy from a dealer may do so due to having received a large aggregate

or idiosyncratic shock or because he knows that the true state is j = h. The dealer

loses out to information-based trades, but recoups those losses from liquidity-induced

trades. The spread is such that these gains and losses cancel out in expectation.

Demographics. Tomorrow’s owners are today’s owners who did not meet a dealer

or met a dealer, but decided not to sell upon observing the prices, plus today’s non-

owners who met a dealer and decided to buy. Let N q
j,t be the mass of traders holding

q ∈ {0, 1} units at time t when the true state is j.

N1
j,t+1(µ, ω) = N1

t

(
1− π + π(1−G(εj,t(µ, ω))

)
+N0

t π (1−G(ε̄j,t(µ, ω))) (4)

Similarly, tomorrow’s non-owners are today’s non-owners who did not meet a dealer

or met a dealer, but decided not to buy upon observing the prices, plus today’s owners

who met a dealer and decided to sell.

N0
j,t+1(µ, ω) = N1

t πG(εj,t(µ, ω)) +N0
t (1− π + πG(ε̄j,t(µ, ω))) (5)

I assume that the initial population is split equally between owners and non-owners

and that this is common knowledge. Note that the evolution depends on the true

state of the world (when j = h more traders will buy, all else equal). Dealers know

the exact distribution of owners and non-owners in all periods. However, as there are

multiple values of the aggregate shock consistent with the observed evolution, dealers
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cannot perfectly infer the true state. Instead, they use it to learn as described above.

Learning. Dealers learn by observing aggregate trading activity, which is equiv-

alent to observing the thresholds. Furthermore, all thresholds contain the same in-

formation as dealers know which prices are offered in equilibrium. To be precise,

observing the thresholds is equivalent to observing

St = Rt+1 + ωt

whereRt+1 = Rj,t+1 iff the true state is j. At time t, dealers receive a noisy observation

of traders’ reservation values at t + 1. However, traders’ reservation values at t + 1

naturally depend on dealers’ beliefs at t+ 1, µt+1. To disentangle this, consider first

how dealers update upon observing the signal St. As there are only two states of

the world, there are only two values for the aggregate shock that are consistent with

observing St. Denote these by ωh = St − Rh,t+1(µt+1) and ωl = St − Rl,t+1(µt+1).

Dealers now update using Bayes’ rule

µt+1 =
µtf(ωh)

µtf(ωh) + (1− µt)f(ωl)
(6)

=
µtf(St −Rh,t+1(µt+1))

µtf(St −Rh,t+1(µt+1)) + (1− µt)f(St −Rl,t+1(µt+1))
(7)

which is clearly a fixed-point problem in µt+1. Let the solution be denoted by

µt+1(µt, St).

Lastly, the traders take into account the way dealers will update. As they know

the true state and the aggregate shock, they can therefore perfectly forecast dealers’

beliefs at t+ 1, µt+1. This forecast µ̃j,t+1(µt, ωt) is the solution to

µt+1 =
µt

µt + (1− µt) f(ωt+Rj,t+1(µt+1)−Rl,t+1(µt+1))

f(ωt+Rj,t+1(µt+1)−Rh,t+1(µt+1))

(8)

As individual traders’ behaviour depends on both the aggregate and idiosyncratic

shock, dealers can always at most learn Rt+1 + ωt + εi,t from the interaction with a

single trader. However, by observing aggregate behaviour they learn Rt+1 + ωt. As a

result, dealers will always have the same beliefs at the beginning of each period.

Equilibrium. A Markov equilibrium is described by
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1. Traders’ optimal decisions are completely described by the thresholds

εj(µ, ω) = B(µ)− ω −Rj(µ̃(µ, ω))

ε̄j(µ, ω) = A(µ)− ω −Rj(µ̃(µ, ω))

where Rj(µ) is given by equation (1).

2. Dealers post zero-profit prices. That is, bid and ask prices satisfy equations (2)

and (3).

