A Framework for Analyzing Monetary Policy in an Economy with E-Money

Yu Zhu Scott Hendry¹

Bank of Canada

Bank of England Chief Economists' Workshop 2021

¹The analysis and conclusions set forth are those of the authors and do not indicate concurrence by the Bank of Canada. $\langle \Box \rangle \langle \Box \rangle \langle$

Introduction

- Central banks consider issuing a central bank digital currency
- One motivation is to maintain monetary sovereignty
 - ability to conduct monetary policy
- Concern that monetary sovereignty can be undermined by
 - declining cash use
 - increasing adoption of private e-money (digital currency)

This Paper

- Study the effects on monetary policy
 - if a private e-money is widely adopted
 - and the use of central bank money declines
- Assess whether and how a CBDC can help
- Focus on a policy game between CB and the e-money issuer
 - CB maximizes welfare
 - e-issuer maximizes profit

Findings

- A private e-money affects monetary policy
 - changes the set of possible policies
 - changes the optimal policy if the use of CB money declines
- If use of CB money is low
 - CB runs high inflation to encourage e-money usage
 - private issuer responds by raising its inflation
 - equilibrium is far away from the first best
- CB can avoid this by maintaining the use of its money
 - A CBDC can help to achieve the first best

Model

- Discrete time, infinite horizon
- A continuum of households and a continuum of firms
- Two intrinsically worthless durable objects
 - f-money issued by CB
 - e-money issued by a private issuer

Benchmark Model

- Households want to consume y and randomly meet firms
- Firms produce y good on spot
- Three types of firms differing in money they accept

Type of Meetings

Type 3 Firms: Both may be used Meeting prob α_3

> ୬ ୯ (୦ 7 / 12

Steady State Equilibrium

• π^m and π^h be the inflation rates for f-money and e-money

•
$$i^{m} = (1 + \pi^{m}) / \beta - 1$$
, $i^{h} = (1 + \pi^{h}) / \beta - 1$,

• Total real value of fiat and e-money z^m and z^h satisfy

$$i^m \ge \alpha_1 \lambda \left(z^m \right) + \alpha_3 \lambda \left(z^m + z^h \right), \ z^m = 0$$
 if strict inequality $i^h \ge \alpha_2 \lambda \left(z^h \right) + \alpha_3 \lambda \left(z^m + z^h \right), \ z^h = 0$ if strict inequality

where λ is the liquidity premium.

• For fiat money to be valued, $i^m \leq \alpha_1 \lambda(0) + \frac{\alpha_3}{\alpha_1 + \alpha_3} i^h$.

Policy Rates Setting Game

- E-issuer set π^h/i^h to maximize profit
- CB set π^m/i^m to maximize total welfare
- CB and private issuer play a simultaneous move game
 - stage 1: they both announce long run rates
 - stage 2: the economy figures out the equilibrium
- First best achieved at $i^m = i^h = 0$

Equilibrium

Central Bank Digital Currency

- High use of CB money is a commitment device
 - not to strengthen the market power of the e-issuer
- Issuing a CBDC that serves type 2 meetings leads to first best
- In practice, reduces the incentive for the CB to help e-issuer

Conclusion

- E-money can affect CB policy
 - restrict the set of policies
 - change optimal policies if use of CB money declines
 - lower welfare
- Important to maintain the use of CB money
 - a CBDC can help to achieve a better equilibrium