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Abstract

This exercise offers an innovative learning mechanism to model economic agent’s
decision-making process using a deep reinforcement learning algorithm. In particular, this
AI agent has limited or no information on the underlying economic structure and its own
preference. I model how the AI agent learns in terms of how it collects and processes
information. It is able to learn in real time through constantly interacting with the environment
and adjusting its actions accordingly. I illustrate that the economic agent under deep
reinforcement learning is adaptive to changes in a given environment in real time. AI agents
differ in their ways of collecting and processing information, and this leads to different learning
behaviours and welfare distinctions. The chosen economic structure can be generalised to other
decision-making processes and economic models.
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1 Introduction

Both artificial intelligence (AI) and economics focus on decision-making of an intelligent entity. AI
is broadly defined as intelligence demonstrated by machines, in contrast to the natural intelligence
displayed by animals. AI technologies are widely adopted and successfully implemented in
situations that normally require human intelligence, such as visual perception, speech recognition,
decision-making, and translation between languages. The essence of most economic problems
is an economic agent’s decision-making process. This exercise combines AI and economics and
aims at building AI agents adopting cutting-edge computer science algorithms, deep reinforcement
learning, to solve economic decision-making problems. I implement an AI algorithm in a stochastic
optimal growth environment, with special focus on several novel features that this AI technology
brings to economics. Notably, the economic agent under deep reinforcement learning is adaptive
to a constantly changing environment owing to a special ‘exploration’ property of the algorithms.

This exercise offers an innovative learning mechanism to model economic agent’s decision-making
process using a deep reinforcement learning algorithm. Deep reinforcement learning, takes the
middle ground of reinforcement learning and deep learning (i.e., deep artificial neural networks).
Reinforcement learning is a class of algorithms that are motivated by how animals and humans
learn in the real world, i.e., learning through reinforcing good/bad decisions based on some reward
signals.1 In this case, AI agents are born with no information about the fundamentals of the
economy nor do they know their own preferences. They learn how to make optimal consumption
decisions through trying out different consumption values and observe the consequence comes with
these actions. In other words, this learning process first models how agent obtains information. The
information is then processed through artificial neural networks. They are trained to maximum
rewards over long run, or in economic terms, maximise their lifetime utilities. The AI agent’s
learning characteristics, governed by parameters within the learning algorithms, can also be
adjusted with respect to particular questions. The chosen stochastic optimal growth model is
a main building block for many macroeconomic models, and can be generalised to solve other
decision-making processes.

This is not the first time that the two concepts are blended together. Sargent (1993) discusses his
agenda in combining AI with macroeconomic modelling. He aims at finding a symmetry between
econometricians and economic agents. Giving the agent a learning ability based on a decision
rule, the agent, at limits, converges to a rational expectation equilibrium. In his case, agents
behave like professional scientists or econometricians and use methods of scientific inference in
collecting information and forming their expectation. He argues that this is an important line
of literature because it looks at the transition behaviours and dynamics in a learning process.
Earlier than Sargent, Herbert Simon defines the concept of bounded rationality and introduces his
approach in adopting AI in making decisions.2 Different from Sargent, Simon focuses more on the
decision-making process rather than its outcome. AI that he suggests is on the heuristic search
and problem solving by recognition (Simon, 2016).

1in reality, what differ us humans from a reinforcement learning agent is that rewards given by the reality are
often not clear and understandable.

2He argues that bounded rationality denotes "the whole range of limitations on human knowledge and human
computation that prevent economic actors in the real world from behaving the ways that approximate the predictions
of economic theories: including the absence of a complete and consistent utility function for ordering all possible
choices, inability to generate more than a small fraction of the potentially relevant alternatives, and inability to
foresee the consequences of choosing the alternatives"(Simon, 2016).
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The combination of AI and economics executed here is different from both Sargent’s and Simon’s
views. The AI agent in this exercise does not follow a pre-specified decision rule. It must determine
what is feasible (learning the causal rules of the world), and what is desirable (learning the
utility-filled states of the world) by interacting with its environment and experimenting.

In the following sections, I first give an introduction of AI technologies, focusing on deep
reinforcement learning and related literature. This is followed by the discussion of an economic
environment and how I build the artificial economic agent in this specified environment. In the
end, I present several experiments and corresponding results highlighting the novelty of combining
economic modelling with deep reinforcement learning.

2 AI Technologies and Reinforcement Learning

Artificial intelligence or machine intelligence has been on the centre stage of computer science,
and subsequently technological advancement for decades. The field of artificial intelligence, or AI,
attempts not just to understand but also to build intelligent entities (Russell, 2020). It involves
a wide range of machine learning techniques.3 Machine learning is about learning from data and
making predictions and/or decisions. It is broadly categorised as supervised, unsupervised, and
reinforcement learning.4

At the core of AI technologies is the class of algorithms under deep reinforcement learning (DRL),
which is the combination of reinforcement learning and artificial neural networks (ANNs). ANNs
are used as function approximators, which help reinforcement learning to deal with environment
settings with high-dimensional state and action spaces5. Notable developments include teaching
AI agents (using DRL algorithms) to play Go and Atari games, and to learn speech recognition.