3. Given j, µ, ω, the population of owners and non-owners evolves according to

equations (4) and (5).

4. For all S ∈ R, dealers’ beliefs evolve according to a function µ+(µ, S) that solves

equation (6)

5. Traders forecast dealers’ beliefs using a function µ̃(µ, ω) that solves equation

(8). Furthermore, their forecast is correct. That is,

µ̃(µ, ω) = µ+ (µ,Rj(µ̃(µ, ω) + ω))

Welfare. Taking welfare to be the total payoff of dealers and investors, we can

simplify by noting that dealers’ and investors’ payments between each other cancel

out. Investors’ payoffs depend then only depend on whether potential gains from

trade are realised or not. Let Qj,t be investors’ period t payoff net of payments to

dealers when the true state is j. This payoff can be split up into owners’ payoff Q1
j,t

(of which there are N1
j,t) and non-owners’ payoff Q0

j,t (of which there are N0
j,t). In

total, we have

Qjt = N1
j,tQ

1
j(µ, ω) +N t

0Q
0
j(µ, ω),
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and

Q1
j,t(µ, ω) = (1− π)

(∫ +∞

−∞
(ω + ε)dG(ε)

)
+ π

(∫ +∞

εjt

(ω + ε)dG(ε)

)

= (1− π)ω + π

(
ω(1−G(εj)) +

∫ +∞

εjt

εdG(ε)

)
,

Q0
j,t(µ, ω) = π

∫ +∞

ε̄jt

(ω + ε)dG(ε)

= π

(
ω(1−G(ε̄j)) +

∫ +∞

ε̄jt

εdG(ε)

)
.

Owners of the security may not find a dealer in period t in which case their payoff

is simply the sum of aggregate and idiosyncratic shock. If they do find a dealer,

they sell if their realisation of ε is low enough, and hold otherwise. Similar reasoning

applies to the payoff of non-owners. As with spreads, there are two effects of a change

in π. The direct effect is that the number of meetings per period increases as more

investors find a dealer, increasing the possibility to realise potential gains from trade.

However, the dynamic effect is that learning slows down which increases spreads in

the long run. Higher spreads mean fewer gains from trade are realised. Which one of

these two effects dominates is unclear a priori.

6 Methodology

I use the Simulated Method of Moments (SMM), developed by McFadden (1989) and

Pakes and Pollard (1989), to estimate the parameter vector β = {π, σω, σε}. The

principle underlying SMM is the same as with GMM; to match model moments with

data moments. The crucial difference is that the moments implied by the model are

computed by simulation as closed-form expressions for the moments are not available.

The model used in this paper does not admit a closed-form solution, making SMM

the natural choice.

To be precise, let m(β) be a vector of model-implied moments obtained by sim-

ulating the model using parameter values β. to create a simulated dataset of the

same size as the actual data. To ensure precision, this is carried out S times with
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the s-th sample moments denoted ms(β). Further, let mD denote the corresponding

data moments. The SMM estimator is

β̂ = arg min
β

(
1

S

S∑
s=1

ms(β)−mD

)′
W

(
1

S

S∑
s=1

ms(β)−mD

)
.

where W is a weighting matrix. I set W to be the inverse of the variance-covariance

matrix of the data moments which is the efficient weighting matrix. I obtain this

matrix by resampling with replacement (“bootstrapping”) from the data, computing

the moments for each such sample, and then computing the covariance of those mo-

ments. The results in Michaelides and Ng (2000) indicate that a simulated dataset

that is ten times as big as the actual data ensures a good performance of the SMM

estimator. I therefore set S = 10. Lastly, to avoid the scale of moments having an

effect on the estimation, I use the percentage deviation,
1
S

∑S
s=1m

s(β)−mD

mD
, instead.

