§§ UNIVERSITY of PENNSYLVANIA

Deep Learning for Macroeconomists

Jestis Fernandez-Villaverde®
November 4, 2021

LUniversity of Pennsylvania



e Presentation based on joint work with different coauthors:

1. Solving High-Dimensional Dynamic Programming Problems using Deep Learning, with Galo Nufio,
Roberto Rafael Maura, George Sorg-Langhans, and Maximilian Vogler.

2. Exploiting Symmetry in High-Dimensional Dynamic Programming, with Mahdi Ebrahimi Kahou, Jesse
Perla, and Arnav Sood.

3. Financial Frictions and the Wealth Distribution, with Galo Nufio and Samuel Hurtado.
4. Programming FPGAs for Economics, with Bhagath Cheela, André DeHon, and Alessandro Peri.

5. Structural Estimation of Dynamic Equilibrium Models with Unstructured Data, with Sara Casella and

Stephen Hansen.

e All the papers share a common thread: how to compute and take to the data the aggregate dynamics

of models with heterogeneous agents.



Resources

e These slides are available at:
https://www.sas.upenn.edu/~jesusfv/deep-learning_chicago.pdf

e My teaching slides:
https://www.sas.upenn.edu/~jesusfv/Continuous_Time_2.pdf

e Examples and code at:

1. https://colab.research.google.com/drive/1_4wL61qA-BsgGWjDZv4J7UtnuZk6TpqW?usp=sharing

2. https://github.com/jesusfv/financial-frictions
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Deep learning as a tool for solving models

e Solving models in macro (and 1.0, international trade, finance, game theory, ...) is, at its core, a
functional approximation problem.

e Given some states x = {xy, %o, ..., Xy}, we want to compute a function (or, more generally, an
operator):

y = h(x)

such as a value function, a policy function, a best response function, a pricing kernel, an allocation, a
probability distribution, ...

e We need to find a function that satisfies some optimality/equilibrium conditions.
e Usually, we do not know much about the functional form of h(-) or x is highly dimensional.

e Deep learning provides an extremely powerful framework to work through these problems.



y is deep learning is a great functional approximation tool?

e Theory reasons:

1. Deep learning is a universal nonlinear approximator. For example, it can tackle correspondences (e.g.,

multiplicity of equilibria).

2. Deep learning breaks the “curse of dimensionality” (compositional approximations that require only

“local” computations instead of additive ones).
e Practical reasons = deep learning involves algorithms that are:
1. Easy to code.
2. Implementable with state-of-the-art libraries.
3. Stable.
4. Scalable through massive parallelization.

5. Can take advantage of dedicated hardware.



A basic example

e Take the canonical RBC model:

max Eq Zﬁtu(q, ;)

t=0
Ct+ ki1 = ek (1= 6) ke, VE>0
7zt = pze_1 +0er, e ~N(0,1)
e Examples of objects we are interested in approximating:
1. Decision rules: ¢; = h(ke, z:).
2. Conditional expectations: h(ki, z:) = E; {% (1 4 aelr.1kta+—lllt1+—la B 5) }

3. Value functions: h(kt.‘Zt) = maX{¢,/} {U(Ct7 lt) + BEth(kt+17Zt+1)}-



A parameterized solution

e General idea: substitute h(x) by # (x,0) where 6 is a vector of coefficients to be determined by
satisfying some criterium indexed by j.

e Two classical approaches based on the addition of functions:
1. Perturbation methods:
hPE (x,0) = 6o + 01(x — x0) + (x — x0) 02(x — x0) + H.O.T.
We use implicit-function theorems to find 6.

2. Projection methods:

M
W (x,0) = 00 + > _ Omm (x)
m=1

where ¢, is, for example, a Chebyshev polynomial.

We pick a basis {¢m (x)}:=, and “project” the optimality/equilibrium conditions against that basis to
find 6.



A neural network

e A (one-layer) neural network approximates h(x) by using M times an activation function ¢(-):

M N
y=h(x) = h" (x;0) =0+ > One | Oom+ D> Onmxs

m=1 n=1

Zm

M is the width of the network.

We can add more layers (i.e., x, is transformed into x} by a similar composition of an activation
function, and so on), but notation becomes heavy.

The number of layers J is the depth of the network.

