A Long Run Anatomy of Task Exposures to Technology

Joseba Martinez¹ and Johan Moen-Vorum²

¹London Business School & CEPR ²London Business School

Motivation

- To what extent has technological progress led to destruction and creation of work in the US in the post-war period?
- Which technologies explain reallocation across tasks/task wage premia?

Motivation

- To what extent has technological progress led to destruction and creation of work in the US in the post-war period?
- Which technologies explain reallocation across tasks/task wage premia?

What we do

• Develop a NLP methodology to measure task-relevant technological progress

Motivation

- To what extent has technological progress led to destruction and creation of work in the US in the post-war period?
- Which technologies explain reallocation across tasks/task wage premia?

What we do

- Develop a NLP methodology to measure task-relevant technological progress
- Extract a set of latent factors that drive the evolution of technology

Motivation

- To what extent has technological progress led to destruction and creation of work in the US in the post-war period?
- Which technologies explain reallocation across tasks/task wage premia?

What we do

- Develop a NLP methodology to measure task-relevant technological progress
- Extract a set of latent factors that drive the evolution of technology
- Estimate the causal effect of technology factors on employment

Motivation

- To what extent has technological progress led to destruction and creation of work in the US in the post-war period?
- Which technologies explain reallocation across tasks/task wage premia?

What we do

- Develop a NLP methodology to measure task-relevant technological progress
- Extract a set of latent factors that drive the evolution of technology
- Estimate the causal effect of technology factors on employment
- Which technologies drive reallocation across tasks and task wage premia?

Findings

- Anatomy of task exposures: heterogeneous effects of tech. factors on task employment (positive, negative, persistent, transitory...)
- Characterize task-bias and technology domain of tech. factors
- Which technologies matter for change in task composition and wage premia of US economy?
 - 1970s-80s: manual-biased, machinery tech.
 - 1990s-: cognitive-biased, computers & software tech.
 - Trade exposure: more important than technology in early 00s

Outline

- Measuring technological exposure of tasks
- Anatomy of task exposures
- Variable importance analysis for task shares and wage premia

Measuring Technological Exposure of Tasks

What is technological exposure?

- A model of flow of new task-relevant technologies
- $i \in [1, I]$ indexes tasks, $j \in [1, J]$ indexes technological factors
- At time t, flow of new tech $X_{i,t}$ is given by

$$X_{i,t} = \mu_{1,i} f_{1,t} + \mu_{2,i} f_{2,t} + \dots + \mu_{J,i} f_{J,t} + \chi_{i,t}$$

- ullet Common technological factors f affect tasks with loadings μ
- ullet We measure $X_{i,t}$ as average relevance of patents granted at time t to task i

Task Data

Accountants and Auditors

Examine, analyze, and interpret accounting records to prepare financial statements, give advice, or audit and evaluate statements prepared by others. Install or advise on systems of recording costs or other financial and budgetary data.

Sample of reported job titles: Accountant, Accounting Officer, Audit Partner, Auditor, Certified Public Accountant (CPA), Cost Accountant, Financial Auditor, General Accountant, Internal Auditor, Revenue Tax Specialist

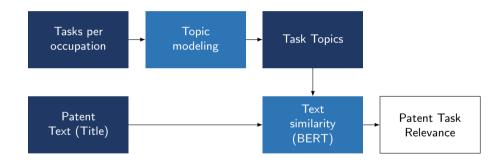
Contents ▼

Occupational Requirements

Detailed Work Activities

Save Table: 🖺 XLSX 🚨 CSV

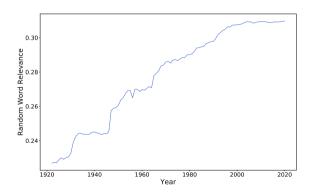
✓ 10 of 26 displayed


- Prepare financial documents, reports, or budgets.
- Advise others on financial matters.
- Report information to managers or other personnel.
- Advise others on business or operational matters.
- Examine financial records.
- Collect evidence for legal proceedings.