For each parameter vector β, I solve the model, use the solution to simulate S

datasets, and compute the moments of the simulated data. I then use the Nelder-Mead

algorithm to search the parameter space for the minimum of the objective function. In

general, the objective function is well behaved. The Nelder-Mead algorithm converges

to the optimum quickly, and does so from a wide range of starting points. I also check

that the result is indeed the global optimum using a genetic algorithm.

The standard errors at β̂ are the square roots of the diagonal elements of the

covariance matrix for the parameter estimates Q where

Q =

(
1 +

1

S

)[
∂m(β̂)

∂β

′

W
∂m(β̂)

∂β

]−1

.

The procedure also delivers a way to test the over-identifying moment conditions

(J-test):

J =
NS

S + 1
min
β

(
1

S

S∑
s=1

ms(β)−mD

)′
W

(
1

S

S∑
s=1

ms(β)−mD

)

∼ χ2(#moments - #parameters).
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I use 6 moments to identify the three parameters.

1. The “competitive” spread, that is, the average imputed round-trip spread for

transactions over USD 100,000 or more,

E [At −Bt] = E

[
Ej,ω (vj(1−G(ε̄j,t(µ, ω)))

Ej,ω ((1−G(ε̄j,t(µ, ω)))
−

Ej,ω
(
vjG(εj,t(µ, ω)

)
Ej,ω

(
G(εj,t(µ, ω)

) ] .
2. The fraction traded. The average weekly trading volume in all transactions

divided by N,

E
[
N0
t π (1−G(ε̄j,t(µ, ω))) +N1

t πG(εj,t(µ, ω))

N

]
.

3. The imbalance. The average absolute difference between the fraction of volume

in buy transactions and the fraction of volume in sell transactions,

E
[
N0
t π (1−G(ε̄j,t(µ, ω)))−N1

t πG(εj,t(µ, ω))

N

]
.

4. The variance of the prices. The variance of the average weekly transaction price,

V ar

(
Ej,ω (vj(1−G(ε̄j,t(µ, ω)))

Ej,ω ((1−G(ε̄j,t(µ, ω)))

)
.

5. The change in prices relative to volume. The ratio between the average absolute

between-week change in prices and the fraction traded,

E
[(

Ej,ω (vj(1−G(ε̄j,t(µ, ω)))

Ej,ω ((1−G(ε̄j,t(µ, ω)))

)
−
(
Ej,ω (vj(1−G(ε̄j,t−1(µ, ω)))

Ej,ω ((1−G(ε̄j,t−1(µ, ω)))

)]
/(

N0
t π (1−G(ε̄j,t(µ, ω))) +N1

t πG(εj,t(µ, ω))

N

)
.

6. The variance of the spreads,

V ar

(
Ej,ω (vj(1−G(ε̄j,t(µ, ω)))

Ej,ω ((1−G(ε̄j,t(µ, ω)))
− Ej,ω (vjG(ε̄j,t(µ, ω))

Ej,ω (G(ε̄j,t(µ, ω))

)
.
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The IRT spreads and, more specifically, the difference in spreads between bonds

with different maturities indicates that the trading behaviour of investors differs de-

pending on which bond they are trading. Moreover, it may be that the fundamental

quantities I am attempting to recover using the structural estimation (that is, the

ease of finding a trading partner, the variance of the aggregate shock, and the vari-

ance of the idiosyncratic shock) are different for bonds with different characteristics.

I therefore estimate the model in subsamples. In particular, I split the sample by

time to maturity (< 1 year, 1-3 years, 3-10 years, > 10 years) and by grade (high

yield or investment grade) as these appear to be the main characteristics affecting

the trading patterns of any given bond. For completeness, I also report results for

the entire sample.

Before running the estimation, I need to calibrate a few parameters that are not

identified by the data. First, the initial belief µ0. As the price in our model reflects

the market default probability and almost all bonds are issued at or close to par value,

I set µ0 = 0.9. Setting µ0 = 1 would obviously make the model uninteresting. I also

run the estimation with the more standard µ0 = 0.5 and the results are qualitatively

the same. Second, I set δ = 0.99. Third, I set vh = 1 (the bond does not default) and

vl = 0 (the bond defaults). Bond prices are reported as a percentage of face value,

so I divide all prices in the data by 100 to ensure that the prices in the data and the

model-implied prices are on the same scale.

