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Abstract

This article proposes a flexible framework to identify state-dependent effects of macroe-

conomic policies. In the literature, it is common to either estimate constant policy effects

or introduce state-dependency in a parametric fashion. This, however, demands prior as-

sumptions about the functional form. Our new method allows to identify state-dependent

effects and possible interactions in a data-driven way. Specifically, we estimate hetero-

geneous policy effects using semi-parametric varying-coefficient models in an otherwise

standard VAR structure. While keeping a parametric reduced form for interpretability and

efficiency, we estimate the coefficients as functions of modifying macroeconomic variables,

using random forests as the underlying non-parametric estimator. Simulation studies show

that this method correctly identifies multiple states even for relatively small sample sizes.

To further validate our method, we apply the semi-parametric framework to the historical

data set by Ramey & Zubairy (2018) and offer a more granular perspective on the depen-

dence of the fiscal policy efficacy on unemployment and interest rates.
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1 Introduction

Endogeneity plagues the empirical study of policy effects. More often than not, any attempt

to directly estimate the effect of the policy variable, x, on the response variable, y , will result

in biased coefficient estimates since y might have given rise to the implementation of policy,

x, but x affects y . Hence, a large part of the macroeconomic literature has focused on resolv-

ing this simultaneity issue by imposing short-run, long-run, or sign restrictions. More recently,

constructing estimates of unanticipated policy shocks using them as external instruments. Par-

ticularly the use of external instruments has increased the confidence in coefficient estimates

that no longer rely on sometimes hard to defend identification schemes (e.g. Wolf, 2020).

The compelling research on identification strategies to overcome endogenity concerns al-

lows us to shift our attention to a hitherto often ignored source of estimation bias: model mis-

specification. With some exceptions, most empirical contributions on estimating macroeco-

nomic policy effects assume a linear and constant effect structure. In contrast, many theoret-

ical contributions highlight that effects could be non-linear due to asymmetric effects (i.e. an

interest rate increase might not have the same effect as a decrease) and state-dependence (i.e.

the economic environment as well as time). For instance, as Nakamura & Steinsson (2018) point

out that monetary and fiscal policy effects may differ depending on the level of slack and open-

ness of the economy. Consequently, even with a cleanly identified policy shock, estimating a

linear model will yield biased estimates of the possibly non-linear response to policy.

To reduce the potential for model misspecification bias, we propose a flexible framework

to identify state-dependent and asymmetric effects of macroeconomic policies. The approach

uses a semi-parametric varying-coefficient estimator in an otherwise standard vector autore-

gression (VAR). Hence, we call this new approach a varying-coefficient VAR or VC-VAR. While

keeping a parametric reduced form for interpretability and more efficient estimation, we esti-

mate the (dynamic) policy effect non-parametrically by using random forests. Random forests

allow for an entirely data-driven estimation of potentially heterogeneous policy effects, which

can depend on the time or state of the economy. The proposed method could also be inter-
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preted as a machine-learning augmented version of a threshold VAR (TVAR) model with the

random forest predicting the splits and interactions of states.

The suggested approach to estimate VC-VARs can therefore be summarised in three steps.

Firstly, determine the variables that may alter the VAR coefficient estimates. We call them mod-

erators following the varying-coefficient literature. Secondly, define the VAR coefficients as

functions of the set of moderator variables. Thirdly, estimate the VC-VAR using random forests.

In simulation studies, we show the advantages of the proposed semi-parametric estimation

method. The VC-VAR:

1. Detects any state-dependence and interactions between different moderator variables in

a dynamic system.

2. Captures non-linear and asymmetric effects, depending on the magnitude and the sign

of the policy shock.

3. Performs well in identifying heterogeneous policy responses even for small sample sizes

typical for the macroeconomic context. Thus, our approach offers a preferred bias-variance

trade-off if the data generating process exhibits state-dependence.

4. Handles many moderator variables and detects the relevant moderator variables even

when some moderators are correlated.

Furthermore, we apply the VC-VAR to the historic data-set by Ramey & Zubairy (2018) (RZ)

to empirically validate the new method. RZ study the state-dependence of the fiscal multiplier

for high or low unemployment and Zero Lower Bound (ZLB) periods. We are able to replicate

their results by employing their pre-defined dummy variables for high or low unemployment

and ZLB as moderator variables. Furthermore, we show that the newly proposed method yields

again similar results when using the federal funds and unemployment rate directly as modera-

tors. Hence, the VC-VAR method does not require the definition of dummy variables to detect

state-dependence.

The empirical exercise also allows for several extensions of RZ’s study. Firstly, using the fed-
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eral funds rate and the unemployment rate as moderator variables offers a more granular per-

spective on the dependence of the fiscal multiplier on interest and unemployment rates and

allows to analyse their interactions. This reveals that it is the unemployment rate that drives the

state-dependence of fiscal policy effects and not the ZLB. We find that periods of ZLB mostly

coincide with periods of high unemployment. Hence, not taking account of the interaction of

unemployment and the ZLB would falsely indicate that fiscal spending was more effective in pe-

riods of ZLB. Secondly, using the instrument for the government spending shock as a moderator

variable itself, we show that the asymmetric effect of fiscal shocks is small (i.e. positive or nega-

tive shocks have similar effects). Finally, we extend RZ’s study by allowing for thirteen potential

moderator variables from the FRED dataset. This reveals that the S&P 500 index and newly

built housing units are important moderator variables for the estimation of state-dependent

VC-VARs. These variables have not received much attention in previous theoretical or empir-

ical research. The VC-VAR approach can deal with many potential moderators and therefore,

allows for such exploratory analysis showing that fiscal spending appears to be more effective

whenever the S&P 500 index and/or the construction of new housing units is growing.

Literature. This paper contributes to several strands of the literature. First, we provide a gen-

eral method to estimate state-dependent policy effects. Recently, both theoretical (Rendahl,

2016; Canzoneri et al., 2016; Eichenbaum et al., 2018; Farhi & Werning, 2016) and empirical

(Auerbach & Gorodnichenko, 2012, 2013; Fazzari et al., 2015; Ascari & Haber, 2019; Ramey &

Zubairy, 2018; Paul, 2020) work has shed light on the importance of considering state-dependent

and non-linear effects of macroeconomic policies. However, this has required to pre-specify

any time- and state-dependence. More specifically, one has to construct dummies based on

some discretionary thresholds and decide on the functional form of their interaction with the

policy shock. This paper uses machine learning methods to automate this process and aims

to shed more light on the high-dimensionality of policy effects. Using an underlying non-

parametric estimator, we are agnostic about the functional form of any state-dependence.
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Second, the new estimation method makes VARs more flexible, thereby reducing model-

specific bias. Recent research on the differences of local projections (LP) and SVARs has de-

scribed the choice between the two methodologies as a trade-off between variance and bias in

applied research1 (Li et al., 2021). While our approach is also concerned with misspecification

bias, the focus is on a different source for this bias. Here, the bias stems from state-dependent

coefficients. For Li et al. (2021), the model misspecification arises when the true data generat-

ing process (DGP) is a vector autoregressive moving average (VARMA) model, but the econo-

metrician specified a VAR or when not selecting the correct lag length. LP’s repeated estimation

makes it more flexible for the latter misspecification but at the cost of increased variance. How-

ever, this does not hold for misspecifying a non-linear model as a linear one. Neither LP nor

VARs can mitigate the bias from such misspecification. Nevertheless, the one-time estimation

of the VAR model makes coefficient estimates with our method less volatile than LPs for small

samples, which we usually observe in macroeconomics. Hence, we present our method in the

context of VARs. This might make VARs more attractive when suspecting state-dependence and

choosing between the two methodologies, LPs and VARs. Similarly, Ramey & Zubairy (2018)

have argued that LPs allow for more straightforward inclusions of non-linearities. Our new esti-

mation method makes this process simple and automatic for the VAR case, focusing the choice

between LPs and VARs back on statistical properties rather than the simplicity of implementa-

tion.