2.1 Reinforcement Learning: a primer

The early history of reinforcement learning (RL) has two main threads that were pursued
independently before intertwining in modern RL. One thread concerns learning by trail and error,
which originates in the psychology of animal learning. The second thread, which is familiar to
most computational economists, concerns the problem of optimal control and its solution using
value functions and dynamic programming. For the most part, this thread does not involve any
learning. The threads come together in late 1980s (Sutton and Barto, 2018).

Modern RL6 contains a series of algorithms aiming at solving Markov Decision Processes (MDPs).
It is distinguished from other computational approaches by its emphasis on learning by an
agent from direct interaction with its environment, without requiring exemplary supervision (e.g.,
supervised machine learning) or complete models of the environment (e.g., dynamic programming).
RL uses the formal framework of MDPs to define the interaction between a learning agent and its
environment in terms of states, actions, and rewards.

3For an in-depth review of AI, please see Russell (2020).
4In supervised learning, there are labelled data; in unsupervised learning, there are no labelled data. In

reinforcement learning, in contrast to supervised learning and unsupervised learning, there are evaluative feedback
(i.e., reward signals), but no supervised labels.

5An example is learning to play video games directly from raw pixels
6For a comprehensive review, please see Sutton and Barto (2018).
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Figure 1: The agent-environment interaction in a reinforcement learning setting

Source: Sutton and Barto (2018)

An MDP, as described by figure 1, shows a process where given a state variable agent interacts
with the environment and chooses an action, this leads to a reward signal for the agent and the
current state transits to the next.

At each time step t, an RL agent receives some representation of the environment’s state out of
a state space, st ∈ S, and on that basis selects an action out of an action space, at ∈ A(st).
One time step later, in part as a consequence of its action, the agent receives a numerical reward,
rt = r(st, at), and finds itself in a new state, st+1. The new state then feeds into another loop of
the agent-environment interactive process. To describe how the state transits, a three-argument
function p : S × S ×A → [0, 1] is defined as

p(st+1|st, at) ≡ Pr{st+1|st, at} (2.1)

for all st, st+1 ∈ S and at ∈ A(st). It shows the probability of transition to state st+1 from state
st, taking action at.

A RL agent’s task is to learn to make a decision that maximises its expected returns. The
decision-making strategy, or the RL agent’s behaviour is defined by a policy. If an agent is following
a stochastic policy π at time t, then π(at|st) is the probability of choosing action at given a state
st. If an agent is following a deterministic policy µ at time t, then µ(st) gives an action for a
state st. Expected returns are described by a value function, which estimates how good it is for an
agent to perform a given action in a given state (Sutton and Barto, 2018). Formally, it is denoted
as Qπ(st, at), which shows the expected return after taking an action at in state st and thereafter
following policy π.

Qπ(st, at) ≡ E[Rt|st, at] (2.2)

where Rt =
∑∞
k=0 β

krt+k, and it is the sum of discounted future rewards. β ∈ [0, 1] represents a
discount factor.
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An Optimal action-value function, defined as

Q∗(st, at) ≡ max
π

Qπ(st, at) (2.3)

for all st ∈ S and at ∈ A(st). For the state - action pair (st, at), this function gives the expected
return for taking action at in state st and thereafter following an optimal policy.

The Bellman optimality equation for Q∗ is

Q∗(st, at) = r(st, at) + βEmax
at+1

Q∗(st+1, at+1). (2.4)

This expresses the fact that the value of a state-action pair under an optimal policy must equal
the expected return for the best action from that state.

The central assumption in RL is that its agent does not know how a reward rt is generated and what
transition dynamics p(st+1|st, at) are. Instead, the agent must determine what is feasible (learning
the causal rules of the world, p(st+1|st, at)), and what is desirable (learning the utility-filled states
of the world, r(st, at)), by wandering through the environment and experimenting. The job of any
RL agent is to learn about r, p, and Q as best as possible, so as to come up with a decision-making
strategy, i.e., a policy π or µ, that maximises Q in states of relevance. This process gives a natural
machinery to model bounded rationality, as argued by Abel (2019).

2.1.1 Exploration vs Exploitation

To solve a RL problem, one of the challenges that arises is the trade-off between exploration and
exploitation. To obtain a lot of rewards, a RL agent must prefer actions that it has tried in the
past and found to be effective in producing rewards. But to discover such actions, it has to try
actions that it has not selected before. The agent has to exploit what it has already experienced
in order to obtain reward, but it also has to explore in order to make better action selections in
the future. The dilemma is that neither exploration nor exploitation can be pursued exclusively
without failing at the task. The agent must try a variety of actions and progressively favour those
that appear to be best. On a stochastic task, each action must be tried many times to gain a
reliable estimate of its expected reward.7

In reality, we only learn about what we like or dislike through trying out different options. This
direct link of how AI agent learns and how we learns in real life makes it an attractive framework
to model learning processes.

