
Deep Learning for Macroeconomists

Jesús Fernández-Villaverde1

November 4, 2021

1University of Pennsylvania

Background

• Presentation based on joint work with different coauthors:

1. Solving High-Dimensional Dynamic Programming Problems using Deep Learning, with Galo Nuño,

Roberto Rafael Maura, George Sorg-Langhans, and Maximilian Vogler.

2. Exploiting Symmetry in High-Dimensional Dynamic Programming, with Mahdi Ebrahimi Kahou, Jesse

Perla, and Arnav Sood.

3. Financial Frictions and the Wealth Distribution, with Galo Nuño and Samuel Hurtado.

4. Programming FPGAs for Economics, with Bhagath Cheela, André DeHon, and Alessandro Peri.

5. Structural Estimation of Dynamic Equilibrium Models with Unstructured Data, with Sara Casella and

Stephen Hansen.

• All the papers share a common thread: how to compute and take to the data the aggregate dynamics

of models with heterogeneous agents.

1

Resources

• These slides are available at:

https://www.sas.upenn.edu/~jesusfv/deep-learning_chicago.pdf

• My teaching slides:

https://www.sas.upenn.edu/~jesusfv/Continuous_Time_2.pdf

• Examples and code at:

1. https://colab.research.google.com/drive/1_4wL6lqA-BsgGWjDZv4J7UtnuZk6TpqW?usp=sharing

2. https://github.com/jesusfv/financial-frictions

2

https://www.sas.upenn.edu/~jesusfv/deep-learning_chicago.pdf
https://www.sas.upenn.edu/~jesusfv/Continuous_Time_2.pdf
https://colab.research.google.com/drive/1_4wL6lqA-BsgGWjDZv4J7UtnuZk6TpqW?usp=sharing
https://github.com/jesusfv/financial-frictions

Deep learning as a tool for solving models

• Solving models in macro (and I.O., international trade, finance, game theory, ...) is, at its core, a

functional approximation problem.

• Given some states x = {x1, x2, ..., xN}, we want to compute a function (or, more generally, an

operator):

y = h(x)

such as a value function, a policy function, a best response function, a pricing kernel, an allocation, a

probability distribution, ...

• We need to find a function that satisfies some optimality/equilibrium conditions.

• Usually, we do not know much about the functional form of h(·) or x is highly dimensional.

• Deep learning provides an extremely powerful framework to work through these problems.

3

Why is deep learning is a great functional approximation tool?

• Theory reasons:

1. Deep learning is a universal nonlinear approximator. For example, it can tackle correspondences (e.g.,

multiplicity of equilibria).

2. Deep learning breaks the “curse of dimensionality” (compositional approximations that require only

“local” computations instead of additive ones).

• Practical reasons ⇒ deep learning involves algorithms that are:

1. Easy to code.

2. Implementable with state-of-the-art libraries.

3. Stable.

4. Scalable through massive parallelization.

5. Can take advantage of dedicated hardware.

4

A basic example

• Take the canonical RBC model:

maxE0

∞∑
t=0

βtu (ct , lt)

ct + kt+1 = eztkαt l
1−α
t + (1− δ) kt , ∀ t > 0

zt = ρzt−1 + σεt , εt ∼ N (0, 1)

• Examples of objects we are interested in approximating:

1. Decision rules: ct = h(kt , zt).

2. Conditional expectations: h(kt , zt) = Et

{
u′(ct+1,lt+1)

u′(ct ,lt)

(
1 + αezt+1kα−1

t+1 l1−α
t+1 − δ

)}
.

3. Value functions: h (kt , zt) = max{ct ,lt} {u (ct , lt) + βEth (kt+1, zt+1)}.

5

A parameterized solution

• General idea: substitute h (x) by hj (x, θ) where θ is a vector of coefficients to be determined by

satisfying some criterium indexed by j .

• Two classical approaches based on the addition of functions:

1. Perturbation methods:

hPE (x, θ) = ~θ0 + ~θ1(x− x0) + (x− x0)′ ~θ2(x− x0) + H.O.T .

We use implicit-function theorems to find θ.

2. Projection methods:

hPR (x, θ) = θ0 +
M∑

m=1

θmφm (x)

where φm is, for example, a Chebyshev polynomial.

We pick a basis {φm (x)}∞i=0 and “project” the optimality/equilibrium conditions against that basis to

find θ.