I also have to calibrate N , the number of traders in the economy. I simulate the

model for N = 1 and normalise all data moments to reflect this. Recall that πN is the

number of traders who meet with a dealer in any given period (they may decide not to

trade). I follow Hugonnier, Lester, and Weill (2020) and set N = 55 million. This is

based on the number of households in the US who are potential bond holders. I then

divide the weekly amount traded by N to get the fraction of households trading. For

instance, if a week sees a trading volume of USD 5 million, I determine the fraction

of investors who traded to be just under 10%.

A few words on the identification to conclude this section. While in general

all parameters affect all moments in this model (making the structural approach

necessary), the following key channels should help getting some intuition for the

identification:
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� π is the fraction of investors meeting a dealer in a given period. Higher values

of π will therefore increase the fraction traded. π also affects the spreads. If π

rises, investors’ trading decisions are now more dependent on the realisations of

the idiosyncratic and aggregate shocks and less dependent on the fundamental

value as it now becomes easier to offload or acquire the asset in future periods if

needed. This slows down learning as trades are now less informative on average.

� σω is the observation noise around the reservation value. The reservation value

is state dependent and noisily observing it therefore allows the dealers to learn

about the state. Higher values of σω decrease the speed of learning.

� Less informative trades have two effects: Dealers are less likely to be adversely

selected. This reduces spreads. However, they also learn at a slower rate. This

means that spreads take longer to converge to zero as information is released

through trade. The average spread over a period of time may be higher or lower

than before.

� σε is the standard deviation of the idiosyncratic shocks. For any given set of

buy and sell thresholds an increase in σε reduces the difference between the

proportion of investors buying and the proportion selling.

7 Results

Table 4 presents the estimated parameters for our 8 subsamples. The standard errors

are good which supports the view that the variation in our choice of moments identify

the model parameters reasonably well. The estimated value for π fluctuates around

the 0.2 mark. This value implies that investors meet a dealer on average every 5 weeks.

In terms of the search friction in our model, the absence of substantial variation in

π implies that the chance of finding a trading partner does not seem to depend too

much on the rating or maturity of the bond being traded. A small exception is the

value for bonds with maturity 1-3 years. Looking at the data, these bonds seem to

trade slightly less frequently than the other maturities and this is likely the driver of

this feature of the results.
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High yield < 1 year 1-3 years 3-10 years > 10 years

π
0.23
(0.06)

0.15
(0.01)

0.23
(0.02)

0.22
(0.01)

σω
1.28
(0.36)

1.05
(0.08)

0.50
(0.03)

0.43
(0.02)

σε
10.43
(2.56)

8.55
(2.46)

2.91
(0.35)

1.65
(0.15)

Investment grade < 1 year 1-3 years 3-10 years > 10 years

π
0.26
(0.13)

0.17
(0.03)

0.18
(0.02)

0.20
(0.01)

σω
2.14
(1.41)

2.10
(0.31)

0.99
(0.09)

0.57
(0.04)

σε
15.13
(4.64)

10.99
(2.22)

4.42
(0.51)

1.83
(0.14)

Table 4: Results for the non-stationary version of the model. Standard errors in
parentheses.

In terms of the variability of the liquidity shocks, the estimated standard deviation

of the aggregate shock is monotonically falling in the maturity for both high yield

and investment grade bonds. The same holds true for the standard deviation of the

idiosyncratic shock, but at a higher level.

Table 5 shows how the model fits the data. Several points are worth pointing out:

1. The model fits both the spread and the fraction traded reasonably well. While

it slightly overestimates the level of the spreads, it manages to replicate the

increase in spreads with maturity as well as the lower spread level for investment-

grade bonds. The fraction traded does not exhibit a clear pattern.