We select 6 such that h"VN (x; 0) is as close to h(x) as possible given some relevant metric (e.g., L?).

e This is called “training” the network (a lot of details need to be filled in here!).



put layer

input layer
hidden layer 1 hidden layer 2



Architecture of the network

e We pick the simplest activation function possible:

e Easier to take derivatives (key while training the network).

e We select M and J following the same ideas that one uses to select how many grid points we use in
value function iteration or how many polynomials with Chebyshev polynomials:

1. We start with some default M and J and train the network. We assess approximation error.

2. We vary M and J until the approximation error is minimized.
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Two classic (yet remarkable) results

Universal approximation theorem: Hornik, Stinchcombe, and White (1989)
A neural network with at least one hidden layer can approximate any Borel measurable function mapping

finite-dimensional spaces to any desired degree of accuracy.

e Under some additional technical conditions:

Breaking the curse of dimensionality: Barron (1993)

A one-layer neural network achieves integrated square errors of order O(1/M), where M is the number
of nodes. In comparison, for series approximations, the integrated square error is of order O(1/(M?/N))
where N is the dimensions of the function to be approximated.

e We can rely on more general theorems by Leshno et al. (1993) and Bach (2017).
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Different ReLUs: ; max(0,0;0 + 6;1z)

max(0, z) max (0,1 + ) max(0, -1+ z)
-2 0 2 -2 0 2 2 0 2
max(0,0.5z) max(0, 1.5z) max(0, —x)
2 0 2 2 0 2 -2 0 2
—max(0, z) —max(0, —x) —maz (0, —1.5z)
2 0 2 2 0 2 2 0 2
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A six ReLLUs approximation

—max(0, —7.7 — 5z) L max(0,—1.3 — 1.2z) . max(0,1 + 1.2z)
3 3
2 2
1 1
0 0
1 1
2 -2
3 -3
1 0 1 42 1 0 1 42 1 0
max(0,—0.2 + 1.2x) \ max (0, —1.1+ 2z) . max(0, —5 + 5z)
3 3
2 2
1 1
0 0
1 1
2 -2
3 3




Practical reasons

e Deep learning involves algorithms that are:
1. Easy to code.
2. Implementable with state-of-the-art libraries.
3. Stable.
4. Scalable through massive parallelization.

5. Can take advantage of dedicated hardware.
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) Pyorch Lightning
O PyTorch . Keras
fast.ai ‘F‘Tensor




Programming field-programmable gate arrays for economics

L AR LM e
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Dynamic programming



Solving high-dimensional dynamic programming problems using Deep Learning

Solving High-Dimensional Dynamic Programming Problems using Deep Learning.

Our goal is to solve the recursive continuous-time Hamilton-Jacobi-Bellman (HJB) equation globally:
1
pV(x) = maxr(x,a) + V., V(x)f(x,a) + Etr(a(x))TAX V(x)o(x))

st. G(x,a)<0 and H(x,a)=0,

Think about the case where we have many state variables.
e Why continuous time?

Alternatives for this solution?

18



Neural networks

e We define four neural networks:
1. V(x;®") to approximate the value function V/(x).

2. a(x; ©“) to approximate the policy function a.

fi(x; ©*) and A(x; ©™) to approximate the Karush-Kuhn-Tucker (KKT) multipliers g and A.

e To simplify notation, we accumulate all weights in the matrix ® = (@Y, @, @, ®*).
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Error criterion |

e The HJB error:

erris(x; ©) = r(x, a(s; ©)) + Vi \7(x; OY)f(x,a(x; @)+

+ %tr[a(x)TAXV(x; 0V)o(x)] - pV(x;0")

e The policy function error:

erro(x; ©) Ew + Do f(x, a(x; @a))TVX \7(x; 6\/)
o

— Do G(x,d(x; ©%)) T ji(x; ©") — Dy H(x, d(x; O%))A(x; ©),

where D, G € Rb>M D H e REXM and D, f € RV*M are the submatrices of the Jacobian
matrices of G, H and f respectively containing the derivatives with respect to a.
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Error criterion i

e The constraint error is itself composed of the primal feasibility errors:
errpr, (x; ®) = max{0, G(x, &(x; ©%))}
errpg, (x; ©) = H(x, d(x; ©%)),
the dual feasibility error:
errpr(x; ®) = max{0, —ji(x; ©"},
and the complementary slackness error:

errcs(x; ©®) = ji(x; ®)T G(x, &(x; ©%)).

