Why Do Borrowers Default on Mortgages? A New Method For Causal Attribution

Peter Ganong and Pascal Noel

Discussion by Angus Foulis¹

Bank of England

14th June 2021

Foulis (BoE) Borrower Mortgage Default 14/06/21

¹The views expressed are those of the presenter and not necessarily those of the Bank of England, the MPC, the FPC or PRC.

Why Do Borrowers Default on Their Mortgage?

Life Events

- Adverse events ⇒ mortgage payments too high relative to income
- Default (3 missed payments) possible even with positive home equity
- May not be able to remortgage or to sell house in time

Why Do Borrowers Default on Their Mortgage?

Life Events

- Default (3 missed payments) possible even with positive home equity
- May not be able to remortgage or to sell house in time

Strategic default

- Default on house when value sufficiently low relative to outstanding mortgage
- Default even if can afford to continue making mortgage payments
- 40% of defaulters could make mortgage payment without reducing consumption (Gerardi et al., 2017)

Why Do Borrowers Default on Their Mortgage?

Life Events

- Default (3 missed payments) possible even with positive home equity
- May not be able to remortgage or to sell house in time

Strategic default

- Default on house when value sufficiently low relative to outstanding mortgage
- Default even if can afford to continue making mortgage payments
- 40% of defaulters could make mortgage payment without reducing consumption (Gerardi et al., 2017)

Issues

- Difficult to measure all life events; mortgage affordability
- Policy implications on principal vs payment reduction

This Paper

- What share of mortgage defaults are strategic?
- Novel data linking monthly income with monthly mortgage servicing
- Novel method to circumvent measurement error of life events

This Paper

- What share of mortgage defaults are strategic?
- Novel data linking monthly income with monthly mortgage servicing
- Novel method to circumvent measurement error of life events

Assumptions

- Above-water defaults are due to life events
- 2 Income is a noisy measure of life events
- Average fall in income same for above/below water borrowers after life event

This Paper

- What share of mortgage defaults are strategic?
- Novel data linking monthly income with monthly mortgage servicing
- Novel method to circumvent measurement error of life events

Assumptions

- Above-water defaults are due to life events
- 2 Income is a noisy measure of life events
- Average fall in income same for above/below water borrowers after life event

Evidence:

- Income path prior to default very similar for above and below water defaulters
 - ⇒ Almost all below water defaults due to life events too
- ullet Estimate: only 3% of defaults strategic; little variation until very high LTV
- Bhutta et al. [2017]: 25%(50%) of defaults are strategic at LTV of 148%(174%)

Evaluation

- Great contribution combining novel methodology and data
- Sharp empirical results on minimal role of strategic default
- Further support for effectiveness of payment over principal reduction (Ganong and Noel, 2020)
- Doesn't imply ex ante LTV regulation ineffective
 - could still limit default, loss given default, and consumption responses

Evaluation

- Great contribution combining novel methodology and data
- Sharp empirical results on minimal role of strategic default
- Further support for effectiveness of payment over principal reduction (Ganong and Noel, 2020)
- Doesn't imply ex ante LTV regulation ineffective
 - · could still limit default, loss given default, and consumption responses

Discussion:

- Measurement error in LTV
- What is strategic default?
- Validity of theoretical assumptions

A. Measurment Error in LTV

- ullet Regressing default on noisy measure of life event \Longrightarrow
 - Attenuation bias, underestimate importance of life events
 - Overestimate role of strategic default

This paper: estimate income path prior to default for above/below water:

$$\frac{\textit{Income}_t}{\textit{Income}_{\textit{pre}}} = \lambda + \kappa \mathbb{I}\left(\textit{LTV} > 100\right) + \gamma \mathbb{I}\left(t = -2, -1, 0\right) + \beta \mathbb{I}\left(t = -2, -1, 0\right) \mathbb{I}\left(\textit{LTV} > 100\right) + \varepsilon$$

