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Abstract

We present a hierarchical architecture based on recurrent neural networks for predict-
ing disaggregated inflation components of the Consumer Price Index (CPI). While the
majority of existing research is focused on predicting headline inflation, many economic
and financial institutions are interested in its partial disaggregated components. To
this end, we developed the novel Hierarchical Recurrent Neural Network (HRNN)
model, which utilizes information from higher levels in the CPI hierarchy to improve
predictions at the more volatile lower levels. Based on a large dataset from the US
CPI-U index, our evaluations indicate that the HRNN model significantly outperforms
a vast array of well-known inflation prediction baselines. Our methodology and results
provide additional forecasting measures and possibilities to policy and market makers
on sectoral and component-specific price changes.
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1. Introduction

The Consumer Price Index (CPI) is a measure of the average change over time in the
prices paid by a representative consumer for a common basket of goods and services.
The CPI attempts to quantify and measure the average cost-of-living in a given country
by estimating the purchasing power of a single unit of currency. Therefore, it is the key
macroeconomic indicator for measuring inflation (or deflation). As such, the CPI is
a major driving force in the economy influencing a plethora of market dynamics. In
this work, we present a novel model based on Recurrent Neural Networks (RNNs) for
forecasting disaggregated CPI inflation components.

In the mid-1980s, many advanced economies began a major process of disinflation
known as the “great moderation”. This period was characterized by steady low inflation
and moderate yet steady economic growth (Faust and Wright, 2013). Later, the Global
Financial Crisis (GFC) of 2008, and more recently the economic effects of the Covid-
19 pandemic, were met with unprecedented monetary policies, potentially altering
the underlying inflation dynamics worldwide (Woodford, 2012; Gilchrist et al., 2017;
Bernanke et al., 2018). While economists still debate about the underlying forces that
drive inflation, all agree on the importance and value of contemporary inflation research,
measurements and estimation. Moreover, the CPI is a composite index comprised of
an elaborate hierarchy of sub-indexes each with its own dynamics and driving forces.
Hence, in order to better understand inflation dynamics, it is useful to deconstruct the
CPI index and look into the specific disaggregated components “underneath” the main
headline.

In the US, the Consumer Price Index (CPI) is calculated and reported by the Bureau
of Labor Statistics (BLS). It represents the cost of a basket of goods and services across
the country on a monthly basis. The CPI is a hierarchical composite index system that
partitions all consumer goods and services into a hierarchy of increasingly detailed
categories. In the US, the top CPI headline is composed of eight major sector indexes:
(1) Housing, (2) Food and Beverages, (3) Medical Care, (4) Apparel, (5) Transportation,
(6) Energy, (7) Recreation, and (8) Other goods and services. Each sector is composed of
finer and finer sub-indexes until the entry-levels or “leaves” are reached. These entry
-level indexes represent concrete measurable products or services whose price levels
are being tracked. For example, the White Bread entry is classified under the following
eight-level hierarchy: All Items → Food and Beverages → Food at Home → Cereals and
Bakery Products → Cereals and Cereal Products → Bakery products → Bread → White Bread.

The ability to accurately estimate the upcoming disaggregated inflation rate is of
high interest to policymakers and market players: Inflation forecasting is a critical tool in
adjusting monetary policies around the world (Friedman, 1961). Central banks predict
future inflation trends to justify interest rate decisions and to control and maintain
inflation around its target. Better understanding of upcoming inflation dynamics at the
component level can help inform and elucidate decision-makers for optimal monetary
policy (Ida, 2020). Predicting disaggregated inflation rates is also important to fiscal
authorities that wish to forecast sectoral inflation dynamics to adjust social security
payments and assistance packages to specific industrial sectors. In the private sector,
investors in fixed-income markets wish to estimate future sectorial inflation in order
to foresee upcoming trends in discounted real returns. Additionally, some private
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firms need to predict specific inflation components in order to forecast price dynamics
and mitigate risks accordingly. Finally, both government and private debt levels and
interest payments heavily depend on the expected path of inflation. These are just a
few examples that emphasize the importance of disaggregated inflation forecasting.

Most existing inflation forecasting models attempt to predict the headline CPI while
implicitly assuming the same approach can be effectively applied to its disaggregated
components (Faust and Wright, 2013). However, as we show later, and in line with
the literature, the disaggregated components are more volatile and harder to predict.
Moreover, changes in the CPI components are more prevalent at the lower levels than
up at the main categories. As a result, lower hierarchy levels often have less historical
measurements for training modern machine learning algorithms.

In this work, we present the Hierarchical Recurrent Neural Network (HRNN) model,
a novel model based on RNNs that utilizes the CPI’s inherent hierarchy for improved
predictions at its lower levels. HRNN is a hierarchical arrangement of RNNs analogous
to the CPI’s hierarchy. This architecture allows information to propagate from higher
to lower levels in order to mitigate volatility and information sparsity that otherwise
impedes advanced machine learning approaches. Hence, a key advantage of the HRNN
model stems from its superiority at inflation predictions at lower levels of the CPI
hierarchy. Our evaluations indicate that HRNN outperforms many existing baselines at
inflation forecasting of different CPI components below the top headline and across
different time horizons.

Finally, our data and code are publicly available on GitHub1 to enable reproducibility
and foster future evaluations of new methods. By doing so, we comply with the call to
make data and algorithms more open and transparent to the community (Makridakis
et al., 2018, 2020).

The remainder of the paper is organized as follows. Section 2 presents a literature
review of baseline inflation forecasting models and machine learning models. Section 3
explains recurrent neural networks methodologies. Our novel HRNN model is presented
in Section 4. Section 5 describes the price data and data transformations. In Section 6, we
present our results and compare them to alternative approaches. Finally, we conclude
in Section 7 by discussing potential implications of the current research and several
future directions.

2. Related Work

While inflation forecasting is a challenging task of high importance, the literature
indicates that significant improvement upon basic time-series models and heuristics
is hard to achieve. Indeed, Atkeson et al. (2001) found that forecasts based on simple
averages of past inflation were more accurate than all other alternatives, including the
canonical Phillips curve and other forms of structural models. Similarly, Stock and
Watson (2007, 2010) provide empirical evidence for the superiority of univariate models
in forecasting inflation during the great moderation period (1985 to 2007) and during
the recovery ensuing the GFC. More recently, Faust and Wright (2013) conducted an
extensive survey of inflation forecasting methods and found that a simple “glide path”

1The code and data are available at https://github.com/AllonHammer/CPI_HRNN
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prediction from the current inflation rate performs as well as model-based forecasts for
long-run inflation rates and often outperforms them.

Recently, an increasing amount of effort has been directed towards the application
of machine learning models for inflation forecasting. For example, Medeiros et al.
(2021) compared inflation forecasting with several machine learning models such as
lasso regression, random forests, and deep neural networks. However, Medeiros
et al. (2021) mainly focused on using exogenous features such as cash and credit
availability, online prices, housing prices, consumer data, exchange rates, and interest
rates. When exogenous features are considered, the emphasis shifts from learning the
endogenous time series patterns to effectively extracting the predictive information
from the exogenous features. In contrast to Medeiros et al. (2021), we preclude the use
of any exogenous features and focus on harnessing the internal patterns of the CPI
series. Moreover, unlike previous works that dealt with estimating the main headline,
this work is focused on predicting the disaggregated indexes that comprise the CPI.

In general, machine learning methods flourish where data is found in abundance
and many training examples are available. Unfortunately, this is not the case with
CPI inflation data. While a large amount of relevant exogenous features exist, there
are only twelve monthly readings annually. Hence, the amount of available training
examples is limited. Furthermore, Stock and Watson (2007) show that statistics such as
average inflation rate, conditional volatility, and persistency levels are shifting in time.
Hence, inflation is a non-stationary process, which further limits the amount of relevant
historical data points.

Goulet Coulombe et al. (2022), Mullainathan and Spiess (2017), Athey and Susan
(2018) and Chakraborty and Joseph (2017) present comprehensive surveys of general
machine learning applications in economics. Here, we do not attempt to cover the
plethora of research employing machine learning for economic forecasting. Instead, we
focus on models that apply neural networks to CPI forecasting in the next section.

This paper joins several studies that apply neural network methods to the specific
task of inflation forecasting: Nakamura (2005) employed a simple feed-forward network
to predict quarterly CPI headline values. A special emphasis is placed on early stopping
methodologies in order to prevent over-fitting. Their evaluations are based on US CPI
data during 1978-2003 and predictions are compared against several autoregressive (AR)
baselines. Presented in Section 6, our evaluations confirm the findings of Nakamura
(2005), that a fully connected network is indeed effective at predicting the headline CPI.
However, when the CPI components are considered, we show that the model in this
work demonstrates superior accuracy.

