Bank of England

Chief Economists Workshop

12 July 2021

Session: CBDC and Transmission Mechanism

QTM and FTPL in Two Moneys Economy: Prices of cash and interest bearing CBDC

Head of FinTech center Yutaka SOEJIMA

Disclaimer

- 1. Presentation and slide do not represent BoJ's view and thought.
- 2. Ideological experimentation of Macroeconomic approach to CBDC and e-money

Three motivations

- 1. Prices may differ by choice of payment measures.
 - Due to *merchant fee* and *cash handling cost* at merchants
 - While consumers face the same price, merchants sales differ.
 - Gap of payment costs introduce two prices in representative agent model.
- 2. Exchange rate among cash and CBDC
 - The rate may *divert from unity* due to *conversion costs*.
 e.g. ATM fee for deposit money, Prepaid/Withdrawal fee for CBDC
- 3. Interest-bearing CBDC
 - Context of policy tools; *Gesell* type money transfer to stimulate consumption, c.f. Limit in withdraw period of old banknote; effective date of money
 - CBDC with *gift certificates convertible to CBDC* has *near* interest-bearing feature.

Policy implications

- 1. Nominal interest rates differ among cash/CBDC/bond
 - Intertemporal substitution of consumption can be triggered by CBDC as well as bond.
 - Cash/CBDC dependent goods would be endogenously determined. But out of scope in this study
- 2. Relative real interest rate also work
 - Due to two prices and conversion cost between cash and CBDC
 - Even in zero nominal rate of CBDC, relative real rate can cause the substitution.
- 3. Many variants of FTPL and QTM
- 4. What happens in Seigniorage?

Assumption of Model

Model is based on Makoto Saito (2021)

- 1. M_0 : cash with zero interest rate
- 2. M_1 : CBDC with interest rate i_1
- 3. Exchange rate among M_0 and M_1 : *e*
- 4. P_0 : price of cash dependent goods
- 5. P_1 : price of CBDC dependent goods
- 6. i_1 : interest rate of M_1
- 7. i_B : interest rate of bond B
- 8. Utility function: $u(c) + v_1(M_1/P_1) + v_0(M_0/P_0)$

(per unit of M1)

e>1: conversion cost *e*<1: conversion gift Alternative: additive term of the cost in both conversion directions

Budget constraint for representative household Measured by P_1 (M_1 numeraire)

$$\begin{array}{rcl} \mathsf{B}_{t} + \mathsf{M}_{1t} + \mathsf{M}_{0t}/\mathsf{e}_{t} &=& \mathsf{P}_{1t}(\mathsf{y}_{t} - \mathsf{c}_{t} - \mathsf{tax}_{t}) & \rightarrow \mathsf{Fiscal \, surplus:} \\ & & + (1 + \mathsf{i}_{\mathsf{Bt}})\mathsf{B}_{\mathsf{t}-1} \\ & & + (1 + \mathsf{i}_{1\mathsf{t}})\mathsf{M}_{\mathsf{1}\mathsf{t}-1} \\ & & + (e_{\mathsf{t}}/e_{\mathsf{t}-1})\mathsf{M}_{\mathsf{0}\mathsf{t}-1}/e_{\mathsf{t}-1} \end{array} \rightarrow \begin{array}{l} \mathsf{Fiscal \, surplus:} \\ & & \mathsf{fs} = \{\mathsf{tax} - (\mathsf{y} - \mathsf{c}\,)\}, \text{ real \, term} \\ & & \mathsf{fs} = \{\mathsf{tax} - (\mathsf{y} - \mathsf{c}\,)\}, \end{array}$$

 M_0 measured by P_1 varies with change in e

B also measured by P_1

No conversion cost among B and M₁

i.e. No friction in digital world, but friction exists across digital and physical

Consolidated government's budget constraint

Real consolidated gov. debt: $rcgd_t = (B_t + M_{1t} + M_{0t}/e_t) / P_{1t}$

$$rcgd_{t-1} = rcgd_{t} / (1+r_{t})$$

$$+ fs_{t} / (1+r_{t})$$

$$+ (i_{Bt}-i_{1t}) m_{1t-1} / (1+i_{Bt})$$

$$+ (i_{Bt} + de_{t} / e_{t-1}) m_{0t-1} / (1+i_{Bt})$$
Seigniorage by CBDC
$$+ (i_{Bt} + de_{t} / e_{t-1}) m_{0t-1} / (1+i_{Bt})$$
Seigniorage by cash