6

A neural network

• A (one-layer) neural network approximates h(x) by using M times an activation function ϕ(·):

y = h(x) ∼= hNN (x; θ) = θ0 +
M∑

m=1

θmϕ

θ0,m +
N∑

n=1

θn,mxn︸ ︷︷ ︸
zm


• M is the width of the network.

• We can add more layers (i.e., xn is transformed into x1
n by a similar composition of an activation

function, and so on), but notation becomes heavy.

• The number of layers J is the depth of the network.

• We select θ such that hNN (x; θ) is as close to h(x) as possible given some relevant metric (e.g., L2).

• This is called “training” the network (a lot of details need to be filled in here!).

7

8

Architecture of the network

• We pick the simplest activation function possible:

• Easier to take derivatives (key while training the network).

• We select M and J following the same ideas that one uses to select how many grid points we use in

value function iteration or how many polynomials with Chebyshev polynomials:

1. We start with some default M and J and train the network. We assess approximation error.

2. We vary M and J until the approximation error is minimized.

9

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

10

Two classic (yet remarkable) results

Universal approximation theorem: Hornik, Stinchcombe, and White (1989)

A neural network with at least one hidden layer can approximate any Borel measurable function mapping

finite-dimensional spaces to any desired degree of accuracy.

• Under some additional technical conditions:

Breaking the curse of dimensionality: Barron (1993)

A one-layer neural network achieves integrated square errors of order O(1/M), where M is the number

of nodes. In comparison, for series approximations, the integrated square error is of order O(1/(M2/N))

where N is the dimensions of the function to be approximated.

• We can rely on more general theorems by Leshno et al. (1993) and Bach (2017).

11

-4 -2 0 2 4
0

1

2

3

4

-4 -2 0 2 4
0

1

2

3

4

5

-4 -2 0 2 4
0

1

2

3

-4 -2 0 2 4
0

2

4

6

-4 -2 0 2 4
0

2

4

6

-4 -2 0 2 4
0

1

2

3

4

-4 -2 0 2 4
-4

-3

-2

-1

0

-4 -2 0 2 4
-4

-3

-2

-1

0

-4 -2 0 2 4
-6

-4

-2

0

12

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-3

-2

-1

0

1

2

3

4

13

-2 -1 0 1
-3

-2

-1

0

1

2

3

4

-2 -1 0 1
-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1
-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1
-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1
-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1
-4

-3

-2

-1

0

1

2

3

4

14

Practical reasons

• Deep learning involves algorithms that are:

1. Easy to code.

2. Implementable with state-of-the-art libraries.

3. Stable.

4. Scalable through massive parallelization.

5. Can take advantage of dedicated hardware.

15

16

Programming field-programmable gate arrays for economics

17

Dynamic programming

Solving high-dimensional dynamic programming problems using Deep Learning

• Solving High-Dimensional Dynamic Programming Problems using Deep Learning.

• Our goal is to solve the recursive continuous-time Hamilton-Jacobi-Bellman (HJB) equation globally:

ρV (x) = max
α

r(x,α) +∇xV (x)f (x,α) +
1

2
tr(σ(x))T∆xV (x)σ(x))

s.t. G (x,α) ≤ 0 and H(x,α) = 0,

• Think about the case where we have many state variables.

• Why continuous time?

• Alternatives for this solution?

18

Neural networks

• We define four neural networks:

1. Ṽ (x;ΘV) to approximate the value function V (x).

2. α̃(x;Θα) to approximate the policy function α.

3. µ̃(x;Θµ) and λ̃(x;Θλ) to approximate the Karush-Kuhn-Tucker (KKT) multipliers µ and λ.

• To simplify notation, we accumulate all weights in the matrix Θ = (ΘV ,Θα,Θµ,Θλ).

19

Error criterion I

• The HJB error:

errHJB(x;Θ) ≡ r(x, α̃(s;Θα)) +∇x Ṽ (x;ΘV)f (x, α̃(x;Θα))+

+
1

2
tr [σ(x)T∆x Ṽ (x;ΘV)σ(x)]− ρṼ (x;ΘV)

• The policy function error:

errα(x;Θ) ≡∂r(x, α̃(x;Θα)

∂α
+ Dαf (x, α̃(x;Θα))T∇x Ṽ (x;ΘV)

− DαG (x, α̃(x;Θα))T µ̃(x;Θµ)− DαH(x, α̃(x;Θα))λ̃(x;Θλ),

where DαG ∈ RL1×M , DαH ∈ RL2×M , and Dαf ∈ RN×M are the submatrices of the Jacobian

matrices of G , H and f respectively containing the derivatives with respect to α.