Third, we follow a recent strand of research exploring how to utilize advances from the ma-

chine learning literature for macroeconomic analysis (Duarte, 2018; Joseph, 2019; Goulet Coulombe,

2020; Gu et al., 2020). Our paper is closest to Goulet Coulombe (2020) who also proposes a

varying-coefficient model in macroeconomics. However, the main difference is that Goulet Coulombe

(2020) aims to improve macroeconomic predictions. We are more interested in identifying po-

tential state-dependence in macroeconomic policies using a high-dimensional semi-parametric

VAR framework. Hastie & Tibshirani (1993) first introduced varying coefficient models. These

1When estimated in population with infinite lag length, both methods produce the same IRFs (Plagborg-Møller
& Wolf, 2019)
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models are linear in their regressors, but their coefficients are estimated by generalized additive

models to allow them to vary as a function of other factors. Wang & Hastie (2014), for instance,

use regression trees as the base learner to identify varying effects. The advantage of using re-

gression trees over other non-parametric techniques, such as kernel-based estimates, is that

they can handle many potentially mixed-type variables. Zhou & Hooker (2019) propose to use

boosted decision trees as the non-parametric effect modifiers and provide proof of asymptotic

consistency of the estimator.

Outlook. The rest of the paper is structured as follows. Section 2 gives an overview of the

varying-coefficient model and motivates the use of random forests as the non-parametric co-

efficient estimator. Furthermore, section 2 explains how to estimate high-dimensional impulse

response functions using the varying-coefficient model. In section 3, we conduct several simu-

lation studies showcasing the performance of the method, while section 4 applies the method

to the recent paper by Ramey & Zubairy (2018), estimating state-dependent fiscal multipliers.

Finally, section 5 concludes.

2 Methodology

This section first motivates the use of trees as the underlying non-parametric estimator for cap-

turing regime shifts in the economy. Next, we introduce a varying-coefficient model using trees

as base learners and provide computational details on how to estimate state-dependent coeffi-

cients non-parametrically. Furthermore, we show how this estimator can be used in the context

of structural vector autoregressions (SVAR) to obtain high-dimensional impulse-response func-

tions.
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2.1 Macroeconomic state-dependencies as trees

Random forests as non-parametric estimators have increased in popularity as they allow for

complex non-linearities and asymmetric effects that can handle high-dimensional data and

are, compared to other machine learning algorithms, robust as they demand little to no tuning.

Figure 1: Example Tree

Full sample

High unemployment

ZLB

yt = ρ1 yt−1 +φ1ε
g
t +εy

t

No ZLB

yt = ρ2 yt−1 +φ2ε
g
t +εy

t

Low unemployment

ε
g
t ≥ 0

yt = ρ3 yt−1 +φ3ε
g
t +εy

t

ε
g
t < 0

yt = ρ4 yt−1 +φ4ε
g
t +εy

t

Note: Illustrative tree capturing state-dependent policy effects. The set of potential moderators is L =
{Unemploymentt−1, Z LBt−1,εg

t−1}, where εg is the government spending shock.

Moreover, random forests offer a natural way to represent the macroeconomic state-space

and state-dependence in macroeconomic time-series (see also Goulet Coulombe (2020)). An-

ticipating our empirical application, Figure 1 shows an illustrative tree capturing potential state-

dependence of fiscal policy efficacy as in Ramey & Zubairy (2018). Prior to estimation, a re-

searcher studying fiscal policy might assume that the effect of government spending shocks

denoted by εg
t could depend on the level of unemployment as suggested by Rendahl (2016) and

found by Ramey & Zubairy (2018). This is depicted in the first split of Figure 1 into the "high

unemployment" and "low unemployment" branch. Furthermore, for "high unemployment", it

might matter whether the economy is already close to the ZLB or not. If this were the case, the

tree-based estimator would split the "high unemployment" branch into two further branches

differentiating between "ZLB" and "no ZLB". Additionally, the output response might be asym-

metric in the "low unemployment" state, depending on the sign of the policy shock. This would
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create a further split of the "low unemployment" branch into "εg
t ≥ 0" and "εg

t ≤ 0". This step-

by-step illustration shows how macroeconomic state-dependencies can be depicted by trees.

For parametric estimation approaches, the assumptions depicted in figure 1 pose a high

degree of model uncertainty. To avoid model specification bias, one has to correctly pre-define

the different states and cut-off levels, as well as their interactions. Using tree-based learners

in our semi-parametric approach, we reduce the problem of model uncertainty to the choice

of which effect modifiers to include (e.g. unemployment and ZLB), while the random forest

estimates the underlying splits as illustrated in figure 1.

2.2 Varying Coefficient Model

This subsection introduces a varying coefficient model which employs tree-based learners to

augment the estimation of a parametric baseline specification in search of potential state-dependence.2

Consider the following simple model structure:

yt =βtεt +x ′
tγt +ut ,

βt = f (Ωt ),

where yt is some macroeconomic outcome variable of interest, εt some exogenous policy shock,

x t a vector of controls, andβt is a high-dimensional coefficient, which is estimated non-parametrically

as a function of the state space of the economy, Ωt . We will assume throughout that, εt , x t and

Ωt , are exogenous. In this setup, the relationship between the outcome, yt and some policy

shock, εt may vary depending on the state of the economy captured by Ωt . In principle,Ωt can

contain many modifying variables and it may overlap with other exogenous regressors in the

low-dimensional linear regression.

2Another advantage of using trees as base learners over non-parametric kernel smoothing or spline-based
methods is that they can handle high-dimensional data of mixed types.
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Tree-based varying coefficient model. In the definition of the tree-based estimator, we follow

Wang & Hastie (2014)3. The tree-based method aims to approximate β(Ωt ) by a piece-wise

constant function. The idea is to partition the state space Ωt following a certain optimization

criterion and to approximate β(Ωt ) in each partition by a constant vector. Let Cm
M
m=1 denote a

partition of the state space Rq satisfying Cm ∩Cm′ =; for any m 6= m′, and ∪M
m=1Cm =Rq , where

M denotes the number of partitions. Then, the tree-based varying coefficient estimator can be

written as

yt =
M∑

m=1
βm I(Ωt∈Cm )εt +x ′

tγt +ut , (1)

where I(•) denotes the indicator function with I(c) = 1 if event c is true and zero otherwise. The

implied heterogeneous policy effect is thus,

β(Ωt ) =
M∑

m=1
βm I(Ωt∈Cm ).

Consequently, a constant OLS estimate of β can be interpreted as the average policy effect over

all partitions

βOLS =
M∑

m=1

nm

N
βm I(Ωt∈Cm ).

where nm and N denote the observations in partition m and the overall sample size, respec-

tively. The set partitions Cm are also referred to as terminal nodes or leaf nodes of the tree,

describing the various estimated states of the policy effect. However, the number of nodes M ,

the particular partitions {Cm}M
m=1 as well as the values for βm are unknown and require simulta-

neous estimation. The number of partitions is usually tuned using some criteria evaluating the

out-of-sample fit. The latter is crucial in order to avoid over-fitting. For instance, picture the

case of a tree that is partitioned entirely based on the in-sample fit. The best and, in fact per-

fect fit would be reached by having N partitions, each representing a single observation. There

are several methods to avoid over-fitting, with cross-validation being the most common one.

