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Motivation

Research Question
How to estimate state-dependent policy effects in a VAR using a data
driven approach?

• This is not about identification.

• Assume we perfectly observe a shock series, e.g. government
spending shock.
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Motivation

Hypothesis:

• Effects of macroeconomic policies are likely heterogeneous, varying
across time and economic circumstances.

→ Source of model uncertainty and misspecification bias.

Existing approaches:

• Mostly estimate constant effects of macroeconomic policies.
• State-dependence introduced in a linear fashion using pre-specified

dummies.
• Time-varying approaches leave it up for speculation what drives

policy effects in specific periods.

Idea:

• Treat policy effects as a function of economic environment and
estimate effects semi-parametrically.
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Methodology



Varying coefficient model (VCM)

Often, we estimate:

yt = βεt +X ′tγ +ut , where E[ut |εt ,Xt ] = 0

Instead, treat β as a function of the states of the economy:

yt = βεt +X ′tγ +ut , where E[ut |εt ,Xt ,Ωt ] = 0

β = f (Ωt),

γ = g(Ωt),

yt : macroeconomic outcome variable
εt : exogenous policy shock
xt : vector of controls
βt : policy coefficient
γt : control coefficient
Ωt : economic states/moderators
ut : error term, iid.
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Macroeconomic state-dependencies as trees

Ω = {Unemployment,T-Bill,Shock Series}

Full sample

High unemployment (>6.5%)

ZLB (≤0.5%)

yt = β1εt + γ1xt + ε
y
t

No ZLB (>0.5%)

yt = β2εt + γ2xt + ε
y
t

Low unemployment (≤6.5%)

εt ≥ 0

yt = β3εt + γ3xt + ε
y
t

εt < 0

yt = β4εt + γ4xt + ε
y
t

• Trees offer a natural representation for macroeconomic states and
their potential interactions (Goulet Coulombe, 2020).

• They can capture state-dependence and asymmetries.
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Tree-based VCM

Tree-based VCM:

yt =
M

∑
m=1

βmI(Ωt∈Cm)εt +x ′tγt +ut ,

• {Cm}Mm=1: a partition of the moderator space
• M: number of partitions

Estimation:(
Ĉm, β̂m

)
= argmin

(Cm,βm)

T

∑
t=1

(
yt −

M

∑
m=1

βmI(Ωt∈Cm)εt −x ′tγt

)2

• {Cm}Mm=1, M, and βm are unknown and require simultaneous
estimation.

• The estimation of βm is nested in that of the partitions.
• Within each partition, βm is simply the least squares estimator on

the corresponding sub-sample. 6



Forest-based VCM

Problems with single trees:

• Tend to overfit

• High variance

• Depend on hyperparameters

Solution: Random forests (Breiman, 2001)

• Average many trees using bootstrapping

• Split on random sample of m (out of p) moderators

βRF (Ωt) =
1
K

K

∑
k=1

Mk

∑
mk=1

βmk
I(Ωt∈Cmk

).

with K trees.
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VC-VAR

Consider a state-dependent VAR in structural form:

A(Ωt)Yt = BYt−1 + εt[
a11 0

a21(Ωt) a22

][
xt
yt

]
=

[
b11 b12

b21 b22

][
xt−1

yt−1

]
+

[
εxt

ε
y
t

]

Reduced form:

[
xt
yt

]
=

[
f11 f12

f21(Ωt) f22(Ωt)

][
xt−1

yt−1

]
+

[
uxt
uyt

]

where A−1(Ωt)≡ Q(Ωt), F(Ωt) = Q(Ωt)B and ut = Q(Ωt)εt .

→ Estimate reduced form using forest-based VCM to obtain F (Ωt).
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VC-VAR

Re-arranging the structural model yields

xt =
b11

a11
xt−1 +

b12

a11
yt−1 +

1
a11

ε
x
t

yt =−a21(Ωt)

a22
xt +

b21

a22
xt−1 +

b22

a22
yt−1 +

1
a22

ε
y
t ,

→ Directly estimate the structural equation using a forest-based VCM to
obtain relative impact,

yt = β1(Ωt)xt + β2(Ωt)xt−1 + β3(Ωt)yt−1 +uyt .
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High-dimensional IRFs: Graphing

• Problem: We have many moderators

• Solution:
a: Specific values
b: Partial dependency plots
• Choose a vector of specific moderator values, ω∗ ∈Ω.
• Obtain reduced form matrix, F , as F̂ h(ω∗).
• And impact matrix, Q, as Q̂(ω∗)ε.
• We assume that economy stays in the particular state. There is no

regime-switching.