2. The monotonically falling estimates for σω reflect the pattern in the data re-

garding the variance of prices. In terms of the model, bonds with low maturities

have already been trading for a longer time than bonds with high maturities.

As information about the fundamental state is revealed through trading, there

is less uncertainty about the value of low-maturity bonds. This implies lower

price variability.
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3. For both high-yield and investment-grade bonds, dealers are most willing to

take on inventory of low maturity bonds. Again, this is consistent with the

learning story (least uncertainty about the value). Due to the comparative

statics explained in the methodology section, we would therefore expect to see

low levels for the idiosyncratic shock standard deviation for bonds with high

maturities. However, the opposite is the case. The model doesn’t manage to

match the empirical pattern for the trade imbalance.

4. In terms of change of prices relative to volume, the model manages to correctly

match the pattern of the data. The values for high maturity bonds are higher

than for low maturity bonds. However, it does not quite manage to match the

magnitude, especially for high maturity bonds.

5. The fit reflects the structure of the covariance matrix of the data moments.

The spread, fraction traded and Var(Prices) moments receive relatively higher

weight than the Var(Spread), imbalance, and ∆(Prices)/Vol.

I use more moments than there are parameters to estimate the model. I can there-

fore evaluate the fit by testing the validity of the over-identifying restrictions using a

J-test. The null hypothesis,
(

1
S

∑S
s=1m

s(β)−mD

)
= 0, is that the restrictions are

valid. The test statistic is asymptotically distributed χ2 with degrees of freedom equal

to the number of moment conditions exceeding those needed for exact identification.

In my case, this is three. As can be seen from the table, the model is rejected by the

data at varying levels of confidence. The literature consensus is not to place much

emphasis on such a result as any model would be rejected given enough data (see e.g.

Taylor (2010) for a structural estimation with a similar fit). Nonetheless, the fit is

certainly not perfect.

8 Counterfactual analysis

Table 6 reports the results of the following exercise. For each rating-maturity group

(e.g. high yield bonds with 1-3 years time-to-maturity), I take the estimated param-

eters from table 4, and increase π by 20%. I then simulate the model at this new

set of parameters in the same way as I did for the SMM estimation and report the
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High yield < 1 year 1-3 years 3-10 years > 10 years

Spread

Fraction traded

Imbalance

Var(Prices)

Var(Spread)

∆(Prices)/Vol

Data Fitted

5.31 5.93

14.72 11.50

4.03 0.95

1.96 1.79

0.01 0.00

9.73 2.36

Data Fitted

10.26 11.38

10.70 7.59

3.32 0.61

9.59 9.23

0.03 0.00

13.10 7.03

Data Fitted

18.35 23.77

13.35 11.70

3.51 1.36

28.60 27.05

0.05 0.01

22.92 7.21

Data Fitted

39.26 49.63

10.65 10.88

2.57 1.91

64.78 58.97

0.13 0.04

65.45 11.87

Test of overident.
restr. (J-test)

χ2 = 13.13
(p = 0.004)

χ2 = 17.98
(p = 0.000)

χ2 = 18.92
(p = 0.000)

χ2 = 10.46
(p = 0.015)

Investment grade < 1 year 1-3 years 3-10 years > 10 years

Spread

Fraction traded

Imbalance

Var(Prices)

Var(Spread)

∆(Prices)/Vol

Data Fitted

3.22 3.54

16.79 13.05

4.99 1.24

0.51 0.46

0.00 0.00

3.49 1.08

Data Fitted

6.04 7.47

10.92 8.35

3.88 1.04

1.24 1.14

0.01 0.00

7.89 2.66

Data Fitted

13.37 18.24

11.25 8.94

4.13 1.31

7.49 7.04

0.04 0.00

19.44 5.27

Data Fitted

28.64 42.82

10.38 10.02

3.48 2.05

31.36 28.41

0.06 0.02

60.33 8.6

Test of overident.
restr. (J-test)

χ2 = 12.10
(p = 0.007)

χ2 = 14.68
(p = 0.002)

χ2 = 22.25
(p = 0.000)

χ2 = 14.78
(p = 0.002)

Table 5: Empirical vs fitted moments
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resulting model-implied moments. This allows me to study the effect of a reduction

in trading frictions.