3Wang & Hastie (2014) use a tree-based estimator as a base learner for boosting, while we will bag multiple
tree-based estimates to obtain a more robust forest-based estimate.

8



During cross-validation, the sample is randomly split into a training and validation set, with

the first being used for estimating the model and the latter for testing the model’s performance

out-of-sample. We use k-fold cross-validation where the sample is split into k folds such that

k-1 folds are the training set and one fold is the test set. This is repeated k times for each fold.

Having decided on the number of partitions, which is usually done automatically by most

implementations, the remaining problem is to find the optimal partition sets and coefficient

estimates corresponding to those splits. Given the parametric nature of the governing function,

we minimize according to the least squares criterion

(
Ĉm , β̂m

)= argmin
(Cm ,βm )

T∑
t=1

(
yt −

M∑
m=1

βm I(Ωt∈Cm )εt −x ′
tγt

)2

(2)

.

In the above specification, the estimation of βm is nested in that of the partitions. Hence,

within each partition,βm is simply the least squares estimator on the corresponding sub-sample.

Therefore, minimizing equation (2) boils down to finding the optimal set of partitions {Cm}M
m=1

such that

Ĉm = argmin
Cm

T∑
t=1

M∑
m=1

(
yt −βm(Cm)I(Ωt∈Cm )εt −x ′

tγt
)2 (3)

.

Forest-based varying coefficient model. The forest-based estimator represents a collection of

many tree-based estimates following the random forest ensemble algorithm by Breiman (2001).

The idea is simply to reduce the variance of a single tree’s estimate by averaging over multiple

trees. More specifically, k trees are estimated based on k independent identically distributed

random samples of the data set. With each tree casting a prediction for βm , the random forest

isdictor is formed by taking the average over all trees. This procedure is commonly referred to as

bootstrap averaging or bagging as introduced in Breiman (1996). Additionally, Breiman (2001)

proposes to use a random subset of state space variables in Ωt , which improves the accuracy
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by minimizing the correlation between state space variables while at the same time keeping

the strength of their signal. Breiman (2001) shows that random forest are more robust and ac-

curate compared to single trees. Given their preferred characteristics, we will use forest-based

estimates throughout this paper.

The underlying optimization problem remains the same as in equation (3) for a single tree

as a base learner with only slight changes to the tree producing algorithm now using random

subsets of the state space at every split. The forest-based estimate of the varying coefficient is

then simply the average over all these trees:

βRF (Ωt ) = 1

K

K∑
k=1

Mk∑
mk=1

βmk I(Ωt∈Cmk
).

Computational details. We rely (for now) on the implementation of a coefficient-wise varying

coefficient regression model by Buergin & Ritschard (2017) readily available in their R-package

vcrpart. While this section will give a short overview of how the estimation algorithm works,

we refer for further details to the original paper. Algorithm 1 provides a formal summary of how

to estimate a varying coefficient model using a random forest as its underlying non-parametric

estimator.

The Random Forest-VCM function in Algorithm 1 is a wrapper function growing numerous

trees based on bootstrapped samples of the original data. Coefficient predictions are then ob-

tained by averaging over all tree predictions leading to reduced variance and hence more robust

estimates.

The individual trees are estimated in the Randomized Tree-VCM function in Algorithm 1.

The main optimization objective is to minimize the negative log likelihood of the linear para-

metric function. Given some minimal node size, i.e. the number of observations which are

represented by each terminal node of the tree, and a minimum log-likelihood improvement re-

quired for each split, the algorithm searches for the optimal partition over the value space of the

modifying variables for each coefficient at each node. This is done until no further split satisfies
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Algorithm 1 Estimation of varying coefficient model using a random forest following Buergin &
Ritschard (2017)

Parameters: T number of trees in forest, e.g., T = 100
N0 minimum node size, e.g., N0 = 30
Dmin minimum −2· log-likelihood reduction, e.g., Dmin = 2
mtr y number of combinations of coefficients, nodes, and moderators to

randomly sample as split candidates, e.g., mtr y = 5

function RANDOM FOREST-VCM(S,Ω)
H ←; . Initialize Forest
for trees in t = 1 to T do

St ← A bootstrap sample from the dataset S
ht ← Randomized Tree-VCM(St ,Ω)
H ← H ∪ht

end for
return H

end function . Coefficient predictions by averaging over all trees in H

function RANDOMIZED TREE-VCM(S,Ω)
Initialize Ck1 ←Ωk1 × . . .×ΩkL and Mk ← 1 for all partitions k = 1, . . . ,K .

repeat
Compute l̂M̂ = maxβ,γ lM̂ (β,γ) of the current model using the latest partitions

M̂ : yi = x′iγ+
K∑

k=1

Mk∑
m=1

I(Ωi k∈Ckm )xi kβkm

using all observations i ∈ S.
Randomly sample combinations of coefficients, nodes and moderators.
for partitions k = 1 to K mtr y do

for nodes m = 1 to M mtr y
k and randomized subset of moderators l̃ = 1 to L̃mtr y do

for all unique candidate split ∆kml j , in {ωkl i :Ωi k ∈Ckm} that divides Ckm into two
nodes

{
Ckml j 1,Ckml j 2

}
and satisfies mins

∑
i I(Ωi k∈Ckml j s) ≥ N0 do

Using only the observations {i :Ωi k ∈Ckm} of the node Ckm , compute
ˆ̀M̂kml j = max{β1,β2}`�Mkml

(
β1,β2

)
of the approximate search model

M̂kml j : y (s)
i = ŷi +

2∑
s=1

I(Ωi k∈Ckml j s)xi kβs

and compute the training error reduction Dkml j =−2 ˆ̀M̂ +2 ˆ̀M̂kml

{i :Ωi k∈Ckm },

where ˆ̀M̂
{i :Ωi k∈Ckm } is the subtotal of ˆ̀M̂ for the observations of Ckm .

end for
end for

end for
Split node Ck ′m′ by ∆k ′m′l ′ j ′ where Dk ′m′l ′ j ′ = maxDkml j and increase Mk ′ ← Mk ′ +1.

until no candidate split satisfies N0 or Dk ′m′l ′ j ′ < Dmin

return Return Tree-VCM
end function

11



the minimum number of observations in each terminal node, or the log-likelihood improve-

ment is smaller than the minimum requested.

Similar to bootstrapping, growing individual trees with subsampling of combinations of co-

efficients, nodes, and moderators as split candidates reduces the variance. The subsampling

decorrelates the individual trees since they have different split candidates. The decorrelation

of the individual trees makes the averaging over all trees more effective in reducing the vari-

ance. Nevertheless, the number of combinations as split candidates is a tuning parameter and

in some cases, no subsampling might yield the best out of sample fit. We find that this is mostly

the case when we have few coefficients and moderators.

2.3 High-dimensional impulse response functions

This section shows how to utilize the semi-parametric estimator outlined above to estimate

state-dependent effects in a vector autoregression (VAR) framework and subsequently how

to obtain state-dependent IRFs (for a brief summary of the step-by-step estimation of state-

dependent IRFs, see Algorithm 2 below.).

The key difference to the usual way of computing SVARs is that we impose the identifying

restrictions directly on the structural equations rather than the reduced form covariance matrix.

We first show that these approaches are equivalent and then clarify why direct estimation is

beneficial when estimating state-dependent IRFs.