e We combine these four errors by using the squared error as our loss criterion:

E(x;©) = ||errrus(x; @)Hz + Herra(x; 9)“; + He”PFl(X;G))Hi"‘

+ ||errer, (x; ©)| |§ + ||errpe(x; ©) |§ + ||erres(x; (9)“;
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e We train our neural networks by minimizing the error criterion through mini-batch gradient descent
over points drawn from the ergodic distribution of the state vector.

e We start by initializing our network weights, and we perform K learning steps called epochs.
e For each epoch, we draw [ points from the state space by simulating from the ergodic distribution.

e Then, we randomly split this sample into B mini-batches of size S. For each mini-batch, we define
the mini-batch error, by averaging the loss function over the batch.

e Finally, we perform mini-batch gradient descent for all network weights, with 7, being the learning
rate in the k-th epoch.

22
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Exploiting Symmetry in High-Dimensional Dynamic Programming.

We introduce the idea of permutation-invariant dynamic programming.

Intuition.

Solution has a symmetry structure we can easily exploit using representation theorems, concentration
of measure, and neural networks.

e More in general: how do we tackle models with heterogeneous agents?

26



Models with heterogeneous
agents



The challenge

e To compute and take to the data models with heterogeneous agents, we need to deal with:
1. The distribution of agents G;.
2. The operator H(-) that characterizes how G; evolves:
Ger1 = H(G:, St)

or
0G:

ot
given the other aggregate states of the economy S;.

= H(G., S:)

e How do we track G; and compute H(G;, S;)?

27



A common approach

e If we are dealing with N discrete types, we keep track of N — 1 weights.

e If we are dealing with continuous types, we extract a finite number of features from G;:
1. Moments.
2. Q-quantiles.

3. Weights in a mixture of normals...

We stack either the weights or features of the distribution in a vector ;.
e We assume y; follows the operator h(u¢, S¢) instead of H( Gy, St).

e We parametrize h(u, S;) as W (jis, St; 0).

We determine the unknown coefficients 8 such that an economy where 1, follows hj(ut, S:;0)
replicates as well as possible the behavior an economy where G; follows H(-).
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Example: Basic Krusell-Smith model

e Two aggregate variables: aggregate productivity shock and household distribution G;(a, z) where:

/ Gi(a,z)da = K;

e We summarize G;(a,-) with the log of its mean: u; = log K; (extending to higher moments is simple,
but tedious).

e We parametrize log K;1 = Oo(s;) + 01(s:) log K.
———

Ht+1 W (pe,se:0)

We determine {fo(s¢), 01(st)} by OLS run on a simulation.

29



e No much guidance regarding feature and parameterization selection in general cases.

e Yes, keeping track of the log of the mean and a linear functional form work well for the basic model.
But, what about an arbitrary model?

e Method suffers from “curse of dimensionality”: difficult to implement with many state variables or high
N /higher moments.

e Lack of theoretical foundations (Does it converge? Under which metric?).

30



How can deep learning help?

e Deep learning addresses challenges:

1. How to extract features from an infinite-dimensional object efficiently.
2. How to parametrize the non-linear operator mapping how distributions evolve.

3. How to tackle the “curse of dimensionality.”
e Given time limitations, today | will discuss the last two points.
e In our notation of y = h(x):

1.y = fey1.

2. x = (pe, St).
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The algorithm in “Financial Frictions and the Wealth Distribution”

e Model with a distribution of households over asset holding and labor productivity.

e We keep track, as in Krusell-Smith, of moments of distribution.

e Algorithm:

Start with hg, an initial guess for h.
Using current guess h,, solve for agent’s problem.

Construct time series x = {x1,X2,...,x;} and 'y = {y1,¥>, ..., ¥, } for aggregate variables by simulating J
periods the cross-sectional distribution of agents (starting at a steady state and with a burn-in).

Use (¥, x) to train h, 1, a new guess for h.

Iterate steps 2)-4) until hnp1 is sufficiently close to hj.

32
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uN(B,N)
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Structural estimation with
unstructured data




e Unstructured data: Newspaper articles, business reports, congressional speeches, FOMC meetings
transcripts, satellite data, ...