Choudhary and Haider (2012) used several neural networks to forecast monthly
inflation rates in 28 countries in the Organisation for Economic Cooperation and
Development (OECD). Their findings showed that, on average, neural network models
were superior in 45% of the countries while simple AR models of order one (AR1)
performed better in 23% of the countries. They also proposed to combine an ensemble
of multiple networks arithmetically for further accuracy.

Chen et al. (2001) explored semi-parametric nonlinear autoregressive models with
exogenous variables (NLARX) based on neural networks. Their investigation covered a
comparison of different nonlinear activation functions such as the Sigmoid activation,
radial basis activation, and Ridgelet activation.
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McAdam and McNelis (2005) explored Thick Neural Network models that represent
“trimmed mean” forecasts from several models. By combining the network with a linear
Phillips Curve model, they predict the CPI for the US, Japan, and Europe at different
levels.

In contrast to the aforementioned works, our model predicts monthly CPI values
in all hierarchy levels. We utilize information patterns from higher levels of the CPI
hierarchy in order to assist the predictions at lower levels. Such predictions are more
challenging due to the inherent noise and information sparsity at the lower levels.
Moreover, the HRNN model in this work is better equipped to harness sequential
patterns in the data by employing Recurrent Neural Networks. Finally, we exclude the use
of exogenous variables and rely solely on historical CPI data to focus on internal CPI
patterns modeling.

Almosova and Andresen (2019) employed long-short term memory LSTMs for
inflation forecasting. They compared their approach to multiple baselines such as
autoregressive models, random walk models, seasonal autoregressive models, Markov
switching models, and fully-connected neural networks. At all time horizons, the root
mean squared forecast of their LSTM model was approximately one-third of the random
walk model and significantly more accurate than the other baselines.

As we explain in Section 3.3, our model uses Gated Recurrent Networks (GRUs),
which are similar to LSTMs. Unlike Almosova and Andresen (2019) and Zahara et al.
(2020), a key contribution of our model stems from its ability to propagate useful
information from higher levels in the hierarchy down to the nodes at lower levels. By
ignoring the hierarchical relations between the different CPI components, our model
is reduced to a set of simple unrelated GRUs. This setup is similar to Almosova and
Andresen (2019), as the difference between LSTMs and GRUs is negligible. In Section 6,
we perform an ablation study in which HRNN ignores the hierarchical relations and is
reduced to a collection of independent GRUs, similar to the model in Almosova and
Andresen (2019). Our evaluations indicate that this approach is not optimal at any level
of the CPI hierarchy.

3. Recurrent Neural Networks

Before describing the HRNN model in detail, we briefly overview the main different
RNNs approaches. RNNs are neural networks that model sequences of data in which
each value is assumed to be dependent on previous values. Specifically, RNNs are feed-
forward networks augmented by implementing a feedback loop (Mandic and Chambers,
2001). As such, RNNs introduce a notion of time to the standard feed-forward neural
networks and excel at modeling temporal dynamic behavior (Chung et al., 2014). Some
RNN units retain an internal memory state from previous time steps representing an
arbitrarily long context window. Many RNN implementations were proposed and
studied in the past. A comprehensive review and comparison of the different RNN
architectures is available in (Lipton et al., 2015) and (Chung et al., 2014). In this section,
we will cover the three most popular units: Basic RNN, Long-Short Time Memory
(LSTM), and Gated Recurrent Unit (GRU).
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Figure 1. An illustration of a basic RNN unit.

TanH

Each line carries an entire vector, from the output of one node to the inputs of others. The yellow box is a learned
neural network layer.

3.1. Basic Recurrent Neural Networks
Let {𝑥𝑡}𝑇𝑡=1 be the model’s input time series consisting of 𝑇 samples. Similarly,

let {𝑠𝑡}𝑇𝑡=1 be the model’s results consisting of 𝑇 samples from the target time series.
Namely, the model’s input at 𝑡 is 𝑥𝑡 , and its output (prediction) is 𝑠𝑡 . The following set
of equations defines a basic RNN unit:

𝑠𝑡 = tanh (𝑥𝑡𝑢 + 𝑠𝑡−1𝑤 + 𝑏), (1)

where 𝑢, 𝑤 and 𝑏 are the model’s parameters and tanh(𝑥) = 𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥 is the hyperbolic

tangent function. Namely, the model’s output from the previous period 𝑠𝑡−1 is used as
an additional input to the model at time 𝑡, along with the current input 𝑥𝑡 . The linear
combination 𝑥𝑡𝑢 + 𝑠𝑡−1𝑤 + 𝑏 is the argument of a hyperbolic tangent activation function
allowing the unit to model nonlinear relations between inputs and outputs. Different
implementations may employ other activation functions, e.g., the Sigmoid function,
some logistic functions, or a Rectified Linear Unit (ReLU) function (Ramachandran
et al., 2017). Figure 1 depicts an illustration of a basic RNN unit.

3.2. Long Short Term Memory Networks
Basic RNNs suffer from the “short-term memory” problem: they utilize data from

recent history to forecast, but if a sequence is long enough, it cannot carry relevant
information from earlier periods to later ones, e.g., relevant patterns from the same
month in previous years. Long Short Term Memory networks (LSTMs) mitigate the
“short-term memory” problem by introducing gates that enable the preservation of
relevant “long-term memory” and combining it with the most recent data (Hochreiter
and Schmidhuber, 1997). The introduction of LSTMs paved the way for significant
strides forward in various fields such as natural language processing, speech recognition,
robot control, and more (Yu et al., 2019).

An LSTM unit has the ability to “memorize” or “forget” information through the
use of a special memory cell state, carefully regulated by three gates: an input gate, a
forget gate, and an output gate. The gates regulate the flow of information into and out of
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the memory cell state. An LSTM unit is defined by the following set of equations:

𝑖 =𝜎(𝑥𝑡𝑢 𝑖 + 𝑠𝑡−1𝑤
𝑖 + 𝑏 𝑖),

𝑓 =𝜎(𝑥𝑡𝑢 𝑓 + 𝑠𝑡−1𝑤
𝑓 + 𝑏 𝑓 ),

𝑜 =𝜎(𝑥𝑡𝑢𝑜 + 𝑠𝑡−1𝑤
𝑜 + 𝑏𝑜),

𝑐 = tanh (𝑥𝑡𝑢𝑐 + 𝑠𝑡−1𝑤
𝑐 + 𝑏𝑐),

𝑐𝑡 = 𝑓 × 𝑐𝑡−1 + 𝑖 × 𝑐,

𝑠𝑡 =𝑜 × tanh(𝑐𝑡),

(2)

where 𝜎(𝑥) = 1
1+𝑒−𝑥 is the sigmoid or logistic activation function. 𝑢 𝑖 , 𝑤 𝑖 and 𝑏 𝑖 are the

learned parameters that control the input gate 𝑖. 𝑢 𝑓 , 𝑤 𝑓 and 𝑏 𝑓 are the learned parameters
that control the forget gate 𝑓 , and 𝑢𝑜 , 𝑤𝑜 and 𝑏𝑜 are the learned parameters that control
the output gate 𝑜. 𝑐 is the new candidate activation for the cell state determined by the
parameters 𝑢𝑐 , 𝑤𝑐 and 𝑏𝑐 . The cell state itself 𝑐𝑡 is updated by the linear combination
𝑐𝑡 = 𝑓 × 𝑐𝑡−1 + 𝑖 × 𝑐, where 𝑐𝑡−1 is its previous value of the cell state. The input gate
𝑖 determines which parts of the candidate 𝑐 should be used to modify the memory
cell state, and the forget gate 𝑓 determines which parts of the previous memory 𝑐𝑡−1
should be discarded. Finally, the recently updated cell state 𝑐𝑡 is “squashed” through a
nonlinear hyperbolic tangent and the output gate 𝑜 determines which parts of it should
be presented in the output 𝑠𝑡 . Figure 2 depicts an illustration of an LSTM unit.

Figure 2. An illustration of an LSTM Unit.

Sigmoid

TanH
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X

Sigmoid

Sigmoid

TanH

Each line carries an entire vector, from the output of one node to the inputs of others. The pink circles represent
point-wise operations, while the yellow boxes are learned neural network layers. Lines merging denote concatenation,
while a line forking denotes its content being copied and the copies going to different locations.

3.3. Gated Recurrent Unit
A Gated Recurrent Unit (GRU) improves the LSTM unit by dropping the cell state

in favor of a more simplified unit that requires less learnable parameters (Dey and
Salemt, 2017). GRU employs only two gates instead of three: an update gate and a reset
gate. Using fewer parameters, GRUs are faster and more efficient, especially when
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training data is limited, such as in the case of inflation predictions and particularly
disaggregated inflation components.

