Identifying Monetary Policy Shocks: A Natural Language Approach

by S.Borağan Aruoba and Thomas Drechsel

Discussant: Xiang Li

Advanced Analytics: New Methods and Applications for Macroeconomic Policy

Bank of England, July 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Research Question: Is NLP+ML helpful in identifying monetary policy shocks?
 - Monetary policymaking rule: $s_t = f(\Omega_t) + \epsilon_t$
 - Romer and Romer (2004): $\Delta i_t = \alpha + \beta i_{t-1} + \gamma X_t + \epsilon_t^{RR}$
 - ★ Information set Ω_t : numerical forecasts (X_t)
 - ★ Linear regression

- Research Question: Is NLP+ML helpful in identifying monetary policy shocks?
 - Monetary policymaking rule: $s_t = f(\Omega_t) + \epsilon_t$
 - Romer and Romer (2004): $\Delta i_t = \alpha + \beta i_{t-1} + \gamma X_t + \epsilon_t^{RR}$
 - ★ Information set Ω_t : numerical forecasts (X_t)
 - ★ Linear regression
 - This paper: $\Delta i_t = \alpha + \beta i_{t-1} + \Gamma(\tilde{X}_t, Z_t) + \epsilon_t^*$
 - * Information set Ω_t : numerical forecasts and verbal information (sentiment) \leftarrow NLP
 - ★ Nonlinearities \leftarrow ML

- Research Question: Is NLP+ML helpful in identifying monetary policy shocks?
 - Monetary policymaking rule: $s_t = f(\Omega_t) + \epsilon_t$
 - Romer and Romer (2004): $\Delta i_t = \alpha + \beta i_{t-1} + \gamma X_t + \epsilon_t^{RR}$
 - ★ Information set Ω_t : numerical forecasts (X_t)
 - ★ Linear regression
 - This paper: $\Delta i_t = \alpha + \beta i_{t-1} + \Gamma(\tilde{X}_t, Z_t) + \epsilon_t^*$
 - * Information set Ω_t : numerical forecasts and verbal information (sentiment) \leftarrow NLP
 - $\star \ \text{Nonlinearities} \leftarrow \text{ML}$
- Text Data
 - ✓ Greenbook+Tealbook: staff analysis and outlook, Redbook+Beigebook: economic conditions by district ← information set at the onset of the FOMC meeting
 - \blacktriangleright \times FOMC meeting minutes and transcripts \leftarrow decision process rather than information set

- Research Question: Is NLP+ML helpful in identifying monetary policy shocks?
 - Monetary policymaking rule: $s_t = f(\Omega_t) + \epsilon_t$
 - Romer and Romer (2004): $\Delta i_t = \alpha + \beta i_{t-1} + \gamma X_t + \epsilon_t^{RR}$
 - ★ Information set Ω_t : numerical forecasts (X_t)
 - ★ Linear regression
 - This paper: $\Delta i_t = \alpha + \beta i_{t-1} + \Gamma(\tilde{X}_t, Z_t) + \epsilon_t^*$
 - * Information set Ω_t : numerical forecasts and verbal information (sentiment) \leftarrow NLP
 - $\star \ \text{Nonlinearities} \leftarrow \text{ML}$
- Text Data
 - ✓ Greenbook+Tealbook: staff analysis and outlook, Redbook+Beigebook: economic conditions by district ← information set at the onset of the FOMC meeting
 - \blacktriangleright \times FOMC meeting minutes and transcripts \leftarrow decision process rather than information set
- Method

 - Ridge/LASSO regression

Main findings

- Description of the new shock measurement
 - Better capture the systematic component of monetary policy R^2 0.50 ightarrow 0.76
 - Main drivers: sentiment about broad real activity and international economic development, numerical forecasts of real activity
- Effects of the new shock measurement
 - ▶ BVAR analysis: consistent with theoretical concensus

Main findings

- Description of the new shock measurement
 - Better capture the systematic component of monetary policy R^2 0.50 ightarrow 0.76
 - Main drivers: sentiment about broad real activity and international economic development, numerical forecasts of real activity
- Effects of the new shock measurement
 - ▶ BVAR analysis: consistent with theoretical concensus

A lot to like

- \bullet Important and innovative: NLP+ML \rightarrow "pure" monetary policy shocks
- Enormous data work
- Results already very rich and robust

When the shock is large

- Nov 1984, FOMC participants' views about the economy differ from that of the Fed staffs'
- Nov 1994, "behind the curve", "ahead of general expectation"
- \Rightarrow Uncertainty
- \Rightarrow Non "pure" shocks: information effect, forward guidance, large-scale asset purchase

Figure 4: ESTIMATED MONETARY POLICY SHOCKS

Comment 1: Uncertainty

- The unsystematic surprises could be larger when uncertainty is higher
- Baker-Bloom-Davis and Husted-Rogers-Sun monetary policy uncertainty index

Comment 1: Uncertainty

- The unsystematic surprises could be larger when uncertainty is higher
- Baker-Bloom-Davis and Husted-Rogers-Sun monetary policy uncertainty index

• Significant correlation coefficients between larger surprises and uncertainty

- Second moment of sentiment
- NLP for uncertainty and account for it in the model
- Compare the increase in R^2 in periods with low and high uncertainty

Comment 2: Non "pure" shocks

- Information effect
 - ► Fed: $s_t = f(\Omega_t^m, \Omega_t^f) + \epsilon_t$, say $f(\Omega_t^m) + g(\Omega_t^f) + \epsilon_t$
 - The method in this paper can produce a cleaner measure of ϵ_t
 - But market reacts to $g(\Omega_t^f) + \epsilon_t$, information effect matters in the full responses

- Can construct Ω^m_t and separate information effect and "pure" shock
 - Among the variables in numerical forecasts, use market consensus
 - Difference between Fed staff forecasts and market consensus
- Further, can even measure market sentiment and find the difference with Fed sentiment
- Show time series of this measurement and HF measurement

Comment 2: Non "pure" shocks

- Porward guidance
 - "ahead of general expectation", guide future course of FFR
 - Fed: $s_t = f(\Omega_t^m) + g(\Omega_t^f) + \Gamma^{FG} + \epsilon_t$
 - Market reacts to $g(\Omega_t^f) + \Gamma^{FG} + \epsilon_t$

- Can identify forward guidance from the FOMC meeting minutes based on textual analysis
- Show the IRF separately to "pure" shock, information effect, and forward guidance

Comment 2: Non "pure" shocks

- Porward guidance
 - "ahead of general expectation", guide future course of FFR
 - Fed: $s_t = f(\Omega_t^m) + g(\Omega_t^f) + \Gamma^{FG} + \epsilon_t$
 - Market reacts to $g(\Omega_t^f) + \Gamma^{FG} + \epsilon_t$

Suggestion

- Can identify forward guidance from the FOMC meeting minutes based on textual analysis
- Show the IRF separately to "pure" shock, information effect, and forward guidance
- Large-scale asset purchase
 - Less concern in the pre-2008M10 sample
 - But matters in the BVAR covering through 2016

- $\bullet\,$ Show results limiting the BVAR analysis to the same pre-2008M10 sample
- Show results using the new measurement but the same periods as Romer and Romer (2004)

- A very nice application of NLP+ML on monetary policy shock identification!
- Important for evaluating and guiding policymaking
- Tons of possibilities
- Good luck with the paper!