To illustrate our approach, assume a bivariate VAR(1) model and that there exists an internal

instrument, xt , such that the system can be ordered recursively and is just identified. Let us

further assume that the internal instrument, xt has a state dependent contemporaneous effect

on the outcome variable, yt . The structural model takes the following form.
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AYt = BYt−1 +εt a11 0

a21(Ωt ) a22


xt

yt

=

b11 b12

b21 b22


xt−1

yt−1

+

εx
t

ε
y
t

 (4)

with the mean and variance of the structural errors normalized to zero and one, respectively

and no correlation between the errors such that E[εt ] = 0 and E[εtε
′
t ] = In , where In is the iden-

tity matrix. The state dependence of the effect of the instrument, xt on yt is indicated by writing

a21 as a function of the state, Ωt . Let the state be defined as Ω= {st ,rt }, which implies that the

coefficient a21 might vary according to different values for st and rt . Note that the state could

include many more moderator variables that may overlap with other exogenous regressors.

Furthermore, we assume A to be a non-singular matrix enabling us to obtain the reduced

form (5) by inverting A:

Yt = FYt−1 +utxt

yt

=

 f11 f12

f21(Ωt ) f22(Ωt )


xt−1

yt−1

+

ux
t

uy
t

 (5)

where A−1 ≡ Q, F = Q∗B and ut = Qεt .

Due to the state dependent effect, a21(Ωt ) of the internal instrument on the outcome vari-

able, using a linear estimator would misspecify the system and hence, lead to biased IRFs. This

is the case for both, the structural and the reduced form, as a21, f21 and f22 are all a function

of the state, Ωt . Hence, whenever state dependence is present, the usual SVAR identification

procedure yields biased estimates.

If we are interested in the effect of a structural shock of xt on yt , we can also directly estimate

the ratio of a21 and a22. This is, given the restrictions, we can rewrite system (4) as

xt = b11

a11
xt−1 + b12

a11
yt−1 + 1

a11
εx

t , (6)
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where we define 1
a11
εx

t ≡ ux
t and

yt =−a21(Ωt )

a22
xt + b21

a22
xt−1 + b22

a22
yt−1 + 1

a22
ε

y
t

=−a21(Ωt )

a22
ux

t +
(

b21

a22
− a21(Ωt )

a22

b11

a11

)
xt−1 +

(
b22

a22
− a21(Ωt )

a22

b12

a11

)
yt−1 + 1

a22
ε

y
t .

(7)

Hence, this allows us to directly estimate the impact effect, −a21(Ωt )
a22

, using a varying coefficient

model for yt ,

yt =β1(Ωt )xt +β2(Ωt )xt−1 +β3(Ωt )yt−1 +uy
t . (8)

Note that β1 in equation (8) is the relative impact effect on yt of a structural shock that

increases xt by one unit. This is, rather than identifying q21, direct estimation gives the scaled

effect q21
q11

, which can be interpreted as the impact effect of a shock that increases xt by one

unit.4 Mostly, this is the unit of interest for policy. Nevertheless, to obtain absolute impact

effects (i.e. a one standard deviation shock), one can use the standard deviation of the residuals

from estimating equation (6), which is equivalent to q11 and multiply it with β1 to obtain q21.

Note that the standard deviation of the structural shocks is assumed to not change over the

different estimated regimes. Hence, the scaling can be done with the residuals from equation

(6) and (8) rather than obtaining them for every state.

The reason for using the direct estimation approach now becomes apparent. Instead of

estimating a fully parameterized version of equation (8), we can apply the semi-parametric es-

timation method outlined above to obtain state-dependent estimates of β1 in one step.5 Using

the more conventional approach and imposing the restrictions on the covariance matrix of the

reduced form errors would necessitate estimating the reduced form for every regime and obtain

the covariance matrix for every estimation. This would lead to efficiency losses and potentially

unstable results when the amount of observations for a regime is small.

4To see this more clearly, note that

[
a11 0
a21 a22

]−1

= 1
a11a22

[
a22 0
−a21 a11

]
=

[
q11 0
q21 q22

]
.

5Paul (2020) includes instruments for the structural shock of interest as an exogenous variable in a VAR to more
easily estimate state-dependent effects. Our direct estimation approach is also valid when there is no external
instrument available.
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It is straightforward to produce IRFs in a simple model where only one coefficient varies

between two values. For the example above, assume that a21 takes on a different value for st > s∗

and st <= s∗. Then, we can obtain values for the impact effect for β1 and similarly for f21 and

f22 when st > s∗ and st <= s∗ and compute the two IRFs.

However, we usually do not know a priori which variables are state-dependent and whether

there are interactions within the variables that determine the state dependence. For this reason,

in practice, we estimate (5) fully flexibly to get the state dependent dynamic matrix, F, as:

Yt = F(Ωt )Yt−1 +ut (9)

and similarly the structural equation (8) to obtain the relative impact, β1(Ωt ):

yt =β1(Ωt )xt +β2(Ωt )xt−1 +β3(Ωt )yt−1 +ut

Estimating the SVAR model fully flexibly complicates the computation of IRFs. Instead of

displaying all possible IRFs under all combinations of the varying coefficients, we propose to

predict the IRFs for different values of the state variables. That is, after estimating the model,

one can define several states of interest, e.g.: Ω∗ = {st = s∗,rt = r ∗}, Ω∗∗ = {st = s∗∗,rt = r ∗∗}

and Ω∗∗∗ = {st = s∗∗∗,rt = r ∗∗∗} to then compute the IRFs for each of these states. The state-

dependent IRF more generally then becomes:

�I RF t+h(∆,Ωt ) = E

y∗
t+h | εt+τ =

 ∆ if τ= 0

0 if τ ∈ (1,h)
;Ωt


−E[

yt+h | εt+τ = 0,∀τ ∈ (0,h);Ωt
] (10)

where ∆ is the size of the shock. IRFs are conditional on a specific state, i.e. specific values of

the state variables, and we do not assume any regime switching.

We adapt the tree-based estimation to VARs rather than LPs since compared to a dummy

approach that explicitly imposes the regime shift on the model, our flexible estimation tech-
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nique might estimate different regimes at different horizons when using LPs. Additionally, even

when the same regimes are found for every horizon, the point estimates might be more erratic

due to the repeated estimation procedure and less efficient since we lose observations by iter-

ating over the horizons. Appendix A shows that the confidence intervals become wider when

producing state-dependent IRFs with LPs.

Algorithm 2 Estimating heterogeneous IRFs

Step 1 Decide on state variables in setΩ= {ω1,ω2, ...,ωk }.
Step 2 Estimate reduced form equations semi-parametrically using the set Ω as coefficient
modifiers.
Step 3 Estimate structural equations semi-parametrically using the setΩ as coefficient mod-
ifiers.
Step 4 From estimated model in 2 predict lag coefficients for specific state values {ω1 =
ω∗

1 ,ω2 =ω∗
2 , ...,ωk =ω∗

k } ∈Ω and combine to F (ω∗).
Step 5 From estimated model in 3 predict contemporaneous impact coefficients for state val-
ues ω ∈Ω and combine to Q(ω).
Step 6 Get state-dependent IRFs by: �I RF t+h(∆,ω) = F h(ω)Q(ω)ε, where ε is the vector of
structural shocks.
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3 Simulation studies

In this section, we showcase the performance of the VC-VAR in identifying heterogeneous pol-

icy responses in the data. We consider several different simulation environments from a simple

case of one state-dependent coefficient and two states to multiple varying coefficients and var-

ious states. For the purpose of illustrating that the VC-VAR approach offers a more favourable

bias-variance trade-off compared to an approach using local projections, we included simula-

tion results for the latter in Appendix A (see Figures 13 - 16).

