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Research Question
How to estimate state-dependent policy effects in a VAR using a data
driven approach?



Research Question
How to estimate state-dependent policy effects in a VAR using a data
driven approach?

e This is not about identification.

e Assume we perfectly observe a shock series, e.g. government
spending shock.



Hypothesis:

e Effects of macroeconomic policies are likely heterogeneous, varying
across time and economic circumstances.

— Source of model uncertainty and misspecification bias.

Existing approaches:

e Mostly estimate constant effects of macroeconomic policies.

e State-dependence introduced in a linear fashion using pre-specified
dummies.

e Time-varying approaches leave it up for speculation what drives

policy effects in specific periods.



Hypothesis:

e Effects of macroeconomic policies are likely heterogeneous, varying
across time and economic circumstances.

— Source of model uncertainty and misspecification bias.

Existing approaches:

e Mostly estimate constant effects of macroeconomic policies.

e State-dependence introduced in a linear fashion using pre-specified
dummies.

e Time-varying approaches leave it up for speculation what drives
policy effects in specific periods.

Idea:

e Treat policy effects as a function of economic environment and
estimate effects semi-parametrically.
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Varying coefficient model (VCM)

Often, we estimate:

Yt = ﬁgt —‘rXt{'y—‘r ug, where ]E[Ut|8t,Xt] =0

Instead, treat B as a function of the states of the economy:

Yt = ﬁgt —‘rXt{'}/—‘r Ug, Where E[ut|8t,Xt,Qt] = O
B =1(2),
y:g(Qf)a

Y+ macroeconomic outcome variable
&: exogenous policy shock

xz:  vector of controls

B::  policy coefficient

Y::  control coefficient

Q;: economic states/moderators

uz:  error term, iid.



Macroeconomic state-dependencies as trees

Q= {Unemployment,T—BiII,Shock Series}

Full sample

High unemployment (>6.5%) Low unemployment (<6.5%)

ZLB (<0.5%) No ZLB (>0.5%) & >0 £ <0
\ \ \ \
Ve=Prectnxe+&  yi=Pectrxete ye=Paetraxete  ye=Pak+tYaxe+el

e Trees offer a natural representation for macroeconomic states and
their potential interactions (Goulet Coulombe, 2020).

e They can capture state-dependence and asymmetries.



Tree-based VCM

Tree-based VCM:

M
Ye = Z Bm/(QtECm)8t+X;’)/t+ ut,

m=1

e {Cn}M_,: a partition of the moderator space
e M: number of partitions

Estimation:

L T M 2
(Cm;ﬁm) = argmin Z <Yt - Z Bml@iecy)€t _x;r%>
m=1

(Cm.Bm) t=1

e {Cn}M_ . M, and B, are unknown and require simultaneous
estimation.
e The estimation of B, is nested in that of the partitions.
e Within each partition, 3, is simply the least squares estimator on
the corresponding sub-sample. 6



Forest-based VCM

Problems with single trees:

e Tend to overfit
e High variance

e Depend on hyperparameters
Solution: Random forests (Breiman, 2001)

e Average many trees using bootstrapping

e Split on random sample of m (out of p) moderators

K My
PBrr (2 Z Z B li@recm,)-

with K trees.
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Consider a state-dependent VAR in structural form:

A(Qt) Yt - B Yt_]_ + 81—
an O f [xe| _ |bin bra| |xe—1 n &
a1(Qe)  axn| |y bor b |yt1 &

Reduced form:

x| _ | fu fi Xe1| uf
Yt £1(Q2:)  F2(Q)| |ye-1 uf
where A=1(Q;) = Q(Q2), F(Q:) = Q(2:)B and ur = Q(Q¢)é;.

— Estimate reduced form using forest-based VCM to obtain F(;).



AVAGRV/AY

Re-arranging the structural model yields

b1y bio 1
X = —Xp-1+—Yr-1+—&
ai a1 an
a1(Q2¢) bo1 b 1
Yi=————xp+ — X1+ — Y1+ —&,
an» a a ano

— Directly estimate the structural equation using a forest-based VCM to

obtain relative impact,

ye = P1(Q)xe + Bo(Qe)xe—1 + Pa(Qe)ye—1 + ui/.



High-dimensional IRFs: Graphing

e Problem: We have many moderators
e Solution:
a: Specific values
b: Partial dependency plots
e Choose a vector of specific moderator values, ®* € Q.
e Obtain reduced form matrix, F, as F"(o*).
o And impact matrix, Q, as Q(»*)e.
e \We assume that economy stays in the particular state. There is no
regime-switching.

Then the IRF can be computed as:

IRF ey h(0*) = F'(0") Q(w*)e

10



Empirical application



Replicating RZ (2018)

Recap on Ramey and Zubairy (2018):

e Question: Do government spending shocks have different effects in a

low vs. high (> 6.5%) unemployment regime, and the zero lower
bound?

e Method: LP-IV and TVAR with dummies and military news shocks.

e Findings: Larger multipliers when the economy is close to the ZLB
or when the unemployment rate is high.

11



Sanity check: Using dummy as modifier
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When feeding in the pre-defined dummy, the semi-parametric estimator

finds the same result.
12



Fully flexible estimation

e No pre-defined dummies: Q = {T-bill rate, Unemployment rate}

e Estimate the following system fully flexible

news; L(news;)
A(Q) 8t = B(Q) L(gt) + &,
Yt L(y)

13



Sliced IRFs: Effect of Gov. Spending on Output

unemployment rate: 3% unemployment rate: 8%
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Partial dependency IRFs
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Correlation between ZLB and unemployment
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Conclusion

e Our approach can detect state/time-dependence without the need to
define any priors.

e Hence, it reduces model uncertainty and can also be used to inform
the researcher on the parametric model specification for more
efficient estimation.

e It offers a more granular perspective on the often ignored
high-dimensionality of macroeconomic policy effects.

e The varying coefficient setup offers a great interface to use the
power of ML tools in parametric frameworks to keep it interpretable
and efficient.
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Appendix



Simulation studies



Endogenous state-dependence

The piece-wise definition of B; allows introducing all kinds of
non-linearities and asymmetries in the policy response for the forest-based
estimator to uncover.
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Endogenous state-dependence
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Multiple states
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Multiple states
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Multiple state-dependent coefficients
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Multiple state-dependent coefficient
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Multiple state-dependent coefficients
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Computational Details



Computational details

Algorithm 1 Estimation of varying coefficient model using a random forest
following Buergin and Ritschard (2017)

Parameters: T number of trees in forest, e.g., T = 100
No minimum node size, e.g., No =30
Dpin minimum —2- log-likelihood reduction, e.g., Dy, =2
Pmax ~ maximum levels of pruned tree, e.g., Pnax =3

function Random Forest-VCM(S, Q)
H<+0 > Initialize Forest
for treesin t=1to T do
St + A bootstrap sample from the dataset S
h: + Randomized Tree-VCM(S;,Q2)
H<+— HUh;
end for
return H

end function > Coefficient predictions by averaging over all trees in H
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