A

120 Unstructured

No pre-defined data model

Structured ) ) )
Well-defined, easily organized & stored in databases

60

Stored Digital Data (Exabytes)

\4

1970 1980 1990 2000 2010 2020 37



e Unstructured data carries information on:

1. Current state of the economy (Thorsrud, 2017, Bybee et al., 2019).

2. Beliefs about current and future states of the economy.

e An example:

From the minutes of the FOMC meeting of September 17-18, 2019

Participants agreed that consumer spending was increasing at a strong pace. They also expected that, in
the period ahead, household spending would likely remain on a firm footing, supported by strong labor
market conditions, rising incomes, and accommodative financial conditions. [...]

Participants judged that trade uncertainty and global developments would continue to affect firms'
investment spending, and that this uncertainty was discouraging them from investing in their businesses.

[.]
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Our goal

e Since:

1. This information might go over and above observable macro series (e.g., agents’ expectations and
sentiment).

2. And it might go further back in history, is available for developing countries, or in real time.
e How do we incorporate unstructured data in the estimation of structural models?

e Potential rewards:

1. Determine more accurately the latent structural states.
2. Reconcile agents' behavior and macro time series.

3. Could change parameters values (medium-scale DSGE models typically poorly identified).

39



Application and data

e Our application:
Text Data: Federal Open Market Committee (FOMC) meeting transcripts.

Model: New Keynesian dynamic stochastic general equilibrium (NK-DSGE) model.

e Our strategy:

Right Now: 1. Latent Dirichlet Allocation (LDA) for dimensionality reduction = from words to topic
shares.

2. Cast the linearized DSGE solution in a state-space form.
3. Use LDA output as additional observables in the measurement equation.
4. Estimation with Bayesian techniques.
Going Forward: Model the data generating process for text and macroeconomic data jointly.

40



Preliminary findings

1. Using FOMC data for estimation sharpens the likelihood.
2. Posterior distributions more concentrated.
3. Especially true for parameters related to the hidden states of the economy and to fiscal policy.

4. FOMC data carries extra information about fiscal policy and government intentions

41



Latent Dirichlet Allocation (LDA) @isassi

e How does it work?
e LDA is a Bayesian statistical model.

e Idea: (i) each document is described by a distribution of K (latent) topics and (ii) each topic is
described by a distribution of words.

e Use word co-occurrence patterns + priors to assign probabilities.

e Key of LDA dimensionality reduction topic shares ¢ = amount of time document spends talking about

each topic k.
e Why do we like it?
e Tracks well attention people devote to different topics.
e Automated and easily scalable.

e Bayesian model natural to combine with structural models.

42



DSGE state space representation

Log-linearized DSGE model solution has the form of a generic state-space model:

e Transition equation:

St+1 = ¢1(9)St + (Df(('))et, €y N N(O, I)

Structural States

e Measurement equation:

Yt = Wo(@) —+ \U1(9)st

Macroeconomic Observables

e O vector that stacks all the structural parameters.

43



Topic dynamic factor model

e Allow the topic time series ¢; to depend on the model states:

Pt =To+ T St +2 ut , ur~ N(O,/)
~~ ~~ ~~
Topic Shares Structural States Measurement Error

e Interpretable as a dynamic factor model in which the structure of the DSGE model is imposed on
the latent factors.

e Akin to Boivin and Giannoni (2006) and Kryshko (2011).

a4



Augmented measurement equation

e Augmented measurement equation
Y, Wo(0 V(6 0 0
t _ 0( ) + 1( ) s+ 4x4 4x k us, Uy ~ N(O,/)
or To Ty Okxa X
———
New vector of observables

e |If text data carries relevant information, its use should make the estimation more efficient.

e General approach: any numerical machine learning output and structural model (DSGE, 10, labor...)
will work.
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FOMCs transcripts data

e Available for download from the Federal Reserve website.

Provide a nearly complete account of every FOMC meeting from the mid-1970s onward.

e Transcripts are divided into two parts:
e FOMCI1: members talk about their reading of the current economic situation.

e FOMC2: talk about monetary policy strategy.

e We are interested in the information on the current state of the economy and the beliefs that
policymakers have on it = focus on FOMCLI section from 1987 to 2009.

Total of 180 meetings.
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Topic composition

e Example of two topics with K = 20.
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Topic shares

Normalized topic share
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New Keynesian DSGE model

Conventional New Keynesian DSGE model with price rigidities:

Agents:

States:

Parameters:

Representative household.