Exogenous structural break. Let’s first consider the following dynamic system with an exoge-

nous change in the effect of the policy instrument.

it = 0.8it−1 +0.1yt−1 +εi
t , εi

t ∼ N (0,0.52)

yt = 0.8yt−1 +βt it +εy
t , εi

t ∼ N (0,0.252)

βt =


−0.3 t < T /2

−0.1 t ≥ T /2

where it is some policy instrument, e.g. the nominal interest rate, and yt is some outcome

variable of interest, e.g. output growth. The policy effect is piece-wise constant and there is a

structural break amid the simulated sample. We simulate the system for T = 500 and estimate

the policy effect using the VC-VAR without any priors on the number of structural breaks, their

location or the values in the respective partitions. Since the focus of this exercise is to identify

potential state- or time-dependence in the policy response, we assume to know the actual ex-

clusion restrictions when estimating the system of equations, not to introduce any endogeneity

bias. This is without loss of generality, given that any estimator would be biased if the exogene-

ity assumption is violated.

The resulting estimates for βt are compared to OLS estimates and their distributions are

plotted in Figure 2a. As expected, the OLS estimates are only able to capture the average policy
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effect6. The semi-parametric estimates, however, are able to distinguish between the different

states of βt clearly and are very close to the true values.

Figure 3a shows the corresponding impulse response estimates for a shock in the policy

instrument. While the parametric OLS estimate exhibits smaller confidence bounds, it is clearly

biased as it only captures the average response missing the structural break. The median state-

dependent response of the semi-parametric estimator, on the other hand, is very close to the

true impulse responses. In fact, when plotting the partial dependency7 of the varying coefficient

βt , we can see that it found the exact structural break in the middle of the sample.

Endogenous change. In the next example we consider the policy effect being moderated by

previous values of the outcome variable, y . While before we simulated a clear structural break,

in this case the states can quickly switch endogenously. The piece-wise definition of βt allows

introducing all kinds of non-linearities and asymmetries in the policy response for the forest-

based estimator to uncover.

it = 0.8it−1 +0.1yt−1 +εi
t , εi

t ∼ N (0,0.52)

yt = 0.8yt−1 +βt it +εy
t , εi

t ∼ N (0,0.252)

βt =


−0.3 yt−1 < 0

−0.1 yt−1 ≥ 0

Figure 2b plots the resulting distributions of the estimates for βt . Again, the forest-based esti-

mator clearly identifies two states, while the OLS estimate solely identifies the average policy

effect. The partial dependency plot in figure 3b shows that the semi-parametric estimator cor-

rectly identifies the split between positive and negative lagged values of yt . Consequently, the

estimated state-dependent impulse responses follow the actual ones closely.

6Clearly, if the policy effect is in fact constant, OLS is the best linear unbiased estimator (BLUE).
7The partial dependency is computed by predicting the coefficient for the domain of the modifying variable –

here, time.
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Figure 2: Coefficient Estimate Distributions - OLS and Random Forest
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Note: This figures compares the distribution of the estimated policy effects using OLS (orange) and
Random Forest (blue) in different simulation environments. The vertical, dashed, green lines indicate
the true coefficient values. Simulations are conducted with T = 500.
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Exogenous and endogenous change. Next, we consider both, an exogenous structural break

as well as an endogenous change in the policy effect over time.

it = 0.8it−1 +0.1yt−1 +εi
t , εi

t ∼ N (0,0.52)

yt = 0.8yt−1 +βt it +εy
t , εi

t ∼ N (0,0.252)

βt =



−0.1 yt−1 < 0, t < T /2

−0.35 yt−1 ≥ 0, t < T /2

−0.5 yt−1 < 0, t ≥ T /2

−0.9 yt−1 ≥ 0, t ≥ T /2

As we can see in figure 2c, the semi-parametric approach has no problem in identifying the four

different states of βt and gives a much more granular picture of the true policy effect. Figure 3c

documents how closely the semi-parametrically estimated impulse response functions track

the actual ones for all four states. In contrast, the OLS estimate only informs about the average

response over the entire sample. The surrogate tree8 illustrates how well the underlying random

forest identifies the actual splits and state-dependent values of βt .

Impact and dynamic change. So far, we have only considered cases in which only the im-

pact coefficient, βt , varied across states. However, it might also be that the policy rule is state-

dependent, affecting the propagation of the shock. Let’s consider the following dynamic sys-

tem, with state-dependence in the impact effect of the policy and a varying policy parameter,

γt .

8Surrogate trees aim to illustrate the resulting splits by random forests with the latter being a collection of many
trees. Obtaining a surrogate tree is done by fitting a single tree to the predictions of the random forest.
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Figure 3: IRFs and Surrogate Trees - OLS and Random Forest
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(c) Endogenous and exogenous change
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Note: This figures compares the IRFs using OLS (orange) and Random Forest (blue) in different simu-
lation scenarios. The green lines depict the true response. Simulations are conducted with T = 500.
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it = 0.8it−1 +γt yt−1 +εi
t , εi

t ∼ N (0,0.52)

yt = 0.8yt−1 +βt it +εy
t , εi

t ∼ N (0,0.252)

βt =



−0.1 yt−1 < 0, t < T /2

−0.35 yt−1 ≥ 0, t < T /2

−0.5 yt−1 < 0, t ≥ T /2

−0.9 yt−1 ≥ 0, t ≥ T /2

, γt =


0.3 yt−1 < 0

0.1 yt−1 ≥ 0

.

In general, with more lags and endogenous variables in the VAR structure, it becomes harder

to justify why only single coefficients should be state-dependent. Hence, we will usually esti-

mate more than one coefficient of the system semi-parametrically. This shifts the focus from

considering state-dependent splits of a single coefficient as we did above to predicting the

whole system of coefficients for specific state values.

Figure 4a plots estimates of the impulse response after a shock to the policy instrument for

specific states. While the OLS estimates only offer an aggregated view, the semi-parametric

estimates capture state-dependence well. Instead of selecting specific state values to predict

the system and subsequently the heterogeneous impulse responses, another way of presenting

the functional form of the state-dependence is to compute partial dependency IRFs. Partial

dependency IRFs are computed by varying one state over its domain and fixing all other states

at their median values and predicting the impulse response. This leads to IRFs with the state

of interest as an additional dimension as depicted in Figure 4b. We can see that the estimated

high-dimensional impulse response in blue is very close to the true response in green and the

split points are correctly identified.
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Figure 4: IRFs and Partial Dependency Plots
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Note: This figures compares the IRFs and their partial dependency using OLS (orange) and Random
Forest (blue) for impact and dynamic changes. The green lines depict the true response. Simulations
are conducted with T = 500.
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Many potential moderators. The previous simulation examples used the relevant modera-

tors for the coefficient estimates to test whether our proposed estimator finds the correct splits.

However, in practice, we might not know in advance which macroeconomic variables actually

impact the policy response. In this example we feed several moderators to our estimator, of

which only some are relevant. Furthermore, we allow for some correlation between the rele-

vant and non-relevant moderators. Hence, this subsection shows that the VC-VAR approach

can find the relevant moderators among many other, potentially correlated but non-relevant,

moderators. We show this using a so-called variable importance measure (VIM) for random

forests. Finding the relevant moderators among many candidates is vital in practice when re-

searchers are unsure which moderators might impact coefficient estimates.

The varying coefficient model to be simulated and estimated is the same as for the exoge-

nous and endogenous change above. Additionally, we include two moderator variables, m1 and

m2, that are correlated with the relevant moderator variable, yt−1, with a correlation coefficient

of 0.7 and 0.3, respectively. Furthermore, we draw three non-relevant moderators, m3,m4, and

m5, from normal distributions. We include these variables to test whether the random forest

can choose the relevant moderators among correlated and noise moderators.