The table shows that for all rating-maturity groups, a decrease in trading frictions

prompts a decrease in the spreads. To be precise, spreads decline by 18.89 percent on

average with the range being 15.93 to 24.88 percent. They decline most for the high

maturity bonds and least for the bonds closest to maturity. From the discussion of

the model, we know that a decrease in search frictions may increase or decrease the

spread. Observing that the spread decreases for all rating-maturity pairs is therefore

a result in itself. It shows that at the estimated parameters, the effect of the decrease

in the adverse selection issue faced by dealers outweighs the increase due to slower

learning.

To check how robust this relationship is to changes in the estimated parameters, I

perform the following sensitivity analysis: Figure 1 shows this plot for the high yield

bonds with over 10 years time to maturity and for investment grade bonds with less

than one years time to maturity. I also perform this analysis for all other rating-

maturity pairs and find that the only pair where spreads increase for at least some

region of π are the high yield bonds with more than ten years’ time to maturity. In

general, an increase in π seems to increase spreads whenever both σω and σε are low.

Table 6 also allows us to quantify some more changes. The fraction traded trivially

increases by 20 percent. Welfare increases by 21.8 percent on average with the biggest

gains seen in the high maturity bonds. ∆(Prices)/Vol declines by 34.03 percent on

average with the biggest changes again in the high maturity bonds. Var(Prices)

declines by 40 percent on average again with the biggest change in the high maturity

bonds. The imbalance increases by an average of 21.35 percent with no substantial

differences between maturities.

For all of spreads, welfare, variance of prices, and ∆(Prices)/Vol the effects of

the increase in π are biggest for high-maturity bonds and smallest for bonds close

to maturity, both in absolute and in relative measure. One possible explanation

consistent with the learning arguments brought forward in this paper would be that

bonds with long time-to-maturity have the highest amount of uncertainty. Relative

to bonds closer to maturity, less time has passed in which trading could have re-

vealed information about the fundamental value and thereby reduced some of that
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Figure 1: Sensitivity analysis: Model-implied spreads for different values of π. All
other parameters are fixed at their estimated value. The top figure is for high yield
bonds with over 10 years time-to-maturity and the bottom figure is for investment
grade bonds with less than one years time-to-maturity. The vertical line is drawn at
the SMM estimate for π (see table 4).
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uncertainty.

From the discussion of the model we know that an increase in π makes traders’

behaviour less dependent on the fundamental value. This reduces the information

content of trades and slows down learning over time. One way to quantify the slow-

down in learning is to look at how many price paths converge to their true value

within a certain amount of time. I simulate 10,000 paths and look at the proportion

of paths which are within 5% of the true value after 1000 periods. For instance, for

the investment-grade bonds with more than 10 years time-to-maturity, the proportion

of paths that reach this threshold is 66.3%, this drops to 49.1% when π increases by

20%. It drops to 0 when π = 1. Figure 2 illustrates this point by showing three

such simulated price paths, all of which are for the same random shocks. However,

the reduced informativeness of prices means that as π increases, beliefs take longer

to converge to the true value.

9 Conclusion

In this paper, I have demonstrated how to use transaction data for a decentralised

market to structurally estimate a model that features not just a trading friction,

but also an information friction. While the trading friction is well established in

the literature, the information friction as well as the interaction of the two remain

understudied. The TRACE data used for this paper support the notion that trading

behaviour reveals information as time passes. This allows market participants to

learn about the fundamental value of the asset over time. The results reflect this and

indicate that trading differs substantially depending on the time to maturity of any

given bond. When time to maturity is long, prices react more strongly to trades.