2.2 Deep Reinforcement Learning

To ensure RL algorithms can cope with large state space and non-linear value and policy functions,
ANNs are combined with the RL algorithms. The resulting class of algorithms are called deep
reinforcement learning8. Deep refers to the use of ANNs. The pioneer DRL algorithm is called

7Different RL algorithms have different ways of adding exploration.
8DRL algorithms have already been applied to a wide range of problems, such as robotics, where control policies

for robots can now be learned directly from camera inputs in real world, succeeding controllers that used to be
hand- engineered or learned from low-dimensional features of the robot’s state. In a step towards even more capable
agents, DRL has been used to create agents that can meta-learn (‘learn to learn’), allowing them to generalise to
complex visual environments they have never seen before (Arulkumaran et al., 2017).
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deep Q network algorithm (Mnih et al., 2013), which is capable of human level performance on
many Atari video games using unprocessed pixels for input. However, while deep Q network
algorithm solves problems with high-dimensional observation spaces, it can only handle discrete
and low-dimensional action spaces. Many tasks of interest have continuous (real valued) and
high dimensional action spaces, including economic decision-making processes. To solve this issue,
Lillicrap et al. (2015) introduces deep deterministic policy gradient (DDPG) algorithm, which is
also the algorithm implemented in this exercise.

2.3 Applications of AI Technologies in Economics

The literature on applications of DRL in economics is scarce. A majority of the existing literature
focuses on other machine learning methods. For example, Athey (2018) has a survey on the
adaptations of machine learning techniques in economics with a particular focus on how machine
learning can be used to enhance existing econometric methods. Deep learning (please note that deep
learning is a component of but not the same as DRL) is used in stock market predictions. Lien Minh
(2018) presents a framework for forecasting stock prices movements concerning financial news and
sentiment dictionary. In another study, Go and Hong (2019) employ deep learning technique
to forecast stock value streams while analysing patterns in stock price. Other applications of
deep learning include but not limited to fraud detection in insurance industry, auction design,
anti-money laundering in banking and online market. Deep learning is also adopted in forecasting
macroeconomic indicators but these approaches require huge amounts of data and suffer from
model dependency (Mosavi et al., 2020). Maliar et al. (2019) adopt deep learning to approximate
Bellman function and then use supervised learning to train the neural network. Azinovic et al.
(2020) apply deep neural networks to solve models with heterogeneity. Fernandez-Villaverde et al.
(2020) also apply deep neural networks to solve high-dimensional dynamic programming problems.

It is apparent that most machine learning techniques are used in forecasting and predictions. A
growing number of papers focus on using deep learning as a solution method for large-scale and
heterogeneous economic models. Very few papers focus on applications of DRL algorithms in
economics. Charpentier et al. (2020) provide some economic frameworks that could be applied
with DRL techniques. This ranges from economic modelling to possible applications in operations
research and game theory. They advocate that economic and financial problems would benefit
from being reviewed using DRL techniques. Chen et al. (2021) adopt a deep reinforcement learning
algorithm to solve a monetary model.

3 Methodology

In this section, I first describe an economic environment. I then show how the economic agent’s
learning process is modelled under an AI algorithm, namely DDPG.
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3.1 Stochastic Optimal Growth Model

In a closed economy with one consumption/capital good, a representative consumer aims at
maximising its lifetime utilities:

max
{ct,kt+1}∞t=0

E0

∞∑
t=0

βtu(ct) (3.5)

subject to

ct + kt+1 = ztyt (3.6)

yt = kαt (3.7)

ct ≥ 0 (3.8)

kt+1 ≥ 0 (3.9)

for all t.

ct, kt, yt are consumption, capital investment, and output produced in period t respectively. In
this exercise, I use capital investment and saving interchangeably. Period utility u() is increasing
and strictly concave, i.e., u′ > 0, and u′′ < 0. β is the discount factor. Disturbance to the output,
zt, is a stochastic random variable, and takes the following form

zt = eµ+ρln(zt−1)+εt (3.10)

where εt takes a normal distribution, µ is a constant, and ρ is an autoregressive parameter.

I take a specific example of the stochastic optimal growth model with logarithmic utility and
no capital depreciation. This specification is not a good representation of the real world, nor is
it a model for policy experiments. However, it contains the central decision-making problem in
economics, i.e., how to make consumption-investment decisions over a lifetime. As the foundation
for many popular macroeconomic models9, it is a natural starting point to show AI implementation
in economic modelling. Moreover, this specification has an analytical solution, which can be used
to show how an AI agent generates different and interesting behaviours compared to its rational
expectation counterpart formulated by the analytical solution.