Then the IRF can be computed as:

ÎRF t+h(ω
∗) = F̂ h(ω

∗)Q̂(ω
∗)ε
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Empirical application



Replicating RZ (2018)

Recap on Ramey and Zubairy (2018):

• Question: Do government spending shocks have different effects in a
low vs. high (> 6.5%) unemployment regime, and the zero lower
bound?

• Method: LP-IV and TVAR with dummies and military news shocks.

• Findings: Larger multipliers when the economy is close to the ZLB
or when the unemployment rate is high.
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Sanity check: Using dummy as modifier
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When feeding in the pre-defined dummy, the semi-parametric estimator
finds the same result.
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Fully flexible estimation

• No pre-defined dummies: Ω = {T-bill rate, Unemployment rate}
• Estimate the following system fully flexible

A(Ω)

 newst
gt
yt

= B(Ω)

 L(newst)

L(gt)

L(yt)

+ εt ,
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Sliced IRFs: Effect of Gov. Spending on Output
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Partial dependency IRFs
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Correlation between ZLB and unemployment
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Conclusion

• Our approach can detect state/time-dependence without the need to
define any priors.

• Hence, it reduces model uncertainty and can also be used to inform
the researcher on the parametric model specification for more
efficient estimation.

• It offers a more granular perspective on the often ignored
high-dimensionality of macroeconomic policy effects.

• The varying coefficient setup offers a great interface to use the
power of ML tools in parametric frameworks to keep it interpretable
and efficient.
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Appendix



Simulation studies



Endogenous state-dependence

The piece-wise definition of βt allows introducing all kinds of
non-linearities and asymmetries in the policy response for the forest-based
estimator to uncover.

it = 0.8it−1 +0.1yt−1 + ε
i
t , ε

i
t ∼ N(0,0.52)

yt = 0.8yt−1 + βt it + ε
y
t , ε

y
t ∼ N(0,0.252)

βt =

{
−0.3 yt−1 < 0

−0.1 yt−1 ≥ 0



Endogenous state-dependence
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Multiple states

it = 0.8it−1 +0.1yt−1 + ε
i
t , ε

i
t ∼ N(0,0.52)

yt = 0.8yt−1 + βt it + ε
y
t , ε

y
t ∼ N(0,0.252)

βt =
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Multiple states
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Multiple state-dependent coefficients

it = 0.8it−1 + γtyt−1 + ε
i
t , ε

i
t ∼ N(0,0.52)

yt = 0.8yt−1 + βt it + ε
y
t , ε

y
t ∼ N(0,0.252)

βt =


−0.1 yt−1 < 0, t < T/2

−0.35 yt−1 ≥ 0, t < T/2

−0.5 yt−1 < 0, t ≥ T/2

−0.9 yt−1 ≥ 0, t ≥ T/2

, γt =

{
0.3 yt−1 < 0

0.1 yt−1 ≥ 0



Multiple state-dependent coefficients
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Multiple state-dependent coefficients
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Computational Details



Computational details

Algorithm 1 Estimation of varying coefficient model using a random forest
following Buergin and Ritschard (2017)

Parameters: T number of trees in forest, e.g., T = 100
N0 minimum node size, e.g., N0 = 30
Dmin minimum −2· log-likelihood reduction, e.g., Dmin = 2
Pmax maximum levels of pruned tree, e.g., Pmax = 3

function Random Forest-VCM(S, Ω)
H ← /0 . Initialize Forest
for trees in t = 1 to T do

St ← A bootstrap sample from the dataset S
ht ← Randomized Tree-VCM(St ,Ω)
H ←H ∪ht

end for
return H

end function . Coefficient predictions by averaging over all trees in H
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