20

Error criterion II

• The constraint error is itself composed of the primal feasibility errors:

errPF1 (x;Θ) ≡ max{0,G (x, α̃(x;Θα))}
errPF2 (x;Θ) ≡ H(x, α̃(x;Θα)),

the dual feasibility error:

errDF (x;Θ) = max{0,−µ̃(x;Θµ},

and the complementary slackness error:

errCS(x;Θ) = µ̃(x;Θ)TG (x, α̃(x;Θα)).

• We combine these four errors by using the squared error as our loss criterion:

E(x;Θ) ≡
∣∣∣∣errHJB(x;Θ)

∣∣∣∣2
2

+
∣∣∣∣errα(x;Θ)

∣∣∣∣2
2

+
∣∣∣∣errPF1 (x;Θ)

∣∣∣∣2
2
+

+
∣∣∣∣errPF2 (x;Θ)

∣∣∣∣2
2

+
∣∣∣∣errDF (x;Θ)

∣∣∣∣2
2

+
∣∣∣∣errCS(x;Θ)

∣∣∣∣2
2

21

Training

• We train our neural networks by minimizing the error criterion through mini-batch gradient descent

over points drawn from the ergodic distribution of the state vector.

• We start by initializing our network weights, and we perform K learning steps called epochs.

• For each epoch, we draw I points from the state space by simulating from the ergodic distribution.

• Then, we randomly split this sample into B mini-batches of size S . For each mini-batch, we define

the mini-batch error, by averaging the loss function over the batch.

• Finally, we perform mini-batch gradient descent for all network weights, with ηk being the learning

rate in the k-th epoch.

22

(a) Value with closed-form policy
23

(c) Consumption with closed-form policy
24

(e) HJB error with closed-form policy
25

A coda

• Exploiting Symmetry in High-Dimensional Dynamic Programming.

• We introduce the idea of permutation-invariant dynamic programming.

• Intuition.

• Solution has a symmetry structure we can easily exploit using representation theorems, concentration

of measure, and neural networks.

• More in general: how do we tackle models with heterogeneous agents?

26

Models with heterogeneous

agents

The challenge

• To compute and take to the data models with heterogeneous agents, we need to deal with:

1. The distribution of agents Gt .

2. The operator H(·) that characterizes how Gt evolves:

Gt+1 = H(Gt , St)

or
∂Gt

∂t
= H(Gt , St)

given the other aggregate states of the economy St .

• How do we track Gt and compute H(Gt ,St)?

27

A common approach

• If we are dealing with N discrete types, we keep track of N − 1 weights.

• If we are dealing with continuous types, we extract a finite number of features from Gt :

1. Moments.

2. Q-quantiles.

3. Weights in a mixture of normals...

• We stack either the weights or features of the distribution in a vector µt .

• We assume µt follows the operator h(µt ,St) instead of H(Gt ,St).

• We parametrize h(µt ,St) as hj(µt ,St ; θ).

• We determine the unknown coefficients θ such that an economy where µt follows hj(µt ,St ; θ)

replicates as well as possible the behavior an economy where Gt follows H(·).

28

Example: Basic Krusell-Smith model

• Two aggregate variables: aggregate productivity shock and household distribution Gt(a, z) where:∫
Gt(a, z)da = Kt

• We summarize Gt(a, ·) with the log of its mean: µt = logKt (extending to higher moments is simple,

but tedious).

• We parametrize logKt+1︸ ︷︷ ︸
µt+1

= θ0(st) + θ1(st) logKt︸ ︷︷ ︸
hj (µt ,st ;θ)

.

• We determine {θ0(st), θ1(st)} by OLS run on a simulation.

29

Problems

• No much guidance regarding feature and parameterization selection in general cases.

• Yes, keeping track of the log of the mean and a linear functional form work well for the basic model.

But, what about an arbitrary model?

• Method suffers from “curse of dimensionality”: difficult to implement with many state variables or high

N/higher moments.

• Lack of theoretical foundations (Does it converge? Under which metric?).

30

How can deep learning help?