3.2 Optimisation under Rational Expectation

The bellman equation of this problem is as follows.

v(kt, zt) = max
kt+1∈Γ(kt)

{log(ztkt − kt+1) + βEtv(kt+1, zt+1)} (3.11)

The solution10 to this problem is:
9To name a couple, real business cycle model, and incomplete market model.

10See appendix for detailed derivation.
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kt+1 = αβztk
α
t (3.12)

The value function following this policy is

v∗(k, z) =
1

1− β

[
log(1− αβ) + αβ

1− αβ
logαβ +

βµ

(1− αβ)(1− βρ)

]
+

α

1− αβ
logk +

1

(1− αβ)(1− βρ)
logz

(3.13)

3.3 AI Implementation

The DRL algorithm adopted here is DDPG, first introduced by Lillicrap et al. (2015). To implement
this algorithm, I first need to translate the economic model into RL components that are introduced
in section 2.1, which are presented in table 1.

Table 1: RL components

RL components Economic environment Description

State ztk
α
t

total goods available
to consume at period t

Actions at

proportion of the total goods
that the agent is willing
to consume at period t

Rewards ln(ct)
period utility at period t,
where ct = atztk

α
t

Next State zt+1k
α
t+1

total goods available
to consume at period t+ 1,
where kt+1 = (1− at)ztkαt

Policy function - to be learnt
approximated by an ANN,
called the actor network

Value function - to be learnt
approximated by an ANN,
called the critic network

An AI agent does not know what form of preference it has, nor the fundamentals of the economy.
It must gather these information by taking an action, i.e., making a consumption-investment
decision, each period. How it decides what action to take given each state depends on its policy
function, approximated by the policy neural network. More specifically, the algorithm maintains
a parameterised actor function µ(s|θµ), which specifies the current policy by deterministically
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mapping states to a specific action given some parameter θµ. Given that an AI agent, at the
beginning of a learning process, knows nothing or very little about what action constitutes a high
reward and lifetime utilities11, it has to try many different actions at each state to have a good
idea of what works best. This depends crucially on the agent’s ability to explore its action space.

To make sure that the agent is exploring its action space, an exploration policy µ′ is constructed
by adding a noise process N to the actor policy

µ′(st) = µ(st|θµ) +Nt. (3.14)

This noise could be sampled from an uncorrelated Gaussian process or a correlated
Ornstein-Uhlenbeck (OU) process. Following Lillicrap et al. (2015), the original paper that
constructed DDPG algorithm, N is sampled from a discretised Ornstein-Uhlenbeck (OU) process.
There is a strain of literature in computer science solely focus on different exploration strategies to
achieve the best performance for a given task. It is out of the scope of this current exercise, and
not discussed in details.

3.3.1 Full Algorithm and Sequence of Events

The full algorithm12 follows three steps:

Step I: Initialisation

• Sep up two neural networks: an actor network µ(s|θµ) takes the argument of state and output
an action; a critic network Q(s, a|θQ) takes the argument of a state-action pair and output
a value.

• θµ and θQ represent the parameters of the two networks respectively. Both are initialised
randomly. Both parameters update during the learning process so that the networks will
move towards the true policy and value functions.

• Define a replay buffer B, which is a memory that stores information (called transitions in the
DRL literature) collected by a DRL agent during the agent-environment interactive process.
A transition is characterised by a sequence of variables (st, at, rt, st+1).

• Define a length of N , which is the size of a mini-batch. Mini-batch refers to a sample from
the memory.

• Define the total number of episodes E.

• Define a simulation period of T for each episode, where T > N .

For each episode, loop over step II and III.

Step II: The AI agent starts to interact with the environment.
11Lifetime utilities, i.e., the value function, is approximated by the other neural network, namely critic network.
12I lay out the skeleton of the DDPG algorithm that implemented in this exercise. There are further details, such

as a ‘soft update’ method to ensure a stable neural network learning process which is not discussed here.
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• The agent observes a state (total goods available to consume) st = ztk
α
t . It then selects an

action (the proportion of the total goods that it is willing to consume) at = µ(st|θµ) + Nt
according to current policy and exploration noise.

• Execute action at, and observe a reward rt = ln(ct) and the next state st+1 = zt+1k
α
t+1.

• Store a transition (st, at, rt, st+1) in the memory B.

Step III: Training the AI agent/ the AI agent starts to learn for period N ≤ t ≤ T .

• Sample a random mini-batch of N transitions (si, ai, ri, si+1) from the memory B.

• Calculate a value yi for each transition i following

yi = ri + βQµ(si+1, µ(si+1|θµ)|θQ) (3.15)

for all i ∈ N , where Qµ(si+1, µ(si+1|θµ)|θQ) is a prediction made by the critic network with
state-action pair (si+1, µ(si+1|θµ)), and µ(si+1|θµ) is a prediction made by the actor network
with input si+1. The series of yi is similar to the right hand side of equation 2.4, i.e., the
Bellman optimality equation.