A. Measurment Error in LTV

- ullet Regressing default on noisy measure of life event \Longrightarrow
 - Attenuation bias, underestimate importance of life events
 - Overestimate role of strategic default

This paper: estimate income path prior to default for above/below water:

$$\frac{\textit{Income}_t}{\textit{Income}_{pre}} = \lambda + \kappa \mathbb{I}\left(\textit{LTV} > 100\right) + \gamma \mathbb{I}\left(t = -2, -1, 0\right) + \beta \mathbb{I}\left(t = -2, -1, 0\right) \mathbb{I}\left(\textit{LTV} > 100\right) + \varepsilon$$

- Noise in life event moved to LHS, but noise in LTV dummy remains:
 - \bullet Difference between estimated house prices and sale prices: s.d. $\approx 20\%$
 - This error may be higher in when markets are less liquid (Giacoletti, 2021)
 - Also difference between estimated house prices and perceived house prices
- Attenuation bias for the LTV coefficients
 - \implies underestimate strategic default

A. Measurment Error in LTV

- Possible solution #1: alternative definition of above water (in paper)
- Possible solution #2: restrict sample based on time since house purchase
- Possible solution #3: Use Instruments for

$$\mathbb{I}(LTV > 100), \ \mathbb{I}(t = -2, -1, 0)\mathbb{I}(LTV > 100)$$

- ullet Use second noisy measure of house prices to construct \widetilde{LTV}
- Use $\mathbb{I}\left(\widetilde{LTV}>100\right)$, $\mathbb{I}\left(t=-2,-1,0\right)\mathbb{I}\left(\widetilde{LTV}>100\right)$ as instruments
- ullet Assumption: measurement errors in $\mathbb{I}(LTV>100)$ uncorrelated
 - Example: Corelogic vs Zillow?

B. What is Strategic Default?

- Life event is anything which causes default when LTV ≤ 100
 - loan-modification program that incentivises default would be a "life event"
- ullet Strategic default is a non-life event which causes default (when LTV > 100)
 - Relatively narrow definition compared to existing literature
- Challenge: no role for default decision to be based on expected LTV
 - May default on house when in positive equity if expect prices to fall
 - Expect negative equity by the time house could be sold
 - Default motivated by value of house, but classified as life event
 - ullet underestimate strategic default

Assumption 2 (Conditional Exogeneity)

$$\{Y(0,1), Y(1,0), Y(1,1)\} \perp T^*|G$$

- After conditioning on equity (G) no third factor that causes life event (T^*) and default decision (Y)
- Hard for this to fail given broad definition of life event
 - For above water, anything causing default is a life event

Assumption 2 (Conditional Exogeneity)

$$\{Y(0,1), Y(1,0), Y(1,1)\} \perp T^*|G$$

- After conditioning on equity (G) no third factor that causes life event (T^*) and default decision (Y)
- Hard for this to fail given broad definition of life event
 - For above water, anything causing default is a life event
- Assumption 3 (Noisy Measure of Treatment)

$$\{T(0), T(1)\} \perp (T^*, Y, G)$$

- Sensitivity of income (T) to life event unrelated to life event, default, home equity
- Broad definition of life event makes it easier for this assumption to fail

→ □ > → □ > → □ > → □ > → □

Example: falling house prices leading to fall in income:

- Could cause above water borrowers to default ⇒ it's a life event
- However, the fall in house prices also makes negative equity more likely
- Those with biggest income fall more likely to have negative equity
 - \implies failure of Assumption 3 & underestimate strategic default

14/06/21

Example: falling house prices leading to fall in income:

- Could cause above water borrowers to default ⇒ it's a life event
- However, the fall in house prices also makes negative equity more likely
- Those with biggest income fall more likely to have negative equity
 - \implies failure of Assumption 3 & underestimate strategic default
- This is also mirrored in the regression

$$\frac{\textit{Income}_t}{\textit{Income}_{pre}} = \lambda + \kappa \mathbb{I}\left(\textit{LTV} > 100\right) + \gamma \mathbb{I}\left(t = -2, -1, 0\right) + \beta \mathbb{I}\left(t = -2, -1, 0\right) \mathbb{I}\left(\textit{LTV} > 100\right) + \varepsilon$$