To evaluate, which moderators are important for the estimation, we use a VIM. One could

also eyeball the partial-dependency IRFs to gauge the relevance of each moderator. However,

this would become infeasible with an increasing number of moderators and the VIM provides

a numeric measure.

We calculate the VIM in three steps: (1) Estimate the varying coefficient model using all po-

tential moderators. (2) Randomize the observations within one moderator and obtain the pre-

dicted values. (3) Obtain the out-of-sample mean squared error by subtracting the full model’s

predicted values from the model’s predicted values with one moderator’s observations random-

ized.

The idea behind this procedure is the following. If a moderator is important for the pre-

diction, then feeding the observations of that moderator in a randomized order into the model
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Figure 5: Variable Importance Measure Simulation
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Note: This figure depicts the variable importance measure showing the percentage decrease in the
mean squared error from the model with one randomized moderator to the full model. The simulation
was conducted with 1000 observations and the Random Forest was estimated with 100 trees (increasing
the number of trees did not change the results much).

would yield a worse prediction. Similarly, if a moderator is not relevant for prediction, even

if we randomized its observations, that should not impact prediction. Hence, whenever the

mean squared error decreases a lot when using the full model, we assume the moderator to be

important.

Figure 5 presents the variable importance measures from our simulated model. Moderators

t i me and y_l ag are correctly identified as the relevant moderators. For both, randomizing the

order of their observations increases the means squared prediction error substantially, while

the irrelevant variables have no additional predictive power. Thus, this simulation shows that

the estimator can correctly distinguish the relevant moderators from other non-relevant ones.

Recall that moderators m1 and m2 are correlated with y_l ag . Despite this correlation, the

estimator only selects y_l ag and time as important moderators and correctly classes m1, and

m2 as non-relevant. Hence, even if non-relevant moderators are correlated with a relevant one,
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the VIM yields the correct classification.

4 Empirical application

This section illustrates the proposed methodology in an applied setting replicating and extend-

ing the study by Ramey & Zubairy (2018). The replication exercise reveals that our method yields

similar results to conventional IRF estimation techniques. Furthermore, we show that the new

methodology allows us to study state-dependence in more detail, extending the study by RZ.

RZ study the effect of government spending shocks on output to investigate the government

spending multiplier in low and high employment regimes as well as at the ZLB. To do so, they

derive a historical time series of government spending news shocks and use them in local pro-

jections as well as TVAR analyses as an instrument for government spending. We focus our

comparison on the TVARs since they are more similar to our setting. 9

To study state-dependence of government spending effects, RZ construct a dummy for slack

taking the value of zero whenever unemployment is below 6.5% and one in case it is equal or

higher. Similarly, they define a dummy for periods in which the economy was close to the ZLB.

The definition of dummies and thereby pre-definition of states is restrictive. First, deciding

on the threshold is usually either an ad-hoc assumption or quite the opposite and the result

of trying a battery of different thresholds. Both approaches come with a high degree of model

uncertainty. Second, dummies are binary in nature allowing only for two states. Of course,

one could include multiple dummies to account for multiple states but then one would have to

justify the choice of several thresholds. Our method can be seen as more flexible allowing us to

estimate any underlying state-dependence of the VAR non-parametrically as well as implicitly

estimating interactions between the states in one estimation step. Studying the interaction of

9Note that RZ use an LP-IV approach in their main analysis. Nevertheless, LP-IV can be shown to be equivalent
to ordering the instrument first in an SVAR (Plagborg-Møller & Wolf (2019)). To obtain the same relative IRFs that
the LP-IV approach yields, however, we have to divide by the impact impulse response on government spending.
To compute the multiplier, the division by the impact effect on government spending is not necessary since we
are interested in the ratio of the two IRFs of government spending and output. Thus, the division by the impact
impulse would cancel out.
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Figure 6: ZLB Dependent Multiplier with Different Methods
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Note: This figure compares the estimated government multipliers for a ZLB and non-ZLB state. The
multipliers are estimated using a TVAR (orange lines) and a Random Forest (blue lines) with the ZLB
dummy directly fed in as a moderator.

states might be of interest to the researcher since often the states in questions are correlated.

For example, it is plausible that high unemployment states are correlated with periods close to

the ZLB.

4.1 Sanity check: Using Dummies as Modifier Variables

In a first benchmark exercise, we compare the RZ results to estimates obtained from our VC-VAR

model when directly feeding in the dummy as the sole effect modifier. Given the pre-defined

dummy, the tree-based learners can only either split in line with the dummy or not at all in case

the coefficient is state-independent. Hence, by just including a dummy, the semi-parametric

estimator offers the same amount of restricted flexibility as a TVAR. Consequently, feeding in

the dummy should yield equivalent results to what RZ find.

Figure 6 depicts estimates of the fiscal multiplier in normal times and close to the ZLB. The
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orange lines correspond to the estimates found by RZ using a TVAR, while the blue lines refer

to estimates from the semi-parametric VAR. It can be seen that the state-dependent multipliers

converge to very similar values. Some small initial differences are expected since RZ compute

the TVARs separately for each state10, while the semi-parametric VAR makes use of the entire

sample.

4.2 Semi-Parametric Estimation

In a next step we aim to illustrate the flexibility of the semi-parametric approach. First, in con-

trast to RZ we do not pre-define any states using dummy variables but directly feed in the con-

tinuous variables of the unemployment rate and the interest rate leaving it up to the VC-VAR to

find appropriate splits. Second, while RZ estimate separate models looking for potential state-

dependence of fiscal policy in regimes of high unemployment and times close to the ZLB, we

estimate this simultaneously allowing for potential interaction between regimes. Moreover, we

allow all coefficients in the structural VAR estimation to vary across different states of the un-

employment rate, the interest rate, the world war dummy and their potential interactions. The

result is an SVAR model estimate which can be predicted for different states. Hence, in order

to compute IRFs, we simply predict the entire system of coefficients for a given combination

of states. The underlying assumption of these high-dimensional IRFs is that there is no regime

switching and the IRF is conditional on a specific state.

Visualizing high-dimensional IRFs is not as straightforward as for one-dimensional impulse

responses. In the case of a low-dimensional state space, one can plot a battery of IRFs for com-

binations of specific values of the effect modifiers. Figure 7, for instance, shows the estimated

impulse response functions for two different levels of the unemployment rate and the interest

rate when the world war dummy is zero. The dark shaded areas depict the 68% and the lightly

shaded areas the 90% confidence interval, while the solid line denotes the point estimate. The

estimates suggest that fiscal policy is more effective in times of high unemployment. This is in

10According to the replication STATA file tvar.do by Ramey & Zubairy (2018).
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Figure 7: IRF of Output

Note: This figure shows the IRFs of output following a fiscal policy shock. The IRFs are plotted for
different combinations of low and high unemployment under a ZLB or no ZLB. The shaded areas depict
68% and 90% confidence intervals obtained with wild-Bootstrap of 500 iterations.

line with the findings by RZ and the theoretical contribution by Rendahl (2016).

However, when controlling for unemployment, the efficacy of fiscal policy is not higher close

to the zero lower bound as RZ find. The difference might be due to the definition of the zero

lower bound dummy in Ramey & Zubairy (2018). RZ define periods of continuous low interest

rates and low inflation as binded by the zero lower bound without choosing a specific interest

rate threshold. Furthermore, their zero lower bound dummy spans the entire sample, while

records of the treasury bill’s interest rate only start in 1920. Nevertheless, it is more likely that

periods close to the zero lower bound are correlated with periods of high unemployment rates.