• Obtain Q(si, ai|θQ) from the critic network with input state-action pair (si, ai), which is the
left hand side of equation 2.4.

• Calculate the average loss for this sample of N transitions

L =
1

N

∑
i

(
yi −Q(si, ai|θQ)

)2
. (3.16)

• Update the critic network with the objective of minimising the loss function L.13

• One way of measuring the performance of a policy is through the value function, as defined
by equation (2.2). Therefore, for the policy function, i.e., the actor network, the objective is
to maximise the expected return, denoted as J(θµ)

J(θµ) = Qµ(si, µ(si|θµ)|θQ). (3.17)

• This objective function could also be rephrased as minimising −J(θµ). Update the actor
network parameters with the objective of minimising −J(θµ).14

13This process involves applying back propagation to calculate the amount of error to which each weight in an
ANN contribute to. Then apply gradient descent to minimise the gradient of the loss function with respect to the
weights of ANN. Please see appendix for further information.

14Similar to the critic network, the specific steps of updating ANN’s parameters by minimising an objective
function involves back propagation and gradient descent. Further information can be found in the appendix.
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3.4 Parameters and Learning Agent’s Characteristics

The main parameters are presented in table 2.

Table 2: Main Parameters

Parameters Baseline Agent
Output elasticity of capital α 0.4

Shock location parameter µ 0.1

Autoregressive factor ρ 0

Discount Factor β 0.99

Learning Rate η actor network 1e− 4; critic network: 1e− 3

Exploration Level 0.2

The neural network uses back propagation algorithm to compute how the error changes with respect
to each weight

∂Error

∂wij
(3.18)

In order to update each weight of the network, use the update rule

w′ij = wij − η
∂Error

∂wij
(3.19)

The new weight w′ij is a combination of the current weight wij and some weighted term η dErrordwij
. η

is the learning rate parameter. It governs how quickly a neural network updates its weights. The
higher the learning rate, the quicker the update is.

Figure 2: Learning rates

Source: jeremyjordan

To clearly illustrate the purpose of η, figure 2 shows that when the learning rate is too high, it
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causes a divergence and fails to reach the appropriate weights; with a very low learning rate, the
learning process takes very long before it reaches the optimal solution.

Exploration level is measured by the noise attached to the action, as specified in equation (3.14).
In this case, exploration level means the standard deviation of the noise process.

Exploration and learning rate parameters are crucial in this paper, not only because they aid
the learning process of the neural networks but also because they add sophistication in the AI
agent’s learning behaviour, which opens up an unstudied path in economic modelling. Taking the
exploration parameter as an example, I first illustrate the logic behind it and then back it up with
several experiments in the next section.

The parameters can be interpreted as AI agents’ different personalities/characteristics, which
generate different learning behaviours with welfare distinctions. Exploration parameter represents
how an AI agent gathers information. An AI agent can be more or less adventurous in exploring
available actions (and what these actions lead to). With a higher exploration level, the agent
is ‘willing’ to take actions that it has not previously tested, and thus increase the probability of
finding a better action (measured by rewards). However, this could also be risky to the agent and
it may be left in a worse place than before. With a low exploration level, an agent is unlikely to try
anything new, and may never uncover the state-action pairs that contribute to high rewards. This
characteristic also allows the AI agent to be alert of any changes in its environment. If a change
occurs, for example the autoregressive parameter in zt (recall that zt = eµ+ρln(zt−1)+εt) changes,
an AI agent with the ability to explore will notice such changes and adjust its future actions (and
hence policy function) accordingly. This way of information collection and processing makes it
possible to build models with AI agents and experiment on the effects of regime changes without
the assumption of full rationality.

4 Experiments and Results

To illustrate AI agents’ abilities in adapting to changes in their environments, I conduct several
simulation experiments. The changes in an environment are introduced through the stochastic
process zt in the economy, recall equation (3.10)

zt = eµ+ρln(zt−1)+εt .

More specifically, I run the following simulations.

• Transitory shock: in an environment with zt = e0.1+εt , impose a one-time change to the
mean and resulting zt = e3+εt . Observe AI agents’ consumption behaviours in relation to
this transitory change.

• Permanent change: shift the stochastic process zt from zt = e0.1+εt to zt = e0.1+0.7lnzt−1εt .
Observe AI agents’ consumption behaviours in relation to this permanent change.

• Impose a sequence of changes in the stochastic process to demonstrate that observed
regularities in an environment with one shock/change carry through to cases when agents
live in an environment with multiple changes.
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In the following subsections, I present results for the aforementioned simulation experiments. All
results are presented for three types of AI agents differing in their exploration levels (i.e., how they
collect information), accentuating the importance of exploration parameter in generating different
learning dynamics and determining the welfare of AI agents.