= CBDC/cash holding costs

where

$$m_{1t} = M_{1t}/P_{1t}$$
, $m_{0t} = M_{0t}/(e_{1t}P_{1t})$
 $r_t = (1+i_{Bt})P_{1t-1}/P_{1t}$

Consolidated government's budget constraint

Real value of gov. debt = PV of fiscal surplus

+ PV of seigniorage by CBDC

+ PV of seigniorage by cash

+ terminal value of gov. debt

(Reference) Optimality conditions

Maximize $\sum [1/(1+\rho)^{\tau-t+1} \{u(c_{\tau})+v_1(m_{1\tau})+v_0(m_{0\tau})\}]$ s.t const.

Euler eq : $1/(1+\rho) * u'(c_{t+1})/u'(c_t) * (1+r_t) = 1$

e-money mkt eqbm: $v_1'(m_{1t}) = (i_{Bt}-i_{1t}) u'(c_t)$ MU = MC determine cash mkt eqbm: $v_0'(m_{0t}) = (i_{Bt} + de_t/e_{t-1}) u'(c_t)$ money demand

interest parity:
$$i_{1t} v_1'(m_{1t}) = - \frac{de_t}{e_{t-1}} v_0'(m_{0t})$$

i.e. $i_{1t} = - \frac{de_t}{e_{t-1}} (v_0'/v_1')$

Focal cases

- 1. $i_B > i_1 = 0$ Standard case of full seigniorage gain
- 2. $i_B > i_1 > 0$ Original seigniorage used for CBDC issuance
- 3. $i_B > 0 > i_1$ Seigniorage from CBDC negative rate
- 4. $i_B = i_1 > 0$ Infinite CBDC demand (Another liquidity trap)

Exchange rate e_t provides points of discussion.

1. $-de_t/e_{t-1} < 0$ Increase in e_t introduces new seigniorage

2. $e_t > 1$ Conversion cost makes relative price of cash goods. c.f. $m_{0t} = M_{0t}/(e_{1t}P_{1t})$, see budget const. $(e_t/e_{t-1})M_{0t-1}/e_{t-1}$ No substitution between two goods introduces new tax.

3. $e_t < 1$ Conversion **gift** from gov. to household

Implications for price theory: QTM

```
Steady state eqbm (constant c<sub>t</sub>)
```

```
given i_{Bt} > i_1 \ge 0 and
```

that CB controls constant i_1 and constant money growth μ_1 , μ_0 .

QTM world

Real money demands $m_1 \& m_0$ are stable.

$$dP_1/P_1 = \mu_1, \ dP_0/P_0 = \mu_0,$$

 $P_{1t} = (M_{1t} + M_{0t}/e_t)/(m_1 + m_0)$ and $P_{0t} = (e_t M_{1t} + M_{0t})/(m_1 + m_0).$

Moneys determine price levels.

Implications for price theory: FTPL(1)

Given $i_{Bt} = i_1$ (or $i_{Bt} = i_1 = de_t/e_{t-1}$ (=0 at SS): New Friedman rule) Opportunity cost to hold CBDC is zero.

CBDC demand may exceed saturation level of money utility.

Case1: Suppose CBDC supply goes beyond the level,

FTPL world

Current real balance of bond + current excess supply of M₁

= PV of fiscal surplus in future

Undetermined M_1 is financed by a part of the fiscal surplus. The fiscal surplus determine P_t .

Implications for price theory: FTPL(2)

Case2: Given M_{1t} supply which just saturates money utility, excess demand for bond may arise.

FTPL world

Current real balance of bond + current excess supply of B

- = PV of fiscal surplus in future
- Undetermined B is financed by a part of the fiscal surplus.

The fiscal surplus determine P_t.

There is an interim case among the case 1 and 2 with excess supplies of band and CBDC.

Reference

Saito, Makoto, Saito M. (2021) Central Bank Cryptocurrencies in a Competitive Equilibrium Environment: Can Strong Money Demand Survive in the Digital Age?. In: Strong Money Demand in Financing War and Peace. Advances in Japanese Business and Economics, vol. 28, Springer.