The following set of equations defines a GRU unit:

𝑧 =𝜎(𝑥𝑡𝑢𝑧 + 𝑠𝑡−1𝑤
𝑧 + 𝑏𝑧),

𝑟 =𝜎(𝑥𝑡𝑢𝑟 + 𝑠𝑡−1𝑤
𝑟 + 𝑏𝑟),

𝑣 = tanh (𝑥𝑡𝑢𝑣 + (𝑠𝑡−1 × 𝑟)𝑤𝑣 + 𝑏𝑣),
𝑠𝑡 =𝑧 × 𝑣 + (1 − 𝑧)𝑠𝑡−1,

(3)

where 𝑢𝑧 , 𝑤𝑧 and 𝑏𝑧 are the learned parameters that control the update gate 𝑧, and
𝑢𝑟 , 𝑤𝑟 and 𝑏𝑟 are the learned parameters that control the reset gate 𝑟. The candidate
activation 𝑣 is a function of the input 𝑥𝑡 and the previous output 𝑠𝑡−1, and is controlled
by the learned parameters: 𝑢𝑣 , 𝑤𝑣 and 𝑏𝑣 . Finally, the output 𝑠𝑡 combines the candidate
activation 𝑣 and the previous state 𝑠𝑡−1 controlled by the update gate 𝑧. Figure 2 depicts
an illustration of a GRU unit.

GRUs enable the “memorization” of relevant information patterns with significantly
fewer parameters compared to LSTMs. Hence, GRUs constitute the basic unit for our
novel HRNN model described in Section 4.

Figure 3. An illustration of a GRU unit.

Sigmoid

X

1-

+X

X

Sigmoid Tanh

Each line carries an entire vector, from the output of one node to the inputs of others. The pink circles represent
point-wise operations, while the yellow boxes are learned neural network layers. Lines merging denote concatenation,
while a line forking denotes its content being copied and the copies going to different locations.

4. Hierarchical Recurrent Neural Networks

The disaggregated components at lower levels of the CPI hierarchy (e.g., newspapers,
medical care, etc.) suffer from missing data as well as higher volatility in change rates.
HRNN exhibits a network graph in which each node is associated with a RNN unit
that models the inflation rate of a specific (sub)-index (node) in the “full” CPI hierarchy.
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HRNN’s unique architecture allows it to propagate information from RNN nodes in
higher levels to lower levels in the CPI hierarchy, coarse to fine-grained, via a chain of
hierarchical informative priors over the RNNs’ parameters. This unique property of
HRNN is materialized in better predictions for nodes at lower levels of the hierarchy, as
we show later in Section 6,

4.1. Model Formulation
Let ℐ = {𝑛}𝑁

𝑛=1 be an enumeration of the nodes in the CPI hierarchy graph. In
addition, we define 𝜋𝑛 ∈ ℐ as the parent node of the node 𝑛. For example, if the nodes
𝑛 = 5 and 𝑛 = 19 represent the indexes of tomatoes and vegetables respectively, then
𝜋5 = 19 i.e. the parent node of tomatoes is vegetables.

For each node 𝑛 ∈ ℐ, we denote by 𝑥𝑛𝑡 ∈ R the observed random variable that
represents the CPI value of the node 𝑛 at timestamp 𝑡 ∈ N. We further denote
𝑋𝑛
𝑡 ≜ (𝑥𝑛1 , ..., 𝑥

𝑛
𝑡 ), where 1 ≤ 𝑡 ≤ 𝑇𝑛 and 𝑇𝑛 is the last timestamp for node 𝑛. Let

𝑔 : R𝑚 ×Ω → R be a parametric function representing an RNN node in the hierarchy.
Specifically, R𝑚 is the space of parameters that control the RNN unit, Ω is the input
time series space, and the function 𝑔 predicts a scalar value for the next value of the
input series. Hence, our goal is to learn the parameters �𝑛 ∈ R𝑚 s.t. for 𝑋𝑛

𝑡 ∈ Ω,
𝑔(�𝑛 , 𝑋

𝑛
𝑡 ) = 𝑥𝑛

𝑡+1, ∀𝑛 ∈ ℐ, and 1 ≤ 𝑡 < 𝑇𝑛 .
We proceed by assuming a Gaussian error on 𝑔’s predictions and receive the

following expression for the likelihood of the observed time series:

𝑝(𝑋𝑛
𝑇𝑛
|�𝑛 , 𝜏𝑛) =

𝑇𝑛∏
𝑡=1

𝑝(𝑥𝑛𝑡 |𝑋𝑛
𝑡−1, �𝑛 , 𝜏𝑛) =

𝑇𝑛∏
𝑡=1

𝒩(𝑥𝑛𝑡 ; 𝑔(�𝑛 , 𝑋
𝑛
𝑡−1), 𝜏

−1
𝑛 ), (4)

where 𝜏−1
𝑛 ∈ R is the variance of 𝑔’s errors.

Next, we define a hierarchical network of normal priors over the nodes’ parameters
that attach each node’s parameters with those of its parent node. The hierarchical priors
follow:

𝑝(�𝑛 |�𝜋𝑛 , 𝜏�𝑛 ) = 𝒩(�𝑛 ;�𝜋𝑛 , 𝜏
−1
�𝑛

I), (5)

where 𝜏�𝑛 is a configurable precision parameter that determines the “strength” of the
relation between node 𝑛’s parameters and the parameters of its parent 𝜋𝑛 . Higher
values of 𝜏�𝑛 strengthen the attachment between �𝑛 and its prior �𝜋𝑛 .

The precision parameter 𝜏�𝑛 can be seen as a global hyper-parameter of the model
to be optimized via cross-validation. However, different nodes in CPI the hierarchy
have varying degrees of correlation with their parent nodes. Hence, the value of 𝜏�𝑛 in
HRNN is given by:

𝜏�𝑛 = 𝑒𝛼+𝐶𝑛 , (6)

where 𝛼 is a hyper-parameter and 𝐶𝑛 = 𝜌(𝑋𝑛
𝑇𝑛
, 𝑋

𝜋𝑛

𝑇𝜋𝑛
) is the Pearson correlation coefficient

between the time series of 𝑛 and its parent 𝜋𝑛 .
Importantly, Equation (5) describes a novel prior relationship between the parameters

of a node and its parent in the hierarchy that “grows” increasingly stronger according to
the historical correlation between the two series. This ensures that a child node 𝑛 is kept
close to its parent node 𝜋𝑛 in terms of squared Euclidean distance in the parameters
space, especially if they are highly correlated. Note that in the case of the root node
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Figure 4. An illustration of the full HRNN model.
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(the headline CPI), 𝜋𝑛 does not exist and hence we set a normal non-informative
regularization prior with zero mean and unit variance.

Let us now denote the aggregation of all series from all levels by 𝑋 = {𝑋𝑛
𝑇𝑛
}𝑛∈ℐ .

Similarly, we denote by � = {�𝑛}𝑛∈ℐ and T = {𝜏𝑛}𝑛∈ℐ the aggregation of all the RNN
parameters and precision parameters from all levels, respectively. Note that 𝑋 (the data)
is observed, � are unobserved learned variables, and T are determined by Equation (6).
The hyper-parameter 𝛼 from Equation (6) is set by a cross-validation procedure.

With these definitions at hand, we now proceed with the Bayes rule. From Equation 4
and Equation (5), we extract the posterior probability:

𝑝(� |𝑋, T) =
𝑝(𝑋 |�, T)𝑝(�)

𝑃(𝑋) ∝∏
𝑛∈ℐ

𝑇𝑛∏
𝑡=1

𝒩(𝑥𝑛𝑡 ; 𝑔(�𝑛 , 𝑋
𝑛
𝑡−1), 𝜏

−1
𝑛 )

∏
𝑛∈ℐ

𝒩(�𝑛 ;�𝜋𝑛 , 𝜏
−1
�𝑛

I).
(7)

HRNN optimization follows a Maximum A-Posteriori (MAP) approach. Namely, we
wish to find optimal parameter values �∗ such that:

�∗ = argmax
�

log 𝑝(� |𝑋, T). (8)

Note that the objective in Equation (8) depends on the parametric function 𝑔. HRNN
is a general framework that can use any RNN, e.g., Simple RNN, LSTM, GRU, etc. In this

10



work, we chose 𝑔 to be a scalar GRU because GRUs are capable of long-term memory
but with fewer parameters than LSTMs. Hence, each node 𝑛 is associated with a GRU
with its own parameters: �𝑛 = [𝑢𝑧

𝑛 , 𝑢
𝑟
𝑛 , 𝑢

𝑣
𝑛 , 𝑤

𝑧
𝑛 , 𝑤

𝑟
𝑛 , 𝑤

𝑣
𝑛 , 𝑏

𝑧
𝑛 , 𝑏

𝑟
𝑛 , 𝑏

𝑣
𝑛]. Then, 𝑔(�𝑛 , 𝑋

𝑛
𝑡 ) is

computed by 𝑡 successive applications of the GRU to 𝑥𝑛
𝑖

with 1 ≤ 𝑖 ≤ 𝑡 according to
Equation (3). Finally, the HRNN optimization proceeds with stochastic gradient ascent
over the objective in Equation (8). Figure 4 depicts an illustration of the entire HRNN
architecture.