4.1 Transitory Shock

Figure 3: The stochastic process with a transitory shock

Figure 4: AI agents’ consumption paths facing a transitory shock

Figure 3 shows the stochastic process in this environment. The process follows zt = e0.1+εt except
for simulation period 100 where zt = e3+εt . εt follows a normal distribution with N(0, 0.1). The
x-axis represents simulation periods. To clearly show agents’ responses, I plot simulation data for
the 15 periods around the transitory shock. Hence the x-axis values of figure 4 and 5 are different
from figure 3. Figure 4 plots AI agents’ consumption paths in this environment. The transitory
shock is unknown to them before it hits. The black vertical dash line represents the period when
the positive transitory shock is realised. All three agents with different exploration level exhibit
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similar overall consumption behaviours, namely consumption increases with the positive shock
and revert back to the pre-shock level after a few periods. The timing and magnitude of their
responses are different. The middle- and high-exploration agents respond more swiftly than the
low exploration agent, which attests that with higher exploration, an agent is more alert to changes
in the environment and hence responds quickly. The low-exploration agent responds with a lag,
as shown by the blue line. The magnitude of their responses is also correlated to their respective
exploration levels. Low-exploration agent responds in a slower and less prominent manner than
the other two agents.

Figure 5: AI agents’ utilities facing a transitory shock

Figure 5 plots all three agents’ utility as a measurement of their welfare. The green-line agent
(high exploration) does better than the low-exploration agent during the transitory shock period.
However, this does not hold for periods before and after the transitory shock. Its overly adventurous
nature leads to a behaviour with high excess investment (very low consumption) and thus a lower
utility level than the middle agent. The middle agent (orange line) has the highest utility, and
balances exploration and exploitation of existing knowledge. If the agent reduces its level of
exploration, as shown by the blue line in the figure, it sacrifices its welfare in support of its
cautious behaviour and only try actions that it has tested before.

This transitory shock can be interpreted as a positive productivity shock. With a positive
productivity shock, a temporary increase in consumption is seen. Interestingly, without any further
assumptions, a lagged response can be generated simply through varying AI agents’ exploration
parameters (i.e., the low-exploration agent in blue in figure 4).

How would the agents respond in an environment with a permanent change?
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4.2 Permanent Shock

Figure 6: The stochastic process with a permanent change

Figure 7: Learning agent in an environment with a permanent change

Figure 6 shows the stochastic process changes from zt = e0.1+εt to zt = e0.1+0.7lnzt−1+εt . The black
dash line indicates the period when the change happens. Given this permanent change of stochastic
process, all three AI agents modify their consumption levels permanently, as indicated by figure 7.
AI agents’ behaviours in environments with transitory and permanent changes echo with Milton
Friedman’s permanent income hypothesis, and that a permanent income change (rather than a
temporary one) drives the change in a consumer’s consumption smoothing behaviour (Friedman,
1957).
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Figure 8: Learning agent in an environment with a permanent change

Figure 9: Learning agent in an environment with a permanent change

Figure 10: Learning agent in an environment with a permanent change
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Figure 8 plots low-exploration agent’s simulated series of consumption, investment, and total
available resource each period. As clearly shown, it consumes almost all of its available resource
each period. This is reversed in figure 9. The high-exploration agent invests nearly all its available
resource each period. The middle-exploration agent takes the middle ground, as shown in figure
10. Their respective behaviours contribute to their welfare distinctions as shown in figure 11.

Figure 11: Learning agent in an environment with a permanent change

Figure 11 shows all three agents’ utility in this environment with a permanent change in the
stochastic process. As anticipated, the middle-exploration agent balances exploring the unknown
action space and exploiting the known domain to achieve the highest utility. However, the agent
with low and high level of exploration sacrifice their welfare to support their overly cautious or
adventurous behaviours.

4.3 Multiple Changes in An Environment

Figure 12: Simulated consumption paths for all three agents

In this section, the three AI agents (low, middle, and high exploration) act in an environment with 4
permanent stochastic process changes (figure 12). The dotted vertical lines signal the timing when
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the four changes happen. All agents live in the same environment with the same stochastic process
but they do not interfere with each other’s choices. All four permanent changes of the stochastic
process are unknown to the AI agents. The purpose of this experiment is to show that AI agents
can adapt to, not only one, but multiple unforeseen changes in the environment. Differing in their
exploration level, all three agents behave as expected and similar to the results shown in section
4.1 and 4.2.

Figure 13: Simulated consumption paths for all three agents

Figure 14: Simulated capital investment paths for all three agents
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Figure 15: Rewards/utility for all three agents

Figure 13 plots average consumption paths of all agents. Figure 14 plots average capital investment
paths of all agents. The high-exploration agent saves the most, and this behaviour is consistent
across all four changes in the stochastic process. The middle-exploration agent gains the highest
welfare, as shown in figure 15.