• Deep learning addresses challenges:

1. How to extract features from an infinite-dimensional object efficiently.

2. How to parametrize the non-linear operator mapping how distributions evolve.

3. How to tackle the “curse of dimensionality.”

• Given time limitations, today I will discuss the last two points.

• In our notation of y = h(x):

1. y = µt+1.

2. x = (µt , St).

31

The algorithm in “Financial Frictions and the Wealth Distribution”

• Model with a distribution of households over asset holding and labor productivity.

• We keep track, as in Krusell-Smith, of moments of distribution.

• Algorithm:

1) Start with h0, an initial guess for h.

2) Using current guess hn, solve for agent’s problem.

3) Construct time series x = {x1, x2, ..., xJ} and ŷ = {ŷ1, ŷ2, ..., ŷJ} for aggregate variables by simulating J

periods the cross-sectional distribution of agents (starting at a steady state and with a burn-in).

4) Use (ŷ, x) to train hn+1, a new guess for h.

5) Iterate steps 2)-4) until hn+1 is sufficiently close to hn.

32

1 1.5 2 2.5 3 3.5
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.5 1 1.5 2 2.5 3
-0.15

-0.1

-0.05

0

0.05

0.1

-0.15

-0.1

-0.05

0

1

0.05

0.1

1.5
3

2 2.5
2

2.5 1.5

33

1 1.5 2 2.5 3 3.5
-0.15

-0.1

-0.05

0

0.05

0.1

0.5 1 1.5 2 2.5 3
-0.1

-0.05

0

0.05

0.1

-0.15

-0.1

-0.05

0

1

0.05

0.1

1.5
3

2 2.5
2

2.5 1.5
34

1.5
-0.1

-0.08

2

-0.06

-0.04

-0.02

0

0.02

2.6

0.04

0.06

0.08

2.4

0.1

2.2 2.52 1.8 1.6 1.4 31.2 1 0.8

35

-5 -4 -3 -2 -1 0 1 2 3 4 5

10-3

0

500

1000

1500

36

Structural estimation with

unstructured data

New data

• Unstructured data: Newspaper articles, business reports, congressional speeches, FOMC meetings

transcripts, satellite data, ...

37

Motivation

• Unstructured data carries information on:

1. Current state of the economy (Thorsrud, 2017, Bybee et al., 2019).

2. Beliefs about current and future states of the economy.

• An example:

From the minutes of the FOMC meeting of September 17-18, 2019

Participants agreed that consumer spending was increasing at a strong pace. They also expected that, in

the period ahead, household spending would likely remain on a firm footing, supported by strong labor

market conditions, rising incomes, and accommodative financial conditions. [...]

Participants judged that trade uncertainty and global developments would continue to affect firms’

investment spending, and that this uncertainty was discouraging them from investing in their businesses.

[...]

38

Our goal

• Since:

1. This information might go over and above observable macro series (e.g., agents’ expectations and

sentiment).

2. And it might go further back in history, is available for developing countries, or in real time.

• How do we incorporate unstructured data in the estimation of structural models?

• Potential rewards:

1. Determine more accurately the latent structural states.

2. Reconcile agents’ behavior and macro time series.

3. Could change parameters values (medium-scale DSGE models typically poorly identified).

39

Application and data

• Our application:

Text Data: Federal Open Market Committee (FOMC) meeting transcripts.

Model: New Keynesian dynamic stochastic general equilibrium (NK-DSGE) model.

• Our strategy:

Right Now: 1. Latent Dirichlet Allocation (LDA) for dimensionality reduction ⇒ from words to topic

shares.

2. Cast the linearized DSGE solution in a state-space form.

3. Use LDA output as additional observables in the measurement equation.

4. Estimation with Bayesian techniques.

Going Forward: Model the data generating process for text and macroeconomic data jointly.

40

Preliminary findings

1. Using FOMC data for estimation sharpens the likelihood.

2. Posterior distributions more concentrated.

3. Especially true for parameters related to the hidden states of the economy and to fiscal policy.

4. FOMC data carries extra information about fiscal policy and government intentions

41

Latent Dirichlet Allocation (LDA) LDA Details

• How does it work?

• LDA is a Bayesian statistical model.

• Idea: (i) each document is described by a distribution of K (latent) topics and (ii) each topic is

described by a distribution of words.