4.2. HRNN Inference
In machine learning, after the model’s parameters have been estimated in the training

process, it can be applied to make predictions in a process known as inference. In our
case, equipped with the MAP estimate �∗, inference with the HRNN model is achieved
as follows: Given a sequence of historical CPI values 𝑋𝑛

𝑡 for node 𝑛, we predict the
next CPI value 𝑦𝑛

𝑡+1 = 𝑔(�𝑛 , 𝑋
𝑛
𝑡 ), as explained in Section 4.1. This type of prediction

is for next month’s CPI, namely, horizon ℎ = 0. In this work, we also test the ability
of the model to perform predictions for further horizons ℎ ∈ {0, .., 8}. The ℎ-horizon
predictions are obtained in a recursive manner, whereby each predicted value 𝑦𝑛𝑡 is fed
back as an input for the prediction of 𝑦𝑛

𝑡+1. As expected, Section 6 shows that forecasting
accuracy gradually degrades as horizon ℎ increases.

5. Dataset

This work is based on monthly CPI data released by the US Bureau of Labor and
Statistics (BLS). In what follows, we discuss the dataset’s characteristics and our pre-
processing procedures. For the sake of reproducibility, the final version of the processed
data is available in our HRNN code.

5.1. The US Consumer Price Index
The official CPI of each month is released by the BLS several days into the following

month. The price tags are collected in 75 urban areas throughout the US from about
24,000 retail and service establishments. The housing and rent rates are collected from
about 50,000 landlords and tenants across the country. The BLS releases two different
measurements according to urban demographics:

1. The CPI-U represents the CPI for urban consumers and covers approximately
93% of the total population. According to the Consumer Expenditure Survey, the
CPI items and their relative weights are derived from their estimated expenditure.
These items and their weights are updated each year in January.

2. The CPI-W represents the CPI for urban wage earners and clerical workers and
covers about 29% of the population. This index is focused on households with at
least 50 percent of income coming from clerical or wage-paying jobs, and at least
one of the household’s earners must have been employed for at least 70% of the
year. CPI-W indicates changes in the cost of benefits, as well as future contract
obligations.
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In this work, we focus on CPI-U, as it is generally considered the best measure for the
average cost of living in the US. Monthly CPI-U data per product is generally available
from January 1994. Our samples thus span from January 1994 to March 2019. Note
that throughout the years, new indexes were added, and some indexes have been
omitted. Consequently, hierarchies can change, which contributes to the challenge of
our exercise.

5.2. The CPI Hierarchy
The CPI-U is an eight-level deep hierarchy comprising 424 different nodes (indexes).

Level 0 represents the headline CPI, or the aggregated index of all components. An index
at any level is associated with a weight between 0-100, which represents its contribution
to the headline CPI at level 0. Level 1 consists of the 8 main aggregated categories or
sectors: (1) “Food and Beverages”, (2) “Housing”, (3) “Apparel”, (4) “Transportation”,
(5) “Medical Care”, (6) “Recreation”, (7) “Education and Communication”, and (8)
“Other Goods and Services”. Mid-levels (2-5) consist of more specific aggregations e.g.,
“Energy Commodities”, “Household Insurance”, etc. The lower levels (6-8) consists of
fine-grained indexes, e.g., “Apples”, “Bacon and Related Products”, “Eyeglasses and
Eye Care”, “Tires”, “Airline fares”, etc. Tables 7 and 8 (in Appendix A) depict the first
three hierarchies of the CPI (levels 0-2).

5.3. Data Preparation
We used publicly available data from the BLS website2. However, the BLS releases

hierarchical data on a monthly basis in separate files. Hence, separate monthly files
from January 1994 until March 2019 were processed and aggregated to create a single
repository. Moreover, the format of these files has changed over the years (e.g., txt, pdf,
and csv formats were all in use) and a significant effort was made in order to parse the
changing formats from different time periods.

The hierarchical CPI data is released in terms of monthly index values. We
transformed the CPI values to monthly logarithmic change rates as follows: We denote
by 𝑥𝑡 the CPI value (of any node) at month 𝑡. The logarithmic change rate at month 𝑡 is
denoted by 𝑟𝑎𝑡𝑒(𝑡) and given by:

𝑟𝑎𝑡𝑒(𝑡) = 100 × log
(
𝑥𝑡

𝑥𝑡−1

)
. (9)

Unless otherwise mentioned, the remainder of the paper relates to monthly logarithmic
change rates as in Equation (9).

We split the data into a training dataset and a test dataset as follows: For each time
series, we kept the first (early in time) 70% of the measurements for the training dataset.
The remaining 30% of the measurements were removed from the training dataset and
used to form the test dataset. The training dataset was used to train the HRNN model as
well as the other baselines. The test dataset was used for evaluations. The results in
Section 6 are based on this split.

Table 1 summarizes the number of data points and general statistics of the CPI time
series after applying Equation (9). When comparing the headline CPI with the full

2www.bls.gov/cpi
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Table 1: Descriptive Statistics

Data set # Monthly Mean STD Min Max # of Avg. Measurements
Measurements Indexes per Index

Headline Only 303 0.18 0.33 -1.93 1.22 1 303
Level 1 6742 0.17 0.96 -18.61 11.32 34 198.29
Level 2 6879 0.12 1.10 -19.60 16.81 46 149.54
Level 3 7885 0.17 1.31 -34.23 16.37 51 121.31
Level 4 7403 0.08 1.97 -35.00 28.17 58 107.89
Level 5 10809 0.01 1.43 -21.04 242.50 92 87.90
Level 6 7752 0.09 1.49 -11.71 16.52 85 86.13
Level 7 4037 0.11 1.53 -11.90 9.45 50 80.74
Level 8 595 0.08 1.56 -5.27 5.02 7 85.00
Full Hierarchy 52405 0.10 1.75 -35.00 242.50 424 123.31

Notes: General statistics of the headline CPI and CPI-U for each level in the hierarchy and the full
hierarchy of indexes.

hierarchy, we see that at lower levels the standard deviation (STD) is significantly higher
and the dynamic range is larger, implying much more volatility. The average number of
measurements per index decreases at the lower levels of the hierarchy as not all indexes
are available for the entire period.

Figure 5 depicts box plots of the CPI change rate distributions at different levels.
The boxes depict the median value and the upper 75’th and lower 25’th percentiles.
The whiskers indicate the overall minimum and maximum rates. Figure 5 further
emphasizes that the change rates are more volatile as we go down the CPI hierarchy.

High dynamic range, high standard deviation, and less training data are all indicators
of the difficulty of making predictions inside the hierarchy. Based on this information,
we can expect that the disaggregated component predictions inside the hierarchy will
be more difficult than the headline.

Finally, Figure 6 depicts a box plot of the CPI change rate distribution for different
sectors. We notice that some sectors (e.g., apparel and energy) suffer from higher
volatility than others. As expected, predictions for these sectors will be more difficult.

6. Evaluation and Results

We evaluate HRNN and compare it with well-known baselines for inflation prediction
as well as some alternative machine learning approaches. We use the following notation:
Let 𝑥𝑡 be the CPI log-change rate at month 𝑡. We consider models for �̂�𝑡 - an estimate for
𝑥𝑡 based on historical values. Additionally, we denote by �𝑡 the estimation error at time
𝑡. In all cases, the ℎ-horizon forecasts were generated by recursively iterating the one-
step forecasts forward. Hyper-parameters were set through a 10-fold cross-validation
procedure.

6.1. Baseline Models
We compare HRNN with the following CPI prediction baselines:

1. Autoregression (AR) - The AR(𝜌) estimates �̂�𝑡 based on the previous 𝜌 months as
follows: �̂�𝑡 = 𝛼0 +

(∑𝜌
𝑖=1 𝛼𝑖𝑥𝑡−𝑖

)
+ �𝑡 , where {𝛼𝑖}𝜌𝑖=0 are the model’s parameters.
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Figure 5. Box plots of monthly inflation rate per hierarchy level.
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Figure 6. Box plots of monthly inflation rate per sector.
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2. Phillips Curve (PC) - A PC(𝜌) is an extension of AR(𝜌) that considers the
unemployment rate 𝑢𝑡 at month 𝑡 in CPI forecasting model such as: �̂�𝑡 = 𝛼0 +(∑𝜌

𝑖=1 𝛼𝑖𝑥𝑡−𝑖
)
+ 𝛽𝑢𝑡−1 + �𝑡 , where {𝛼𝑖}𝜌𝑖=0 and 𝛽 are the model’s parameters.