One important issue is that exploration level is a relative term and subjective to a particular
environment or a decision-making problem. A high-level exploration in this setting could mean
a low-level one in another problem. Therefore, it is important, when applying this technique, to
experiment with many different levels of exploration.

5 Comparisons with One Agent under Rational Expectation

AI agents in this paper are born in an environment that they have no prior information. These
include state space, action space, reward function, and the fundamentals of an economy. They get
to know all these information through interacting with an environment and maximise the rewards
that they receive. Moreover, to make sure that they learn all the available choices given a particular
state, the agent must explore, i.e., trying out unknown actions. All these behaviours differ from
an economic agent under rational expectation assumption. In this section, I compare AI agent’s
behaviour with an agent under rational expectation assumption (RE agent). More specifically, I
first compare the learnt/approximated policy function with the analytical solution of the given
economic model. I then compare the simulated path of the AI agents and the RE agent, and show
how their consumption decisions differ.
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Figure 16: Approximated policy functions

Figure 17: Distance metrics

Figure 16 plots the approximated policy functions for three AI agents (with different exploration
levels) and the analytical solution policy of this stochastic optimal growth problem (i.e., equation
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3.12). All three AI agents have been learning for the same amount of periods. It shows that the
AI agents’ learnt policy functions can be very close to the solution of the problem with the middle
exploration parameter (red line agent). The approximated policy can also be quite different if the
agent is overly cautious or adventurous in choosing their actions (blue and green lines). Figure 17
plots a distance metrics calculated between the analytical solution policy and the approximated
policies at each episode as illustrated by equation (5.20). k∗g represents the analytical solution policy
function value at a grid g, and kg is the approximated policy function at the same grid. G denotes
total number of grids. de denotes the distance between analytical solution and approximated policy
function at episode number e.

de =
1

G

G∑
g=1

(k∗g − kg)2 (5.20)

In figure 17, the x-axis denotes the number of training episodes, i.e., how long the AI agent has been
living and learning in an environment, and the y-axis denotes the distance calculated. It shows
that as the number of training episodes increases, the distance becomes smaller. In addition, the
middle exploration agent learns the fastest, that is, the distance becomes smaller at earlier episodes
than the high and low exploration agents.

Figure 18: AI agent vs RE agent consumption paths

Figure 18 plots simulation comparisons among three AI agents and the RE agent in the same
stochastic environment. All agents follow the same initial condition and behave following their
respective policies in subsequent periods. It shows that the middle exploration agent is doing
almost as well as the RE agent in terms of the consumption level, which determines agents’ welfare.

6 Summary and Future Work

In this paper, I show how an economic agent learns to act and optimise in an unknown environment
and how it could adapt to changes using an AI technique, a deep reinforcement learning algorithm.
Through this algorithm, I model how the AI agent collects and processes information. I adopt
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a version of the stochastic optimal growth model where an economic agent needs to make
consumption-investment decisions to maximise its lifetime utilities. This agent, however, does
not follow the rational expectation hypothesis. It does not know the fundamentals of the economy.
It is physically constraint to take an optimal action because it does not possess any information on
what is feasible or desirable in its choice set. The agent could only learn how to make an optimal
decision through acquiring information by interacting with the environment for many periods and
processing it through artificial neural networks.

Several experiments are conducted. To show how AI agents respond to permanent and transitory
changes in the environment, I impose a transitory shock and a permanent change to the stochastic
process. The AI agents’ behaviours echo with the permanent income hypothesis, and that a
transitory shock leads to a temporary response from the agent and nothing permanent. Whereas
the permanent change in the stochastic process leads to a sustained shifts in agents’ consumption
behaviours. In addition, to highlight the purpose and novelty of the exploration parameter, I run
all experiments on three AI agents differing in their levels of exploration and how they acquire
information. With an appropriate exploration level, the agent achieves a high level of welfare
measured by its utility. With a higher level of exploration, the agent is overly adventurous, and
sacrifices its welfare for an unknown/untested action. With a lower level of exploration, the agent
is too cautious and unwilling to try anything unheard of and thus is unable to fully explore and find
actions that lead to high rewards. In the end, I show a comparison of policy functions and simulated
behaviours between AI agents who have the ability to explore and the rational expectation agent.
Their policy functions could be very similar given an appropriate exploration parameter. This is
affirmed by their behaviours in a simulated environment.