In fact, this correlation is quite striking as figure 8 shows. Points in orange denote RZ’s definition

of the zero lower bound dummy. Without controlling for unemployment rates, RZ’s estimates

for the state-dependence of fiscal policy in times of a binding zero lower bound might just pick
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Figure 8: Unemployment and Interest Rates

Note: A scatter plot of unemployment and interest rates. The orange dots depict observations during a
ZLB period as defined by RZ.

up the effect of high unemployment due to an omitted variable bias.

Another way of visualizing high-dimensional impulse response functions are partial depen-

dency plots. Partial dependency plots are a common tool to make machine learning output

easier to interpret. The concept aims to illustrate the marginal effects of individual variables

when holding all other variables constant. We make use of this concept and plot partial depen-

dency IRFs in Figure 9a fixing the other variable at its median. The left plot of Figure 9a shows

the partial dependency impulse response for variations in the interest rate of the treasury bill.

The impulse response appears constant and only slightly higher for interest rates close to the

zero lower bound.

In contrast, the state-dependence of fiscal policy with respect to the unemployment rate is

stark. The magnitude of the response of output in case of unemployment rates higher than 8% is

more than twice as large as for low unemployment rates. Figure 9b relates the high-dimensional
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Figure 9: High-dimensional IRFs

(a) Partial dependency impulse responses

(b) Partial dependency fiscal multiplier

Note: High-dimensional IRFs of output. The top-panel depicts how the moderator variables T-Bill rate
and unemployment rate affect the IRF on output. The lower panel analyses the government multiplier.
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Figure 10: Fiscal Multiplier for Negative and Positive Gov. Shocks

Note: This figure shows the output multiplier of government spending. To test for asymmetric effects
of positive or negative shocks, the News shock series is a moderator variable.

response of output to responses in government spending by calculating high-dimensional fiscal

multipliers. We follow Ramey & Zubairy (2018) in computing the multiplier as the cumulated

response of output over the cumulated response of government spending11. While the mul-

tiplier is only slightly higher close to the zero lower bound relative to environments of higher

interest rates and below unity, the multiplier is increasing for higher unemployment rates and

becomes larger than unity.

4.3 Estimating Asymmetric Effects

As another illustration of the methodology, we assess potential asymmetric policy effects. To

allow for the estimation of asymmetric policy effects, the News shock variable (i.e. RZ’s instru-

ment for government spending) will now be introduced as a moderator variable. This allows

to predict IRFs for different, including negative, values of the shock variable. Note that when

11This is the definition Ramey & Zubairy (2018) used to calculate multipliers based on their TVAR estimates.
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we include the shock series as a moderator variable, it has to be excluded when estimating the

reduced or structural form equation for the news shock series. Otherwise, the variable would

appear on both, the left- and right-hand side of the regression equation.

Figure 10 depicts the government multiplier for various shock values. The multiplier is lower

for negative as compared to positive values. Furthermore, it appears that the multiplier does

not change much over the negative values of the shock series. However, this might be due to

the fact that the news series contains few negative observations, making our estimation less

precise. Nevertheless, this multiplier appears similar to the ZLB-dependent multipliers from

the TVAR in Figure 6.

4.4 Many Moderator Variables

As a final illustration, we include thirteen moderator variables in the previous VC-VAR. With the

possibility to include many moderator variables, researchers can be more agnostic with their

hypotheses as to which variables might affect the efficacy of economic policies. The variables

we include are macroeconomic time series from the FRED data base shown in Appendix B,

Table 1.

When including many moderator variables, analysing all possible IRFs becomes infeasible.

Instead, we suggest to use the VIM explained in the simulation section to find the most im-

portant moderator variables. Figure 11 shows the VIM for the thirteen moderator variables

we included in the estimation of the structural equation of output, y12. The x-axis depicts the

percentage change of the mean squared prediction error when comparing the model with one-

variable left out to the full model. For example, estimating the full model as compared to ran-

domizing the observations of S.P.500_lag_1 decreases the mean squared error by approximately

13%. In other words, including Variable S.P.500_lag_1 has the biggest impact on improving the

mean squared error, which indicates a high importance of this moderator variable.

The unemployment variable appears less important compared to some other moderators.

12We get very similar results for the reduced form of output, y (see Appendix C and Figure 18)
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Figure 11: Variable Importance Measure
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Note: This figure shows the VIM for the moderator variables used in the estimation of the structural
equation of output, y . The greater the percentage change, the more important is the moderator for the
estimation.

However, at the moment, the log-likelihood reduction in Algorithm 1 is not standardized to

differences in the number of candidate splits (Buergin & Ritschard, 2017). Hence, Algorithm 1

tends to choose moderator variables with many candidate splits more often. The unemploy-

ment moderator, unemp_lag_1, has 66 and, for example, S.P.500_lag_1 has 244 unique values

out of 244 observations, which might explain some of the differences. Reducing this bias is a

focus for future research. Furthermore, it can be seen from Figure 20 in Appendix E that in fact,

unemployment does not seem to have a great impact on the output response. However, we also

estimate a TVAR on the same time period using the unemployment variable to split the sample

between high and low unemployment regimes (see Appendix E, Figure 21). The TVAR shows

that when used on its own, the unemployment variable gives rise to differing IRFs and mul-

tiplier estimates. Hence, it might be that unemployment is correlated with some of the other

moderator variables used in the VC-VAR and combined with the fact that unemployment splits

less often, the variable appears less important.
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Figure 12: High-Dimensional IRFs Many Moderators

(a) (b)

(c)

Note: High-dimensional IRFs for output given a 1% news shock and different moderator variables. The
estimation was conducted on a shorter sample period, 1960−2016.
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Figure 12 shows the high-dimensional IRFs for output with the most important moderators

according to the VIM in Figure 11. All IRFs show large movements in the first quarters with an

impact around 0.08 that quickly drops to then rise again. While this movement appears strik-

ing, it is not due to the estimator. The same can be observed when conducting a standard VAR

estimation following RZ (2018) on the 1960−2016 period (see Appendix D, Figure 19). Similarly,

the magnitude of the output response is smaller compared to when estimated on the longer

sample period. Again, a similar size of the output response is found when estimating a sim-

ple SVAR following RZ (2018) on this shorter time-period (see Appendix D, Figure 19). Hence,

the overall dynamics and the magnitude of the output response are in line with standard SVAR

estimation results.

Analysing the IRF for the three selected moderators variables, we see that indeed, growth in

the S&P 500 Index (Figure 12) as well as in new privately owned housing units (Figure 12) has a

strong impact on the output response. For both, S&P 500 and housing, the output response is

near zero whenever growth is negative. For positive growth rates, however, the output response

peaks at roughly 0.06. Positive growth in the S&P 500 index might indicate a more positive eco-

nomic outlook from private agents who are in turn more willing to consume and invest the extra

income from government spending. Similarly, positive growth in new housing units might indi-

cate a more active economy where government spending will be used for further investments.