3. Vector Autoregression (VAR) - The VAR(𝜌) model is a multivariate generalization
of AR(𝜌). It is frequently used to model two or more time series together. VAR(𝜌)
estimates next month’s values of 𝑘 time series based on their historical values
from the previous 𝜌 months as follows: �̂�𝑡 = 𝐴0 + (∑𝜌

𝑖=1 𝐴𝑖𝑋𝑡−𝑖) + 𝜖𝑡 , where 𝑋𝑡 are
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the last 𝜌 values from 𝑘 different time series at month 𝑡, and �̂�𝑡 are the model’s
estimates of these values, {𝐴𝑖}𝜌𝑖=0 are a (𝑘 × 𝑘) matrices of parameters, and 𝜖𝑡 is a
vector of error terms.

4. Random Walk (RW) - We consider the RW(𝜌) model of Atkeson et al. (2001).
RW(𝜌) is a simple, yet effective, model that predicts next month’s CPI as an average
of the last 𝜌 months by: �̂�𝑡 = 1

𝜌

∑𝜌
𝑖=1 𝑥𝑡−𝑖 + �𝑡 .

5. Auto Regression in Gap (AR-GAP) - The AR-GAP model subtracts a fixed
inflation trend before predicting the inflation in gap (Faust and Wright, 2013).
Inflation gap is defined as 𝑔𝑡 = 𝑥𝑡 − 𝜏𝑡 , where 𝜏𝑡 is the inflation trend at time
𝑡 which represents a slowly-varying local mean. This trend value is estimated
using RW(𝜌) as follows: 𝜏𝑡 = 1

𝜌

∑𝜌
𝑖=1 𝑥𝑡−𝑖 . By accounting for the local inflation

trend 𝜏𝑡 , the model attempts to increase stationarity in 𝑔𝑡 and estimate it by
�̂�𝑡 = 𝛼0 + ∑𝜌

𝑖=1 𝛼𝑖𝑔𝑡−𝑖 + �𝑡 , where {𝛼𝑖}𝜌𝑖=0 are the model’s parameters. Finally,
𝜏𝑡 is added back to �̂�𝑡 to achieve the forecast for the final inflation prediction:
�̂�𝑡 = �̂�𝑡 + 𝜏𝑡 .

6. Logistic Smooth Transition Auto Regressive Model (LSTAR) - The LSTAR is
an extension of AR that allows for changes in the model parameters according to
a transition variable 𝐹(𝑡; 𝑐, 𝛾). LSTAR(𝜌, 𝑐, 𝛾) consists of two AR(𝜌) components
that describe two trends in the data (high and low), and a nonlinear transition
function that links them as follows:

�̂�𝑡 =

(
𝛼0 +

𝜌∑
𝑖=1

𝛼𝑖𝑥𝑡−𝑖

)
(1 − 𝐹 (𝑡; 𝛾, 𝑐)) +

(
𝛽0 +

𝜌∑
𝑖=1

𝛽𝑖𝑥𝑡−𝑖

)
𝐹 (𝑡; 𝛾, 𝑐) + �𝑡 , (10)

where 𝐹 (𝑡; 𝛾, 𝑐) = 1
1+𝑒−𝛾(𝑡−𝑐) is a first-order logistic transition function that depends

on the location parameter 𝑐, and a smoothing parameter 𝛾. The location parameter
𝑐 can be interpreted as the threshold between the two AR(𝜌) regimes, in the sense
that the logistic function changes monotonically from 0 to 1 as 𝑡 increases and
balances symmetrically at 𝑡 = 𝑐 (van Dĳk et al., 2002). The model’s parameters are
{𝛼𝑖}𝜌𝑖=0 and {𝛽𝑖}𝜌𝑖=0, while 𝛾, and 𝑐 are hyper-parameters.

7. Random Forests (RF) - The RF(𝜌) model is an ensemble learning method which
builds a set of decision trees (Song and Ying, 2015) in order to mitigate overfitting
and improve generalization (Breiman, 2001). At prediction time, the average
prediction of the individual trees is returned. The inputs to the RF(𝜌) model are
the last 𝜌 samples and the output is the predicted value for the next month.

8. Gradient Boosted Trees (GBT) - The GBT(𝜌) model (Friedman, 2002) is based on
an ensemble of decision trees which are trained in a stage-wise fashion similar
to other boosting models (Schapire, 1999). Unlike RF(𝜌) which averages the
prediction of several decision trees, the GBT(𝜌) trains each tree to minimize the
remaining residual error of all previous trees. At prediction time, the sum of
predictions of all the trees is returned. The inputs to the GBT(𝜌) model are the
last 𝜌 samples and the output is the predicted value for the next month.
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9. Fully Connected Neural Network (FC) - The FC(𝜌) model is a fully connected
neural network with one hidden layer and a ReLU activation (Ramachandran
et al., 2017). The output layer employs no activation to formulate a regression
problem with a squared loss optimization. The inputs to the FC(𝜌) model are the
last 𝜌 samples and the output is the predicted value for the next month.

10. Deep Neural Network (Deep-NN) - The Deep-NN(𝜌) model is a deep neural
network consisting of 10 layers with 100 neurons as in Olson et al. (2018), which
was shown to perform well for inflation prediction (Goulet Coulombe, 2020). We
used the original set-up of Olson et al. (2018) and tuned its hyper-parameters as
follows: learning rate was set to 𝑙𝑟 = 0.005, training lasted 50 epochs (instead of
200), and the ELU activation functions (Clevert et al., 2016) were replaced by ReLU
activation functions. These changes yielded more accurate predictions, hence we
decided to include them in all our evaluations. The inputs to the Deep-NN(𝜌)
model are the last 𝜌 samples and the output is the predicted value for the next
month.

11. Deep Neural Network with Unemployment (Deep-NN + Unemployment) -
Similar to PC(𝜌) which extends AR(𝜌) by including unemployment data, the
Deep-NN(𝜌) + Unemployment model extends Deep-NN(𝜌) by including the last
𝜌 samples of the unemployment rate 𝑢𝑡 . In terms of hyper-parameters, we used
identical values as in the Deep-NN(𝜌).

6.2. Ablation Models
In order to demonstrate the contribution of hierarchical component of the HRNN

model, we conducted an ablation study that considered “simpler” alternatives to HRNN
based on GRUs without the hierarchical component:

1. Single (S-GRU) - The S-GRU(𝜌) is a single GRU unit that receives the last 𝜌 values
as inputs in order to predict the next value. In GRU(𝜌), a single GRU is used for
all the time series that comprise the CPI hierarchy. This baseline utilizes all the
benefits of a GRU but assumes that the different components of the CPI behave
similarly and a single unit is sufficient to model all the nodes.

2. Independent GRUs (I-GRUs) - In I-GRUs(𝜌), we trained a different GRU(𝜌) unit
for each CPI node. The S-GRU and I-GRU approaches represent two extremes:
The first attempts to model all the CPI nodes with a single model, while the second
treats each node separately. I-GRUs(𝜌) is equivalent to a variant of HRNN that
ignores the hierarchy by setting the precision parameter 𝜏�𝑛 = 0; ∀𝑛 ∈ ℐ. Namely,
this is a simple variant of HRNN that trains independent GRUs, one for each
index in the hierarchy.

3. K-Nearest Neighbors GRU (KNN-GRU) - In order to demonstrate the contribution
of the hierarchical structure of HRNN, we devised the KNN-GRU(𝜌) baseline.
KNN-GRU attempts to utilize information from multiple Pearson-correlated CPI
nodes without employing the hierarchical informative priors. Hence, KNN-GRU
presents a “simpler” alternative to HRNN that replaces the hierarchical structure
with elementary vector GRUs as follows: First, the 𝑘 nearest neighbors of each
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CPI node were found using the Pearson correlation measure. Then, separate
vector GRU(𝜌) units were trained for each CPI aggregate along its 𝑘 most similar
nodes using the last 𝜌 values of node 𝑛 and its 𝑘-nearest nodes. By doing so, the
KNN-GRU(𝜌) baseline was able to utilize both the benefits of GRU units together
with relevant information that comes from correlated nodes.