Trade imbalances are lower as dealers want to take on less inventory of assets with

uncertain value. The structural estimation also allows me to perform a counterfactual

analysis. I show that a reduction in trading frictions would improve liquidity, but slow

down learning.

There are several avenues for future research. To better capture the nature of

trading in OTC markets one would need a fully decentralized model that does not

assume a frictionless inter-dealer market as the model used in this paper does. Fur-
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Figure 2: Simulated price paths for π = 0.2 (top), π = 0.24 (middle), and π =
1 (bottom). Remaining parameters fixed at estimated values for investment-grade
bonds with > 10 years time-to-maturity.
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High yield < 1 year 1-3 years 3-10 years > 10 years

Spread

Fraction traded

Imbalance

Var(Prices)

Var(spread)

∆(Prices)/Vol

Welfare

Fitted π = 0.28

5.93 4.93

11.50 13.79

0.95 1.15

1.79 1.18

0.00 0.00

2.36 1.63

1.00 1.20

Fitted π = 0.18

11.38 9.34

7.59 9.11

0.61 0.74

9.23 5.52

0.00 0.00

7.03 4.75

0.54 0.65

Fitted π = 0.28

23.77 18.81

11.70 14.04

1.36 1.65

27.05 14.56

0.01 0.00

7.21 4.56

0.29 0.36

Fitted π = 0.26

49.63 37.28

10.88 13.07

1.91 2.31

58.97 29.26

0.04 0.01

11.87 6.78

0.16 0.20

Investment grade < 1 year 1-3 years 3-10 years > 10 years

Spread

Fraction traded

Imbalance

Var(Price)

Var(Spread)

∆(Prices)/Vol

Welfare

Fitted π = 0.31

3.54 2.97

13.05 15.66

1.24 1.51

0.46 0.31

0.00 0.00

1.08 0.75

1.65 1.98

Fitted π = 0.20

7.47 6.28

8.35 10.02

1.04 1.27

1.14 0.78

0.00 0.00

2.66 1.86

0.77 0.93

Fitted π = 0.21

18.24 15.03

8.94 10.72

1.31 1.59

7.04 4.25

0.00 0.00

5.27 3.59

0.34 0.41

Fitted π = 0.24

42.82 33.86

10.02 12.02

2.05 2.48

28.41 15.33

0.02 0.01

8.6 5.44

0.17 0.21

Table 6: Counterfactual analysis, increase probability of finding a trading partner by 20%.
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thermore, the trading between investors and dealers could also be generalised. For

instance, removing the restriction of holdings to be 1 or 0 would make the model more

realistic and allow the dynamics of trading volume to better match those observed

in the data. The learning process currently assumes that investors know the state

perfectly. In reality, this is likely too strong and the less strict assumption that some

investors obtain an imperfect signal about the true state is more appropriate. How-

ever, this would require modelling not just the evolution of beliefs of dealers, but also

those of investors and therefore probably presents a significant modelling challenge.
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Li, Dan and Norman Schürhoff (2019). “Dealer networks”. In: The Journal of Finance

74.1, pp. 91–144.

Liu, Shuo (2020). “Dealer’s search intensity in U.S. corporate bond markets”. In:

Working Paper, UCLA.

McFadden, Daniel (1989). “A method of simulated moments for estimation of discrete

response models without numerical integration”. In: Econometrica: Journal of the

Econometric Society, pp. 995–1026.

Michaelides, Alexander and Serena Ng (2000). “Estimating the rational expectations

model of speculative storage: A Monte Carlo comparison of three simulation esti-

mators”. In: Journal of econometrics 96.2, pp. 231–266.

30



O’Hara, Maureen and Xing Alex Zhou (2019). “The Electronic Evolution of Corporate

Bond Dealers”. In: Journal of Financial Economics (JFE), Forthcoming.

