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Objective

Demonstrate the usefulness of payments data and machine learning (ML):

• Use payments data from Canada’s retail and large value payments systems

• Use ML models: elastic net, neural network, random forest, and gradient boosting

• Estimate current period (nowcast) GDP, retail, and wholesale trade sales

Address the associated challenges: interpretability and overfitting

• Shapley value-based approach to interpret ML model predictions

• Improved cross-validation strategy to alleviate the overfitting
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Motivation

Macroeconomic Nowcasting:

• Delay: official estimates are released with a substantial lag

• Uncertainty: undergo multiple revisions sometime after years

• Crisis: nonlinear impacts and unconventional policies

Payments Data & Machine Learning:

• Timely & Precise: available immediately, no measurement or sampling error

• High-frequency & Broad: daily aggregates, 15+ years, 20+ streams

• Handle Big Data: non-traditional, high-frequency, wide and large

• Nonlinearity: flexible in capturing nonlinear relationships

2



Results Preview

Payments system data and ML models can lower nowcast errors significantly1:

• 35 to 40% reduction in RMSE for predicting GDP, retail and wholesale sales over

a benchmark2 and 15 to 25% reduction over payments data with factor model

• Out-of-sample model performance is relatively higher during the COVID-19 crisis

period than the pre-COVID “normal” period

• Model interpretation reveals that, a few payments streams are important over

entire nowcasting periods and their importance increases during crisis periods

• Proposed cross-validation strategy help to reduce nowcasting RMSEs (6-12%)

1Gradient boosting model performed consistently better than other models
2Our benchmark is mixture of a few lagged and timely indicators in a linear model
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Data



Canadian ACSS and LVTS Data

Stream Short Description

AFT Credit Direct Deposit: payroll, account transfers, social security

AFT Debit Pre-authorized debit (PAD): bills, mortgages, utility

Encoded Paper Paper bills: cheques, bank drafts, paper PAD, etc.

Shared ABM Debit card payments to withdraw cash at ABM

POS Payments Point of sale (POS) payments using debit card

Corporate Payments Exchange of Corporate-to-Corporate and bill payments

Allstream It is the sum of all payments streams settled in the ACSS

LVTS-T1 Time critical payments and payments to Bank of Canada

LVTS-T2 Security settlement, foreign exchange and other obligations

Automated clearing settlement system (ACSS) and the large-value transfer system (LVTS)

First six streams are representative of twenty payments instruments processed separately in ACSS
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Payments Data for Prediction

Standardization year-over-year growth comparisons of monthly targets and payments streams
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Methodology



Models

Dynamic Factor Model (DFM): Captures dynamics of large set of predictors into

small number of latent factors

Xt = Λft + εt ,

ft = A1ft−1 + · · ·+ Apft−p + ut

Gradient Boosting Regression (GBR): Sequence of small trees are built on a

repeatedly modified training dataset

ŷi =
M∑

m=1

hm(xi)

Elastic Net, Support Vector Machines, Neural Network, and Random Forest 8



Payments Data & ML Models for Nowcasting

Opportunities:

• Payments Data: timely, precise, high-frequency and broad

• ML models: handle big data and nonlinearity; focus on prediction accuracy

Challenges:

• Missing information: Not all payment schemes captured (credit card, on-us)

• Many changes in the streams: policy changes or technological advancements

• Strong seasonality, colinearity and non-stationary

• Interpretability: black-box nature, no causal relationships

• overfitting: high error-susceptibility, model selection
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Interpretability



Shapley Values: SHAP3

Example: Consider nowcasting is a “game” then the Shapley values can be used to

fairly distribute the payout (= the prediction) among the players (= the predictors)

3
Lundberg et al. (2017). SHAP: A unified approach to interpreting model predictions. 10



SHAP: Advantages & Disadvantages

Advantages:

• Theoretical foundation

• Model independent

• Local and global interpretation

Disadvantages:

• Computationally expensive with increasing number of predictors

• Parametric models suffer from collinearity in the predictors

• Sensitive and prone to adversarial attacks (misleading interpretations)4

4
Alvarez-Melis and Jaakkola (2018): On the robustness of ML interpretability methods for prediction problems

Slack, Dylan, et al. (2019): Fooling LIME and SHAP: adversarial attacks on post hoc explanation methods
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Overfitting



K-fold Cross-validation: Traditional vs randomized expanding window

Standard approach for time-series:

Proposed approach for macroeconomic time series:
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Randomized Expanding Window

Advantages & Disadvantages:

• Distribution of each validation set is similar to the test set

• Help avoid breaking the order of data (autocorrelation)

• Could sample many validation sets (no constrains)

• Some observations may get selected more than once, and some may never get

selected in the validation set (theoretical and empirical analysis needed)
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Results



Nowcasting Models: Case specifications

Prediction horizons (t, t + 1, t + 2) are based on payments data availability t

E.g.: To predict May’s GDP growth rates on June 1st , i.e., at t + 1, we use payments

data for May (at t), and other latest available macro indicators:

• Base case (benchmark): OLS (5 predictor)5

ĜDPt+1 = F(GDPt−2, CPI t−1, UNE t−1, CFSI t , CBCC t)

• Main case (of interest): DFM, ENT, RFR, GBR, ANN6 (23 predictors)

ĜDPt+1 = F(GDPt−2, CPI t−1, UNE t−1, CFSI t , CBCC t , Paymentst).

5
CPI: Consumer Price Index, UNE: Unemployment, CFSI: Canadian Financial Stress Indicator, CBCC: Consumer Board’s Confidence Index

6
OLS: Ordinary Least Squares, DFM: Dynamic Factor, ENT: Elastic Net, RFR: Random Forest, GBR: Gradient Boosting, ANN: Neural Network
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Nowcasting Models: Results

RMSE on out-of-sample testing perioda at t + 1 prediction horizon:

Target Benchmarkb Main-DFMc Main-MLd % RMSE Reductione

GDP 3.97 2.98 2.43 39*

RTS 8.47 6.36 5.44 36*

WTS 7.17 6.18 4.28 41*

a Training: Mar 2005 to Dec 2018 and testing: Jan 2019 to Dec 2020
b Benchmark: OLS using first available lagged target and other base case variables
c Main-DFM: Payments data along with the benchmark variables in the DFM model
d Main-ML: Payments data along with the benchmark variables in the ML model

(only the best among ENT, RFR, GBR, ANN is showed)
e % Reduction in RMSE using ML model with payments data over the benchmark model
* Denote statistical significance at the 10% over benchmark
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Model Interpretation and

Payments Data Contribution



ML Models: Local interpretation

Force plots: provide insights into marginal contributions for each month’s predictions
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ML Models: Global interpretation

Feature importance plots: payments data importance increase during crisis periods

Left: full sample and Right: Covid-19 period (Mar to Dec 20) 17



ML Models: Dependence plots

Contribution of some of the payments streams is asymmetrical and nonlinear
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Conclusions

This paper substantiates the use of payments data and ML models for macroeconomic

prediction and provides a set of tools to overcome associated challenges:

• Payments data provide economic information in real-time and help reduce

dependence on lagged variables (during both normal times and crisis periods)

• Machine learning provide set of econometric tools to effectively process various

payments streams and capture sudden and large effects of the economic crisis

• Shapley value-based SHAP approach is useful to get insights into the ML model

predictions (local and global interpretations)

• Proposed cross-validation technique can help reduce overfitting and improve

prediction accuracy in macroeconomic prediction models
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Thank you!
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