Perfectly competitive final good producer.

Continuum of intermediate good producers with market power.
Fiscal authority that taxes and spends.

Monetary authority that sets the nominal interest rate.

4 Exogenous states.
Demand, productivity, government expenditure, monetary policy.
Modelled as AR(1)s

12 Structural parameters to estimate.

49



Bayesian estimation

e We estimate two models for comparison:
e New Keynesian DSGE model alone (standard).

e New Keynesian DSGE Model + measurement equation with topic shares (new).

Total parameters to estimate: 12 structural parameters (6) + 120 topic dynamic factor model
parameters (Tp, T1, ¥ assuming covariances are 0).

e Pick standard priors on structural parameters.

Priors on topic related parameters?
e Use MLE to get an idea of where they are.

e Use conservative approach: center all parameters quite tightly around 0.

Random-walk Metropolis Hastings to obtain draws from the posterior.

50



Likelihood comparison
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Posterior distributions for structural paramete
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Posterior distributions for selected topic parameters
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Going forward: Joint model

e Extend the model in two ways:
1. Model the dependence of latent topics on the hidden structural states directly.

2. Allow for autocorrelation among topic shares.

e Instead of first creating ¢; and then using it for estimation, want to model the generating process of
both text and macroeconomic observables together.

e Why a joint model?

e Conjecture the topic composition and topic share will be more precise and more interpretable as a result.

e Properly take into account the uncertainty around the topic shares.
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Going forward: Joint model

e New vector of augmented states:

e New vector of observables:

e Stacks both the “traditional” observables Y; and the text w;.

55



Joint state space representation

e Transition equation (linear):

Siy1 = P(0)s: + P(0)e <+ same as before

Pt = Tsst + ngﬁt_l + zeet < new

e Measurement equation (non-linear):
o i~ Vi(0)s
Yth(Yt|5t) = 1 )~t
p(wes:)

e Challenges: algorithm for estimation, impact of choice of priors.

p(we|5t)
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LDA details @&

LDA assumes the following generative process for each document W of length N:

1. Choose topic proportions ¢ ~ Dir(1)). Dimensionality K of the Dirichlet distribution. Thus,
dimensionality of the topic variable is assumed to be known and fixed.

2. For eachword n=1, ..., N:
2.1 Choose one of K topics z, ~ Multinomial ().

2.2 Choose a term w, from p (wy|z,, 8), a multinomial probability conditioned on the topic z,. Sisa K x V
matrix where §;; = p (Wj =1+ = 1). We assign a symmetric Dirichlet prior with V' dimensions and
hyperparameter 7 to each fy.

Posterior:
(¢, 2z, W, Bl9,n)

p
.z, B|W,49,n) =
p(», 2, B] ) (W9, 1)




Model equilibrium equations (log-linearized) @&

C — gt =E{C11 — (7t+1 = ﬁt P ﬁt+1}
ﬁt =K ((1 + ¢C) C: + oggr — (1 + (25) /Z\\t> + /J)Etﬁwl
ﬁt = 'Yﬁt + my

o~

le =y — Ay = cCe + g8 — As



Exogenous States Processes @&

log di = palogdi 1+ 0gca:
log Ay = palog Ar—1 + 0acat
log 8¢ = pg loggr—1 + 0gcgt

my = OmEmt



Parameters Recap @&ED

Param  Description Param  Description
Steady-state-related parameters Exogenous shocks parameters
B8 Discount factor D Persistence demand shock
g SS govt expenditure/GDP PA Persistence TFP

] PG Persistence govt expenditure
Endogenous propagation parameters ) .

op s.d. demand shock innovation

10) Inverse Frisch elasticity oA s.d. TEP shock
Cp Fraction of fixed prices oG s.d. govt expenditure shock

vy Taylor rule elasticity oG s.d. monetary shock




State space matrices GEED

Law of motion for the states of the economy is:

de1 pg 0 0 0 d; o 0 0 0 €d,t+1
Arpr | _ 0 pa 0 O As o 0 oa 0 O EAt+1
8t+1 0 0 pg O &t 0 0 o0 O Eg,t+1
mei1 0 0 0 0 my 0 0 0 Om Em,t+1
——
St41 ®1(0) St d.(0) €t
and for observables:
log c; log (1 —g) ai as az as (?t
|Og I'It - 0 + bl b2 b3 b4 At
log Ry —log vby by vbs 14 by 8
log I, 0 cap cap—1 1+cas cay my
———