6.3. Evaluation Metrics
Following Faust and Wright (2013) and Aparicio and Bertolotto (2020), we report

results in terms of three evaluation metrics:

1. Root Mean Squared Error (RMSE) - The RMSE is given by:

𝑅𝑀𝑆𝐸 =

√√√
1
𝑇

𝑇∑
𝑡=1

(𝑥𝑡 − �̂�𝑡)2, (11)

where 𝑥𝑡 are the monthly change rate for month 𝑡, and �̂�𝑡 are the corresponding
predictions.

2. Pearson Correlation Coefficient - The Pearson correlation coefficient 𝜙 is given
by:

𝜙 =
𝐶𝑂𝑉(𝑋𝑇 , �̂�𝑇)

𝜎𝑋 × 𝜎�̂�
, (12)

where 𝐶𝑂𝑉(𝑋𝑇 , �̂�𝑇) is the covariance between the series of actual values and the
predictions, and 𝜎𝑋𝑇 and 𝜎�̂�𝑇

are the standard deviations of the actual values and
the predictions, respectively.

3. Distance Correlation Coefficient - In contrast to the Pearson correlation measure,
which detects linear associations between two random variables, the distance
correlation measure can also detect nonlinear correlations (Székely et al., 2007;
Zhou, 2012). The distance correlation coefficient 𝑟𝑑 is given by:

𝑟𝑑 =
dCov(𝑋𝑇 , �̂�𝑇)√

dVar(𝑋𝑇) × dVar(�̂�𝑇)
, (13)

where dCov(𝑋𝑇 , �̂�𝑇) is the distance covariance between the series of actual values
and the predictions, and dVar(𝑋𝑇) and dVar(�̂�𝑇) are the distance variance of the
actual values and the predictions, respectively.

6.4. Results
The HRNN model is unique in its ability to utilize information from higher levels in

the CPI hierarchy in order to make predictions at lower levels. Therefore, we provide
results for each level of the CPI hierarchy - overall 424 disaggregated indexes belonging
to 8 different hierarchies. For the sake of completion, we also provide results for the
headline CPI index by itself. It is important to note that in this case, the HRNN model
cannot utilize its hierarchical mechanism and has no advantage over the alternatives, so
we do not expect it to outperform.
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Table 2: Average Results on Disaggregated CPI Components

Model RMSE per horizon Correlation
Name AR(1)=1.00 (at horizon=0)

0 1 2 3 4 8 Pearson Distance

AR(1) 1.00 1.00 1.00 1.00 1.00 1.00 0.06 0.05
AR(2) 1.00 1.00 1.00 1.00 1.00 1.00 0.08 0.06
AR(3) 1.00 1.00 1.00 1.00 1.00 1.00 0.08 0.06
AR(4) 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.07
AR-GAP(3) 1.00 1.00 1.00 1.00 1.00 1.00 0.08 0.06
AR-GAP(4) 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.07
RW(4) 1.00 1.00 1.00 1.00 1.00 1.00 -0.05 -0.04
Phillips(4) 1.00 1.00 1.00 1.00 0.98 1.00 -0.05 -0.04
VAR(1) 1.03 1.03 1.04 1.03 1.04 1.05 0.04 0.03
VAR(2) 1.03 1.03 1.04 1.03 1.04 1.05 0.06 0.03
VAR(3) 1.03 1.03 1.03 1.03 1.04 1.05 0.06 0.03
VAR(4) 1.02 1.03 1.03 1.03 1.03 1.04 0.07 0.04
LSTAR(𝜌 = 4, 𝑐 = 2, 𝛾 = 0.3) 1.04 1.07 1.07 1.07 1.08 1.1 0.09 0.07
GBT(4) 0.83 0.83 0.83 0.84 0.84 0.86 0.18 0.27
RF(4) 0.84 0.85 0.86 0.86 0.86 0.87 0.19 0.29
FC(4) 1.03 1.03 1.04 1.04 1.04 1.05 0.12 0.09
Deep-NN(4) 0.90 0.90 0.90 0.90 0.91 0.91 0.13 0.22
Deep-NN(4) + Unemployment 0.85 0.85 0.85 0.85 0.85 0.86 0.12 0.22
S-GRU(4) 1.02 1.06 1.06 1.07 1.04 1.12 0.10 0.08
I-GRU(4) 0.83 0.84 0.85 0.85 0.86 0.89 0.17 0.13
KNN-GRU(1) 0.91 0.93 0.96 0.97 0.96 0.96 0.19 0.15
KNN-GRU(2) 0.90 0.93 0.95 0.97 0.96 0.96 0.20 0.15
KNN-GRU(3) 0.89 0.92 0.95 0.96 0.96 0.95 0.20 0.15
KNN-GRU(4) 0.89 0.91 0.95 0.95 0.95 0.95 0.20 0.15
HRNN(1) 0.79 0.79 0.81 0.81 0.81 0.83 0.23 0.28
HRNN(2) 0.78 0.79 0.81 0.81 0.80 0.82 0.22 0.29
HRNN(3) 0.79 0.78 0.80 0.81 0.81 0.81 0.23 0.30
HRNN(4) 0.78 0.78 0.79 0.79 0.79 0.80 0.24 0.29

Notes: Average results across all 424 inflation indexes that make up the headline CPI. The RMSE results
are relative to the 𝐴𝑅(1) model and normalized according to its results, i.e., 𝑅𝑀𝑆𝐸𝑀𝑜𝑑𝑒𝑙

𝑅𝑀𝑆𝐸𝐴𝑅(1)
. Results are

statistically significant according to Diebold-Mariano test with 𝑝 < 0.02.

Table 2 depicts the average results from all the disaggregated indexes in the CPI
hierarchy. We present prediction results for horizons 0, 1, 2, 3, 4, and 8 months. The
results are relative to the 𝐴𝑅(1) model and normalized according to: 𝑅𝑀𝑆𝐸𝑀𝑜𝑑𝑒𝑙

𝑅𝑀𝑆𝐸𝐴𝑅(1)
. In

HRNN we set 𝛼 = 1.5, and the V-GRU(𝜌) models were based on 𝑘 = 5 nearest neighbors.
Table 2 shows that different versions of the HRNN model repeatedly outperform the
alternatives at any horizon. Notably, HRNN is superior to I-GRU, which emphasizes
the importance of using hierarchical information and the superiority of HRNN over
regular GRUs. Additionally, the HRNN is also superior to the different KNN-GRU
models, which emphasizes the specific way HRNN employs informative priors based
on the CPI hierarchy. These results are statistically significant according to Diebold
and Mariano (1995) pairwise tests for a squared loss-differential with p-values below
0.02. Additionally, we performed a Model Confidence Set (MCS) test (Hansen et al.,
2011) for the leading models: RF(4), Deep-NN(4), Deep-NN(4) + Unemployment,
GBT(4), IGRU(4), HRNN(1), HRNN(2), HRNN(3), and HRNN(4). MCS removed all the
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Table 3: CPI Headline Only

Model RMSE per horizon Correlation
Name* AR(1)=1.00 (at horizon=0)

0 1 2 3 4 8 Pearson Distance

AR(1) 1.00 1.00 1.00 1.00 1.00 1.00 0.29 0.22
AR(2) 1.00 0.97 0.99 1.01 1.00 0.98 0.32 0.24
AR(3) 1.00 0.98 0.98 1.00 0.96 0.97 0.33 0.25
AR(4) 1.00 0.95 0.95 0.96 0.93 0.96 0.33 0.25
AR-GAP(3) 1.00 0.98 0.98 1.00 0.96 0.97 0.33 0.25
AR-GAP(4) 0.99 0.95 0.95 0.96 0.93 0.96 0.33 0.25
RW(4) 1.05 0.98 0.99 1.01 0.97 0.96 -0.08 -0.06
Phillips(4) 0.93 0.94 0.95 0.95 0.93 0.95 0.33 0.25
LSTAR(𝜌 = 4, 𝑐 = 2, 𝛾 = 0.3) 0.98 0.95 0.95 0.97 0.95 0.95 0.32 0.24
RF(4) 1.05 1.06 1.03 1.07 1.04 1.03 0.27 0.28
GBT(4) 0.97 0.99 0.93 0.95 0.93 0.93 0.25 0.35
FC(4) 0.92 0.94 0.94 0.96 0.93 0.94 0.33 0.25
Deep-NN(4) 0.94 0.97 0.96 0.98 0.94 0.92 0.31 0.32
Deep-NN(4) + Unemployment 1.00 0.97 0.92 0.94 0.92 0.91 0.37 0.32
HRNN(4) / GRU(4) 1.00 0.97 0.99 0.99 0.96 0.99 0.35 0.37

Notes: Prediction results for the CPI headline index alone. The RMSE results are relative to the 𝐴𝑅(1)
model and normalized according to its results, i.e., 𝑅𝑀𝑆𝐸𝑀𝑜𝑑𝑒𝑙

𝑅𝑀𝑆𝐸𝐴𝑅(1)
.

baselines and left only the four HRNN variants, with HRNN(4) as the leading model
(𝑝𝐻𝑅𝑁𝑁(4) = 1.00).