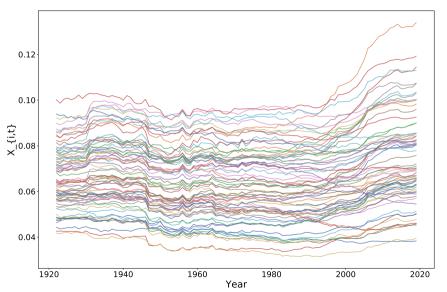
#	Detailed work activity	
1	Review art or design materials	
i		
2071	Monitor resources.	

	year	DWA	Hours
	1976	1	
,	:		
		2071	
	1977	1	

Methodology: Measuring Task Exposure


Language trends

Data source


 Corpus of Contemporary American English (COCA)

Method

- Random draws from the 10,000 most frequent words in the corpus
- Calculate similarity between random samples and patent titles

Task Technological Exposure, $X_{i,t}$

What are the factors that drive technological exposure?

ullet Principal components analysis to estimate μ 's and f's

$$X_{i,t} = \mu_{1,i} f_{1,t} + \mu_{2,i} f_{2,t} + \dots + \mu_{J,i} f_{J,t} + \chi_{i,t}$$

So far, "black box". What are the factors?

What are the factors that drive technological exposure?

• Principal components analysis to estimate μ 's and f's

$$X_{i,t} = \mu_{1,i} f_{1,t} + \mu_{2,i} f_{2,t} + \dots + \mu_{J,i} f_{J,t} + \chi_{i,t}$$

So far. "black box". What are the factors?

Task-bias of technological change (use NLP to assign scores to each task)

$$\mu_{k,i} = c + \beta_1 \text{Manual-Cognitive}_i + \beta_2 \text{Routine-Non-routine}_i + \beta_3 \text{Social}_i$$

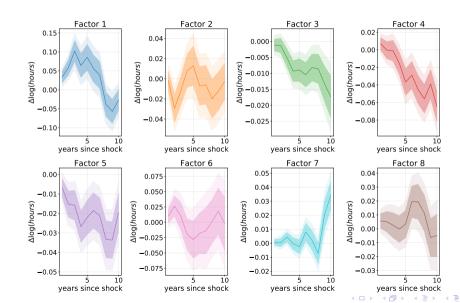
Underlying tech: patent categories that account for variation in factors (Patent Categories)

Finding: main factors

• First two factors (65% of variance)

	Factor 1	Factor 2
Manual-Cognitive	Cognitive-biased	Manual-biased
Social	+	_
Technology Category	Computers & Software	Machinery

Estimating the IRFs of technology shocks


• Task-hour regressions:

$$\log \left(\mathsf{Hours}_{i,t+h}\right) = \alpha_{i,h} + \gamma_{t,h} + \sum_{k=1}^{N} \frac{\beta_{k,h} \mu_{i,k} f_{k,t}}{\beta_{k,h} \mu_{i,k} f_{k,t}} + \dots$$

$$\sum_{\ell=0}^{5} a_{h,\ell} \log(\mathsf{Hours}_{i,t-\ell}) + \sum_{J} \sum_{\ell=1}^{10} c_{j,h,\ell} \mu_{i,J} f_{j,i,t-\ell} + \xi_{i,h}$$

• Recursive identification: technological shocks do not affect hours contemporaneously

IRF yearly data - Task Hours

Variable Importance

Variable importance

Baseline specification (OLS)

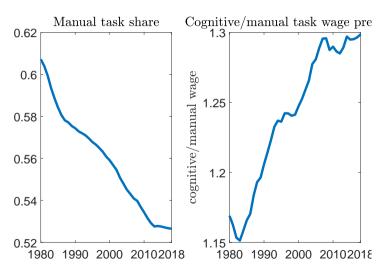
$$y_{i,t+h} = \alpha_i + \gamma_t + \sum_k \beta_k \mu_{k,i} f_{k,t} + \text{Import Exposure}_{i,t} + \varepsilon_{i,t}$$

- Interact factors and import exposure with task content scores (Ridge)
- y: task shares, task wage premia