Y: Wo(0) vi(0) St



Prior distribution | GE=

Param  Description Domain  Density Param 1  Param 2

Steady-state-related parameters

Jé; Discount factor (0,1)  Beta 0.95 0.05
g SS govt expenditure/GDP  (0,1)  Beta 0.35 0.05
Endogenous propagation parameters

10} Inverse Frisch elasticity R, Gamma 1 0.1
Cp Fraction of fixed prices (0,1)  Beta 0.4 0.1

¥ Taylor rule elasticity R, Gamma 1.5 0.25




Prior distribution |1 GED

Exogenous shocks parameters

D Persistence demand shock (0,1)  Uniform 0 1
PA Persistence TFP (0,1)  Uniform 0 1
pG Persistence govt expenditure  (0,1)  Uniform 0 1
op s.d. demand shock innovation R,  InvGamma 0.05 0.2
oa s.d. TFP shock Ry InvGamma 0.05 0.2
oG s.d. govt expenditure shock Ry  InvGamma 0.05 0.2
oG s.d. monetary shock Ry  InvGamma 0.05 0.2

Topic parameters

To,k Topic baseline R Normal 0 0.1
Ti,ks Topic elasticity to states R Normal 0 0.4
Ok s.d. measurement error Ry InvGamma 0.2 0.1




Topics ranked by pro-cyclicality

Pro-cyclicality

Topico | inflat price  increas  product  wage cost fise growth  trend labor core  pressur  0.053

Topict ar quarter  rate growth  forecast  last month  greenbook  inflat  project  expect  0.014

Topicz statement meet  chang will risk word  discuss  polici  market issu view  languag  0.011

Topics | forecast  model inflat rate  greenbook  term differ  chang use  assumpt shock  question  0.01

Topica  district  nation  continu  area region  remain  employ manufactur economi  report activ sector  0.007

Topics  move data can look  number  will evid signific  may quit  economi point 0.007

Topice | move  chaiman  mr support  direct point recommend agre  asymmetr prefer tighten eas 0.004

Topic7 | question  know want  someth thing look realli peopl i number  talk ask 0.002 0100
Topics | dollar unitedstates import  export  countri  foreign  price  growth  forecast oil effect  japan  0.002

Topico  forecast  quarter  project data spend inventori  will revis recent  expect  anticip  month  0.002

Topic10 id ve  governor (U] okay thank break stern vice hoenig ~ minehan  laughter  0.001 oors
Topict1  year line right panel  shown  chart  expect percent project next middl left 0.0

Topic12  period  committe  run consist monetari  rate might  aggreg target rang  econom  borrow 0.0

Topic13  polici rate inflat might  market economi  expect tighten may term  committe  eas -0.001

Topicld  year report busi sale product  increas price industri  compani  contact  continu firm 0.007 -0.050
Topicts  bank  market credit rate incom debt  financi loan  consum  fund interest household -0.015

Topic16 economi  wil can seem time  problem  believ know rather  much world may 0.015

Topic17  side lttl look seem much realli term ot pretti quit  certainli concem  -0.017 0025
Topicts  risk  economi continu  growth  seem may  recoveri  will busi confid  remain  outiook  -0.02

Topic19 effect fiscal ta cut term budget time  uncertainti probabl state spend 0.04



Details on («Back |

We assume the following generative process for a document:
1. Draw @¢l@e—1, e, Ty, Ts, 2¢ ~ N(po + Towr—1 + Tsse, L),
2. To map this representation of topic shares into the simplex, use the softmax function:
f(ipe) = exppr,i/D; exp pr.
3. For each word n=1, ..., N:
3.1 Draw topic z,,: ~ Mult(f(p:)).

3.2 Draw term wy,; ~ Mult(f:,2).

Then, the distribution of text conditional on the states, p(w,|s;), is given by:

P(Wt‘gt):/ SDt|5t HZ Znt‘QDt Wn,t‘zn,t-,/gt) dyy

n=1 z, ¢



Conclusions

e Deep learning has tremendous potential for macroeconomics.
e Great theoretical and practical reasons for it.

e Many potential applications.