• Use word co-occurrence patterns + priors to assign probabilities.

• Key of LDA dimensionality reduction topic shares ϕt ⇒ amount of time document spends talking about

each topic k.

• Why do we like it?

• Tracks well attention people devote to different topics.

• Automated and easily scalable.

• Bayesian model natural to combine with structural models.

42

DSGE state space representation

Log-linearized DSGE model solution has the form of a generic state-space model:

• Transition equation:

st+1︸︷︷︸
Structural States

= Φ1(θ)st + Φε(θ)εt , εt ∼ N(0, I)

• Measurement equation:

Yt︸︷︷︸
Macroeconomic Observables

= Ψ0(θ) + Ψ1(θ)st

• θ vector that stacks all the structural parameters.

System Matrices

43

Topic dynamic factor model

• Allow the topic time series ϕt to depend on the model states:

ϕt︸︷︷︸
Topic Shares

= T0 + T1 st︸︷︷︸
Structural States

+Σ ut︸︷︷︸
Measurement Error

, ut ∼ N(0, I)

• Interpretable as a dynamic factor model in which the structure of the DSGE model is imposed on

the latent factors.

• Akin to Boivin and Giannoni (2006) and Kryshko (2011).

44

Augmented measurement equation

• Augmented measurement equation(
Yt

ϕt

)
︸ ︷︷ ︸

New vector of observables

=

(
Ψ0(θ)

T0

)
+

(
Ψ1(θ)

T1

)
st +

(
04×4 04×k

0k×4 Σ

)
ut , ut ∼ N(0, I)

• If text data carries relevant information, its use should make the estimation more efficient.

• General approach: any numerical machine learning output and structural model (DSGE, IO, labor...)

will work.

45

FOMCs transcripts data

• Available for download from the Federal Reserve website.

• Provide a nearly complete account of every FOMC meeting from the mid-1970s onward.

• Transcripts are divided into two parts:

• FOMC1: members talk about their reading of the current economic situation.

• FOMC2: talk about monetary policy strategy.

• We are interested in the information on the current state of the economy and the beliefs that

policymakers have on it ⇒ focus on FOMC1 section from 1987 to 2009.

• Total of 180 meetings.

46

Topic composition

• Example of two topics with K = 20.

(a) Topic 8 (b) Topic 14
47

Topic shares

1990 1995 2000 2005

Time

-4

-3

-2

-1

0

1

2

N
o
rm

a
liz

e
d
 t
o
p
ic

 s
h
a
re

Topic 14 "Inflation"

Topic 18 "Fiscal Policy"

48

New Keynesian DSGE model

Conventional New Keynesian DSGE model with price rigidities:

Agents: • Representative household.

• Perfectly competitive final good producer.

• Continuum of intermediate good producers with market power.

• Fiscal authority that taxes and spends.

• Monetary authority that sets the nominal interest rate.

States: • 4 Exogenous states.

• Demand, productivity, government expenditure, monetary policy.

• Modelled as AR(1)s

Parameters: • 12 Structural parameters to estimate.

Equilibrium Equations Exogenous Processes Structural Parameters Recap

49

Bayesian estimation

• We estimate two models for comparison:

• New Keynesian DSGE model alone (standard).

• New Keynesian DSGE Model + measurement equation with topic shares (new).

• Total parameters to estimate: 12 structural parameters (θ) + 120 topic dynamic factor model

parameters (T0, T1, Σ assuming covariances are 0).

• Pick standard priors on structural parameters.

• Priors on topic related parameters?

• Use MLE to get an idea of where they are.

• Use conservative approach: center all parameters quite tightly around 0.

• Random-walk Metropolis Hastings to obtain draws from the posterior.