For the sake of completion, we also provide results for predictions at the head of
the CPI index. Table 3 summarizes these results. When considering only the headline,
the hierarchical mechanism of HRNN is redundant and the model is identical to a
single GRU unit. In this case, we do not observe much advantage for employing the
HRNN model. In contrast, we see an advantage for the other deep learning models
such as FC(4) and Deep-NN(4) + Unemployment that outperform the more “traditional”
approaches.

Table 4: HRNN(4) vs. I-GRU(4) at different levels of the CPI hierarchy with respect to AR(1)

Hierarchy HRNN(4) | I-GRU(4)
Level |

RMSE per horizon Correlation | RMSE per horizon Correlation
AR(1)=1.00 (at horizon=0) | AR(1)=1.00 (at horizon=0)

0 2 4 8 Pearson Distance | 0 2 4 8 Pearson Distance

Level 1 0.95 0.97 0.99 1.00 0.33 0.37 | 0.98 0.98 0.99 0.97 0.25 0.38
Level 2 0.91 0.90 0.91 0.91 0.30 0.35 | 0.90 092 0.94 0.93 0.26 0.34
Level 3 0.79 0.79 0.80 0.81 0.21 0.31 | 0.82 0.89 0.94 0.94 0.23 0.37
Level 4 0.77 0.77 0.76 0.77 0.26 0.32 | 0.84 0.87 0.90 0.92 0.20 0.33
Level 5 0.79 0.77 0.77 0.80 0.21 0.31 | 0.85 0.89 0.89 0.93 0.22 0.29
Level 6 0.75 0.76 0.81 0.81 0.19 0.23 | 0.85 0.89 0.90 0.92 0.21 0.21
Level 7 0.75 0.78 0.77 0.80 0.17 0.17 | 0.87 0.89 0.92 0.94 0.18 0.15
Level 8 0.72 0.78 0.77 0.78 0.10 0.23 | 0.89 0.90 0.92 0.94 0.10 0.12

Notes: The RMSE results are relative to the 𝐴𝑅(1) model and normalized according to its results, i.e.,
𝑅𝑀𝑆𝐸𝑀𝑜𝑑𝑒𝑙

𝑅𝑀𝑆𝐸𝐴𝑅(1)
.
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Table 5: HRNN(4) vs. I-GRU(4) results for different CPI sectors with respect to AR(1)

Industry HRNN(4) | I-GRU(4)
Sector |

RMSE per horizon Correlation | RMSE per horizon Correlation
AR(1)=1.00 (at horizon=0) | AR(1)=1.00 (at horizon=0)

0 2 4 8 Pearson Distance | 0 2 4 8 Pearson Distance

Apparel 0.83 0.87 0.84 0.88 0.04 0.19 | 0.88 0.88 0.85 0.92 0.05 0.23
Energy 0.94 0.96 0.99 0.98 0.34 0.32 | 0.94 0.98 1.02 0.99 0.18 0.28
Food & beverages 0.72 0.73 0.75 0.76 0.22 0.13 | 0.80 0.80 0.81 0.82 0.18 0.22
Housing 0.79 0.80 0.82 0.82 0.17 0.24 | 0.77 0.79 0.82 0.82 0.18 0.27
Medical care 0.79 0.82 0.81 0.82 0.03 0.17 | 0.79 0.83 0.83 0.84 0.08 0.15
Recreation 0.99 0.99 1.00 1.00 0.05 0.17 | 1.00 0.99 1.00 1.00 -0.07 0.17
Services 0.90 0.92 0.95 0.94 0.04 0.15 | 0.89 0.94 0.95 0.96 0.02 0.21
Transportation 0.83 0.84 0.85 0.85 0.27 0.28 | 0.82 0.85 0.86 0.88 0.26 0.36

Notes: The RMSE results are relative to the 𝐴𝑅(1) model and normalized according to its results, i.e.,
𝑅𝑀𝑆𝐸𝑀𝑜𝑑𝑒𝑙

𝑅𝑀𝑆𝐸𝐴𝑅(1)
.

Table 4 depicts the results of HRNN(4), the best model, across all hierarchies (1-8,
excluding the headline). Additionally, we included the results of the best ablation
model, the I-GRU(4) model, for comparison. Results are averaged over all disaggregated
components and normalized by the AR(1) model RMSE as before. As evident from
Table 4, the HRNN model shows the best relative performance at the lower levels of the
hierarchy where the CPI indexes are more volatile and the hierarchical priors are most
effective.

Table 5 compares the results of HRNN(4) across different sectors. Again, we included
the results of the I-GRU(4) model for comparison. The results are averaged over all
disaggregated components and presented as normalized gains with respect to the AR(1)
model as before. The best relative improvement of HRNN(4) model appears to be in
the Food and Beverages group. This can be explained by the fact that the Food and
Beverages sub-hierarchy is the deepest and most elaborate hierarchy in the CPI tree.
When the hierarchy is deeper and more elaborate, HRNN advantages are emphasized.

Finally, Figure 7 depicts specific examples of three disaggregated indexes: Tomatoes,
Bread, and Information Technology. The solid red line presents the actual CPI values.
The dashed green line presents HRNN(4) predictions, while the dotted blue line presents
the I-GRU(4) predictions. These indexes are located down at the bottom of the CPI
hierarchy and suffer from relatively high volatility. The HRNN(4) model seems to
track and predict the trends of the real index accurately and often perform better then
I-GRU(4). As can be seen, I-GRU’s predictions appear to be more “conservative” than
HRNN. At first, this may appear counterintuitive, as HRNN has more regularization
than I-GRU. However, this additional regularization is actually informative regularization
coming from the parameters of the upper levels in the CPI hierarchy which allows the
HRNN model to be more expressive without overfitting. In contrast, in order to ensure
that I-GRU does not overfit the training data, its other regularization techniques such
the learning rate hyper-parameter and the early stopping procedure prevent the I-GRU
model from becoming overconfident. Figure 9 and Figure 10 in Appendix A depict
additional examples for a large variety of disaggregated CPI components.
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Figure 7. Examples of HRNN(4) predictions for disaggregated indexes.
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6.5. HRNN Dynamics
In what follows, we take a closer look at several characteristics of the HRNN model

that result from the non-stationary nature of the CPI. The HRNN model is a deep
learning hierarchical model that requires substantial training time depending on the
available hardware. In this work, the HRNN model was trained once using the training
dataset and evaluated on the test dataset as explained earlier. In order to investigate
the potential benefit from retraining HRNN every quarter, we performed the following
experiment: For a test-set period from 2001-2018, we retrained HRNN(4) after each
quarter, each time adding the hierarchical CPI values of the last 3 months. Figure 8
presents the results of the this experiment. The dashed green line presents the RMSE
of HRNN(4) with the “regular” training used in this work, while the dotted blue line
presents the results of retraining HRNN every quarter. As expected, in most cases,
retraining the model with additional data from the recent period improves the results.
However, this improvement is moderate and the overall model quality is about the
same.

Figure 8. The Effect of Quarterly Retraining HRNN(4).

In order to study the GFC effect on HRNN’s performance, we removed the data from
2008 onward and repeated the experiment of Table 2, using only the data from 1997 up
to 2008. The results of this experiment are summarized in Table 6. In terms of RMSE,
the gains of HRNN in Table 2 vary from 0.78 up to 0.8, in contrast to Table 6 where
the gains vary from 0.83 to 0.93, revealing that during the turmoil of the GFC, when
the demand for reliable and precise forecasting tools is enhanced, HRNN’s forecasting
abilities remain robust. In fact, its forecasting superiority was somewhat enhanced
during the GFC when compared to the AR(1) baseline.