- Ratio of current to previous house prices $\frac{HP_t}{H\bar{P}_{nre}}$ will be:
 - Negatively correlated with $\mathbb{I}\left(t=-2,-1,0\right)\mathbb{I}\left(\mathit{LTV}>100\right)$
 - Positively correlated with Income_{tre} Income_{pre}
- ullet underestimate eta and so underestimate strategic default

Example: falling house prices leading to fall in income:

- Could cause above water borrowers to default ⇒ it's a life event
- However, the fall in house prices also makes negative equity more likely
- Those with biggest income fall more likely to have negative equity
 - \implies failure of Assumption 3 & underestimate strategic default
- This is also mirrored in the regression

$$\frac{\textit{Income}_t}{\textit{Income}_{pre}} = \lambda + \kappa \mathbb{I}\left(\textit{LTV} > 100\right) + \gamma \mathbb{I}\left(t = -2, -1, 0\right) + \beta \mathbb{I}\left(t = -2, -1, 0\right) \mathbb{I}\left(\textit{LTV} > 100\right) + \varepsilon$$

- Ratio of current to previous house prices $\frac{HP_t}{H\bar{P}_{pre}}$ will be:
 - \bullet Negatively correlated with $\mathbb{I}\left(t=-2,-1,0\right)\mathbb{I}\left(\mathit{LTV}>100\right)$
 - Positively correlated with Incometation
- ullet underestimate eta and so underestimate strategic default
- Further examples: borrower characteristics, age, risk-aversion etc
- Straightforward to add controls but unclear how maps to theory

Question: is there an extension of Proposition 1 where:

ullet Assumption 3 is weakened to hold conditional on further covariates X

$$\{T(0), T(1)\} \perp (T^*, Y, G) | X$$

And share of underwater defaults caused by life events conditions on X?

$$\alpha \equiv \frac{\mathbb{E}\left(T|Y=1,G=1,X\right) - \mathbb{E}\left(T|G=1,X\right)}{\mathbb{E}\left(T|Y=1,G=0,X\right) - \mathbb{E}\left(T|G=1,X\right)}$$

- ullet If so, X would then be added as controls in the regression
- Would strengthen the identification if it's possible
- Further evidence to support Assumption 3 if extension not possible

D. Additional Questions/Clarifications

- Share of strategic default also estimated using quantile regression
 - Analogous version of Proposition 1 for conditional quantiles $Q_q(Y|G=1)$?
- Clarification on LTV robustness exercises
 - Is the 60% alternative LTV cut-off comparing LTV above/below 60?
 - Or LTV below 60 with LTV above 100?
- How are the standard errors in the baseline regression treated?
- More details on mortgages in dataset e.g. term, whether ARM vs FRM, when originated, geographical spread

Summary

- Great paper tackling important question
- Novel data and method to produce sharp empirical estimates
- Suggest further work to ensure not underestimating strategic default

References

- Neil Bhutta, Jane Dokko, and Hui Shan. Consumer ruthlessness and mortgage default during the 2007 to 2009 housing bust. *The Journal of Finance*, 72(6): 2433–2466, 2017.
- Peter Ganong and Pascal Noel. Liquidity versus wealth in household debt obligations: Evidence from housing policy in the great recession. *The American Economic Review*, 110(10):3100–3138, 2020.
- Kristopher Gerardi, Kyle F. Herkenhoff, Lee E. Ohanian, and Paul S. Willen. Cant Pay or Wont Pay? Unemployment, Negative Equity, and Strategic Default. *The Review of Financial Studies*, 31(3):1098–1131, 2017.
- Marco Giacoletti. Idiosyncratic risk in housing markets. *The Review of Financial Studies*, pages 1–47, 2021.