This work provides a new possibility to model the decision-making process of an economic agent.
It relaxes the rational expectation assumption, and models the learning behaviour of an artificial
agent in terms of how it collects and processes information. The AI agent collects information
through exploring the environment and processes information through artificial neural networks.
It is highly relevant, and supports further studies on important economic questions that include
structural breaks, regime changes, and multi-agent learning. The algorithm by design is able to
handle models with large state and action spaces that are often useful in policy analyses. Owing
to artificial neural networks, it thrives in environment with non-linear policy and value functions.
Lastly but not least, I implement one out of a class of DRL algorithms, which is a fast-evolving
literature at the frontier of AI technologies.
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A Appendix

A.1 Derivation of Analytical Solution of the Stochastic Optimal Growth
Model

Given the bellman equation:

v(kt, zt) = max
kt+1∈Γ(kt)

{log(ztkt − kt+1) + βEtv(kt+1, zt+1)} (1.21)

Guess the value function to be the form v(s) = A+Blog(k)+Dlog(z), and substitute to the right
hand side of the bellman equation

v(kt, zt) = max
kt+1∈Γ(kt)

{log(ztkt − kt+1) + βEt(A+Blog(kt+1) +Dlog(zt+1))} (1.22)

v(kt, zt) = max
kt+1∈Γ(kt)

{log(ztkt − kt+1) + β(A+Blog(kt+1) +DEtlog(zt+1))} (1.23)

v(kt, zt) = max
kt+1∈Γ(kt)

{log(ztkt − kt+1) + β(A+Blog(kt+1) +Dµ)} (1.24)

The F.O.C:

∂v(kt, zt)

∂kt+1
= 0→ − 1

ztkt − kt+1
+ β

B

kt+1
= 0 (1.25)

kt+1 =
βB

1 + βB
ztkt (1.26)

Apply the envelop theorem

B

kt
=

zt
ztkt − kt+1

→ B =
ztkt

ztkt − kt+1
(1.27)

kt+1 can then be derived as

kt+1 = βztkt (1.28)

If the guessed form of value function is the solution then it must satisfy

A+Blog(kt) +Dlog(zt) = log(ztkt − βztkt) + β(A+Blog(βztkt) +Dµ) (1.29)

A =
1

1− β
(log(1− β) + β

1− β
logβ +

βµ

1− β
) (1.30)

B = D =
1

1− β
(1.31)
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The value function is thus

v∗(k, z) =
1

1− β
{log(1− αβ) + αβ

1− αβ
logαβ +

βµ

1− αβ
}+ α

1− αβ
logk +

1

1− αβ
logz (1.32)

When zt follows an autoregressive process, i.e. zt = eµ+ρlnzt−1+εt , where εt follows a standard
normal distribution, the analytical solution is derived analogously.

v∗(k, z) =
1

1− β
{log(1−αβ)+ αβ

1− αβ
logαβ+

βµ

(1− αβ)(1− βρ)
}+ α

1− αβ
logk+

1

(1− αβ)(1− βρ)
logz

(1.33)

Policy function is

kt+1 = αβztk
α
t (1.34)

A.2 How do ANNs learn?

Figure 19: A feedfoward network with one hidden layer

Source: author’s own construction

Figure 19 shows a feedforward network with one hidden layer. All the circles are neurons (or
nodes) of this ANN. The first column is the input layer, and it has two nodes represented by blue.
The middle column is the hidden layer, and it has three nodes in green. The last column is the
output layer with one node in purple. The arrows represent directions of information/data flow.
Feedforward means that the data flows forward from input to output layers. ws are weights, which
needs to be learnt while training an ANN. The superscripts on ws represent the layer that the
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weights are assigned to. For example, w1
21 represents the weight of the first neuron in the input

layer (the first layer) to the second neuron in the hidden layer (second layer).

I use the first node in the hidden layer as an example to show the information flow within a node.
Assume that the input layer nodes output x1 and x2 respectively. The first node in the hidden
layer then takes information from the previous layer as w1

11x1 + w1
21x2, and apply an overall bias.

The output of this node becomes σ(w1
11x1 + w1

21x2 + bias), where σ() represents an activation
function, and it can take many forms (e.g., sigmoid, logistics, and tanh functions).

How do ANNs learn and update their parameters? It takes the following procedures. Given some
training dataset and an ANN model, pass the data forward through the neural network to obtain
an output/prediction. Compare this output to a target value/goal. Calculate the loss between
the predicted value and the target value. To make sure the neural network learns and update
its parameters (including weights of each neuron and biases), a way to link each weight and the
loss is needed. Back propagation is an algorithm to find such links. In particular, It finds partial
derivatives of the loss function with respect to each weight and bias by applying chain rules.

These partial derivatives are called gradients in the literature. Given these gradients, parameters
can be updated through gradient methods, such as gradient descent. In gradient descent, the
update process looks as follows

w′ij = wij − η
∂Error

∂wij
, (1.35)

where wij represents weight of the jth neuron to the ith neuron in the next layer. ∂Error
∂wij

is the
partial derivative of the loss function with respect to the weight, and it states how much error
the weight wij contributed. η denotes learning rate, a hyperparameter. It represents how quickly
weights are updated in response to the error contribution term.

The objective of gradient descent is to minimise a loss function. At the point where the loss is
minimised, the gradient is 0. Thus, gradient descent requires weights adjustment so as to move
along on the line and go to the minimum point, which is similar to what figure 2 illustrates.
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