Pakes, Ariel and David Pollard (1989). “Simulation and the asymptotics of optimiza-

tion estimators”. In: Econometrica: Journal of the Econometric Society, pp. 1027–

1057.

Taylor, Lucian A (2010). “Why are CEOs rarely fired? Evidence from structural

estimation”. In: The Journal of Finance 65.6, pp. 2051–2087.

Vogel, Sebastian (2019). “When to Introduce Electronic Trading Platforms in Over-

the-Counter Markets?” In: Available at SSRN 2895222.

Weill, Pierre-Olivier (2020). “The Search Theory of OTC Markets”. In: Annual Review

of Economics 12.

Appendix

A Counterfactual no search friction

Table 7 contrasts the model-implied moments when search frictions are completely

removed (π = 1) with the data moments. The direction of change is the same as in

table 6, where search frictions are reduced by 20%, but the magnitude of effects is

bigger.

B Results for the full sample

The main text groups bonds by maturity and rating. This section contains the results

for the full data sample. Table 8 presents the parameter estimates. Again, we obtain a

value for π around 0.2 which implies that investors find a trading partner on average

once every 5 weeks. The estimate for σε is larger than the estimate for σω. The

data reject the model at the 1% confidence level, but as argued before this is not

a disastrous result. Table 9 shows how the model fits the data and also performs
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High yield < 1 year 1-3 years 3-10 years > 10 years

Spread

Fraction traded

Imbalance

Var(Prices)

Var(spread)

∆(Prices)/Vol

Welfare

Fitted π = 1

5.93 1.35

11.50 50.00

0.95 5.37

1.79 0.08

0.00 0.00

2.36 0.12

1.00 4.36

Fitted π = 1

11.38 1.65

7.59 50.00

0.61 5.41

9.23 0.12

0.00 0.00

7.03 0.15

0.54 3.58

Fitted π = 1

23.77 4.82

11.70 50.00

1.36 7.54

27.05 0.56

0.01 0.00

7.21 0.32

0.29 1.27

Fitted π = 1

49.63 8.36

10.88 49.98

1.91 11.28

58.97 0.76

0.04 0.00

11.87 0.37

0.16 0.74

Investment grade < 1 year 1-3 years 3-10 years > 10 years

Spread

Fraction traded

Imbalance

Var(Price)

Var(Spread)

∆(Prices)/Vol

Welfare

Fitted π = 1

3.54 0.93

13.05 50.00

1.24 6.21

0.46 0.03

0.00 0.00

1.08 0.07

1.65 6.31

Fitted π = 1

7.47 1.26

8.35 50.00

1.04 8.38

1.14 0.03

0.00 0.00

2.66 0.08

0.77 4.62

Fitted π = 1

18.24 3.13

8.94 50.00

1.31 9.76

7.04 0.14

0.00 0.00

5.27 0.16

0.34 1.91

Fitted π = 1

42.82 7.42

10.02 49.99

2.05 13.37

28.41 0.42

0.02 0.00

8.6 0.28

0.17 0.85

Table 7: Counterfactual analysis, complete removal of search friction
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counterfactual analyses for π = 1 and for a 20% decrease in trading frictions (π =

0.23).

π σω σε

Estimate 0.19 0.78 4.61

Standard Error 0.0141 0.0631 0.7595

Test of overident. restr. χ2 = 19.44 (p = 0.000)

Table 8: Results for the aggregate data

Moment Data Fitted π = 0.23 π = 1

Spread 14.14 17.58 13.65 3.03

Fraction traded 11.97 9.26 11.57 50.00

Imbalance 3.89 1.03 1.30 7.36

Var(Prices) 13.25 12.47 6.34 0.22

Var(Spread) 0.03 0.00 0.00 0.00

∆(Prices)/Vol 23.39 6.59 4.01 0.20

Table 9: Empirical and fitted moments for the entire data set
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