Imports in Figure 12 do not appear to give rise to differing output responses. However, the

output response appears to be generally on a higher level around 0.04. A small increase in the

output response can be observed for positive growth in real imports. Nevertheless, the differ-

ence is not as striking as for S&P 500 and housing, which further validates the usage of our

VIMs.
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5 Conclusion

This paper proposes a semi-parametric framework for estimating high-dimensional SVARs and

impulse response functions. While a parametric shell keeps the estimation efficient and more

interpretable, tree-based learners allow for non-parametric variation in coefficients depending

on potential modifiers. Using tree-based learners has two main advantages: 1) it allows us to

detect any potential state-dependence without specifying any functional form or cutoff thresh-

olds, 2) forests can cope with a high-dimensional state space allowing us to control for many

potential effect modifiers. Simulation studies confirm that the semi-parametric framework

correctly identifies state-dependent variation in coefficients even for macroeconomic samples

sizes. When applying the estimator to the historical data set by Ramey & Zubairy (2018) we

confirm their findings that fiscal policy is more effective in times of high unemployment. How-

ever, we only find slight differences in the efficacy of fiscal policy close to the zero lower bound

relative to normal times. In fact, RZ’s results seem to be driven by the correlation between low-

interest rates and unemployment.

37



References

Ascari, G. & Haber, T. (2019). Sticky prices and the transmission mechanism of monetary policy:

A minimal test of New Keynesian models. Technical report.

Auerbach, A. J. & Gorodnichenko, Y. (2012). Fiscal multipliers in recession and expansion. In

Fiscal policy after the financial crisis (pp. 63–98). University of Chicago Press.

Auerbach, A. J. & Gorodnichenko, Y. (2013). Output spillovers from fiscal policy. American

Economic Review, 103(3), 141–46.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123–140.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

Buergin, R. A. & Ritschard, G. (2017). Coefficient-wise tree-based varying coefficient regression

with vcrpart. Journal of Statistical Software, 80(6), 1–33.

Canzoneri, M., Collard, F., Dellas, H., & Diba, B. (2016). Fiscal multipliers in recessions. The

Economic Journal, 126(590), 75–108.

Duarte, V. (2018). Machine learning for continuous-time economics. Available at SSRN

3012602.

Eichenbaum, M., Rebelo, S., & Wong, A. (2018). State dependent effects of monetary policy: The

refinancing channel. Technical report, National Bureau of Economic Research.

Farhi, E. & Werning, I. (2016). Fiscal multipliers: Liquidity traps and currency unions. In Hand-

book of macroeconomics, volume 2 (pp. 2417–2492). Elsevier.

Fazzari, S. M., Morley, J., & Panovska, I. (2015). State-dependent effects of fiscal policy. Studies

in Nonlinear Dynamics & Econometrics, 19(3), 285–315.

Goulet Coulombe, P. (2020). The macroeconomy as a random forest. Available at SSRN 3633110.

Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of

Financial Studies, 33(5), 2223–2273.

Hastie, T. & Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical

Society: Series B (Methodological), 55(4), 757–779.

Joseph, A. (2019). Shapley regressions: A framework for statistical inference on machine learn-

ing models. arXiv preprint arXiv:1903.04209.

Li, D., Plagborg-Møller, M., & Wolf, C. K. (2021). Local Projections vs. VARs: Lessons From Thou-

sands of DGPs. (pp.4̃4).

Nakamura, E. & Steinsson, J. (2018). Identification in macroeconomics. Journal of Economic

Perspectives, 32(3), 59–86.

Paul, P. (2020). The time-varying effect of monetary policy on asset prices. Review of Economics

38



and Statistics, 102(4), 690–704.

Plagborg-Møller, M. & Wolf, C. K. (2019). Local projections and vars estimate the same impulse

responses. Unpublished paper: Department of Economics, Princeton University, 1.

Ramey, V. A. & Zubairy, S. (2018). Government spending multipliers in good times and in bad:

evidence from us historical data. Journal of Political Economy, 126(2), 850–901.

Rendahl, P. (2016). Fiscal policy in an unemployment crisis. The Review of Economic Studies,

83(3), 1189–1224.

Wang, J. C. & Hastie, T. (2014). Boosted varying-coefficient regression models for product de-

mand prediction. Journal of Computational and Graphical Statistics, 23(2), 361–382.

Wolf, C. K. (2020). SVAR (Mis)Identification and the Real Effects of Monetary Policy Shocks.

American Economic Journal: Macroeconomics, 12, 1–32.

Zhou, Y. & Hooker, G. (2019). Tree boosted varying coefficient models. arXiv preprint

arXiv:1904.01058.

39



A Simulation studies
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Figure 13: Impulse response estimates for setting 1 using local projections
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Figure 14: Impulse response estimates for setting 2 using local projections
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Figure 15: Impulse response estimates for setting 3 using local projections
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Figure 16: Impulse response estimates in case of an asymmetric policy effect
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Figure 17: Impulse response functions and their partial dependency for impact and dynamic
changes, for T = 1000.
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B Moderator Description

This appendix describes the moderator variables used in the empirical section.

Table 1: Description of Moderators

Code Definition Source

tbill 3-month treasury bill rate, secondary
market.

Ramey and Zubairy (2018).

unemp Civilian unemployment rate. Ramey and Zubairy (2018).

wwii World War II Dummy. Ramey and Zubairy (2018).

ndeficit_nipa Nominal deficit, NIPA accrual basis, con-
structed as total federal expenditures - to-
tal federal receipts.

Ramey and Zubairy (2018).

rgdp_potcbo Real potential GDP, baseod on cubic poly-
nomial fit.

Ramey and Zubairy (2018).

GDPIC1 Real gross private domestic investment.
First difference of natural log.

FRED Database (NIPA)

EXPGSC1 Real exports of goods and services. First
difference of natural log.

FRED Database (NIPA)

IMPGSC1 Real imports of goods and services. First
difference of natural log.

FRED Database (NIPA)

DPIC96 Real disposable personal income. First
difference of natural log.

FRED Database (NIPA)

CUMFNS Capacity utilization: Manufacturing. Per-
cent of capacity.

FRED Database

HOUST Total new privately owned housing units
started. First difference of natural log.

FRED Database

S.P.500 S&P 500 common stock price index:
Composite. First difference of natural
log.

FRED Database

Note: This table describes the moderators used in the empirical section and their sources.

C VIM Reduced Form Output

This appendix section depicts the VIM for the reduced form estimation of output, y.
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Figure 18: IRF from SVAR: 1960-2016
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Note: This figure shows the VIM for the moderator variables used in the estimation of the reduced form
equation of output, y . The greater the percentage change, the more important is the moderator for the
estimation.

D Standard IRF: 1960-2016

This appendix shows the IRF from a simple VAR estimation following RZ (2018) but for the

shorter time period 1960−2016. From Figure 19 it can be seen that the magnitude of the output

response as well as the initial volatility is in-line with what is found for the RF estimation.

E Unemployment as Moderator: 1960-2016

This appendix section shows the IRF for output and unemployment as a moderator while hold-

ing all other moderators at their median. Figure 20 shows that compared to the longer sample,

different unemployment rates do not seem to affect the output response.

However, when we do a similar exercise using unemployment as the sole moderator variable

in a TVAR, we find that IRFs and multiplier estimates differe for high and low unemployment.

This might indicate that unemployment is correlated with one or more other moderator vari-

ables in the VC-VAR and for this reason, appears to be unimportant.
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Figure 19: IRF from SVAR: 1960-2016
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Note: This figure shows the IRF for output derived from a standard SVAR estimation. The estimation
period was 1960−2016.

F Partial Dependency Plots
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Figure 20: Unemployment as Moderator: 1960-2016

Note: This figure shows the IRF for output and unemployment as the moderator. The estimation period
was 1960−2016.
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Figure 21: Unemployment as Moderator: 1960-2016

Note: This figure shows the IRF for output with unemployment as the sole moderator in a TVAR esti-
mation. The estimation period was 1960−2016.
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(a) Partial dependency impulse responses

(b) Partial dependency fiscal multiplier

Figure 22: Estimated partial dependency plots for a varying-coefficient VAR using eight lags.
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