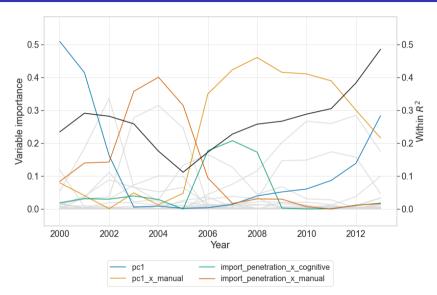
Variable importance

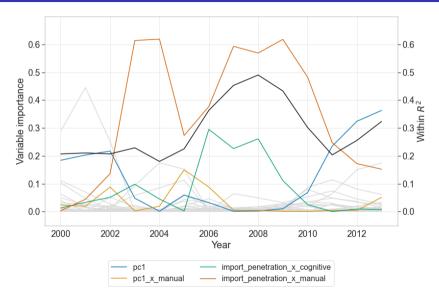
Baseline specification (OLS)

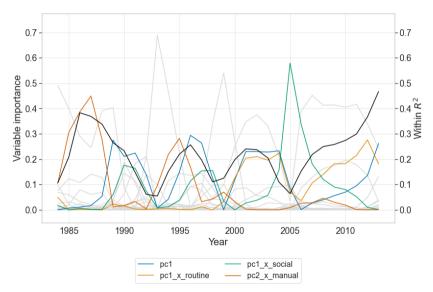
$$y_{i,t+h} = \alpha_i + \gamma_t + \sum_k \beta_k \mu_{k,i} f_{k,t} + \text{Import Exposure}_{i,t} + \varepsilon_{i,t}$$

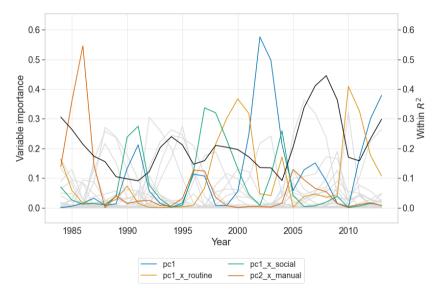

- Interact factors and import exposure with task content scores (Ridge)
- y: task shares, task wage premia
- Variable importance (Gu, Kelly and Xiu (2020)):

$$VI_{j} = \frac{R^{2} - R_{-j}^{2}}{\sum_{j} R^{2} - R_{-j}^{2}}$$


- $R^2 R_{-j}^2 \equiv$ change in within R^2 setting variable j to zero
- Calculate variable in importance in rolling windows to look at time variation


Task shares and wage premia


Variable importance: task shares


Variable importance: task wage premia

Variable importance: task shares

Variable importance: task wage premia

Conclusion

- We propose a methodology to measure task-specific technological exposure
- Document heterogeneous impacts on task composition of economy
- Which technologies matter most?
 - 1970s-80s: manual-biased, machinery tech.
 - 1990s-: cognitive-biased, computers & software tech.
 - Trade exposure: more important than technology in early 00s

Appendix

Categorizing work

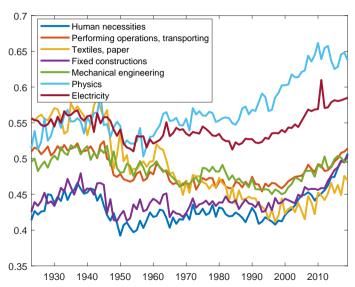
Cognitive

'cognitive, conscious, intellectual activity, thinking, reasoning, remembering, decision making, understanding and producing language, communicating; empathy, creativity'

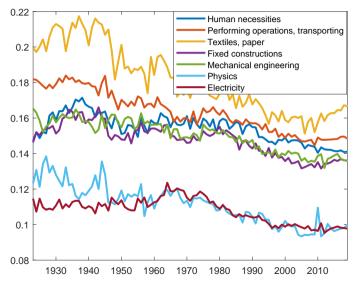
Manual

'manual work involving the hands, strength, physical presence, manual dexterity; moving, carrying, lowering, lifting objects' Task
Topics

Text
similarity
(BERT)


Work
categories

Assign each task topic a manual-cognitive score


$$\mathsf{Manual\text{-}Cognitive\text{-}Score} = \frac{\mathsf{Manual\text{-}Relevance}}{\mathsf{Manual\text{-}Relevance} + \mathsf{Cognitive\text{-}Relevance}}$$

PC1 (Cognitive Factor): IPC decomposition

PC2 (Manual Factor): IPC decomposition