7. Concluding Remarks

Policymakers have a wide range of predictive tools at their disposal to forecast
headline inflation: survey data, expert forecasts, inflation swaps, economic and econo-
metric models, etc. However, policy institutions lack models and data to assist with
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Table 6: Average Results on Disaggregated CPI Components Prior to The GFC

Model RMSE per horizon Correlation
Name* AR(1)=1.00 (at horizon=0)

0 1 2 3 4 8 Pearson Distance

AR(1) 1.00 1.00 1.00 1.00 1.00 1.00 0.07 0.05
AR(2) 1.00 1.00 1.00 1.00 1.00 1.00 0.08 0.06
AR(3) 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.07
AR(4) 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.07
AR-GAP(3) 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.07
AR-GAP(4) 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.07
RW(4) 1.00 1.00 1.00 1.00 1.00 1.00 -0.03 -0.03
Phillips(4) 1.00 1.00 0.99 0.99 1.00 1.00 -0.02 -0.02
VAR(1) 1.04 1.04 1.04 1.05 1.05 1.06 0.04 0.03
VAR(2) 1.03 1.04 1.04 1.04 1.05 1.05 0.05 0.03
VAR(3) 1.03 1.03 1.03 1.04 1.04 1.05 0.06 0.03
VAR(4) 1.02 1.03 1.03 1.03 1.03 1.04 0.06 0.04
LSTAR(𝜌 = 4, 𝑐 = 2, 𝛾 = 0.3) 1.05 1.06 1.05 1.08 1.09 1.10 0.08 0.06
RF(4) 0.92 0.91 0.91 0.92 0.92 0.95 0.2 0.29
GBT(4) 0.91 0.92 0.91 0.93 0.92 0.97 0.18 0.34
FC(4) 0.99 0.99 1.00 1.00 1.02 1.05 0.11 0.08
Deep-NN(4) 0.94 0.95 0.94 0.94 0.94 0.95 0.15 0.32
Deep-NN(4) + unemployment 0.92 0.92 0.94 0.95 0.93 0.95 0.2 0.35
S-GRU(4) 1.05 1.09 1.09 1.10 1.09 1.10 0.09 0.07
I-GRU(4) 0.86 0.90 0.90 0.92 0.93 0.94 0.33 0.35
KNN-GRU(1) 0.94 0.96 0.96 0.96 0.97 0.98 0.10 0.07
KNN-GRU(2) 0.94 0.96 0.95 0.96 0.97 0.98 0.11 0.08
KNN-GRU(3) 0.93 0.96 0.95 0.96 0.96 0.98 0.11 0.08
KNN-GRU(4) 0.93 0.96 0.96 0.95 0.96 0.97 0.12 0.09
HRNN(1) 0.85 0.89 0.90 0.92 0.91 0.94 0.23 0.27
HRNN(2) 0.84 0.89 0.90 0.92 0.91 0.94 0.24 0.25
HRNN(3) 0.84 0.89 0.89 0.92 0.91 0.93 0.28 0.34
HRNN(4) 0.83 0.88 0.88 0.91 0.90 0.93 0.35 0.37

Notes: Average results across all 424 inflation indexes that make up the headline CPI. In contrast to
Table 2, here we focus on results up to the GFC of 2008. The RMSE results are relative to the 𝐴𝑅(1) model
and normalized according to its results, i.e., 𝑅𝑀𝑆𝐸𝑀𝑜𝑑𝑒𝑙

𝑅𝑀𝑆𝐸𝐴𝑅(1)
. Results are statistically significant according to

Diebold-Mariano test with 𝑝 < 0.05.

CPI components’ forecasting, which are essential for a deeper understanding of the
underlying dynamics. The understanding of disaggregated inflation trends can provide
insight into the nature of future inflation pressures, their transitory factors (seasonal
factors, energy, etc.), and other factors that influence market-makers and the conduct
of monetary policy, among other decision-makers. Hence, our hierarchical approach
uses endogenous historical data to forecast CPI at the disaggregated level, rather than
forecasting headline inflation, even if it performs well (Ibarra, 2012).

The business cycle plays an important role in inflation dynamics, particularly
through specific product classes. CPI inflation dynamics are sometimes driven by
components unrelated to central bank policy objectives, such as food and energy prices,
for example. A disaggregated CPI forecast provides a more accurate picture of the
sources and features of future inflation pressures in the economy, which in turn improves
policymakers’ response efficiency. Indeed, forecasting sectoral inflation may improve
the optimization problem faced by the central bank (Ida, 2020).
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While similar headline inflation forecasts may correspond to various underlying
economic factors, a disaggregated perspective allows understanding and analyzing the
decomposition of these inflation forecasts at the sectoral or component level. Instead of
disaggregating inflation to forecast the headline inflation (Stock and Watson, 2020), our
approach allows policy and market makers to forecast specific sector and component
prices, where information is less available: almost no component or sectoral-specific
survey forecasts, expert forecast, or market-based forecasts exist. For instance, a central
bank could use such modeling features to consider components that contribute to
inflation (military, food, cigarettes, and energy) unrelated to its primary inflation
objectives to improve their final assessment of their inflation forecasts. Sector-specific
inflation forecasts should also inform economic policy recommendations at the sectoral
level, and market makers can better direct and tune their investment strategies (Swinkels,
2018).

In traditional approaches for inflation forecasting, a theoretical or a linear model is
often used, which inevitably biases the estimated forecasts. Our novel approach may
overcome the usual shortcomings of traditional forecasts, giving policymakers new
insights from a “different angle”. Disaggregated forecasts include explanatory variables
with hierarchies that reduce measurement errors at the component level. Additionally,
our model structure attenuates component-specific residuals derived from each level
and sector, resulting in improved forecasting. For all these reasons, we believe that
HRNN can become a valuable tool for asset managers, policy institutions, and market
makers lacking component-specific price forecasts critical to their decision processes.

The HRNN model was designed for predicting disaggregated CPI components,
however we believe its merits may come useful in the prediction of other hierarchical
time series such as GDP. In future work, we plan to investigate the performance of the
HRNN model on additional hierarchical time series. Moreover, in this paper we focused
mainly on endogenous models that do not consider other economic variables. HRNN
can naturally be extended to include different variables as side information by changing
the input for the GRU components to be a multi-dimensional time series (instead of
a 1-dimensional vector). In future work, we plan to experiment with additional side
information that can potentially improve the prediction accuracy. In particular, we
plan to experiment with online price data as in Aparicio and Bertolotto (2020). Finally,
we also plan to try to replace the RNNs in the model with neural self-attention (Shaw
et al., 2018). Hopefully, this should lead to improved accuracy and better explainability
through the analysis of attention scores (Hsieh et al., 2021).
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Appendix A Additional Tables and Figures

Table 7: Indexes Level 0 And 1

Level Index Parent
0 All items -
1 All items less energy All items
1 All items less food All items
1 All items less food and energy All items
1 All items less food and shelter All items
1 All items less food, shelter, and energy All items
1 All items less food, shelter, energy, and used cars and trucks All items
1 All items less homeowners costs All items
1 All items less medical care All items
1 All items less shelter All items
1 Apparel All items
1 Apparel less footwear All items
1 Commodities All items
1 Commodities less food All items
1 Durables All items
1 Education and communication All items
1 Energy All items
1 Entertainment All items
1 Food All items
1 Food and beverages All items
1 Fuels and utilities All items
1 Household furnishings and operations All items
1 Housing All items
1 Medical care All items
1 Nondurables All items
1 Nondurables less food All items
1 Nondurables less food and apparel All items
1 Other goods and services All items
1 Other services All items
1 Recreation All items
1 Services All items
1 Services less medical care services All items
1 Services less rent of shelter All items
1 Transportation All items
1 Utilities and public transportation All items

Note: Levels and Parents of Indexes might change through time
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Table 8: Indexes Level 2

Level Index Parent

2 All items less food and energy All items less energy
2 Apparel commodities Apparel
2 Apparel services Apparel
2 Commodities less food Commodities
2 Commodities less food and beverages Commodities
2 Commodities less food and energy commodities All items less food and energy
2 Commodities less food, energy, and used cars and trucks Commodities
2 Communication Education and communication
2 Domestically produced farm food Food and beverages
2 Education Education and communication
2 Energy commodities Energy
2 Energy services Energy
2 Entertainment commodities Entertainment
2 Entertainment services Entertainment
2 Food Food and beverages
2 Food at home Food
2 Food away from home Food
2 Footwear Apparel
2 Fuels and utilities Housing
2 Homeowners costs Housing
2 Household energy Fuels and utilities
2 Household furnishings and operations Housing
2 Infants’ and toddlers’ apparel Apparel
2 Medical care commodities Medical care
2 Medical care services Medical care
2 Men’s and boys’ apparel Apparel
2 Nondurables less food Nondurables
2 Nondurables less food and apparel Nondurables
2 Nondurables less food and beverages Nondurables
2 Nondurables less food, beverages, and apparel Nondurables
2 Other services Services
2 Personal and educational expenses Other goods and services
2 Personal care Other goods and services
2 Pets, pet products and services Recreation
2 Photography Recreation
2 Private transportation Transportation
2 Public transportation Transportation
2 Rent of shelter Services
2 Services less energy services All items less food and energy
2 Services less medical care services Services
2 Services less rent of shelter Services
2 Shelter Housing
2 Tobacco and smoking products Other goods and services
2 Transportation services Services
2 Video and audio Recreation
2 Women’s and girls’ apparel Apparel

Note: Levels and Parents of Indexes have changed over the years.
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