Priors

50

Likelihood comparison

0.9 0.92 0.94 0.96 0.98

110

120

130

15

20

25

30

0 10 20 30 40 50

124

126

128

130

132

28

29

30

31

0 0.1 0.2 0.3 0.4 0.5

120

125

130

26

28

30

P

1 1.5 2 2.5

115

120

125

130

20

25

30

0.3 0.32 0.34 0.36 0.38 0.4

124

126

128

130

26

28

30

g

0.8 0.85 0.9 0.95 1

115

120

125

130

20

25

30
D

0.8 0.85 0.9 0.95 1

115

120

125

130

20

25

30
A

0.8 0.85 0.9 0.95 1

124

126

128

130

28

29

30

G

0 0.05 0.1 0.15 0.2

80

100

120

-20

0

20

D

0 0.02 0.04 0.06 0.08

100

110

120

130

10

20

30
A

0 0.01 0.02 0.03 0.04 0.05

110

120

130

15

20

25

30
G

0 0.02 0.04 0.06 0.08 0.1

110

120

130

10

20

30
M

No Topics (left) With Topics (right) 51

Posterior distributions for structural parameters

0.92 0.94 0.96 0.98
0

100

200

0.8 1 1.2 1.4
0

2

4

0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

P

1.5 2 2.5
0

2

4

0.25 0.3 0.35 0.4 0.45
0

20

40

g

0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

D

0.85 0.9 0.95
0

100

200

A

0.4 0.6 0.8
0

20

40

G

0.05 0.1 0.15 0.2 0.25
0

20

40

60

D

0.01 0.02 0.03 0.04
0

200

400

A

0.01 0.02 0.03
0

200

400

600

800

G

0.01 0.02 0.03 0.04 0.05
0

200

400

M

No Topics With Topics 52

Posterior distributions for selected topic parameters

-1 0 1
0

0.5

1

1.5

D
e

m
a

n
d

 S
h

o
c
k

 International Trade

-1 0 1
0

0.5

1

1.5

T
F

P

-1 0 1
0

0.5

1

G
o

v
t

E
x
p

e
n

d
it
u

re

-1 0 1
0

0.5

1

M
o

n
e

ta
ry

 S
h

o
c
k

-1 0 1
0

0.5

1

1.5

Consumer Credit

-1 0 1
0

0.5

1

-1 0 1
0

0.5

1

-1 0 1
0

0.5

1

-1 0 1
0

0.5

1

1.5

Inflation

-1 0 1
0

0.5

1

-1 0 1
0

0.5

1

-1 0 1
0

0.5

1

-1 0 1
0

0.5

1

1.5

Fiscal Policy

-1 0 1
0

0.5

1

1.5

-1 0 1
0

0.5

1

-1 0 1
0

0.5

1

Prior Prior Mean Posterior Posterior Mean 53

Going forward: Joint model

• Extend the model in two ways:

1. Model the dependence of latent topics on the hidden structural states directly.

2. Allow for autocorrelation among topic shares.

• Instead of first creating ϕt and then using it for estimation, want to model the generating process of

both text and macroeconomic observables together.

• Why a joint model?

• Conjecture the topic composition and topic share will be more precise and more interpretable as a result.

• Properly take into account the uncertainty around the topic shares.

54

Going forward: Joint model

• New vector of augmented states:

s̃t =

(
st
ϕt−1

)

• New vector of observables:

Ỹt =

(
Yt

wt

)

• Stacks both the “traditional” observables Yt and the text wt .

55

Joint state space representation

• Transition equation (linear):

st+1 = Φ(θ)st + Φε(θ)ε ← same as before

ϕt = Tsst + Tϕϕt−1 + Σeet ← new

• Measurement equation (non-linear):

Ỹt ∼ p
(
Ỹt |s̃t

)
=

(
Ψ1(θ)st
p(wt |s̃t)

)

• Challenges: algorithm for estimation, impact of choice of priors.

Details on p(wt |s̃t)

56

LDA details Back

LDA assumes the following generative process for each document W of length N:

1. Choose topic proportions ϕ ∼ Dir(ϑ). Dimensionality K of the Dirichlet distribution. Thus,

dimensionality of the topic variable is assumed to be known and fixed.

2. For each word n = 1, ...,N:

2.1 Choose one of K topics zn ∼ Multinomial (ϕ).

2.2 Choose a term wn from p (wn|zn, β), a multinomial probability conditioned on the topic zn. β is a K ×V

matrix where βi,j = p
(
w j = 1|z i = 1

)
. We assign a symmetric Dirichlet prior with V dimensions and

hyperparameter η to each βk .

Posterior:

p(ϕ, z , β|W , ϑ, η) =
p(ϕ, z ,W , β|ϑ, η)

p(W |ϑ, η)

Model equilibrium equations (log-linearized) Back

ĉt − d̂t = Et{ĉt+1 − d̂t+1 − R̂t + Π̂t+1}

Π̂t = κ
(

(1 + φc) ĉt + φgĝt − (1 + φ) Ât

)
+ βEtΠ̂t+1

R̂t = γΠ̂t + mt

l̂t = ŷt − Ât = cĉt + gĝt − Ât

Exogenous States Processes Back

log dt = ρd log dt−1 + σdεd,t

logAt = ρA logAt−1 + σAεA,t

log gt = ρg log gt−1 + σgεg ,t

mt = σmεmt

Parameters Recap Back

Param Description

Steady-state-related parameters

β Discount factor

g SS govt expenditure/GDP

Endogenous propagation parameters

φ Inverse Frisch elasticity

ζP Fraction of fixed prices

γ Taylor rule elasticity

Param Description

Exogenous shocks parameters

ρD Persistence demand shock

ρA Persistence TFP

ρG Persistence govt expenditure

σD s.d. demand shock innovation

σA s.d. TFP shock

σG s.d. govt expenditure shock

σG s.d. monetary shock

State space matrices Back

Law of motion for the states of the economy is:
d̂t+1

Ât+1

ĝt+1

mt+1


︸ ︷︷ ︸

st+1

=


ρd 0 0 0

0 ρA 0 0

0 0 ρg 0

0 0 0 0


︸ ︷︷ ︸

Φ1(θ)


d̂t
Ât

ĝt
mt


︸ ︷︷ ︸

st

+


σd 0 0 0

0 σA 0 0

0 0 σg 0

0 0 0 σm


︸ ︷︷ ︸

Φε(θ)


εd,t+1

εA,t+1

εg ,t+1

εm,t+1


︸ ︷︷ ︸

εt

and for observables:
log ct
log Πt

logRt

log lt


︸ ︷︷ ︸

Yt

=


log (1− g)

0

− log β

0


︸ ︷︷ ︸

Ψ0(θ)

+


a1 a2 a3 a4

b1 b2 b3 b4

γb1 γb2 γb3 1 + b4

ca1 ca2 − 1 1 + ca3 ca4


︸ ︷︷ ︸

Ψ1(θ)


d̂t
Ât

ĝt
mt


︸ ︷︷ ︸

st

Prior distribution I Back

Param Description Domain Density Param 1 Param 2

Steady-state-related parameters

β Discount factor (0, 1) Beta 0.95 0.05

g SS govt expenditure/GDP (0, 1) Beta 0.35 0.05

Endogenous propagation parameters

φ Inverse Frisch elasticity R+ Gamma 1 0.1

ζP Fraction of fixed prices (0, 1) Beta 0.4 0.1

γ Taylor rule elasticity R+ Gamma 1.5 0.25

Prior distribution II Back

Exogenous shocks parameters

ρD Persistence demand shock (0, 1) Uniform 0 1

ρA Persistence TFP (0, 1) Uniform 0 1

ρG Persistence govt expenditure (0, 1) Uniform 0 1

σD s.d. demand shock innovation R+ InvGamma 0.05 0.2

σA s.d. TFP shock R+ InvGamma 0.05 0.2

σG s.d. govt expenditure shock R+ InvGamma 0.05 0.2

σG s.d. monetary shock R+ InvGamma 0.05 0.2

Topic parameters

T0,k Topic baseline R Normal 0 0.1

T1,k,s Topic elasticity to states R Normal 0 0.4

σk s.d. measurement error R+ InvGamma 0.2 0.1

Topics ranked by pro-cyclicality

Details on p(wt |s̃t) Back

We assume the following generative process for a document:

1. Draw ϕt |ϕt−1, st ,Tϕ,Ts ,Σ
e ∼ N(ϕ0 + Tϕϕt−1 + Tsst ,Σ

e).

2. To map this representation of topic shares into the simplex, use the softmax function:

f (ϕt) = expϕt,i/
∑

j expϕt,j .

3. For each word n = 1, ...,N:

3.1 Draw topic zn,t ∼ Mult(f (ϕt)).

3.2 Draw term wn,t ∼ Mult(βt,z).

Then, the distribution of text conditional on the states, p(wt |s̃t), is given by:

p(wt |s̃t) =

∫
p(ϕt |s̃t)

 N∏
n=1

∑
zn,t

p(zn,t |ϕt)p(wn,t |zn,t , βt)

 dϕt

Conclusions

• Deep learning has tremendous potential for macroeconomics.

• Great theoretical and practical reasons for it.

• Many potential applications.

